1
|
Wenyao C, Shuai M, Yifeng F, Xinzhi L, Xiangyong Q. Combined use of niraparib enhanced the inhibitory effect of Anti-GD2 antibody on osteosarcoma cells. Discov Oncol 2024; 15:304. [PMID: 39048747 PMCID: PMC11269552 DOI: 10.1007/s12672-024-01166-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
PURPOSE This study aims to investigate the effect of Niraparib in combination with an Anti-GD2 Antibody on osteosarcoma cells. METHODS Scratch test was utilized to assess cell migration capacity, while the Transwell experiment was utilized to evaluate cell invasion potential. Cell proliferation was measured using the CCK8 experiment. The affinity between the anti-GD2 antibody and its antigen was determined via ELISA. Tumor growth was evaluated through animal experiments. Western blotting, QRT-PCR, and histological analysis were conducted to examine the expression of relevant proteins and mRNAs. RESULTS MG63 cell line was used for an example. The scratch test showed that the migration rate of osteosarcoma cells in Niraparib + Anti-GD2 group was 1.07 ± 0.04 after 48 h, and 0.34 ± 0.04 in the Control group. Transwell experiment showed that the invasion ability of osteosarcoma cells in Niraparib + Anti-GD2 group was 21.0 ± 1.5, and that in Control group was 87.7 ± 2.9. CCK8 experiment showed that the absorbance value of Niraparib + Anti-GD2 group was 0.16 ± 0.10 on day 5, and that of the Control group was 0.76 ± 0.09. Western blotting showed that the expression levels of BALP and CICP in Niraparib + Anti-GD2 group were 0.751 ± 0.135 and 1.086 ± 0.115, respectively, and those in Control group were 1.025 ± 0.143 and 1.216 ± 0.168, respectively. QRT-PCR results showed that the absorbance values of Niraparib + Anti-GD2 group were 0.173 ± 0.065 and 0.170 ± 0.078 on day 14. The results of animal experiments showed that on day 5, the tumor volume of the Control group was 2433 ± 391, and that of the Niraparib + Anti-GD2 group was 1137 ± 148. Histological analysis showed that the mean density values of Niraparib + Anti-GD2 group were 0.19 ± 0.08 and 0.22 ± 0.07, and those of Control group were 0.26 ± 0.09 and 0.29 ± 0.10. CONCLUSION The combination of Niraparib and Anti-GD2 antibody significantly inhibits Osteosarcoma cells.
Collapse
Affiliation(s)
- Chen Wenyao
- Affiliated Renhe Hospital of China Three Gorges University, No. 410, Yiling Avenue, Yichang, 443001, China
| | - Ma Shuai
- Affiliated Renhe Hospital of China Three Gorges University, No. 410, Yiling Avenue, Yichang, 443001, China
| | - Fan Yifeng
- Affiliated Renhe Hospital of China Three Gorges University, No. 410, Yiling Avenue, Yichang, 443001, China
| | - Li Xinzhi
- Affiliated Renhe Hospital of China Three Gorges University, No. 410, Yiling Avenue, Yichang, 443001, China
| | - Que Xiangyong
- Affiliated Renhe Hospital of China Three Gorges University, No. 410, Yiling Avenue, Yichang, 443001, China.
| |
Collapse
|
2
|
Choi H, Kim HD, Choi YW, Lim H, Kim KW, Kim KS, Lee YC, Kim CH. T7 phage display reveals NOLC1 as a GM3 binding partner in human breast cancer MCF-7 cells. Arch Biochem Biophys 2023; 750:109810. [PMID: 37939867 DOI: 10.1016/j.abb.2023.109810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
Ganglioside GM3 is a simple monosialoganglioside (NeuAc-Gal-Glc-ceramide) that modulates cell adhesion, proliferation, and differentiation. Previously, we reported isolation of GM3-binding vascular endothelial growth factor receptor and transforming growth factor-β receptor by the T7 phage display method (Chung et al., 2009; Kim et al., 2013). To further identify novel proteins interacting with GM3, we extended the T7 phage display method in this study. After T7 phage display biopanning combined with immobilized biotin-labeled 3'-sialyllactose prepared on a streptavidin-coated microplate, we isolated 100 candidate sequences from the human lung cDNA library. The most frequently detected clones from the blast analysis were the human nucleolar and coiled-body phosphoprotein 1 (NOLC1) sequences. We initially identified NOLC1 as a molecule that possibly binds to GM3 and confirmed this binding ability using the glutathione S-transferase fusion protein. Herein, we report another GM3-interacting protein, NOLC1, that can be isolated by the T7 phage display method. These results are expected to be helpful for elucidating the functional roles of ganglioside GM3 with NOLC1. When human breast cancer MCF-7 cells were examined for subcellular localization of NOLC1, immunofluorescence of NOLC1 was observed in the intracellular region. In addition, NOLC1 expression was increased in the nucleolus after treatment with the anticancer drug doxorubicin. GM3 and NOLC1 levels in the doxorubicin-treated MCF-7 cells were correlated, indicating possible associations between GM3 and NOLC1. Therefore, direct interactions between carbohydrates and cellular proteins can pave the path for new signaling phenomena in biology.
Collapse
Affiliation(s)
- Hyunju Choi
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo 2066, Jangan-Gu, Suwon, 16419, South Korea.
| | - Hee-Do Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo 2066, Jangan-Gu, Suwon, 16419, South Korea.
| | - Yeon-Woo Choi
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo 2066, Jangan-Gu, Suwon, 16419, South Korea.
| | - Hakseong Lim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo 2066, Jangan-Gu, Suwon, 16419, South Korea.
| | - Kyung-Woon Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo 2066, Jangan-Gu, Suwon, 16419, South Korea.
| | - Kyoung-Sook Kim
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Saha-Gu, Busan, 604-714, South Korea
| | - Young-Choon Lee
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Saha-Gu, Busan, 604-714, South Korea.
| | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo 2066, Jangan-Gu, Suwon, 16419, South Korea.
| |
Collapse
|
3
|
Sarkar A, Banerjee S, Biswas K. Multi-dimensional role of gangliosides in modulating cancer hallmarks and their prospects in targeted cancer therapy. Front Pharmacol 2023; 14:1282572. [PMID: 38089042 PMCID: PMC10711107 DOI: 10.3389/fphar.2023.1282572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/14/2023] [Indexed: 12/10/2024] Open
Abstract
Gangliosides are glycosphingolipids with prevalence in nervous tissue and their involvement in certain neuronal diseases have been widely known. Interestingly, many recent studies highlighted their importance in the development and progression of various cancers through orchestration of multiple attributes of tumorigenesis, i.e., promoting migration, invasion, escaping the host immune system, and influencing other cancer hallmarks. Therefore, the multidimensional role of gangliosides in different cancers has established them as potential cancer targets. However, the tremendous structural complexity and functional heterogeneity are the major challenges in ganglioside research. Moreover, despite numerous immunotherapeutic attempts to target different gangliosides, it has failed to yield consistent results in clinical trials owing to their poor immunogenicity, a broad range of cross-reactivity, severe side effects, lack of uniform expression as well as heterogeneity. The recent identification of selective O-acetylated ganglioside expression in cancer tissues, but not in normal tissues, has strengthened their potential as a better and specific target for treating cancer patients. It was further supported by reduced cross-reactivity and side effects in clinical trials, although poor immunogenicity remains a major concern. Therefore, in addition to characterization and identification of the biological importance of O-acetylated gangliosides, their specific and efficient targeting in cancer through engineered antibodies is an emerging area of glycobiology research. This review highlights the modulatory effect of select gangliosides on different hallmarks of cancer and presents the overall development of ganglioside targeted immunotherapies along with recent progress. Here, we have also discussed its potential for future modifications aimed towards improvement in ganglioside-based cancer therapies.
Collapse
Affiliation(s)
| | | | - Kaushik Biswas
- Department of Biological Sciences, Bose Institute, Kolkata, India
| |
Collapse
|
4
|
van der Haar Àvila I, Windhouwer B, van Vliet SJ. Current state-of-the-art on ganglioside-mediated immune modulation in the tumor microenvironment. Cancer Metastasis Rev 2023; 42:941-958. [PMID: 37266839 PMCID: PMC10584724 DOI: 10.1007/s10555-023-10108-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/13/2023] [Indexed: 06/03/2023]
Abstract
Gangliosides are sialylated glycolipids, mainly present at the cell surface membrane, involved in a variety of cellular signaling events. During malignant transformation, the composition of these glycosphingolipids is altered, leading to structural and functional changes, which are often negatively correlated to patient survival. Cancer cells have the ability to shed gangliosides into the tumor microenvironment, where they have a strong impact on anti-tumor immunity and promote tumor progression. Since most ganglioside species show prominent immunosuppressive activities, they might be considered checkpoint molecules released to counteract ongoing immunosurveillance. In this review, we highlight the current state-of-the-art on the ganglioside-mediated immunomodulation, specified for the different immune cells and individual gangliosides. In addition, we address the dual role that certain gangliosides play in the tumor microenvironment. Even though some ganglioside species have been more extensively studied than others, they are proven to contribute to the defense mechanisms of the tumor and should be regarded as promising therapeutic targets for inclusion in future immunotherapy regimens.
Collapse
Affiliation(s)
- Irene van der Haar Àvila
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan, 1117, Amsterdam, the Netherlands
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, the Netherlands
- Cancer Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Britt Windhouwer
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan, 1117, Amsterdam, the Netherlands
| | - Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan, 1117, Amsterdam, the Netherlands.
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, the Netherlands.
- Cancer Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands.
| |
Collapse
|
5
|
Jin X, Yang GY. Pathophysiological roles and applications of glycosphingolipids in the diagnosis and treatment of cancer diseases. Prog Lipid Res 2023; 91:101241. [PMID: 37524133 DOI: 10.1016/j.plipres.2023.101241] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Glycosphingolipids (GSLs) are major amphiphilic glycolipids present on the surface of living cell membranes. They have important biological functions, including maintaining plasma membrane stability, regulating signal transduction, and mediating cell recognition and adhesion. Specific GSLs and related enzymes are abnormally expressed in many cancer diseases and affect the malignant characteristics of tumors. The regulatory roles of GSLs in signaling pathways suggest that they are involved in tumor pathogenesis. GSLs have therefore been widely studied as diagnostic markers of cancer diseases and important targets of immunotherapy. This review describes the tumor-related biological functions of GSLs and systematically introduces recent progress in using diverse GSLs and related enzymes to diagnose and treat tumor diseases. Development of drugs and biomarkers for personalized cancer therapy based on GSL structure is also discussed. These advances, combined with recent progress in the preparation of GSLs derivatives through synthetic biology technologies, suggest a strong future for the use of customized GSL libraries in treating human diseases.
Collapse
Affiliation(s)
- Xuefeng Jin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Clinical Pharmaceutics, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Guang-Yu Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
6
|
The Role of Glycosyltransferases in Colorectal Cancer. Int J Mol Sci 2021; 22:ijms22115822. [PMID: 34070747 PMCID: PMC8198577 DOI: 10.3390/ijms22115822] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the main causes of cancer death in the world. Post-translational modifications (PTMs) have been extensively studied in malignancies due to its relevance in tumor pathogenesis and therapy. This review is focused on the dysregulation of glycosyltransferase expression in CRC and its impact in cell function and in several biological pathways associated with CRC pathogenesis, prognosis and therapeutic approaches. Glycan structures act as interface molecules between cells and their environment and in several cases facilitate molecule function. CRC tissue shows alterations in glycan structures decorating molecules, such as annexin-1, mucins, heat shock protein 90 (Hsp90), β1 integrin, carcinoembryonic antigen (CEA), epidermal growth factor receptor (EGFR), insulin-like growth factor-binding protein 3 (IGFBP3), transforming growth factor beta (TGF-β) receptors, Fas (CD95), PD-L1, decorin, sorbin and SH3 domain-containing protein 1 (SORBS1), CD147 and glycosphingolipids. All of these are described as key molecules in oncogenesis and metastasis. Therefore, glycosylation in CRC can affect cell migration, cell–cell adhesion, actin polymerization, mitosis, cell membrane repair, apoptosis, cell differentiation, stemness regulation, intestinal mucosal barrier integrity, immune system regulation, T cell polarization and gut microbiota composition; all such functions are associated with the prognosis and evolution of the disease. According to these findings, multiple strategies have been evaluated to alter oligosaccharide processing and to modify glycoconjugate structures in order to control CRC progression and prevent metastasis. Additionally, immunotherapy approaches have contemplated the use of neo-antigens, generated by altered glycosylation, as targets for tumor-specific T cells or engineered CAR (Chimeric antigen receptors) T cells.
Collapse
|
7
|
|
8
|
Gangliosides as Signaling Regulators in Cancer. Int J Mol Sci 2021; 22:ijms22105076. [PMID: 34064863 PMCID: PMC8150402 DOI: 10.3390/ijms22105076] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023] Open
Abstract
At the plasma membrane, gangliosides, a group of glycosphingolipids, are expressed along with glycosphingolipids, phospholipids, and cholesterol in so-called lipid rafts that interact with signaling receptors and related molecules. Most cancers present abnormalities in the intracellular signal transduction system involved in tumor growth, invasion, and metastasis. To date, the roles of gangliosides as regulators of signal transduction have been reported in several cancer types. Gangliosides can be expressed by the exogenous ganglioside addition, with their endogenous expression regulated at the enzymatic level by targeting specific glycosyltransferases. Accordingly, the relationship between changes in the composition of cell surface gangliosides and signal transduction has been investigated by controlling ganglioside expression. In cancer cells, several types of signaling molecules are positively or negatively regulated by ganglioside expression levels, promoting malignant properties. Moreover, antibodies against gangliosides have been shown to possess cytotoxic effects on ganglioside-expressing cancer cells. In the present review, we highlight the involvement of gangliosides in the regulation of cancer cell signaling, and we explore possible therapies targeting ganglioside-expressing cancer.
Collapse
|
9
|
Deciphering the Importance of Glycosphingolipids on Cellular and Molecular Mechanisms Associated with Epithelial-to-Mesenchymal Transition in Cancer. Biomolecules 2021; 11:biom11010062. [PMID: 33418847 PMCID: PMC7824851 DOI: 10.3390/biom11010062] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/31/2020] [Accepted: 01/02/2021] [Indexed: 12/12/2022] Open
Abstract
Every living cell is covered with a dense and complex layer of glycans on the cell surface, which have important functions in the interaction between cells and their environment. Glycosphingolipids (GSLs) are glycans linked to lipid molecules that together with sphingolipids, sterols, and proteins form plasma membrane lipid rafts that contribute to membrane integrity and provide specific recognition sites. GSLs are subdivided into three major series (globo-, ganglio-, and neolacto-series) and are synthesized in a non-template driven process by enzymes localized in the ER and Golgi apparatus. Altered glycosylation of lipids are known to be involved in tumor development and metastasis. Metastasis is frequently linked with reversible epithelial-to-mesenchymal transition (EMT), a process involved in tumor progression, and the formation of new distant metastatic sites (mesenchymal-to-epithelial transition or MET). On a single cell basis, cancer cells lose their epithelial features to gain mesenchymal characteristics via mechanisms influenced by the composition of the GSLs on the cell surface. Here, we summarize the literature on GSLs in the context of reversible and cancer-associated EMT and discuss how the modification of GSLs at the cell surface may promote this process.
Collapse
|
10
|
Ouyang S, Liu JH, Ni Z, Ding GF, Wang QZ. Downregulation of ST3GAL5 is associated with muscle invasion, high grade and a poor prognosis in patients with bladder cancer. Oncol Lett 2020; 20:828-840. [PMID: 32566010 PMCID: PMC7285741 DOI: 10.3892/ol.2020.11597] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
In patients with bladder cancer (BC), the association between ST3 β-galactoside α-2,3-sialyltransferase 5 (ST3GAL5) expression and clinical outcomes, particularly regarding muscle-invasive disease, high tumor grade and prognosis, remain unknown. In the present study, the expression of ST3GAL5 and its association with clinical outcomes in patients with BC was analyzed using various public bioinformatics databases. The difference in ST3GAL5 expression between BC and healthy bladder tissues was also evaluated using data from the Oncomine database, The Cancer Genome Atlas and Gene Expression Omnibus database. The differences in ST3GAL5 expression between muscle invasive BC (MIBC) and non-muscle invasive BC (NMIBC), and high- and low-grade BC were also analyzed. Furthermore, genes that were positively co-expressed with ST3GAL5 in patients with BC were identified from the intersection between the Oncomine, Gene Expression Profiling Interactive Analysis 2 and UALCAN databases. Enrichment analysis by Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, Reactome pathway enrichment analyses and a gene-concept network was performed using R package. Gene set enrichment analysis was also performed to assess the signaling pathways influenced by the high and low expression of ST3GAL5 in BC. The results indicated that ST3GAL5 expression was significantly lower in BC tissues compared with normal bladder tissues (P<0.05). Furthermore, ST3GAL5 expression in MIBC and high-grade BC was significantly lower compared with NMIBC and low-grade BC (P<0.05), respectively. The results from Kaplan-Meier survival analysis result demonstrated that ST3GAL5 downregulation was associated with poor survival in patients with BC (P<0.05). Taken together, these findings suggested that ST3GAL5 may be considered as an anti-oncogene in BC, could represent a potential predictive and prognostic biomarker for BC and may be a molecular target for tumor therapy.
Collapse
Affiliation(s)
- Song Ouyang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China.,Department of Urology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Ji-Hong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhao Ni
- Department of Urology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Guo-Fu Ding
- Department of Urology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Qin-Zhang Wang
- Department of Urology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| |
Collapse
|
11
|
Navigating the Role of CD1d/Invariant Natural Killer T-cell/Glycolipid Immune Axis in Multiple Myeloma Evolution: Therapeutic Implications. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2020; 20:358-365. [PMID: 32234294 DOI: 10.1016/j.clml.2020.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 12/28/2022]
Abstract
Multiple myeloma (MM) is an incurable B-cell malignancy. The immunotherapeutic approach for MM therapy is evolving. The Cd1d/invariant natural killer T-cell/glycolipid immune axis belongs to the innate immunity, and we have highlighted role in myeloma pathogenesis in the present study. The recent development of the chimeric antigen receptor (CAR19)-invariant natural killer T-cells resulted in our renewed interest in this immune system and offer new perspectives for future anti-MM immunotherapies.
Collapse
|
12
|
Ha SH, Kwak CH, Park JY, Abekura F, Lee YC, Kim JS, Chung TW, Kim CH. 3'-sialyllactose targets cell surface protein, SIGLEC-3, and induces megakaryocyte differentiation and apoptosis by lipid raft-dependent endocytosis. Glycoconj J 2020; 37:187-200. [PMID: 31900723 DOI: 10.1007/s10719-019-09902-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 11/11/2019] [Accepted: 11/26/2019] [Indexed: 12/27/2022]
Abstract
3'-sialyllactose is one of the abundant components in human milk oligosaccharides (HMOs) that protect infants from various viral infections in early stages of immune system development. 3SL is a combination of lactose and sialic acid. Most sialic acids are widely expressed in animal cells and they bind to siglec proteins. In this study, we demonstrate that 3SL specifically binds to CD33. It induces megakaryocyte differentiation and subsequent apoptosis by targeting cell surface protein siglec-3 (CD33) in human chronic myeloid leukemia K562 cells. The 3SL-bound CD33 was internalized to the cytosol via caveolae-dependent endocytosis. At the molecular level, 3SL-bound CD33 recruits the suppressor of cytokine signaling 3 (SOCS3) and SH2 domain-containing protein tyrosine phosphatase 1 (SHP1). SOCS3 is degraded with CD33 by proteasome degradation, while SHP-1 activates extracellular signal-regulated kinase (ERK) to induce megakaryocytic differentiation and subsequent apoptosis. The present study, therefore, suggests that 3SL is a potential anti-leukemia agent affecting differentiation and apoptosis.
Collapse
Affiliation(s)
- Sun-Hyung Ha
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, 300 Chunchun-Dong, Jangan-Gu, Suwon City, Kyunggi-Do, 440-746, South Korea
| | - Choong-Hwan Kwak
- School of Korean Medicine, Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Jun-Young Park
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, 300 Chunchun-Dong, Jangan-Gu, Suwon City, Kyunggi-Do, 440-746, South Korea
| | - Fukushi Abekura
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, 300 Chunchun-Dong, Jangan-Gu, Suwon City, Kyunggi-Do, 440-746, South Korea
| | - Young-Choon Lee
- Faculty of Medicinal Biotechnology, Dong-A University, Busan, Republic of Korea
| | - Jong-Suk Kim
- Department of Biochemistry, Institute for Medical Sciences, Chonbuk National University Medical School, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, South Korea
| | - Tae-Wook Chung
- School of Korean Medicine, Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea.
| | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, 300 Chunchun-Dong, Jangan-Gu, Suwon City, Kyunggi-Do, 440-746, South Korea.
| |
Collapse
|
13
|
Kim BH, Ju WS, Kim JS, Kim SU, Park SJ, Ward SM, Lyu JH, Choo YK. Effects of Gangliosides on Spermatozoa, Oocytes, and Preimplantation Embryos. Int J Mol Sci 2019; 21:E106. [PMID: 31877897 PMCID: PMC6982094 DOI: 10.3390/ijms21010106] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 01/01/2023] Open
Abstract
Gangliosides are sialic acid-containing glycosphingolipids, which are the most abundant family of glycolipids in eukaryotes. Gangliosides have been suggested to be important lipid molecules required for the control of cellular procedures, such as cell differentiation, proliferation, and signaling. GD1a is expressed in interstitial cells during ovarian maturation in mice and exogenous GD1a is important to oocyte maturation, monospermic fertilization, and embryonic development. In this context, GM1 is known to influence signaling pathways in cells and is important in sperm-oocyte interactions and sperm maturation processes, such as capacitation. GM3 is expressed in the vertebrate oocyte cytoplasm, and exogenously added GM3 induces apoptosis and DNA injury during in vitro oocyte maturation and embryogenesis. As a consequence of this, ganglioside GT1b and GM1 decrease DNA fragmentation and act as H2O2 inhibitors on germ cells and preimplantation embryos. This review describes the functional roles of gangliosides in spermatozoa, oocytes, and early embryonic development.
Collapse
Affiliation(s)
- Bo Hyun Kim
- CHA Fertility Center, 5455 Wilshire Blvd. Los Angeles, CA 90036, USA;
| | - Won Seok Ju
- Department of Biological Science, College of Natural Sciences, Wonkwang University, 460, Iksan-daero, Iksan-si, Jeollabuk-do 54538, Korea; (W.S.J.); (S.J.P.)
| | - Ji-Su Kim
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology, Neongme-gil, Ibam-myeon, Jeongup-si, Jeonvuk 56216, Korea;
| | - Sun-Uk Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, 30, Yeonggudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 28116, Korea;
| | - Soon Ju Park
- Department of Biological Science, College of Natural Sciences, Wonkwang University, 460, Iksan-daero, Iksan-si, Jeollabuk-do 54538, Korea; (W.S.J.); (S.J.P.)
| | - Sean M. Ward
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA; (S.M.W.); (J.H.L.)
| | - Ju Hyeong Lyu
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA; (S.M.W.); (J.H.L.)
| | - Young-Kug Choo
- Department of Biological Science, College of Natural Sciences, Wonkwang University, 460, Iksan-daero, Iksan-si, Jeollabuk-do 54538, Korea; (W.S.J.); (S.J.P.)
- Institute for Glycoscience, Wonkwang University, 460, Iksan-daero, Iksan-si, Jeollabuk-do 54538, Korea
| |
Collapse
|
14
|
Biwi J, Clarisse C, Biot C, Kozak RP, Madunic K, Mortuaire M, Wuhrer M, Spencer DIR, Schulz C, Guerardel Y, Lefebvre T, Vercoutter-Edouart AS. OGT Controls the Expression and the Glycosylation of E-cadherin, and Affects Glycosphingolipid Structures in Human Colon Cell Lines. Proteomics 2019; 19:e1800452. [PMID: 31373757 DOI: 10.1002/pmic.201800452] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/16/2019] [Indexed: 12/11/2022]
Abstract
Colorectal cancer (CRC) affects both women and men living in societies with a high sedentary lifestyle. Amongst the phenotypic changes exhibited by tumor cells, a wide range of glycosylation has been reported for colon cancer-derived cell lines and CRC tissues. These aberrant modifications affect different aspects of glycosylation, including an increase in core fucosylation and GlcNAc branching on N-glycans, alteration of O-glycans, upregulated sialylation, and O-GlcNAcylation. Although O-GlcNAcylation and complex glycosylations differ in many aspects, sparse evidences report on the interference of O-GlcNAcylation with complex glycosylation. Nevertheless, this relationship is still a matter of debate. Combining different approaches on three human colon cell lines (HT29, HCT116 and CCD841CoN), it is herein reported that silencing O-GlcNAc transferase (OGT, the sole enzyme driving O-GlcNAcylation), only slightly affects overall N- and O-glycosylation patterns. Interestingly, silencing of OGT in HT29 cells upregulates E-cadherin (a major actor of epithelial-to-mesenchymal transition) and changes its glycosylation. On the other hand, OGT silencing perturbs biosynthesis of glycosphingolipids resulting in a decrease in gangliosides and an increase in globosides. Together, these results provide novel insights regarding the selective regulation of complex glycosylations by O-GlcNAcylation in colon cancer cells.
Collapse
Affiliation(s)
- James Biwi
- Université de Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Charlotte Clarisse
- Université de Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Christophe Biot
- Université de Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Radoslaw Pawel Kozak
- Ludger Ltd, Culham Science Centre, OX14 3EB, Abingdon, Oxfordshire, United Kingdom
| | - Katarina Madunic
- Leiden University Medical Centre, Centre for Proteomics and Metabolomics, 2333ZA, Leiden, Netherlands
| | - Marlène Mortuaire
- Université de Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Manfred Wuhrer
- Leiden University Medical Centre, Centre for Proteomics and Metabolomics, 2333ZA, Leiden, Netherlands
| | | | - Céline Schulz
- Université de Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Yann Guerardel
- Université de Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Tony Lefebvre
- Université de Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | | |
Collapse
|
15
|
Bocca C, Kane MS, Veyrat-Durebex C, Nzoughet JK, Chao de la Barca JM, Chupin S, Alban J, Procaccio V, Bonneau D, Simard G, Lenaers G, Reynier P, Chevrollier A. Lipidomics Reveals Triacylglycerol Accumulation Due to Impaired Fatty Acid Flux in Opa1-Disrupted Fibroblasts. J Proteome Res 2019; 18:2779-2790. [PMID: 31199663 DOI: 10.1021/acs.jproteome.9b00081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OPA1 is a dynamin GTPase implicated in mitochondrial membrane fusion. Despite its involvement in lipid remodeling, the function of OPA1 has never been analyzed by whole-cell lipidomics. We used a nontargeted, reversed-phase lipidomics approach, validated for cell cultures, to investigate OPA1-inactivated mouse embryonic fibroblasts ( Opa1 -/- MEFs). This led to the identification of a wide range of 14 different lipid subclasses comprising 212 accurately detected lipids. Multivariate and univariate statistical analyses were then carried out to assess the differences between the Opa1 -/- and Opa1 +/+ genotypes. Of the 212 lipids identified, 69 were found to discriminate between Opa1 -/- MEFs and Opa1 +/+ MEFs. Among these lipids, 34 were triglycerides, all of which were at higher levels in Opa1 -/- MEFs with fold changes ranging from 3.60 to 17.93. Cell imaging with labeled fatty acids revealed a sharp alteration of the fatty acid flux with a reduced mitochondrial uptake. The other 35 discriminating lipids included phosphatidylcholines, lysophosphatidylcholines, phosphatidylethanolamine, and sphingomyelins, mainly involved in membrane remodeling, and ceramides, gangliosides, and phosphatidylinositols, mainly involved in apoptotic cell signaling. Our results show that the inactivation of OPA1 severely affects the mitochondrial uptake of fatty acids and lipids through membrane remodeling and apoptotic cell signaling.
Collapse
Affiliation(s)
- Cinzia Bocca
- Equipe Mitolab, Institut MITOVASC, CNRS 6015, INSERM U1083 , Université d'Angers , 49933 Angers , France
| | - Mariame Selma Kane
- Equipe Mitolab, Institut MITOVASC, CNRS 6015, INSERM U1083 , Université d'Angers , 49933 Angers , France
| | - Charlotte Veyrat-Durebex
- Equipe Mitolab, Institut MITOVASC, CNRS 6015, INSERM U1083 , Université d'Angers , 49933 Angers , France.,Département de Biochimie et Génétique , Centre Hospitalier Universitaire , 49933 Angers , France
| | - Judith Kouassi Nzoughet
- Equipe Mitolab, Institut MITOVASC, CNRS 6015, INSERM U1083 , Université d'Angers , 49933 Angers , France
| | - Juan Manuel Chao de la Barca
- Equipe Mitolab, Institut MITOVASC, CNRS 6015, INSERM U1083 , Université d'Angers , 49933 Angers , France.,Département de Biochimie et Génétique , Centre Hospitalier Universitaire , 49933 Angers , France
| | - Stephanie Chupin
- Département de Biochimie et Génétique , Centre Hospitalier Universitaire , 49933 Angers , France
| | - Jennifer Alban
- Equipe Mitolab, Institut MITOVASC, CNRS 6015, INSERM U1083 , Université d'Angers , 49933 Angers , France
| | - Vincent Procaccio
- Equipe Mitolab, Institut MITOVASC, CNRS 6015, INSERM U1083 , Université d'Angers , 49933 Angers , France.,Département de Biochimie et Génétique , Centre Hospitalier Universitaire , 49933 Angers , France
| | - Dominique Bonneau
- Equipe Mitolab, Institut MITOVASC, CNRS 6015, INSERM U1083 , Université d'Angers , 49933 Angers , France.,Département de Biochimie et Génétique , Centre Hospitalier Universitaire , 49933 Angers , France
| | - Gilles Simard
- Département de Biochimie et Génétique , Centre Hospitalier Universitaire , 49933 Angers , France.,INSERM U1063 , Université d'Angers , 49933 Angers , France
| | - Guy Lenaers
- Equipe Mitolab, Institut MITOVASC, CNRS 6015, INSERM U1083 , Université d'Angers , 49933 Angers , France
| | - Pascal Reynier
- Equipe Mitolab, Institut MITOVASC, CNRS 6015, INSERM U1083 , Université d'Angers , 49933 Angers , France.,Département de Biochimie et Génétique , Centre Hospitalier Universitaire , 49933 Angers , France
| | - Arnaud Chevrollier
- Equipe Mitolab, Institut MITOVASC, CNRS 6015, INSERM U1083 , Université d'Angers , 49933 Angers , France
| |
Collapse
|
16
|
Zhuo D, Li X, Guan F. Biological Roles of Aberrantly Expressed Glycosphingolipids and Related Enzymes in Human Cancer Development and Progression. Front Physiol 2018; 9:466. [PMID: 29773994 PMCID: PMC5943571 DOI: 10.3389/fphys.2018.00466] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 04/13/2018] [Indexed: 01/05/2023] Open
Abstract
Glycosphingolipids (GSLs), which consist of a hydrophobic ceramide backbone and a hydrophilic carbohydrate residue, are an important type of glycolipid expressed in surface membranes of all animal cells. GSLs play essential roles in maintenance of plasma membrane stability, in regulation of numerous cellular processes (including adhesion, proliferation, apoptosis, and recognition), and in modulation of signal transduction pathways. GSLs have traditionally been classified as ganglio-series, lacto-series, or globo-series on the basis of their diverse types of oligosaccharide chains. Structures and functions of specific GSLs are also determined by their oligosaccharide chains. Different cells and tissues show differential expression of GSLs, and changes in structures of GSL glycan moieties occur during development of numerous types of human cancer. Association of GSLs and/or related enzymes with initiation and progression of cancer has been documented in 100s of studies, and many such GSLs are useful markers or targets for cancer diagnosis or therapy. In this review, we summarize (i) recent studies on aberrant expression and distribution of GSLs in common human cancers (breast, lung, colorectal, melanoma, prostate, ovarian, leukemia, renal, bladder, gastric); (ii) biological functions of specific GSLs in these cancers.
Collapse
Affiliation(s)
- Dinghao Zhuo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiang Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of China, College of Life Science, Northwest University, Xi'an, China
| | - Feng Guan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
17
|
Jain R, Austin Pickens C, Fenton JI. The role of the lipidome in obesity-mediated colon cancer risk. J Nutr Biochem 2018; 59:1-9. [PMID: 29605789 DOI: 10.1016/j.jnutbio.2018.02.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/07/2018] [Accepted: 02/13/2018] [Indexed: 02/07/2023]
Abstract
Obesity is a state of chronic inflammation influenced by lipids such as fatty acids and their secondary oxygenated metabolites deemed oxylipids. Many such lipid mediators serve as potent signaling molecules of inflammation, which can further alter lipid metabolism and lead to carcinogenesis. For example, sphingosine-1-phosphate activates cyclooxygenase-2 in endothelial cells resulting in the conversion of arachidonic acid (AA) to prostaglandin E2 (PGE2). PGE2 promotes colon cancer cell growth. In contrast, the less studied path of AA oxygenation via cytochrome p450 enzymes produces epoxyeicosatetraenoic acids (EETs), whose anti-inflammatory properties cause shrinking of enlarged adipocytes, a characteristic of obesity, through the liberation of fatty acids. It is now thought that EET depletion occurs in obesity and may contribute to colon cell carcinogenesis. Meanwhile, gangliosides, a type of sphingolipid, are cell surface signaling molecules that contribute to the apoptosis of colon tumor cells. Many of these discoveries have been made recently and the mechanisms are still not fully understood, leading to an exciting new chapter of lipidomic research. In this review, mechanisms behind obesity-associated colon cancer are discussed with a focus on the role of small lipid signaling molecules in the process. Specifically, changes in lipid metabolite levels during obesity and the development of colon cancer, as well as novel biomarkers and targets for therapy, are discussed.
Collapse
Affiliation(s)
- Raghav Jain
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | - C Austin Pickens
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | - Jenifer I Fenton
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
18
|
Park HJ, Chae SK, Kim JW, Yang SG, Jung JM, Kim MJ, Wee G, Lee DS, Kim SU, Koo DB. Ganglioside GM3 induces cumulus cell apoptosis through inhibition of epidermal growth factor receptor-mediated PI3K/AKT signaling pathways during in vitro maturation of pig oocytes. Mol Reprod Dev 2017; 84:702-711. [PMID: 28585705 DOI: 10.1002/mrd.22848] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/02/2017] [Indexed: 11/06/2022]
Abstract
Gangliosides are components of the mammalian plasma membrane that help regulate receptor signaling. Ganglioside GM3, for example, plays an important role in initiating apoptosis in cancer cells; however, physiological roles for GM3 in normal processes, such as during pig oocyte maturation, are not clear. The aim of this study was to investigate the functional link between GM3 and cellular apoptosis in porcine cumulus-oocyte-complexes (COCs) during in vitro maturation. Our results indicated that denuded oocytes possess less ST3GAL5, a GM3-synthesizing enzyme, than cumulus cells or COCs after 44 hr of in vitro maturation. GM3 also affected the meiotic maturation of cultured pig oocytes, as evaluated by orcein staining. In vitro treatment of COCs with exogenous GM3 also reduced cumulus cell expansion, the proportion of meiotic maturation, and increased cumulus cell transcription of PTX3, TNFAIP6, and HAS2. Interestingly, GM3 treatment reduced the expression of Epidermal growth factor receptor (EGFR)-mediated Phosphoinositide 3-kinase/AKT signaling proteins in COCs in a concentration-dependent manner, instead increasing the abundance of pro-apoptotic factors such as AIF, activated Caspase 9, cleaved PARP1, and Caspase 3 were. Thus, GM3 might affect porcine oocyte maturation via suppression of EGFR-mediated PI3K/AKT signaling and/or induction of apoptosis during in vitro maturation.
Collapse
Affiliation(s)
- Hyo-Jin Park
- Department of Biotechnology, College of Engineering, Daegu University, Jillyang, Gyeongsan, Gyeongbuk, Republic of Korea
| | - Sung-Kyu Chae
- Department of Biotechnology, College of Engineering, Daegu University, Jillyang, Gyeongsan, Gyeongbuk, Republic of Korea.,Maria Fertility Hospital, Busan, Republic of Korea
| | - Jin-Woo Kim
- Department of Biotechnology, College of Engineering, Daegu University, Jillyang, Gyeongsan, Gyeongbuk, Republic of Korea
| | - Seul-Gi Yang
- Department of Biotechnology, College of Engineering, Daegu University, Jillyang, Gyeongsan, Gyeongbuk, Republic of Korea
| | - Jae-Min Jung
- Department of Biotechnology, College of Engineering, Daegu University, Jillyang, Gyeongsan, Gyeongbuk, Republic of Korea
| | - Min-Ji Kim
- Department of Biotechnology, College of Engineering, Daegu University, Jillyang, Gyeongsan, Gyeongbuk, Republic of Korea
| | - Gabbine Wee
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Dong-gu, Daegu, Republic of Korea
| | - Dong-Seok Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Sun-Uk Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Chungbuk, Republic of Korea.,Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Chungbuk, Republic of Korea
| | - Deog-Bon Koo
- Department of Biotechnology, College of Engineering, Daegu University, Jillyang, Gyeongsan, Gyeongbuk, Republic of Korea
| |
Collapse
|
19
|
Choi H, Jin UH, Kang SK, Abekura F, Park JY, Kwon KM, Suh SJ, Cho SH, Ha KT, Lee YC, Chung TW, Kim CH. Monosialyl Ganglioside GM3 Decreases Apolipoprotein B-100 Secretion in Liver Cells. J Cell Biochem 2017; 118:2168-2181. [PMID: 28019668 DOI: 10.1002/jcb.25860] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 12/22/2016] [Indexed: 12/13/2022]
Abstract
Some sialic acid-containing glycolipids are known to regulate development of atherosclerosis with accumulated plasma apolipoprotein B-100 (Apo-B)-containing lipoproteins, because Apo-B as an atherogenic apolipoprotein is assembled mainly in VLDL and LDL. Previously, we have elucidated that disialyl GD3 promotes the microsomal triglyceride transfer protein (MTP) gene expression and secretion of triglyceride (TG)-assembled ApoB, claiming the GD3 role in ApoB lipoprotein secretion in liver cells. In the synthetic pathway of gangliosides, GD3 is synthesized by addition of a sialic acid residue to GM3. Thus, there should be some regulatory links between GM3 and GD3. In this study, exogenous and endogenous monosialyl GM3 has been examined how GM3 plays a role in ApoB secretion in Chang liver cells in a view point of MTP and ApoB degradation in the same cells. The level of GM3 ganglioside in the GM3 synthase gene-transfected cells was increased in the cell extract, but not in the medium. In addition, GM3 synthase gene-transfected cells showed a diminished secretion of TG-enriched ApoB with a lower content of TG in the medium. Exogenous GM3 treatment for 24 h exerted a dose dependent inhibitory effect on ApoB secretion together with TG, while a liver-specific albumin was unchanged, indicating that GM3 effect is limited to ApoB secretion. GM3 decreased the mRNA level of MTP gene, too. ApoB protein assembly dysregulated by GM3 indicates the impaired ApoB secretion is caused by a proteasome-dependent pathway. Treatment with small interfering RNAs (siRNAs) decreased ApoB secretion, but GM3-specific antibody did not. These results indicate that plasma membrane associated GM3 inhibits ApoB secretion, lowers development of atherosclerosis by decreasing the secretion of TG-enriched ApoB containing lipoproteins, suggesting that GM3 is an inhibitor of ApoB and TG secretion in liver cells. J. Cell. Biochem. 118: 2168-2181, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hyunju Choi
- Molecular and Cellular Glycobiology Unit, Department of Biological Science, Sungkyunkwan University, Kyunggi-Do 440-746, Korea
| | - Un-Ho Jin
- Molecular and Cellular Glycobiology Unit, Department of Biological Science, Sungkyunkwan University, Kyunggi-Do 440-746, Korea
| | - Sung-Koo Kang
- Molecular and Cellular Glycobiology Unit, Department of Biological Science, Sungkyunkwan University, Kyunggi-Do 440-746, Korea
| | - Fukushi Abekura
- Molecular and Cellular Glycobiology Unit, Department of Biological Science, Sungkyunkwan University, Kyunggi-Do 440-746, Korea
| | - Jun-Young Park
- Molecular and Cellular Glycobiology Unit, Department of Biological Science, Sungkyunkwan University, Kyunggi-Do 440-746, Korea
| | - Kyung-Min Kwon
- Molecular and Cellular Glycobiology Unit, Department of Biological Science, Sungkyunkwan University, Kyunggi-Do 440-746, Korea.,Research Institute, Davinch-K Co., Ltd., Geumcheon-gu, Seoul 153-719, Korea
| | - Seok-Jong Suh
- Molecular and Cellular Glycobiology Unit, Department of Biological Science, Sungkyunkwan University, Kyunggi-Do 440-746, Korea
| | - Seung-Hak Cho
- Division of Enteric Diseases, Center for Infectious Diseases Research, Korea National Institute of Health, Heungdeok-gu, Cheongju 363-951, Korea
| | - Ki-Tae Ha
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan City, Korea
| | - Young-Coon Lee
- Faculty of Medicinal Biotechnology, Dong-A University, Busan 604-714, Korea
| | - Tae-Wook Chung
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan City, Korea
| | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Science, Sungkyunkwan University, Kyunggi-Do 440-746, Korea.,Department of Medical Device Management and Research, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Korea
| |
Collapse
|
20
|
Mastelić A, Čikeš Čulić V, Režić Mužinić N, Vuica-Ross M, Barker D, Leung EY, Reynisson J, Markotić A. Glycophenotype of breast and prostate cancer stem cells treated with thieno[2,3- b]pyridine anticancer compound. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:759-769. [PMID: 28352152 PMCID: PMC5359006 DOI: 10.2147/dddt.s121122] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tumor progression may be driven by a small subpopulation of cancer stem cells (CSCs characterized by CD44+/CD24− phenotype). We investigated the influence of a newly developed thienopyridine anticancer compound (3-amino-5-oxo-N-naphthyl-5,6,7, 8-tetrahydrothieno[2,3-b]quinoline-2-carboxamide, 1) on the growth, survival and glycophenotype (CD15s and GM3 containing neuraminic acid substituted with acetyl residue, NeuAc) of breast and prostate cancer stem/progenitor-like cell population. MDA-MB-231 and Du-145 cells were incubated with compound 1 alone or in combination with paclitaxel. The cellular metabolic activity was determined by the 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay. The type of cell death induced by 48-h treatment was assessed using a combination of Annexin-V-FITC and propidium iodide staining. Flow cytometric analysis was performed to detect the percentage of CD44+/CD24− cells, and GM3 and CD15s positive CSCs, as well as the expression of GM3 and CD15s per one CSC, in both cell lines. Compound 1 produces a dose- and time-dependent cytotoxicity, mediated mainly by apoptosis in breast cancer cells, and slightly (2.3%) but statistically significant lowering breast CSC subpopulation. GM3 expression per one breast CSC was increased, and the percentage of prostate GM3+ CSC subpopulation was decreased in cells treated with compound 1 compared with non-treated cells. The percentage of CD15s+ CSCs was lower in both cell lines after treatment with compound 1. Considering that triple-negative breast cancers are characterized by an increased percentage of breast CSCs and knowing their association with an increased risk of metastasis and mortality, compound 1 is a potentially effective drug for triple-negative breast cancer treatment.
Collapse
Affiliation(s)
- Angela Mastelić
- Department of Medical Chemistry and Biochemistry, University of Split School of Medicine, Split, Croatia
| | - Vedrana Čikeš Čulić
- Department of Medical Chemistry and Biochemistry, University of Split School of Medicine, Split, Croatia
| | - Nikolina Režić Mužinić
- Department of Medical Chemistry and Biochemistry, University of Split School of Medicine, Split, Croatia
| | - Milena Vuica-Ross
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - David Barker
- School of Chemical Sciences, The University of Auckland
| | - Euphemia Y Leung
- Auckland Cancer Society Research Centre, The University of Auckland; Molecular Medicine and Pathology Department, The University of Auckland, Auckland, New Zealand
| | | | - Anita Markotić
- Department of Medical Chemistry and Biochemistry, University of Split School of Medicine, Split, Croatia
| |
Collapse
|
21
|
John S, Sivakumar KC, Mishra R. Extracellular Proton Concentrations Impacts LN229 Glioblastoma Tumor Cell Fate via Differential Modulation of Surface Lipids. Front Oncol 2017; 7:20. [PMID: 28299282 PMCID: PMC5331044 DOI: 10.3389/fonc.2017.00020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 02/02/2017] [Indexed: 12/13/2022] Open
Abstract
Background Glioblastoma multiforme (GBM) is a highly aggressive form of brain cancer with marginal survival rates. GBM extracellular acidosis can profoundly impact its cell fate heterogeneities and progression. However, the molecules and mechanisms that enable GBM tumor cells acid adaptation and consequent cell fate competencies are weakly understood. Since extracellular proton concentrations (pHe) directly intercept the tumor cell plasma membrane, surface lipids must play a crucial role in pHe-dependent tumor cell fate dynamics. Hence, a more detailed insight into the finely tuned pH-dependent modulation of surface lipids is required to generate strategies that can inhibit or surpass tumor cell acid adaptation, thereby forcing the eradication of heterogeneous oncogenic niches, without affecting the normal cells. Results By using image-based single cell analysis and physicochemical techniques, we made a small-scale survey of the effects of pH ranges (physiological: pHe 7.4, low: 6.2, and very low: 3.4) on LN229 glioblastoma cell line surface remodeling and analyzed the consequent cell fate heterogeneities with relevant molecular targets and behavioral assays. Through this basic study, we uncovered that the extracellular proton concentration (1) modulates surface cholesterol-driven cell fate dynamics and (2) induces ‘differential clustering’ of surface resident GM3 glycosphingolipid which together coordinates the proliferation, migration, survival, and death reprogramming via distinct effects on the tumor cell biomechanical homeostasis. A novel synergy of anti-GM3 antibody and cyclophilin A inhibitor was found to mimic the very low pHe-mediated GM3 supraclustered conformation that elevated the surface rigidity and mechano-remodeled the tumor cell into a differentiated phenotype which eventually succumbed to the anoikis type of cell death, thereby eradicating the tumorigenic niches. Conclusion and significance This work presents an initial insight into the physicochemical capacities of extracellular protons in the generation of glioblastoma tumor cell heterogeneities and cell death via the crucial interplay of surface lipids and their conformational changes. Hence, monitoring of proton–cholesterol–GM3 correlations in vivo through diagnostic imaging and in vitro in clinical samples may assist better tumor staging and prognosis. The emerged insights have further led to the translation of a ‘pH-dependent mechanisms of oncogenesis control’ into the surface targeted anti-GBM therapeutics.
Collapse
Affiliation(s)
- Sebastian John
- Disease Biology Program, Department of Neurobiology and Genetics, Rajiv Gandhi Centre for Biotechnology , Thiruvananthapuram , India
| | - K C Sivakumar
- Distributed Information Sub-Centre, Rajiv Gandhi Centre for Biotechnology , Thiruvananthapuram , India
| | - Rashmi Mishra
- Disease Biology Program, Department of Neurobiology and Genetics, Rajiv Gandhi Centre for Biotechnology , Thiruvananthapuram , India
| |
Collapse
|
22
|
Chung TW, Choi H, Lee JM, Ha SH, Kwak CH, Abekura F, Park JY, Chang YC, Ha KT, Cho SH, Chang HW, Lee YC, Kim CH. Oldenlandia diffusa suppresses metastatic potential through inhibiting matrix metalloproteinase-9 and intercellular adhesion molecule-1 expression via p38 and ERK1/2 MAPK pathways and induces apoptosis in human breast cancer MCF-7 cells. JOURNAL OF ETHNOPHARMACOLOGY 2017; 195:309-317. [PMID: 27876502 DOI: 10.1016/j.jep.2016.11.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/17/2016] [Accepted: 11/19/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Oldenlandia diffusa (OD) has long been known as an apoptotic inducer in breast tumors in ethnomedicine. AIM OF THE STUDY To scientifically confirm the anti-breast cancer effects of water, methanol (MeOH) and butanol (BuOH) extracts of O. diffusa on cell apoptosis, matrix metalloproteinases (MMPs), intercellular adhesion molecule (ICAM)-1 and intracellular signaling in MCF-7 breast cancer cells. MATERIALS AND METHODS MeOH extracts (MOD) and BuOH extracts (BOD) were prepared and examined for their ability to inhibit phorbol myristate acetate (PMA)-induced matrix metalloproteinase (MMP)-9 and intercellular adhesion molecule (ICAM)-1 expressions in MCF-7 human breast cancer cells. Additionally, transwell migration, invasion and transcriptional activity were assessed. Results of immunofluorescence confocal microscopy for translocation of NF-κB and p-ERK and p-p38 were also checked. Finally, apoptotic signals including processed caspase-8, caspase-7, poly ADP-ribose polymerase, Bax and Bcl-2 were examined. RESULTS MOD and BOD specifically inhibited PMA-induced MMP-9 expression as well as invasive and migration potential via ICAM-1. The inhibitory activity was also based on the suppressed transcriptional activity in MCF-7 breast cancer cells. Results of immunofluorescence confocal microscopy showed that translocation of NF-κB decreased upon BOD and MOD treatments, with a decreased level of p-ERK and p-p38 phosphorylation. In addition, treatment of MCF-7 cells with MOD and BOD activated apoptosis-linked proteins including enzymatically active forms of processed caspase-8, caspase-7 and poly ADP-ribose polymerase, together with increased expression of mitochondrial apoptotic protein, Bax and decreased expression of Bcl-2. CONCLUSION The results indicate that OD as an anti-metastatic agent suppresses the metastatic response by targeting p-ERK, p-38 and NF-κB, thus reducing the invasion capacity of MCF-7 breast cancer cells through inhibition of MMP-9 and ICAM-1 expression and plays an important role in the regulation of breast cancer cell apoptosis.
Collapse
Affiliation(s)
- Tae-Wook Chung
- Division of Applied Medicine, School of Korean Medicine and Research Center for Healthy Aging, Pusan National University, Yangsan City, Gyeongsangnam-Do, Korea.
| | - Hyunju Choi
- Department of Biological Sciences, SungKyunKwan University, Seoburo 2066, Jangan-Gu, Suwon, Gyunggi-Do 16419, Korea.
| | - Ji-Min Lee
- Department of Biological Sciences, SungKyunKwan University, Seoburo 2066, Jangan-Gu, Suwon, Gyunggi-Do 16419, Korea.
| | - Sun-Hyung Ha
- Department of Biological Sciences, SungKyunKwan University, Seoburo 2066, Jangan-Gu, Suwon, Gyunggi-Do 16419, Korea.
| | - Choong-Hwan Kwak
- Department of Biological Sciences, SungKyunKwan University, Seoburo 2066, Jangan-Gu, Suwon, Gyunggi-Do 16419, Korea.
| | - Fukushi Abekura
- Department of Biological Sciences, SungKyunKwan University, Seoburo 2066, Jangan-Gu, Suwon, Gyunggi-Do 16419, Korea.
| | - Jun-Young Park
- Department of Biological Sciences, SungKyunKwan University, Seoburo 2066, Jangan-Gu, Suwon, Gyunggi-Do 16419, Korea.
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, Korea.
| | - Ki-Tae Ha
- Division of Applied Medicine, School of Korean Medicine and Research Center for Healthy Aging, Pusan National University, Yangsan City, Gyeongsangnam-Do, Korea.
| | - Seung-Hak Cho
- Division of Enteric Diseases, Center for Infectious Diseases Research, Korea National Institute of Health, Heungdeok-gu, Cheongju 363-951, Korea.
| | - Hyeun Wook Chang
- College of Pharmacy, Yeungnam University, Gyeongsan 712-749, Korea.
| | - Young-Choon Lee
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Korea.
| | - Cheorl-Ho Kim
- Division of Applied Medicine, School of Korean Medicine and Research Center for Healthy Aging, Pusan National University, Yangsan City, Gyeongsangnam-Do, Korea.
| |
Collapse
|
23
|
Ji H, Lu HW, Li YM, Lu L, Wang JL, Zhang YF, Shang H. Twist promotes invasion and cisplatin resistance in pancreatic cancer cells through growth differentiation factor 15. Mol Med Rep 2015; 12:3841-3848. [PMID: 26018318 DOI: 10.3892/mmr.2015.3867] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 05/06/2015] [Indexed: 12/17/2022] Open
Abstract
Pancreatic cancer (PC) is an aggressive and devastating disease with a poor prognosis. Cisplatin, a commonly used chemotherapeutic agent for solid tumors, is effective as a single agent or in combination with other drugs for the treatment of PC. Previous studies have suggested that Twist and growth differentiation factor 15 (GDF15) are involved in the progression of PC. However, the role of Twist and GDF15 in PC remains to be elucidated. In the present study, the individual effect of and interaction between Twist and GDF15 in PC cell invasion and chemoresistance to cisplatin was examined. Twist and/or GDF15 were stably overexpressed or knocked down in ASPC‑1 and BXPC‑3 human PC cells. Overexpression of Twist in the two cell lines markedly increased GDF15 expression, cell invasion, matrix metalloproteinase‑2 expression/activity and the half maximal inhibitory concentration (IC50) values of cisplatin, which was eradicated by GDF15 knockdown or the selective p38 mitogen‑activated protein kinase (MAPK) inhibitor SB203580 (10 µM). By contrast, Twist knockdown significantly decreased GDF15 expression, cell invasion, matrix metalloproteinase‑2 expression/activity and the IC50 values of cisplatin, which was completely reversed by overexpression of GDF15. In addition, while overexpression and knockdown of Twist increased and decreased p38 MAPK activity, respectively, GDF15 demonstrated no significant effect on p38 MAPK activity in PC cells. In conclusion, the present study, for the first time, to the best of our knowledge, demonstrated that Twist promotes PC cell invasion and cisplatin chemoresistance through inducing GDF15 expression via a p38 MAPK‑dependent mechanism. The present study provides new insights into the molecular mechanisms underlying PC progression and chemoresistance.
Collapse
Affiliation(s)
- Hong Ji
- Department of General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Hong-Wei Lu
- Department of General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yi-Ming Li
- Department of General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Le Lu
- Department of General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jin-Long Wang
- Department of General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Ya-Fei Zhang
- Department of General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Hao Shang
- Department of General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
24
|
Lee YJ, Lee DM, Lee SH. Nrf2 Expression and Apoptosis in Quercetin-treated Malignant Mesothelioma Cells. Mol Cells 2015; 38:416-25. [PMID: 25896339 PMCID: PMC4443283 DOI: 10.14348/molcells.2015.2268] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 02/23/2015] [Accepted: 02/23/2015] [Indexed: 01/11/2023] Open
Abstract
NF-E2-related factor 2 (Nrf2), a basic leucine zipper transcription factor, has recently received a great deal of attention as an important molecule that enhances antioxidative defenses and induces resistance to chemotherapy or radiotherapy. In this study, we investigated the apoptosis-inducing and Nrf2-upregulating effects of quercetin on malignant mesothelioma (MM) MSTO-211H and H2452 cells. Quercetin treatment inhibited cell growth and led to upregulation of Nrf2 at both the mRNA and protein levels without altering the ubiquitination and extending the half-life of the Nrf2 protein. Following treatment with quercetin, analyses of the nuclear level of Nrf2, Nrf2 antioxidant response element-binding assay, Nrf2 promoter-luc assay, and RT-PCR toward the Nrf2-regulated gene, heme oxygenase-1, demonstrated that the induced Nrf2 is transcriptionally active. Knockdown of Nrf2 expression with siRNA enhanced cytotoxicity due to the induction of apoptosis, as evidenced by an increase in the level of proapoptotic Bax, a decrease in the level of antiapoptotic Bcl-2 with enhanced cleavage of caspase-3 and PARP proteins, the appearance of a sub-G0/G1 peak in the flow cytometric assay, and increased percentage of apoptotic propensities in the annexin V binding assay. Effective reversal of apoptosis was observed following pretreatment with the pan-caspase inhibitor Z-VAD. Moreover, Nrf2 knockdown exhibited increased sensitivity to the anticancer drug, cisplatin, presumably by potentiating the oxidative stress induced by cisplatin. Collectively, our data demonstrate the importance of Nrf2 in cytoprotection, survival, and drug resistance with implications for the potential significance of targeting Nrf2 as a promising strategy for overcoming resistance to chemotherapeutics in MM.
Collapse
Affiliation(s)
- Yoon-Jin Lee
- Division of Molecular Cancer Research, Soonchunhyang Medical Research Institute, Soonchunhyang University Cheonan Hospital, Cheonan,
Korea
- Soonchunhyung Environmental Health Center for Asbestos, Soonchunhyang University Cheonan Hospital, Cheonan,
Korea
| | - David M. Lee
- Cell Biology and Genetics in Biological Sciences, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, MD,
USA
| | - Sang-Han Lee
- Soonchunhyung Environmental Health Center for Asbestos, Soonchunhyang University Cheonan Hospital, Cheonan,
Korea
- Department of Biochemistry, College of Medicine, Soonchunhyang University, Cheonan,
Korea
| |
Collapse
|
25
|
Angerer TB, Dowlatshahi Pour M, Malmberg P, Fletcher JS. Improved molecular imaging in rodent brain with time-of-flight-secondary ion mass spectrometry using gas cluster ion beams and reactive vapor exposure. Anal Chem 2015; 87:4305-13. [PMID: 25799886 DOI: 10.1021/ac504774y] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Imaging mass spectrometry has shown to be a valuable method in medical research and can be performed using different instrumentation and sample preparation methods, each one with specific advantages and drawbacks. Time-of-flight-secondary ion mass spectrometry (TOF-SIMS) has the advantage of high spatial resolution imaging but is often restricted to low mass molecular signals and can be very sensitive to sample preparation artifacts. In this report we demonstrate the advantages of using gas cluster ion beams (GCIBs) in combination with trifluoracetic acid (TFA) vapor exposure for the imaging of lipids in mouse brain sections. There is an optimum exposure to TFA that is beneficial for increasing high mass signal as well as producing signal from previously unobserved species in the mass spectrum. Cholesterol enrichment and crystallization on the sample surface is removed by TFA exposure uncovering a wider range of lipid species in the white matter regions of the tissue, greatly expanding the chemical coverage and the potential application of TOF-SIMS imaging in neurological studies. Ar4000(+) (40 keV) in combination with TFA treatment facilitates high resolution, high mass imaging closing the gap between TOF-SIMS and matrix-assisted laser desorption ionization (MALDI).
Collapse
Affiliation(s)
- Tina B Angerer
- †Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Masoumeh Dowlatshahi Pour
- ‡Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Per Malmberg
- ‡Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - John S Fletcher
- †Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.,‡Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
26
|
Hwang JH, Sung JS, Kim JM, Chung YH, Park JS, Lee SH, Jang IS. Caveolin-1-dependent and -independent uPAR signaling pathways contribute to ganglioside GT1b induced early apoptosis in A549 lung cancer cells. Am J Cancer Res 2014; 4:801-810. [PMID: 25520869 PMCID: PMC4266713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 09/28/2014] [Indexed: 06/04/2023] Open
Abstract
Urokinase receptor interacts with α5β1-integrin and enhances cancer cell proliferation and metastasis. Activation of α5β1-integrin requires caveolin-1 and is regulated by uPAR, which upregulates persistently the activated ERK necessary for tumor growth. In this study, we show that the ganglioside GT1b induces proapoptotic signaling through two uPAR-ERK signaling pathways in A549 lung cancer cells. GT1b downregulated the expression of α5β1 integrin, caveolin-1, fibronectin, FAK, and ERK, whereas GT1b upregulated the expression of p53 and uPAR, suggesting GT1b mediated depletion of caveolin-1 in uPAR-expressing A549 cells also disrupts uPAR/integrin complexes, resulting in downregulation of fibronectin-α5β1-integrin-ERK signaling. Following p53 siRNA treatment, FAK and ERK expression was recovered, meaning the presence of reentry uPAR-FAK-ERK signaling pathway. These findings reveal that GT1b is involved in both caveolin-1-dependent uPAR-α5β1-integrin-ERK signaling and caveolin-1-independent uPAR-FAK-ERK signaling. These results suggest a novel function of GT1b as a dual regulator of ERK by modulating caveolin-1 and p53.
Collapse
Affiliation(s)
- Jung-Hoo Hwang
- Division of Life Science, Korea Basic Science InstituteDaejeon 305-333, Korea
- Hyundai Senior High SchoolSeoul 127, Korea
| | - Jung-Suk Sung
- Department of Life Science, Dongguk UniversitySeoul 100-715, Korea
| | - Jung Min Kim
- NAR Center, Daejeon UniversityDaejeon 301-724, Korea
| | - Young-Ho Chung
- Division of Life Science, Korea Basic Science InstituteDaejeon 305-333, Korea
| | - Jun Soo Park
- Division of Biological Science and Technology, Yonsei UniversityWonju 220-100, Korea
| | - Seung-Hoon Lee
- Division of Life Science, Yongin UniversityYongin 449-714, Korea
| | - Ik-Soon Jang
- Division of Life Science, Korea Basic Science InstituteDaejeon 305-333, Korea
| |
Collapse
|