1
|
Yang Y, Hyeon H, Joo M, Lee K, Shin E. Small regulatory RNAs as key modulators of antibiotic resistance in pathogenic bacteria. J Microbiol 2025; 63:e2501027. [PMID: 40313153 DOI: 10.71150/jm.2501027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/18/2025] [Indexed: 05/03/2025]
Abstract
The escalating antibiotic resistance crisis poses a significant challenge to global public health, threatening the efficacy of current treatments and driving the emergence of multidrug-resistant pathogens. Among the various factors associated with bacterial antibiotic resistance, small regulatory RNAs (sRNAs) have emerged as pivotal post-transcriptional regulators which orchestrate bacterial adaptation to antibiotic pressure via diverse mechanisms. This review consolidates the current knowledge on sRNA-mediated mechanisms, focusing on drug uptake, drug efflux systems, lipopolysaccharides, cell wall modification, biofilm formation, and mutagenesis. Recent advances in transcriptomics and functional analyses have revealed novel sRNAs and their regulatory networks, expanding our understanding of resistance mechanisms. These findings highlight the potential of targeting sRNA-mediated pathways as an innovative therapeutic strategy to combat antibiotic resistance, and offer promising avenues for managing challenging bacterial infections.
Collapse
Affiliation(s)
- Yubin Yang
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hana Hyeon
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Minju Joo
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Eunkyoung Shin
- Department of Microbiology, Catholic University of Daegu School of Medicine, Daegu 42472, Republic of Korea
| |
Collapse
|
2
|
Bhowmik S, Pathak A, Pandey S, Devnath K, Sett A, Jyoti N, Bhando T, Akhter J, Chugh S, Singh R, Sharma TK, Pathania R. Acinetobacter baumannii represses type VI secretion system through a manganese-dependent small RNA-mediated regulation. mBio 2025; 16:e0302524. [PMID: 39704509 PMCID: PMC11796373 DOI: 10.1128/mbio.03025-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024] Open
Abstract
Type VI secretion system (T6SS) is utilized by many Gram-negative bacteria to eliminate competing bacterial species and manipulate host cells. Acinetobacter baumannii ATCC 17978 utilizes T6SS at the expense of losing pAB3 plasmid to induce contact-dependent killing of competitor microbes, resulting in the loss of antibiotic resistance carried by pAB3. However, the regulatory network associated with T6SS in A. baumannii remains poorly understood. Here, we identified an Mn2+-dependent post-transcriptional regulation of T6SS mediated by a bonafide small RNA, AbsR28. A. baumannii utilizes MumT, an Mn2+-uptake inner membrane transporter, for the uptake of extracellular Mn2+ during oxidative stress. We demonstrate that the abundance of intracellular Mn2+ enables complementary base pairing of AbsR28-tssM mRNA (that translates to TssM, one of the vital inner membrane components of T6SS), inducing RNase E-mediated degradation of tssM mRNA and resulting in T6SS repression. Thus, AbsR28 mediates a crosstalk between MumT and T6SS in A. baumannii.IMPORTANCESmall RNAs (sRNAs) are identified as critical components within the bacterial regulatory networks involved in fine regulation of virulence-associated factors. The sRNA-mediated regulation of type VI secretion system (T6SS) in Acinetobacter baumannii was unchartered. Previously, it was demonstrated that A. baumannii ATCC 17978 cells switch from T6- to T6+ phenotype, resulting in the loss of antibiotic resistance conferred by plasmid pAB3. Furthermore, the derivatives of pAB3 found in recent clinical isolates of A. baumannii harbor expanded antibiotic resistance genes and multiple determinants for virulence factors. Hence, the loss of this plasmid for T6SS activity renders A. baumannii T6+ cells susceptible to antibiotics and compromises their virulence. Our findings show how A. baumannii tends to inactivate T6SS through an sRNA-mediated regulation that relies on Mn2+ and retains pAB3 during infection to retain antibiotic resistance genes carried on the plasmid.
Collapse
Affiliation(s)
- Somok Bhowmik
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Avik Pathak
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Shivam Pandey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Kuldip Devnath
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Abhiroop Sett
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Nishant Jyoti
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Timsy Bhando
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Jawed Akhter
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Saurabh Chugh
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Ramandeep Singh
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Tarun Kumar Sharma
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Ranjana Pathania
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
- Center of Excellence in Disaster Mitigation and Management, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| |
Collapse
|
3
|
Hamrock F, Ryan D, Shaibah A, Ershova A, Mogre A, Sulimani M, Ben Taarit S, Reichardt S, Hokamp K, Westermann A, Kröger C. Global analysis of the RNA-RNA interactome in Acinetobacter baumannii AB5075 uncovers a small regulatory RNA repressing the virulence-related outer membrane protein CarO. Nucleic Acids Res 2024; 52:11283-11300. [PMID: 39149883 PMCID: PMC11472050 DOI: 10.1093/nar/gkae668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 08/17/2024] Open
Abstract
Acinetobacter baumannii is an opportunistic Gram-negative pathogen that infects critically ill patients. The emergence of antimicrobial resistant A. baumannii has exacerbated the need to characterize environmental adaptation, antibiotic resistance and pathogenicity and their genetic regulators to inform intervention strategies. Critical to adaptation to changing environments in bacteria are small regulatory RNAs (sRNAs), however, the role that sRNAs play in the biology of A. baumannii is poorly understood. To assess the regulatory function of sRNAs and to uncover their RNA interaction partners, we employed an RNA proximity ligation and sequencing method (Hi-GRIL-seq) in three different environmental conditions. Forty sRNAs were ligated to sRNA-RNA chimeric sequencing reads, suggesting that sRNA-mediated gene regulation is pervasive in A. baumannii. In-depth characterization uncovered the sRNA Aar to be a post-transcriptional regulator of four mRNA targets including the transcript encoding outer membrane protein CarO. Aar initiates base-pairing with these mRNAs using a conserved seed region of nine nucleotides, sequestering the ribosome binding sites and inhibiting translation. Aar is differentially expressed in multiple stress conditions suggesting a role in fine-tuning translation of the Aar-target molecules. Our study provides mechanistic insights into sRNA-mediated gene regulation in A. baumannii and represents a valuable resource for future RNA-centric research endeavours.
Collapse
Affiliation(s)
- Fergal J Hamrock
- Department of Microbiology, School of Genetics & Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Daniel Ryan
- Department of Microbiology, Biocentre, University of Würzburg, Würzburg, Germany
| | - Ali Shaibah
- Department of Microbiology, School of Genetics & Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Anna S Ershova
- Department of Microbiology, School of Genetics & Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Aalap Mogre
- Department of Microbiology, School of Genetics & Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Maha M Sulimani
- Department of Microbiology, School of Genetics & Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Safa Ben Taarit
- Department of Microbiology, School of Genetics & Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Sarah Reichardt
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Karsten Hokamp
- Department of Genetics, School of Genetics & Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Alexander J Westermann
- Department of Microbiology, Biocentre, University of Würzburg, Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Carsten Kröger
- Department of Microbiology, School of Genetics & Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
4
|
Gifford I, Suárez GA, Barrick JE. Evolution recovers the fitness of Acinetobacter baylyi strains with large deletions through mutations in deletion-specific targets and global post-transcriptional regulators. PLoS Genet 2024; 20:e1011306. [PMID: 39283914 PMCID: PMC11426457 DOI: 10.1371/journal.pgen.1011306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/26/2024] [Accepted: 09/05/2024] [Indexed: 09/27/2024] Open
Abstract
Organelles and endosymbionts have naturally evolved dramatically reduced genome sizes compared to their free-living ancestors. Synthetic biologists have purposefully engineered streamlined microbial genomes to create more efficient cellular chassis and define the minimal components of cellular life. During natural or engineered genome streamlining, deletion of many non-essential genes in combination often reduces bacterial fitness for idiosyncratic or unknown reasons. We investigated how and to what extent laboratory evolution could overcome these defects in six variants of the transposon-free Acinetobacter baylyi strain ADP1-ISx that each had a deletion of a different 22- to 42-kilobase region and two strains with larger deletions of 70 and 293 kilobases. We evolved replicate populations of ADP1-ISx and each deletion strain for ~300 generations in a chemically defined minimal medium or a complex medium and sequenced the genomes of endpoint clonal isolates. Fitness increased in all cases that were examined except for two ancestors that each failed to improve in one of the two environments. Mutations affecting nine protein-coding genes and two small RNAs were significantly associated with one of the two environments or with certain deletion ancestors. The global post-transcriptional regulators rnd (ribonuclease D), csrA (RNA-binding carbon storage regulator), and hfq (RNA-binding protein and chaperone) were frequently mutated across all strains, though the incidence and effects of these mutations on gene function and bacterial fitness varied with the ancestral deletion and evolution environment. Mutations in this regulatory network likely compensate for how an earlier deletion of a transposon in the ADP1-ISx ancestor of all the deletion strains restored csrA function. More generally, our results demonstrate that fitness lost during genome streamlining can usually be regained rapidly through laboratory evolution and that recovery tends to occur through a combination of deletion-specific compensation and global regulatory adjustments.
Collapse
Affiliation(s)
- Isaac Gifford
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Gabriel A Suárez
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Jeffrey E Barrick
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
5
|
Khaledi M, Khatami M, Hemmati J, Bakhti S, Hoseini SA, Ghahramanpour H. Role of Small Non-Coding RNA in Gram-Negative Bacteria: New Insights and Comprehensive Review of Mechanisms, Functions, and Potential Applications. Mol Biotechnol 2024:10.1007/s12033-024-01248-w. [PMID: 39153013 DOI: 10.1007/s12033-024-01248-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024]
Abstract
Small non-coding RNAs (sRNAs) are a key part of gene expression regulation in bacteria. Many physiologic activities like adaptation to environmental stresses, antibiotic resistance, quorum sensing, and modulation of the host immune response are regulated directly or indirectly by sRNAs in Gram-negative bacteria. Therefore, sRNAs can be considered as potentially useful therapeutic options. They have opened promising perspectives in the field of diagnosis of pathogens and treatment of infections caused by antibiotic-resistant organisms. Identification of sRNAs can be executed by sequence and expression-based methods. Despite the valuable progress in the last two decades, and discovery of new sRNAs, their exact role in biological pathways especially in co-operation with other biomolecules involved in gene expression regulation such as RNA-binding proteins (RBPs), riboswitches, and other sRNAs needs further investigation. Although the numerous RNA databases are available, including 59 databases used by RNAcentral, there remains a significant gap in the absence of a comprehensive and professional database that categorizes experimentally validated sRNAs in Gram-negative pathogens. Here, we review the present knowledge about most recent and important sRNAs and their regulatory mechanism, strengths and weaknesses of current methods of sRNAs identification. Also, we try to demonstrate the potential applications and new insights of sRNAs for future studies.
Collapse
Affiliation(s)
- Mansoor Khaledi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Department of Microbiology and Immunology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mehrdad Khatami
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Jaber Hemmati
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahriar Bakhti
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | | | - Hossein Ghahramanpour
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
6
|
Shenkutie AM, Gebrelibanos D, Yao M, Bedada Hundie G, Chow FWN, Leung PHM. Impairment of novel non-coding small RNA00203 inhibits biofilm formation and reduces biofilm-specific antibiotic resistance in Acinetobacter baumannii. Int J Antimicrob Agents 2023; 62:106889. [PMID: 37315907 DOI: 10.1016/j.ijantimicag.2023.106889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/12/2023] [Accepted: 06/09/2023] [Indexed: 06/16/2023]
Abstract
Small RNAs (sRNAs) are post-transcriptional regulators of many biological processes in bacteria, including biofilm formation and antibiotic resistance. The mechanisms by which sRNA regulates the biofilm-specific antibiotic resistance in Acinetobacter baumannii have not been reported to date. This study aimed to investigate the influence of sRNA00203 (53 nucleotides) on biofilm formation, antibiotic susceptibility, and expression of genes associated with biofilm formation and antibiotic resistance. The results showed that deletion of the sRNA00203-encoding gene decreased the biomass of biofilm by 85%. Deletion of the sRNA00203-encoding gene also reduced the minimum biofilm inhibitory concentrations for imipenem and ciprofloxacin 1024- and 128-fold, respectively. Knocking out of sRNA00203 significantly downregulated genes involved in biofilm matrix synthesis (pgaB), efflux pump production (novel00738), lipopolysaccharide biosynthesis (novel00626), preprotein translocase subunit (secA) and the CRP transcriptional regulator. Overall, the suppression of sRNA00203 in an A. baumannii ST1894 strain impaired biofilm formation and sensitized the biofilm cells to imipenem and ciprofloxacin. As sRNA00203 was found to be conserved in A. baumannii, a therapeutic strategy targeting sRNA00203 may be a potential solution for the treatment of biofilm-associated infections caused by A. baumannii. To the best of the authors' knowledge, this is the first study to show the impact of sRNA00203 on biofilm formation and biofilm-specific antibiotic resistance in A. baumannii.
Collapse
Affiliation(s)
- Abebe Mekuria Shenkutie
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; Department of Microbiology, Immunology and Parasitology, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Daniel Gebrelibanos
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Mianzhi Yao
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Gadissa Bedada Hundie
- Department of Microbiology, Immunology and Parasitology, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Franklin W N Chow
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Polly H M Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| |
Collapse
|
7
|
Sarshar M, Scribano D, Palamara AT, Ambrosi C, Masotti A. The Acinetobacter baumannii model can explain the role of small non-coding RNAs as potential mediators of host-pathogen interactions. Front Mol Biosci 2022; 9:1088783. [PMID: 36619166 PMCID: PMC9810633 DOI: 10.3389/fmolb.2022.1088783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Bacterial small RNAs (sRNAs) research has accelerated over the past decade, boosted by advances in RNA-seq technologies and methodologies for capturing both protein-RNA and RNA-RNA interactions. The emerging picture is that these regulatory sRNAs play important roles in controlling complex physiological processes and are required to survive the antimicrobial challenge. In recent years, the RNA content of OMVs/EVs has also gained increasing attention, particularly in the context of infection. Secreted RNAs from several bacterial pathogens have been characterized but the exact mechanisms promoting pathogenicity remain elusive. In this review, we briefly discuss how secreted sRNAs interact with targets in infected cells, thus representing a novel perspective of host cell manipulation during bacterial infection. During the last decade, Acinetobacter baumannii became clinically relevant emerging pathogens responsible for nosocomial and community-acquired infections. Therefore, we also summarize recent findings of regulation by sRNAs in A. baumannii and discuss how this emerging bacterium utilizes many of these sRNAs to adapt to its niche and become successful human pathogen.
Collapse
Affiliation(s)
- Meysam Sarshar
- Research Laboratories, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy,*Correspondence: Meysam Sarshar, ; Andrea Masotti,
| | - Daniela Scribano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Anna Teresa Palamara
- Laboratory Affiliated to Institute Pasteur Italia-Cenci Bolognetti Foundation, Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy,Department of Infectious Diseases, National Institute of Health, Rome, Italy
| | - Cecilia Ambrosi
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy,IRCCS San Raffaele Roma, Rome, Italy
| | - Andrea Masotti
- Research Laboratories, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy,*Correspondence: Meysam Sarshar, ; Andrea Masotti,
| |
Collapse
|
8
|
Gao L, Ma X. Transcriptome Analysis of Acinetobacter baumannii in Rapid Response to Subinhibitory Concentration of Minocycline. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16095. [PMID: 36498165 PMCID: PMC9741440 DOI: 10.3390/ijerph192316095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The increasing emergence of multidrug-resistant Acinetobacter baumannii brings great threats to public health. Minocycline is a kind of semisynthetic derivative of the antibacterial drug tetracycline and is often used to treat infections caused by multidrug-resistant A. baumannii with other antibiotics. However, minocycline-resistant A. baumannii appears constantly. To rapidly explore the response of A. baumannii to minocycline stress, RNA-seq was carried out to compare the difference in the transcriptome of A. baumannii ATCC19606 in the presence or absence of minocycline. The results showed that 25 genes were differentially expressed, including 10 downregulated genes and 15 upregulated genes, and 24 sRNA were upregulated and 24 were downregulated based on the filter criteria (Log2FC > 1 or <−1 and FDR < 0.05). RtcB family protein and ABC transporter ATP-binding protein were upregulated by 2.6- and 11.3-fold, and molecular chaperone GroES, chaperonin GroL, class C beta-lactamase ADC-158, amino acid ABC transporter permease, and APC family permease were downregulated by at least two-fold in the presence of half-MIC minocycline. The differentially expressed genes are mainly involved in the stress response, the GroES/GroEL chaperonin system, and transport metabolic pathways. sRNA 1248 was significantly upregulated, and sRNA 1767, 5182, and 6984 were downregulated in a rapid response to minocycline. These results provide insights into the adaptive mechanism of A. baumannii to minocycline.
Collapse
Affiliation(s)
- Lili Gao
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaochun Ma
- Experimental Animal Center, Zunyi Medical University, Zunyi 563003, China
| |
Collapse
|
9
|
Colquhoun JM, Rather PN. Insights Into Mechanisms of Biofilm Formation in Acinetobacter baumannii and Implications for Uropathogenesis. Front Cell Infect Microbiol 2020; 10:253. [PMID: 32547965 PMCID: PMC7273844 DOI: 10.3389/fcimb.2020.00253] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 04/30/2020] [Indexed: 01/10/2023] Open
Abstract
Multidrug resistant Acinetobacter baumannii is a serious healthcare threat. In fact, the Center for Disease Control recently reported that carbapenem-resistant A. baumannii is responsible for more than 8,500 infections, 700 deaths, and $281 million in healthcare costs annually in the United States with few, if any, treatment options available, leading to its designation as a pathogen of urgent concern and a priority for novel antimicrobial development. It is hypothesized that biofilms are, at least in part, responsible for the high prevalence of A. baumannii nosocomial and recurrent infections because they frequently contaminate hospital surfaces and patient indwelling devices; therefore, there has been a recent push for mechanistic understanding of biofilm formation, maturation and dispersal. However, most research has focused on A. baumannii pneumonia and bloodstream infections, despite a recent retrospective study showing that 17.1% of A. baumannii isolates compiled from clinical studies over the last two decades were obtained from urinary samples. This highlights that A. baumannii is an underappreciated uropathogen. The following minireview will examine our current understanding of A. baumannii biofilm formation and how this influences urinary tract colonization and pathogenesis.
Collapse
Affiliation(s)
- Jennifer M Colquhoun
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, United States
| | - Philip N Rather
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, United States.,Research Service, Atlanta VA Healthcare System, Decatur, GA, United States
| |
Collapse
|
10
|
Allen JL, Tomlinson BR, Casella LG, Shaw LN. Regulatory networks important for survival of Acinetobacter baumannii within the host. Curr Opin Microbiol 2020; 55:74-80. [PMID: 32388085 DOI: 10.1016/j.mib.2020.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 12/25/2022]
Abstract
Acinetobacter baumannii is known for its intrinsic resistance to conventional antibiotic treatment and hypervirulence during infection. This coupled with its extraordinary capacity to survive in myriad harsh environments has led to increasing rates of infection in clinical settings. Numerous studies have characterized the virulence factors and resistance genes in A. baumannii responsible for the detrimental outcomes seen in patients; however, the role of regulatory factors in controlling the expression of these genes remains less well explored. Herein we discuss the latest and most influential findings on the regulatory network of A. baumannii, focusing on the transcription factors, two-component systems, and sRNAs. We place particular focus on those identified as being crucial for sensing and responding to continually changing environments, and influencing survival and virulence when engaging with the human host.
Collapse
Affiliation(s)
- Jessie L Allen
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, ISA 2015, Tampa, FL 33620-5150, USA
| | - Brooke R Tomlinson
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, ISA 2015, Tampa, FL 33620-5150, USA
| | - Leila G Casella
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, ISA 2015, Tampa, FL 33620-5150, USA
| | - Lindsey N Shaw
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, ISA 2015, Tampa, FL 33620-5150, USA.
| |
Collapse
|
11
|
Genetic mechanisms of antibiotic resistance and virulence in Acinetobacter baumannii: background, challenges and future prospects. Mol Biol Rep 2020; 47:4037-4046. [PMID: 32303957 DOI: 10.1007/s11033-020-05389-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 03/24/2020] [Indexed: 01/18/2023]
Abstract
With the advent of the multidrug-resistant era, many opportunistic pathogens including the species Acinetobacter baumannii have gained prominence and pose a major global threat to clinical health care. Pathogenicity in bacteria is genetically regulated by a complex network of transcription and virulence factors and a brief overview of the major investigations on comprehending these processes over the past few decades in A. baumanni are compiled here. Many investigators have employed genome sequencing techniques to identify the regions that contribute to antibiotic resistance and comparative genomics to study sequence similarities to understand evolutionary trends of resistance gene transfers between isolates. A summary of these studies given here provides an insight into the invasion and successful colonization of the species. The individual roles played by different genes, regulators & promoters, enzymes, metal ions as well as mobile elements in influencing antibiotic resistance are briefly discussed. Precautionary measures and prospects for developing future strategies by exploring promising new research targets in effective control of multidrug resistant A. baumannii are also analyzed.
Collapse
|
12
|
Cafiso V, Stracquadanio S, Lo Verde F, Dovere V, Zega A, Pigola G, Aranda J, Stefani S. COL R Acinetobacter baumannii sRNA Signatures: Computational Comparative Identification and Biological Targets. Front Microbiol 2020; 10:3075. [PMID: 32010115 PMCID: PMC6978653 DOI: 10.3389/fmicb.2019.03075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/19/2019] [Indexed: 11/25/2022] Open
Abstract
Multidrug-Resistant (MDR) and Extensively Drug Resistant (XDR) Acinetobacter baumannii (Ab) represent a serious cause of healthcare-associated infections worldwide. Currently, the available treatment options are very restricted and colistin-based therapies are last-line treatments of these infections, even though colistin resistant (COLR) Ab have rarely been isolated yet. In bacteria, small non-coding RNAs (sRNAs) have been implicated in regulatory pathways of different biological functions, however, no knowledge exists about the sRNA role on the biological adaptation in COLRAb. Our study investigated two Italian XDR isogenic colistin-susceptible/resistant (COLS/R) Ab strain-pairs to discover new sRNA signatures. Comparative sRNA transcriptome (sRNAome) analyses were carried out by Illumina RNA-seq using both a Tru-Seq and a Short Insert library, whilst Ab ATCC 17978 and ACICU Reference Genome assembly, mapping, annotation and statistically significant differential expression (q-value ≤ 0.01) of the raw reads were performed by the Rockhopper tool. A computational filtering, sorting only similarly statistically significant differentially expressed (DE) sRNAs mapping on the same gene in both COLRAb isolates was conducted. COLR vs. COLS sRNAome, analyzed integrating the DE sRNAs obtained from the two different libraries, revealed some statistically significant DE sRNAs in COLRAb. In detail, we found: (i) two different under-expressed cis-acting sRNAs (AbsRNA1 and AbsRNA2) mapping in antisense orientation the 16S rRNA gene A1S_r01, (ii) one under-expressed cis-acting sRNA (AbsRNA3) targeting the A1S_2505 gene (hypothetical protein), (iii) one under-expressed microRNA-size small RNA fragment (AbsRNA4) and its pre-microAbsRNA4 targeting the A1S_0501 gene (hypothetical protein), (iv) as well as an over-expressed microRNA-size small RNA fragment (AbsRNA5) and its pre-microAbsRNA5 targeting the A1S_3097 gene (signal peptide). Custom TaqMan® probe-based real-time qPCRs validated the expression pattern of the selected sRNA candidates shown by RNA-seq. Furthermore, analysis on sRNA ΔA1S_r01, ΔA1S_2505 as well as the over-expressed A1S_3097 mutants revealed no effects on colistin resistance. Our study, for the first time, found the sRNAome signatures of clinical COLRAb with a computational prediction of their targets related to protein synthesis, host-microbe interaction and other different biological functions, including biofilm production, cell-cycle control, virulence, and antibiotic-resistance.
Collapse
Affiliation(s)
- Viviana Cafiso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Stefano Stracquadanio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Flavia Lo Verde
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Veronica Dovere
- Department of Translational Research and New Technology in Medicine and Surgery, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Alessandra Zega
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giuseppe Pigola
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Jesús Aranda
- Departament de Genètica i Microbiologia, Facultat de Biociènces, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
13
|
Lazaretti WY, Dos Santos EL, da-Conceição Silva JL, Kadowaki MK, Gandra RF, Maller A, Simão RDCG. Upregulation of the clpB gene in response to heat shock and beta-lactam antibiotics in Acinetobacter baumannii. Mol Biol Rep 2019; 47:1499-1505. [PMID: 31786767 DOI: 10.1007/s11033-019-05209-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 11/26/2019] [Indexed: 01/18/2023]
Abstract
The role of the clpB gene encoding HSP/chaperone ClpB was evaluated in the multiresistant antibiotic cells of Acinetobacter baumannii (RS4 strain) under stress-induced heat shock and different beta-lactams. The expression of the clpB gene was assessed by qPCR during heat shock at 45 °C and subinhibitory concentrations of ampicillin (30 μg mL-1), amoxicillin + sulbactam (8/12 μg mL-1), cefepime (30 μg mL-1), sulfamethoxazole + trimethoprim (120/8 μg mL-1) and meropenem (18 μg mL-1). The results indicated a transient increase in clpB transcription in all treatments except cefepime. Both in the presence of ampicillin and amoxicillin/sulbactam for 20 min, the mRNA-clpB synthesis was 1.4 times higher than that of the control at time zero. Surprisingly, the mRNA-clpB levels were more than 30-fold higher after 10 min of incubation with meropenem and more than eightfold higher in the presence of trimethoprim/sulfamethoxazole. In addition, western blot assays showed that the RS4 strain treated with meropenem showed a marked increase in ClpB protein expression. Our data indicate that during exposure to beta-lactams, A. baumannii adjusts the transcription levels of the clpB mRNA and protein to respond to stress, suggesting that the chaperone may act as a key cellular component in the presence of antibiotics in this bacterium.
Collapse
Affiliation(s)
- Waleska Yana Lazaretti
- Laboratório de Bioquímica Molecular, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, UNIOESTE, Rua Universitária, 2069, Cascavel, PR, 85814-110, Brazil
| | - Elaine Luzia Dos Santos
- Laboratório de Bioquímica Molecular, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, UNIOESTE, Rua Universitária, 2069, Cascavel, PR, 85814-110, Brazil
| | - José Luis da-Conceição Silva
- Laboratório de Bioquímica Molecular, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, UNIOESTE, Rua Universitária, 2069, Cascavel, PR, 85814-110, Brazil
| | - Marina Kimiko Kadowaki
- Laboratório de Bioquímica Molecular, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, UNIOESTE, Rua Universitária, 2069, Cascavel, PR, 85814-110, Brazil
| | - Rinaldo Ferreira Gandra
- Laboratório de Micologia Clínica, Hospital Universitário do Oeste do Paraná, Universidade Estadual do Oeste do Paraná, UNIOESTE, Cascavel, PR, Brazil
| | - Alexandre Maller
- Laboratório de Bioquímica Molecular, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, UNIOESTE, Rua Universitária, 2069, Cascavel, PR, 85814-110, Brazil
| | - Rita de Cássia Garcia Simão
- Laboratório de Bioquímica Molecular, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, UNIOESTE, Rua Universitária, 2069, Cascavel, PR, 85814-110, Brazil.
| |
Collapse
|
14
|
Arya S, Dubey V, Sen D, Sharma A, Pathania R. Computational Prediction of sRNA in Acinetobacter baumannii. Methods Mol Biol 2019; 1946:307-320. [PMID: 30798565 DOI: 10.1007/978-1-4939-9118-1_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Small RNAs in bacteria are noncoding RNAs that act as posttranscriptional regulators of gene expression. Over time, they have gained importance as fine-tuners of expression of genes involved in critical biological processes like metabolism, fitness, virulence, and antibiotic resistance. The availability of various high-throughput strategies enable the detection of these molecules but are technically challenging and time-intensive. Thus, to fulfil the need of a simple computational algorithm pipeline to predict these sRNAs in bacterial species, we detail a user-friendly ensemble method with specific application in Acinetobacter spp. The developed algorithms primarily look for intergenic regions in the genome of related Acinetobacter spp., thermodynamic stability, and conservation of RNA secondary structures to generate a model input for the sRNAPredict3 tool which utilizes all this information to generate a list of putative sRNA. We confirmed the accuracy of the method by comparing its output with the RNA-seq data and found the method to be faster and more accurate for Acinetobacter baumannii ATCC 17978. Thus, this method improves the identification of sRNA in Acinetobacter and other bacterial species.
Collapse
Affiliation(s)
- Sankalp Arya
- Department of Biotechnology, Indian Institute of Technology-Roorkee, Roorkee, Uttarakhand, India
- Division of Agricultural and Environmental Sciences, University of Nottingham, Nottingham, UK
| | - Vineet Dubey
- Department of Biotechnology, Indian Institute of Technology-Roorkee, Roorkee, Uttarakhand, India
| | - Deepak Sen
- Department of Biotechnology, Indian Institute of Technology-Roorkee, Roorkee, Uttarakhand, India
| | - Atin Sharma
- Department of Biotechnology, Indian Institute of Technology-Roorkee, Roorkee, Uttarakhand, India
| | - Ranjana Pathania
- Department of Biotechnology, Indian Institute of Technology-Roorkee, Roorkee, Uttarakhand, India.
| |
Collapse
|
15
|
Ko J, Hemphill M, Yang Z, Sewell E, Na YJ, Sandsmark DK, Haber M, Fisher SA, Torre EA, Svane KC, Omelchenko A, Firestein BL, Diaz-Arrastia R, Kim J, Meaney DF, Issadore D. Diagnosis of traumatic brain injury using miRNA signatures in nanomagnetically isolated brain-derived extracellular vesicles. LAB ON A CHIP 2018; 18:3617-3630. [PMID: 30357245 PMCID: PMC6334845 DOI: 10.1039/c8lc00672e] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The accurate diagnosis and clinical management of traumatic brain injury (TBI) is currently limited by the lack of accessible molecular biomarkers that reflect the pathophysiology of this heterogeneous disease. To address this challenge, we developed a microchip diagnostic that can characterize TBI more comprehensively using the RNA found in brain-derived extracellular vesicles (EVs). Our approach measures a panel of EV miRNAs, processed with machine learning algorithms to capture the state of the injured and recovering brain. Our diagnostic combines surface marker-specific nanomagnetic isolation of brain-derived EVs, biomarker discovery using RNA sequencing, and machine learning processing of the EV miRNA cargo to minimally invasively measure the state of TBI. We achieved an accuracy of 99% identifying the signature of injured vs. sham control mice using an independent blinded test set (N = 77), where the injured group consists of heterogeneous populations (injury intensity, elapsed time since injury) to model the variability present in clinical samples. Moreover, we successfully predicted the intensity of the injury, the elapsed time since injury, and the presence of a prior injury using independent blinded test sets (N = 82). We demonstrated the translatability in a blinded test set by identifying TBI patients from healthy controls (AUC = 0.9, N = 60). This approach, which can detect signatures of injury that persist across a variety of injury types and individual responses to injury, more accurately reflects the heterogeneity of human TBI injury and recovery than conventional diagnostics, opening new opportunities to improve treatment of traumatic brain injuries.
Collapse
Affiliation(s)
- J Ko
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - M Hemphill
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Z Yang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - E Sewell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Y J Na
- Department of Medicine, Division of Nephrology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - D K Sandsmark
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - M Haber
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - S A Fisher
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - E A Torre
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - K C Svane
- Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, NJ 08854, USA
| | - A Omelchenko
- Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, NJ 08854, USA
| | - B L Firestein
- Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, NJ 08854, USA
| | - R Diaz-Arrastia
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - J Kim
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA and Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - D F Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA. and Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - D Issadore
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA. and Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
16
|
Kröger C, MacKenzie KD, Alshabib EY, Kirzinger MWB, Suchan DM, Chao TC, Akulova V, Miranda-CasoLuengo AA, Monzon VA, Conway T, Sivasankaran SK, Hinton JCD, Hokamp K, Cameron ADS. The primary transcriptome, small RNAs and regulation of antimicrobial resistance in Acinetobacter baumannii ATCC 17978. Nucleic Acids Res 2018; 46:9684-9698. [PMID: 29986115 PMCID: PMC6182133 DOI: 10.1093/nar/gky603] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 06/21/2018] [Accepted: 06/26/2018] [Indexed: 12/12/2022] Open
Abstract
We present the first high-resolution determination of transcriptome architecture in the priority pathogen Acinetobacter baumannii. Pooled RNA from 16 laboratory conditions was used for differential RNA-seq (dRNA-seq) to identify 3731 transcriptional start sites (TSS) and 110 small RNAs, including the first identification in A. baumannii of sRNAs encoded at the 3' end of coding genes. Most sRNAs were conserved among sequenced A. baumannii genomes, but were only weakly conserved or absent in other Acinetobacter species. Single nucleotide mapping of TSS enabled prediction of -10 and -35 RNA polymerase binding sites and revealed an unprecedented base preference at position +2 that hints at an unrecognized transcriptional regulatory mechanism. To apply functional genomics to the problem of antimicrobial resistance, we dissected the transcriptional regulation of the drug efflux pump responsible for chloramphenicol resistance, craA. The two craA promoters were both down-regulated >1000-fold when cells were shifted to nutrient limited medium. This conditional down-regulation of craA expression renders cells sensitive to chloramphenicol, a highly effective antibiotic for the treatment of multidrug resistant infections. An online interface that facilitates open data access and visualization is provided as 'AcinetoCom' (http://bioinf.gen.tcd.ie/acinetocom/).
Collapse
Affiliation(s)
- Carsten Kröger
- Department of Microbiology, School of Genetics & Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Keith D MacKenzie
- Institute for Microbial Systems and Society, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
- Department of Biology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Ebtihal Y Alshabib
- Institute for Microbial Systems and Society, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
- Department of Biology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Morgan W B Kirzinger
- Institute for Microbial Systems and Society, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Danae M Suchan
- Institute for Microbial Systems and Society, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
- Department of Biology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Tzu-Chiao Chao
- Department of Biology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
- Institute of Environmental Change and Society, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Valentyna Akulova
- Institute for Microbial Systems and Society, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Aleksandra A Miranda-CasoLuengo
- Department of Microbiology, School of Genetics & Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Vivian A Monzon
- Department of Microbiology, School of Genetics & Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Tyrrell Conway
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Sathesh K Sivasankaran
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Jay C D Hinton
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Karsten Hokamp
- Department of Genetics, School of Genetics & Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Andrew D S Cameron
- Institute for Microbial Systems and Society, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
- Department of Biology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| |
Collapse
|
17
|
Sharma A, Dubey V, Sharma R, Devnath K, Gupta VK, Akhter J, Bhando T, Verma A, Ambatipudi K, Sarkar M, Pathania R. The unusual glycine-rich C terminus of the Acinetobacter baumannii RNA chaperone Hfq plays an important role in bacterial physiology. J Biol Chem 2018; 293:13377-13388. [PMID: 30002121 DOI: 10.1074/jbc.ra118.002921] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/28/2018] [Indexed: 11/06/2022] Open
Abstract
Acinetobacter baumannii is a Gram-negative nosocomial pathogen that causes soft tissue infections in patients who spend a long time in intensive care units. This recalcitrant bacterium is very well known for developing rapid drug resistance, which is a combined outcome of its natural competence and mobile genetic elements. Successful efforts to treat these infections would be aided by additional information on the physiology of A. baumannii Toward that end, we recently reported on a small RNA (sRNA), AbsR25, in this bacterium that regulates the genes of several efflux pumps. Because sRNAs often require the RNA chaperone Hfq for assistance in binding to their cognate mRNA targets, we identified and characterized this protein in A. baumannii The homolog in A. baumannii is a large protein with an extended C terminus unlike Hfqs in other Gram-negative pathogens. The extension has a compositional bias toward glycine and, to a lower extent, phenylalanine and glutamine, suggestive of an intrinsically disordered region. We studied the importance of this glycine-rich tail using truncated versions of Hfq in biophysical assays and complementation of an hfq deletion mutant, finding that the tail was necessary for high-affinity RNA binding. Further tests implicate Hfq in important cellular processes of A. baumannii like metabolism, drug resistance, stress tolerance, and virulence. Our findings underline the importance of the glycine-rich C terminus in RNA binding, ribo-regulation, and auto-regulation of Hfq, demonstrating this hitherto overlooked protein motif to be an indispensable part of the A. baumannii Hfq.
Collapse
Affiliation(s)
- Atin Sharma
- From the Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India and
| | - Vineet Dubey
- From the Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India and
| | - Rajnikant Sharma
- From the Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India and
| | - Kuldip Devnath
- From the Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India and
| | - Vivek Kumar Gupta
- From the Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India and
| | - Jawed Akhter
- From the Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India and
| | - Timsy Bhando
- From the Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India and
| | - Aparna Verma
- From the Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India and
| | - Kiran Ambatipudi
- From the Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India and
| | - Mihir Sarkar
- the Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar-Bareilly (UP) 243122, India
| | - Ranjana Pathania
- From the Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India and
| |
Collapse
|
18
|
Tkachenko AG. Stress Responses of Bacterial Cells as Mechanism of Development of Antibiotic Tolerance (Review). APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s0003683818020114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Chan H, Ho J, Liu X, Zhang L, Wong SH, Chan MT, Wu WK. Potential and use of bacterial small RNAs to combat drug resistance: a systematic review. Infect Drug Resist 2017; 10:521-532. [PMID: 29290689 PMCID: PMC5736357 DOI: 10.2147/idr.s148444] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Over the decades, new antibacterial agents have been developed in an attempt to combat drug resistance, but they remain unsuccessful. Recently, a novel class of bacterial gene expression regulators, bacterial small RNAs (sRNAs), has received increasing attention toward their involvement in antibiotic resistance. This systematic review aimed to discuss the potential of these small molecules as antibacterial drug targets. Methods Two investigators performed a comprehensive search of MEDLINE, EmBase, and ISI Web of Knowledge from inception to October 2016, without restriction on language. We included all in vitro and in vivo studies investigating the role of bacterial sRNA in antibiotic resistance. Risk of bias of the included studies was assessed by a modified guideline of Systematic Review Center for Laboratory Animal Experimentation (SYRCLE). Results Initial search yielded 432 articles. After exclusion of non-original articles, 20 were included in this review. Of these, all studies examined bacterial-type strains only. There were neither relevant in vivo nor clinical studies. The SYRCLE scores ranged from to 5 to 7, with an average of 5.9. This implies a moderate risk of bias. sRNAs influenced the antibiotics susceptibility through modulation of gene expression relevant to efflux pumps, cell wall synthesis, and membrane proteins. Conclusion Preclinical studies on bacterial-type strains suggest that modulation of sRNAs could enhance bacterial susceptibility to antibiotics. Further studies on clinical isolates and in vivo models are needed to elucidate the therapeutic value of sRNA modulation on treatment of multidrug-resistant bacterial infection.
Collapse
Affiliation(s)
- Hung Chan
- Department of Anesthesia and Intensive Care
| | - Jeffery Ho
- Department of Anesthesia and Intensive Care
| | | | - Lin Zhang
- Department of Anesthesia and Intensive Care.,State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences.,School of Biomedical Sciences, Faculty of Medicine
| | - Sunny Hei Wong
- State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences.,Department of Medicine and Therapeutics, the Chinese University of Hong Kong, Shatin, Hong Kong
| | | | - William Kk Wu
- Department of Anesthesia and Intensive Care.,State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences
| |
Collapse
|
20
|
Zhang YF, Han K, Chandler CE, Tjaden B, Ernst RK, Lory S. Probing the sRNA regulatory landscape of P. aeruginosa: post-transcriptional control of determinants of pathogenicity and antibiotic susceptibility. Mol Microbiol 2017; 106:919-937. [PMID: 28976035 PMCID: PMC5738928 DOI: 10.1111/mmi.13857] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2017] [Indexed: 01/01/2023]
Abstract
During environmental adaptation bacteria use small regulatory RNAs (sRNAs) to repress or activate expression of a large fraction of their proteome. We extended the use of the in vivo RNA proximity ligation method toward probing global sRNA interactions with their targets in Pseudomonas aeruginosa and verified the method with a known regulon controlled by the PrrF1 sRNA. We also identified two sRNAs (Sr0161 and ErsA) that interact with the mRNA encoding the major porin OprD responsible for the uptake of carbapenem antibiotics. These two sRNAs base pair with the 5' UTR of oprD leading to increase in resistance of the bacteria to meropenem. Additional proximity ligation experiments and enrichment for Sr0161 targets identified the mRNA for the regulator of type III secretion system. Interaction between the exsA mRNA and Sr0161 leads to a block in the synthesis of a component of the T3SS apparatus and an effector. Another sRNA, Sr006, positively regulates, without Hfq, the expression of PagL, an enzyme responsible for deacylation of lipid A, reducing its pro-inflammatory property and resulting in polymyxin resistance. Therefore, an analysis of global sRNA-mRNA interactions can lead to discoveries of novel pathways controlling gene expression that are likely integrated into larger regulatory networks.
Collapse
Affiliation(s)
- Yi-Fan Zhang
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Kook Han
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Courtney E. Chandler
- Department of Microbial Pathogenesis, University of Maryland – Baltimore, School of Dentistry, Baltimore, Maryland, USA
| | - Brian Tjaden
- Computer Science Department, Wellesley College, Wellesley, Massachusetts, USA
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, University of Maryland – Baltimore, School of Dentistry, Baltimore, Maryland, USA
| | - Stephen Lory
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Álvarez-Fraga L, Rumbo-Feal S, Pérez A, Gómez MJ, Gayoso C, Vallejo JA, Ohneck EJ, Valle J, Actis LA, Beceiro A, Bou G, Poza M. Global assessment of small RNAs reveals a non-coding transcript involved in biofilm formation and attachment in Acinetobacter baumannii ATCC 17978. PLoS One 2017; 12:e0182084. [PMID: 28763494 PMCID: PMC5538643 DOI: 10.1371/journal.pone.0182084] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/12/2017] [Indexed: 12/30/2022] Open
Abstract
Many strains of Acinetobacter baumannii have been described as being able to form biofilm. Small non-coding RNAs (sRNAs) control gene expression in many regulatory circuits in bacteria. The aim of the present work was to provide a global description of the sRNAs produced both by planktonic and biofilm-associated (sessile) cells of A. baumannii ATCC 17978, and to compare the corresponding gene expression profiles to identify sRNAs molecules associated to biofilm formation and virulence. sRNA was extracted from both planktonic and sessile cells and reverse transcribed. cDNA was subjected to 454-pyrosequencing using the GS-FLX Titanium chemistry. The global analysis of the small RNA transcriptome revealed different sRNA expression patterns in planktonic and biofilm associated cells, with some of the transcripts only expressed or repressed in sessile bacteria. A total of 255 sRNAs were detected, with 185 of them differentially expressed in the different types of cells. A total of 9 sRNAs were expressed only in biofilm cells, while the expression of other 21 coding regions were repressed only in biofilm cells. Strikingly, the expression level of the sRNA 13573 was 120 times higher in biofilms than in planktonic cells, an observation that prompted us to further investigate the biological role of this non-coding transcript. Analyses of an isogenic mutant and over-expressing strains revealed that the sRNA 13573 gene is involved in biofilm formation and attachment to A549 human alveolar epithelial cells. The present work serves as a basis for future studies examining the complex regulatory network that regulate biofilm biogenesis and attachment to eukaryotic cells in A. baumannii ATCC 17978.
Collapse
Affiliation(s)
- Laura Álvarez-Fraga
- Departamento de Microbiología, Instituto de Investigación Biomédica (INIBIC), Complejo Hospitalario Universitario (CHUAC), A Coruña, Spain
| | - Soraya Rumbo-Feal
- Departamento de Microbiología, Instituto de Investigación Biomédica (INIBIC), Complejo Hospitalario Universitario (CHUAC), A Coruña, Spain
| | - Astrid Pérez
- Departamento de Microbiología, Instituto de Investigación Biomédica (INIBIC), Complejo Hospitalario Universitario (CHUAC), A Coruña, Spain
- Department of Microbiology, Miami University, Oxford, Ohio, United States of America
| | - Manuel J. Gómez
- Department of Molecular Evolution, Center for Astrobiology, INTA-CSIC, Torrejón de Ardoz, Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Carmen Gayoso
- Departamento de Microbiología, Instituto de Investigación Biomédica (INIBIC), Complejo Hospitalario Universitario (CHUAC), A Coruña, Spain
| | - Juan A. Vallejo
- Departamento de Microbiología, Instituto de Investigación Biomédica (INIBIC), Complejo Hospitalario Universitario (CHUAC), A Coruña, Spain
| | - Emily J. Ohneck
- Department of Microbiology, Miami University, Oxford, Ohio, United States of America
| | - Jaione Valle
- Departamento de Biofilms Microbianos, Instituto de Agrobiotecnología, Navarra, Spain
| | - Luis A. Actis
- Department of Microbiology, Miami University, Oxford, Ohio, United States of America
| | - Alejandro Beceiro
- Departamento de Microbiología, Instituto de Investigación Biomédica (INIBIC), Complejo Hospitalario Universitario (CHUAC), A Coruña, Spain
| | - Germán Bou
- Departamento de Microbiología, Instituto de Investigación Biomédica (INIBIC), Complejo Hospitalario Universitario (CHUAC), A Coruña, Spain
- * E-mail: (GB); (MP)
| | - Margarita Poza
- Departamento de Microbiología, Instituto de Investigación Biomédica (INIBIC), Complejo Hospitalario Universitario (CHUAC), A Coruña, Spain
- * E-mail: (GB); (MP)
| |
Collapse
|
22
|
Kröger C, Kary SC, Schauer K, Cameron ADS. Genetic Regulation of Virulence and Antibiotic Resistance in Acinetobacter baumannii. Genes (Basel) 2016; 8:genes8010012. [PMID: 28036056 PMCID: PMC5295007 DOI: 10.3390/genes8010012] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/18/2016] [Accepted: 12/20/2016] [Indexed: 01/14/2023] Open
Abstract
Multidrug resistant microorganisms are forecast to become the single biggest challenge to medical care in the 21st century. Over the last decades, members of the genus Acinetobacter have emerged as bacterial opportunistic pathogens, in particular as challenging nosocomial pathogens because of the rapid evolution of antimicrobial resistances. Although we lack fundamental biological insight into virulence mechanisms, an increasing number of researchers are working to identify virulence factors and to study antibiotic resistance. Here, we review current knowledge regarding the regulation of virulence genes and antibiotic resistance in Acinetobacter baumannii. A survey of the two-component systems AdeRS, BaeSR, GacSA and PmrAB explains how each contributes to antibiotic resistance and virulence gene expression, while BfmRS regulates cell envelope structures important for pathogen persistence. A. baumannii uses the transcription factors Fur and Zur to sense iron or zinc depletion and upregulate genes for metal scavenging as a critical survival tool in an animal host. Quorum sensing, nucleoid-associated proteins, and non-classical transcription factors such as AtfA and small regulatory RNAs are discussed in the context of virulence and antibiotic resistance.
Collapse
Affiliation(s)
- Carsten Kröger
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland.
| | - Stefani C Kary
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland.
| | - Kristina Schauer
- Department of Veterinary Science, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Oberschleißheim 85764, Germany.
| | - Andrew D S Cameron
- Department of Biology, University of Regina, Regina, SK S4S 042, Canada.
| |
Collapse
|
23
|
C-terminal domain of the RNA chaperone Hfq drives sRNA competition and release of target RNA. Proc Natl Acad Sci U S A 2016; 113:E6089-E6096. [PMID: 27681631 DOI: 10.1073/pnas.1613053113] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The bacterial Sm protein and RNA chaperone Hfq stabilizes small noncoding RNAs (sRNAs) and facilitates their annealing to mRNA targets involved in stress tolerance and virulence. Although an arginine patch on the Sm core is needed for Hfq's RNA chaperone activity, the function of Hfq's intrinsically disordered C-terminal domain (CTD) has remained unclear. Here, we use stopped flow spectroscopy to show that the CTD of Escherichia coli Hfq is not needed to accelerate RNA base pairing but is required for the release of dsRNA. The Hfq CTD also mediates competition between sRNAs, offering a kinetic advantage to sRNAs that contact both the proximal and distal faces of the Hfq hexamer. The change in sRNA hierarchy caused by deletion of the Hfq CTD in E. coli alters the sRNA accumulation and the kinetics of sRNA regulation in vivo. We propose that the Hfq CTD displaces sRNAs and annealed sRNA⋅mRNA complexes from the Sm core, enabling Hfq to chaperone sRNA-mRNA interactions and rapidly cycle between competing targets in the cell.
Collapse
|
24
|
Sharma A, Sharma R, Bhattacharyya T, Bhando T, Pathania R. Fosfomycin resistance in Acinetobacter baumannii is mediated by efflux through a major facilitator superfamily (MFS) transporter-AbaF. J Antimicrob Chemother 2016; 72:68-74. [PMID: 27650185 DOI: 10.1093/jac/dkw382] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 08/15/2016] [Accepted: 08/16/2016] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVES To decipher the function of A1S_1331, named AbaF (Acinetobacter baumannii Fosfomycin efflux), one of the primary targets of AbsR25, a small RNA of A. baumannii. METHODS abaF was cloned in a multicopy plasmid and expressed from its native promoter in an efflux-deficient strain-Escherichia coli KAM32. Drug susceptibility, accumulation and efflux of ethidium bromide (EtBr) were determined in this strain. abaF was disrupted in A. baumannii using homologous recombination and its effect on drug susceptibility, biofilm formation and virulence was studied. Expression of abaF was followed by quantitative PCR in fosfomycin-challenged A. baumannii and fosfomycin-resistant mutants of A. baumannii. Expression of abaF in clinical strains of A. baumannii was determined by RT-PCR. RESULTS Expression of abaF in E. coli KAM32 resulted in increased resistance to fosfomycin. Lower accumulation and higher efflux of EtBr from this strain confirmed the role of AbaF as an efflux pump. Disruption of abaF in A. baumannii caused an increase in fosfomycin susceptibility and a decrease in biofilm formation and virulence. The expression of abaF was higher in A. baumannii cells exposed to fosfomycin and in cells resistant to higher concentrations of fosfomycin. The clinically relevant strains of A. baumannii also tested positive for the expression of abaF. CONCLUSIONS The results of this study suggest that efflux is an important mechanism of fosfomycin resistance and AbaF is involved in fosfomycin resistance in A. baumannii. AbaF also seems to play a role in biofilm formation and virulence of A. baumannii.
Collapse
Affiliation(s)
- Atin Sharma
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Rajnikant Sharma
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Tapas Bhattacharyya
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Timsy Bhando
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Ranjana Pathania
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
25
|
Analysis of Small RNAs in Streptococcus mutans under Acid Stress-A New Insight for Caries Research. Int J Mol Sci 2016; 17:ijms17091529. [PMID: 27649155 PMCID: PMC5037804 DOI: 10.3390/ijms17091529] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 11/23/2022] Open
Abstract
Streptococcus mutans (S. mutans) is the major clinical pathogen responsible for dental caries. Its acid tolerance has been identified as a significant virulence factor for its survival and cariogenicity in acidic conditions. Small RNAs (sRNAs) are recognized as key regulators of virulence and stress adaptation. Here, we constructed three libraries of sRNAs with small size exposed to acidic conditions for the first time, followed by verification using qRT-PCR. The levels of two sRNAs and target genes predicted to be bioinformatically related to acid tolerance were further evaluated under different acid stress conditions (pH 7.5, 6.5, 5.5, and 4.5) at three time points (0.5, 1, and 2 h). Meanwhile, bacterial growth characteristics and vitality were assessed. We obtained 1879 sRNAs with read counts of at least 100. One hundred and ten sRNAs were perfectly mapped to reported msRNAs in S. mutans. Ten out of 18 sRNAs were validated by qRT-PCR. The survival of bacteria declined as the acid was increased from pH 7.5 to 4.5 at each time point. The bacteria can proliferate under each pH except pH 4.5 with time. The levels of sRNAs gradually decreased from pH 7.5 to 5.5, and slightly increased in pH 4.5; however, the expression levels of target mRNAs were up-regulated in acidic conditions than in pH 7.5. These results indicate that some sRNAs are specially induced at acid stress conditions, involving acid adaptation, and provide a new insight into exploring the complex acid tolerance for S. mutans.
Collapse
|
26
|
Weiss A, Broach WH, Lee MC, Shaw LN. Towards the complete small RNome of Acinetobacter baumannii. Microb Genom 2016; 2:e000045. [PMID: 28348845 PMCID: PMC5320573 DOI: 10.1099/mgen.0.000045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/13/2015] [Accepted: 12/15/2015] [Indexed: 01/08/2023] Open
Abstract
In recent years, the Gram-negative bacterium Acinetobacter baumannii has garnered considerable attention for its unprecedented capacity to rapidly develop resistance to antibacterial therapeutics. This is coupled with the seemingly epidemic emergence of new hyper-virulent strains. Although strain-specific differences for A. baumannii isolates have been well described, these studies have primarily focused on proteinaceous factors. At present, only limited publications have investigated the presence and role of small regulatory RNA (sRNA) transcripts. Herein, we perform such an analysis, describing the RNA-seq-based identification of 78 A. baumannii sRNAs in the AB5075 background. Together with six previously identified elements, we include each of these in a new genome annotation file, which will serve as a tool to investigate regulatory events in this organism. Our work reveals that the sRNAs display high expression, accounting for >50 % of the 20 most strongly expressed genes. Through conservation analysis we identified six classes of similar sRNAs, with one found to be particularly abundant and homologous to regulatory, C4 antisense RNAs found in bacteriophages. These elements appear to be processed from larger transcripts in an analogous manner to the phage C4 molecule and are putatively controlled by two further sRNAs that are strongly antisense to them. Collectively, this study offers a detailed view of the sRNA content of A. baumannii, exposing sequence and structural conservation amongst these elements, and provides novel insight into the potential evolution, and role, of these understudied regulatory molecules.
Collapse
Affiliation(s)
- Andy Weiss
- Cell Biology, Microbiology & Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| | - William H Broach
- Cell Biology, Microbiology & Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| | - Mackenzie C Lee
- Cell Biology, Microbiology & Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| | - Lindsey N Shaw
- Cell Biology, Microbiology & Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| |
Collapse
|
27
|
Schroeder CLC, Narra HP, Rojas M, Sahni A, Patel J, Khanipov K, Wood TG, Fofanov Y, Sahni SK. Bacterial small RNAs in the Genus Rickettsia. BMC Genomics 2015; 16:1075. [PMID: 26679185 PMCID: PMC4683814 DOI: 10.1186/s12864-015-2293-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/14/2015] [Indexed: 01/02/2023] Open
Abstract
Background Rickettsia species are obligate intracellular Gram-negative pathogenic bacteria and the etiologic agents of diseases such as Rocky Mountain spotted fever (RMSF), Mediterranean spotted fever, epidemic typhus, and murine typhus. Genome sequencing revealed that R. prowazekii has ~25 % non-coding DNA, the majority of which is thought to be either “junk DNA” or pseudogenes resulting from genomic reduction. These characteristics also define other Rickettsia genomes. Bacterial small RNAs, whose biogenesis is predominantly attributed to either the intergenic regions (trans-acting) or to the antisense strand of an open reading frame (cis-acting), are now appreciated to be among the most important post-transcriptional regulators of bacterial virulence and growth. We hypothesize that intergenic regions in rickettsial species encode for small, non-coding RNAs (sRNAs) involved in the regulation of its transcriptome, leading to altered virulence and adaptation depending on the host niche. Results We employed a combination of bioinformatics and in vitro approaches to explore the presence of sRNAs in a number of species within Genus Rickettsia. Using the sRNA Identification Protocol using High-throughput Technology (SIPHT) web interface, we predicted over 1,700 small RNAs present in the intergenic regions of 16 different strains representing 13 rickettsial species. We further characterized novel sRNAs from typhus (R. prowazekii and R. typhi) and spotted fever (R. rickettsii and R. conorii) groups for their promoters and Rho-independent terminators using Bacterial Promoter Prediction Program (BPROM) and TransTermHP prediction algorithms, respectively. Strong σ70 promoters were predicted upstream of all novel small RNAs, indicating the potential for transcriptional activity. Next, we infected human microvascular endothelial cells (HMECs) with R. prowazekii for 3 h and 24 h and performed Next Generation Sequencing to experimentally validate the expression of 26 sRNA candidates predicted in R. prowazekii. Reverse transcriptase PCR was also used to further verify the expression of six putative novel sRNA candidates in R. prowazekii. Conclusions Our results yield clear evidence for the expression of novel R. prowazekii sRNA candidates during infection of HMECs. This is the first description of novel small RNAs for a highly pathogenic species of Rickettsia, which should lead to new insights into rickettsial virulence and adaptation mechanisms. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2293-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Casey L C Schroeder
- Department of Pathology, the University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| | - Hema P Narra
- Department of Pathology, the University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| | - Mark Rojas
- Department of Pharmacology, the University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| | - Abha Sahni
- Department of Pathology, the University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| | - Jignesh Patel
- Department of Pathology, the University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| | - Kamil Khanipov
- Department of Pharmacology, the University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| | - Thomas G Wood
- Department of Biochemistry and Molecular Biology, the University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| | - Yuriy Fofanov
- Department of Pharmacology, the University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| | - Sanjeev K Sahni
- Department of Pathology, the University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| |
Collapse
|
28
|
Martínez-Chavarría LC, Vadyvaloo V. Yersinia pestis and Yersinia pseudotuberculosis infection: a regulatory RNA perspective. Front Microbiol 2015; 6:956. [PMID: 26441890 PMCID: PMC4585118 DOI: 10.3389/fmicb.2015.00956] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/28/2015] [Indexed: 12/27/2022] Open
Abstract
Yersinia pestis, responsible for causing fulminant plague, has evolved clonally from the enteric pathogen, Y. pseudotuberculosis, which in contrast, causes a relatively benign enteric illness. An ~97% nucleotide identity over 75% of their shared protein coding genes is maintained between these two pathogens, leaving much conjecture regarding the molecular determinants responsible for producing these vastly different disease etiologies, host preferences and transmission routes. One idea is that coordinated production of distinct factors required for host adaptation and virulence in response to specific environmental cues could contribute to the distinct pathogenicity distinguishing these two species. Small non-coding RNAs that direct posttranscriptional regulation have recently been identified as key molecules that may provide such timeous expression of appropriate disease enabling factors. Here the burgeoning field of small non-coding regulatory RNAs in Yersinia pathogenesis is reviewed from the viewpoint of adaptive colonization, virulence and divergent evolution of these pathogens.
Collapse
Affiliation(s)
- Luary C Martínez-Chavarría
- Departamento de Patología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, México Mexico
| | - Viveka Vadyvaloo
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA USA
| |
Collapse
|
29
|
Jung J, Park W. Acinetobacter species as model microorganisms in environmental microbiology: current state and perspectives. Appl Microbiol Biotechnol 2015; 99:2533-48. [PMID: 25693672 DOI: 10.1007/s00253-015-6439-y] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 01/23/2015] [Accepted: 01/26/2015] [Indexed: 01/11/2023]
Abstract
Acinetobacter occupies an important position in nature because of its ubiquitous presence in diverse environments such as soils, fresh water, oceans, sediments, and contaminated sites. Versatile metabolic characteristics allow species of this genus to catabolize a wide range of natural compounds, implying active participation in the nutrient cycle in the ecosystem. On the other hand, multi-drug-resistant Acinetobacter baumannii causing nosocomial infections with high mortality has been raising serious concerns in medicine. Due to the ecological and clinical importance of the genus, Acinetobacter was proposed as a model microorganism for environmental microbiological studies, pathogenicity tests, and industrial production of chemicals. For these reasons, Acinetobacter has attracted significant attention in scientific and biotechnological fields, but only limited research areas such as natural transformation and aromatic compound degradation have been intensively investigated, while important physiological characteristics including quorum sensing, motility, and stress response have been neglected. The aim of this review is to summarize the recent achievements in Acinetobacter research with a special focus on strain DR1 and to compare the similarities and differences between species or other genera. Research areas that require more attention in future research are also suggested.
Collapse
Affiliation(s)
- Jaejoon Jung
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 136-713, Republic of Korea
| | | |
Collapse
|
30
|
Peng X, Dong H, Wu Q. A new cis-encoded sRNA, BsrH, regulating the expression of hemH gene in Brucella abortus 2308. FEMS Microbiol Lett 2014; 362:1-7. [DOI: 10.1093/femsle/fnu017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
31
|
Heo A, Jang HJ, Sung JS, Park W. Global transcriptome and physiological responses of Acinetobacter oleivorans DR1 exposed to distinct classes of antibiotics. PLoS One 2014; 9:e110215. [PMID: 25330344 PMCID: PMC4201530 DOI: 10.1371/journal.pone.0110215] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/09/2014] [Indexed: 11/18/2022] Open
Abstract
The effects of antibiotics on environment-originated nonpathogenic Acinetobacter species have been poorly explored. To understand the antibiotic-resistance mechanisms that function in nonpathogenic Acinetobacter species, we used an RNA-sequencing (RNA-seq) technique to perform global gene-expression profiling of soil-borne Acinetobacter oleivorans DR1 after exposing the bacteria to 4 classes of antibiotics (ampicillin, Amp; kanamycin, Km; tetracycline, Tc; norfloxacin, Nor). Interestingly, the well-known two global regulators, the soxR and the rpoE genes are present among 41 commonly upregulated genes under all 4 antibiotic-treatment conditions. We speculate that these common genes are essential for antibiotic resistance in DR1. Treatment with the 4 antibiotics produced diverse physiological and phenotypic changes. Km treatment induced the most dramatic phenotypic changes. Examination of mutation frequency and DNA-repair capability demonstrated the induction of the SOS response in Acinetobacter especially under Nor treatment. Based on the RNA-seq analysis, the glyoxylate-bypass genes of the citrate cycle were specifically upregulated under Amp treatment. We also identified newly recognized non-coding small RNAs of the DR1 strain, which were also confirmed by Northern blot analysis. These results reveal that treatment with antibiotics of distinct classes differentially affected the gene expression and physiology of DR1 cells. This study expands our understanding of the molecular mechanisms of antibiotic-stress response of environment-originated bacteria and provides a basis for future investigations.
Collapse
Affiliation(s)
- Aram Heo
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Hyun-Jin Jang
- Department of Life Science, Dongguk University, Seoul, Republic of Korea
| | - Jung-Suk Sung
- Department of Life Science, Dongguk University, Seoul, Republic of Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|