1
|
Gronkowska K, Robaszkiewicz A. Genetic dysregulation of EP300 in cancers in light of cancer epigenome control - targeting of p300-proficient and -deficient cancers. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200871. [PMID: 39351073 PMCID: PMC11440307 DOI: 10.1016/j.omton.2024.200871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Some cancer types including bladder, cervical, and uterine cancers are characterized by frequent mutations in EP300 that encode histone acetyltransferase p300. This enzyme can act both as a tumor suppressor and oncogene. In this review, we describe the role of p300 in cancer initiation and progression regarding EP300 aberrations that have been identified in TGCA Pan-Cancer Atlas studies and we also discuss possible anticancer strategies that target EP300 mutated cancers. Copy number alterations, truncating mutations, and abnormal EP300 transcriptions that affect p300 abundance and activity are associated with several pathological features such as tumor grading, metastases, and patient survival. Elevated EP300 correlates with a higher mRNA level of other epigenetic factors and chromatin remodeling enzymes that co-operate with p300 in creating permissive conditions for malignant transformation, tumor growth and metastases. The status of EP300 expression can be considered as a prognostic marker for anticancer immunotherapy efficacy, as EP300 mutations are followed by an increased expression of PDL-1.HAT activators such as CTB or YF2 can be applied for p300-deficient patients, whereas the natural and synthetic inhibitors of p300 activity, as well as dual HAT/bromodomain inhibitors and the PROTAC degradation of p300, may serve as strategies in the fight against p300-fueled cancers.
Collapse
Affiliation(s)
- Karolina Gronkowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
- Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Agnieszka Robaszkiewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
2
|
Goswami P, Ives AM, Abbott ARN, Bertke AS. Stress Hormones Epinephrine and Corticosterone Selectively Reactivate HSV-1 and HSV-2 in Sympathetic and Sensory Neurons. Viruses 2022; 14:1115. [PMID: 35632856 PMCID: PMC9147053 DOI: 10.3390/v14051115] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/16/2022] Open
Abstract
Herpes simplex viruses 1 and 2 (HSV-1 and HSV-2) establish latency in sensory and autonomic neurons, from which they can reactivate to cause recurrent disease throughout the life of the host. Stress is strongly associated with HSV recurrences in humans and animal models. However, the mechanisms through which stress hormones act on the latent virus to cause reactivation are unknown. We show that the stress hormones epinephrine (EPI) and corticosterone (CORT) induce HSV-1 reactivation selectively in sympathetic neurons, but not sensory or parasympathetic neurons. Activation of multiple adrenergic receptors is necessary for EPI-induced HSV-1 reactivation, while CORT requires the glucocorticoid receptor. In contrast, CORT, but not EPI, induces HSV-2 reactivation in both sensory and sympathetic neurons through either glucocorticoid or mineralocorticoid receptors. Reactivation is dependent on different transcription factors for EPI and CORT, and coincides with rapid changes in viral gene expression, although genes differ for HSV-1 and HSV-2, and temporal kinetics differ for EPI and CORT. Thus, stress-induced reactivation mechanisms are neuron-specific, stimulus-specific and virus-specific. These findings have implications for differences in HSV-1 and HSV-2 recurrent disease patterns and frequencies, as well as development of targeted, more effective antivirals that may act on different responses in different types of neurons.
Collapse
Affiliation(s)
- Poorna Goswami
- Translational Biology Medicine and Health, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA;
| | - Angela M. Ives
- Biomedical and Veterinary Science, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA;
| | - Amber R. N. Abbott
- Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA;
| | - Andrea S. Bertke
- Population Health Sciences, Center for Emerging Zoonotic and Arthropod-Borne Pathogens, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| |
Collapse
|
3
|
BAP1 forms a trimer with HMGB1 and HDAC1 that modulates gene × environment interaction with asbestos. Proc Natl Acad Sci U S A 2021; 118:2111946118. [PMID: 34815344 DOI: 10.1073/pnas.2111946118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2021] [Indexed: 12/25/2022] Open
Abstract
Carriers of heterozygous germline BAP1 mutations (BAP1 +/-) are affected by the "BAP1 cancer syndrome." Although they can develop almost any cancer type, they are unusually susceptible to asbestos carcinogenesis and mesothelioma. Here we investigate why among all carcinogens, BAP1 mutations cooperate with asbestos. Asbestos carcinogenesis and mesothelioma have been linked to a chronic inflammatory process promoted by the extracellular release of the high-mobility group box 1 protein (HMGB1). We report that BAP1 +/- cells secrete increased amounts of HMGB1, and that BAP1 +/- carriers have detectable serum levels of acetylated HMGB1 that further increase when they develop mesothelioma. We linked these findings to our discovery that BAP1 forms a trimeric protein complex with HMGB1 and with histone deacetylase 1 (HDAC1) that modulates HMGB1 acetylation and its release. Reduced BAP1 levels caused increased ubiquitylation and degradation of HDAC1, leading to increased acetylation of HMGB1 and its active secretion that in turn promoted mesothelial cell transformation.
Collapse
|
4
|
Yan B, Yang J, Kim MY, Luo H, Cesari N, Yang T, Strouboulis J, Zhang J, Hardison R, Huang S, Qiu Y. HDAC1 is required for GATA-1 transcription activity, global chromatin occupancy and hematopoiesis. Nucleic Acids Res 2021; 49:9783-9798. [PMID: 34450641 PMCID: PMC8464053 DOI: 10.1093/nar/gkab737] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/05/2021] [Accepted: 08/16/2021] [Indexed: 12/20/2022] Open
Abstract
The activity of hematopoietic factor GATA-1 is modulated through p300/CBP-mediated acetylation and FOG-1 mediated indirect interaction with HDAC1/2 containing NuRD complex. Although GATA-1 acetylation is implicated in GATA-1 activation, the role of deacetylation is not studied. Here, we found that the FOG-1/NuRD does not deacetylate GATA-1. However, HDAC1/2 can directly bind and deacetylate GATA-1. Two arginine residues within the GATA-1 linker region mediates direct interaction with HDAC1. The arginine to alanine mutation (2RA) blocks GATA-1 deacetylation and fails to induce erythroid differentiation. Gene expression profiling and ChIP-seq analysis further demonstrate the importance of GATA-1 deacetylation for gene activation and chromatin recruitment. GATA-12RA knock-in (KI) mice suffer mild anemia and thrombocytopenia with accumulation of immature erythrocytes and megakaryocytes in bone marrow and spleen. Single cell RNA-seq analysis of Lin- cKit+ (LK) cells further reveal a profound change in cell subpopulations and signature gene expression patterns in HSC, myeloid progenitors, and erythroid/megakaryocyte clusters in KI mice. Thus, GATA-1 deacetylation and its interaction with HDAC1 modulates GATA-1 chromatin binding and transcriptional activity that control erythroid/megakaryocyte commitment and differentiation.
Collapse
Affiliation(s)
- Bowen Yan
- Department of Cellular and Molecular Physiology, Hershey, PA 17033, USA
| | - Jennifer Yang
- Department of Cellular and Molecular Physiology, Hershey, PA 17033, USA
| | - Min Young Kim
- Department of Cellular and Molecular Physiology, Hershey, PA 17033, USA
| | - Huacheng Luo
- Department of Pediatrics, Hershey, PA 17033, USA
| | | | - Tao Yang
- Department of Cellular and Molecular Physiology, Hershey, PA 17033, USA
| | - John Strouboulis
- Comprehensive Cancer Center, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London SE5 9NU, UK
| | - Jiwang Zhang
- Department of Pathology, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Ross Hardison
- Departments of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Suming Huang
- Department of Pediatrics, Hershey, PA 17033, USA
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Yi Qiu
- To whom correspondence should be addressed. Tel: +1 717 531 0003 (Ext 321489); Fax: +1 717 531 7667;
| |
Collapse
|
5
|
Ramirez Moreno M, Stempor PA, Bulgakova NA. Interactions and Feedbacks in E-Cadherin Transcriptional Regulation. Front Cell Dev Biol 2021; 9:701175. [PMID: 34262912 PMCID: PMC8273600 DOI: 10.3389/fcell.2021.701175] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/04/2021] [Indexed: 01/07/2023] Open
Abstract
Epithelial tissues rely on the adhesion between participating cells to retain their integrity. The transmembrane protein E-cadherin is the major protein that mediates homophilic adhesion between neighbouring cells and is, therefore, one of the critical components for epithelial integrity. E-cadherin downregulation has been described extensively as a prerequisite for epithelial-to-mesenchymal transition and is a hallmark in many types of cancer. Due to this clinical importance, research has been mostly focused on understanding the mechanisms leading to transcriptional repression of this adhesion molecule. However, in recent years it has become apparent that re-expression of E-cadherin is a major step in the progression of many cancers during metastasis. Here, we review the currently known molecular mechanisms of E-cadherin transcriptional activation and inhibition and highlight complex interactions between individual mechanisms. We then propose an additional mechanism, whereby the competition between adhesion complexes and heterochromatin protein-1 for binding to STAT92E fine-tunes the levels of E-cadherin expression in Drosophila but also regulates other genes promoting epithelial robustness. We base our hypothesis on both existing literature and our experimental evidence and suggest that such feedback between the cell surface and the nucleus presents a powerful paradigm for epithelial resilience.
Collapse
Affiliation(s)
- Miguel Ramirez Moreno
- Department of Biomedical Science and Bateson Centre, The University of Sheffield, Sheffield, England
| | | | - Natalia A Bulgakova
- Department of Biomedical Science and Bateson Centre, The University of Sheffield, Sheffield, England
| |
Collapse
|
6
|
Management of epigenomic networks entailed in coronavirus infections and COVID-19. Clin Epigenetics 2020; 12:118. [PMID: 32758273 PMCID: PMC7404079 DOI: 10.1186/s13148-020-00912-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022] Open
Abstract
Coronaviruses (CoVs) are highly diverse single-stranded RNA viruses owing to their susceptibility to numerous genomic mutations and recombination. Such viruses involve human and animal pathogens including the etiologic agents of acute respiratory tract illnesses: severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and the highly morbific SARS-CoV-2. Coronavirus disease 2019 (COVID-19), an emerging disease with a quick rise in infected cases and deaths, was recently identified causing a worldwide pandemic. COVID-19 disease outcomes were found to increase in elderly and patients with a compromised immune system. Evidences indicated that the main culprit behind COVID-19 deaths is the cytokine storm, which is illustrated by an uncontrolled over-production of soluble markers of inflammation. The regulation process of coronavirus pathogenesis through molecular mechanism comprise virus-host interactions linked to viral entry, replication and transcription, escape, and immune system control. Recognizing coronavirus infections and COVID-19 through epigenetics lens will lead to potential alteration in gene expression thus limiting coronavirus infections. Focusing on epigenetic therapies reaching clinical trials, clinically approved epigenetic-targeted agents, and combination therapy of antivirals and epigenetic drugs is currently considered an effective and valuable approach for viral replication and inflammatory overdrive control.
Collapse
|
7
|
de Jesús TJ, Ramakrishnan P. NF-κB c-Rel Dictates the Inflammatory Threshold by Acting as a Transcriptional Repressor. iScience 2020; 23:100876. [PMID: 32062419 PMCID: PMC7031323 DOI: 10.1016/j.isci.2020.100876] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/11/2020] [Accepted: 01/28/2020] [Indexed: 12/14/2022] Open
Abstract
NF-κB/Rel family of transcription factors plays a central role in initiation and resolution of inflammatory responses. Here, we identified a function of the NF-κB subunit c-Rel as a transcriptional repressor of inflammatory genes. Genetic deletion of c-Rel substantially potentiates the expression of several TNF-α-induced RelA-dependent mediators of inflammation. v-Rel, the viral homologue of c-Rel, but not RelB, also possesses this repressive function. Mechanistically, we found that c-Rel selectively binds to the co-repressor HDAC1 and competitively binds to the DNA mediating HDAC1 recruitment to the promoters of inflammatory genes. A specific point mutation at tyrosine25 in c-Rel's DNA-binding domain, for which a missense single nucleotide variation (Y25H) exists in humans, completely abrogated its ability to bind DNA and repress TNF-α-induced, RelA-mediated transcription. Our findings reveal that the transactivator NF-κB subunit c-Rel also plays a role as a transcriptional repressor in the maintenance of inflammatory homeostasis.
Collapse
Affiliation(s)
- Tristan James de Jesús
- Department of Pathology, School of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, 6526, Wolstein Research Building, 2103 Cornell Road, Cleveland, OH 44106, USA
| | - Parameswaran Ramakrishnan
- Department of Pathology, School of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, 6526, Wolstein Research Building, 2103 Cornell Road, Cleveland, OH 44106, USA; Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; The Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
8
|
Jiao M, Xia L, Chen J, Cui Z. WITHDRAWN: Demethylation of Di-Methylation of Lysine 4 on Histone 3 Is Inhibited by General Control Nondepressible 5-Induced Acetylation of Lysine-Specific Demethylase 1. Am J Med Sci 2020:S0002-9629(20)30003-3. [PMID: 31982102 DOI: 10.1016/j.amjms.2020.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/26/2019] [Accepted: 01/02/2020] [Indexed: 10/25/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Mingwen Jiao
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Lijian Xia
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Jingbo Chen
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Zhonghui Cui
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China.
| |
Collapse
|
9
|
Anderson EM, Penrod RD, Barry SM, Hughes BW, Taniguchi M, Cowan CW. It is a complex issue: emerging connections between epigenetic regulators in drug addiction. Eur J Neurosci 2019; 50:2477-2491. [PMID: 30251397 DOI: 10.1111/ejn.14170] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/04/2018] [Accepted: 09/11/2018] [Indexed: 02/06/2023]
Abstract
Drug use leads to addiction in some individuals, but the underlying brain mechanisms that control the transition from casual drug use to an intractable substance use disorder (SUD) are not well understood. Gene x environment interactions such as the frequency of drug use and the type of substance used likely to promote maladaptive plastic changes in brain regions that are critical for controlling addiction-related behavior. Epigenetics encompasses a broad spectrum of mechanisms important for regulating gene transcription that are not dependent on changes in DNA base pair sequences. This review focuses on the proteins and complexes contributing to epigenetic modifications in the nucleus accumbens (NAc) following drug experience. We discuss in detail the three major mechanisms: histone acetylation and deacetylation, histone methylation, and DNA methylation. We discuss how drug use alters the regulation of the associated proteins regulating these processes and highlight how experimental manipulations of these proteins in the NAc can alter drug-related behaviors. Finally, we discuss the ways that histone modifications and DNA methylation coordinate actions by recruiting large epigenetic enzyme complexes to aid in transcriptional repression. Targeting these multiprotein epigenetic enzyme complexes - and the individual proteins that comprise them - might lead to effective therapeutics to reverse or treat SUDs in patients.
Collapse
Affiliation(s)
- Ethan M Anderson
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Medical University of South Carolina, 173 Ashley Ave, MSC 510, Charleston, SC, 29425-2030, USA
| | - Rachel D Penrod
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Medical University of South Carolina, 173 Ashley Ave, MSC 510, Charleston, SC, 29425-2030, USA
| | - Sarah M Barry
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Medical University of South Carolina, 173 Ashley Ave, MSC 510, Charleston, SC, 29425-2030, USA
| | - Brandon W Hughes
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Medical University of South Carolina, 173 Ashley Ave, MSC 510, Charleston, SC, 29425-2030, USA
| | - Makoto Taniguchi
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Medical University of South Carolina, 173 Ashley Ave, MSC 510, Charleston, SC, 29425-2030, USA
| | - Christopher W Cowan
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Medical University of South Carolina, 173 Ashley Ave, MSC 510, Charleston, SC, 29425-2030, USA
| |
Collapse
|
10
|
Siam A, Baker M, Amit L, Regev G, Rabner A, Najar RA, Bentata M, Dahan S, Cohen K, Araten S, Nevo Y, Kay G, Mandel-Gutfreund Y, Salton M. Regulation of alternative splicing by p300-mediated acetylation of splicing factors. RNA (NEW YORK, N.Y.) 2019; 25:813-824. [PMID: 30988101 PMCID: PMC6573785 DOI: 10.1261/rna.069856.118] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/08/2019] [Indexed: 05/23/2023]
Abstract
Splicing of precursor mRNA (pre-mRNA) is an important regulatory step in gene expression. Recent evidence points to a regulatory role of chromatin-related proteins in alternative splicing regulation. Using an unbiased approach, we have identified the acetyltransferase p300 as a key chromatin-related regulator of alternative splicing. p300 promotes genome-wide exon inclusion in both a transcription-dependent and -independent manner. Using CD44 as a paradigm, we found that p300 regulates alternative splicing by modulating the binding of splicing factors to pre-mRNA. Using a tethering strategy, we found that binding of p300 to the CD44 promoter region promotes CD44v exon inclusion independently of RNAPII transcriptional elongation rate. Promoter-bound p300 regulates alternative splicing by acetylating splicing factors, leading to exclusion of hnRNP M from CD44 pre-mRNA and activation of Sam68. p300-mediated CD44 alternative splicing reduces cell motility and promotes epithelial features. Our findings reveal a chromatin-related mechanism of alternative splicing regulation and demonstrate its impact on cellular function.
Collapse
Affiliation(s)
- Ahmad Siam
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Mai Baker
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Leah Amit
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Gal Regev
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Alona Rabner
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Rauf Ahmad Najar
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Mercedes Bentata
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Sara Dahan
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Klil Cohen
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Sarah Araten
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Yuval Nevo
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Gillian Kay
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | | | - Maayan Salton
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
11
|
Abstract
HDACs, originally described as histone modifiers, have recently been demonstrated to modify a variety of other proteins that are involved in diverse cellular processes unrelated to the chromatin environment. This includes deacetylation of nonhistone targets involved in multiple signaling pathways. In this regard, a considerable number of reports have analyzed the role of nonspecific inhibition of HDACs through pan-HDACi in cancer as well as processes of immune regulation. However, with pan-HDACi there is a lack of understanding about the exact contribution of inhibition of each individual HDAC, which makes the rational design of improved drug candidates extremely difficult. Additionally, current approaches using nonselective HDACi in the clinic have critical limitations, including pan-HDACi which elicit poor activity in solid tumors and cardiac toxicity, class I HDACi which activate multiple apoptotic pathways, limiting its use for longer periods of time, and class I-HDAC6i that evidenced a number of adverse effects in initial clinical trials. Therefore, there is a growing interest in the identification of more selective HDACi, and the subsequent development of accurate functional tests to identify the effectiveness and selectivity of these inhibitors. In this chapter, we are describing some selected methodologies to identify the individual activities of HDACs. In addition, we present specific methods to identify enzymatic and nonenzymatic molecular targets of HDACs.
Collapse
Affiliation(s)
- Melissa Hadley
- The George Washington University Cancer Center, N.W. George Washington University, Washington, DC, USA
| | - Satish Noonepalle
- The George Washington University Cancer Center, N.W. George Washington University, Washington, DC, USA
| | - Debarati Banik
- The George Washington University Cancer Center, N.W. George Washington University, Washington, DC, USA
| | - Alejandro Villagra
- The George Washington University Cancer Center, N.W. George Washington University, Washington, DC, USA.
| |
Collapse
|
12
|
Zhang T, Wei G, Millard CJ, Fischer R, Konietzny R, Kessler BM, Schwabe JWR, Brockdorff N. A variant NuRD complex containing PWWP2A/B excludes MBD2/3 to regulate transcription at active genes. Nat Commun 2018; 9:3798. [PMID: 30228260 PMCID: PMC6143588 DOI: 10.1038/s41467-018-06235-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 08/03/2018] [Indexed: 02/07/2023] Open
Abstract
Transcriptional regulation by chromatin is a highly dynamic process directed through the recruitment and coordinated action of epigenetic modifiers and readers of these modifications. Using an unbiased proteomic approach to find interactors of H3K36me3, a modification enriched on active chromatin, here we identify PWWP2A and HDAC2 among the top interactors. PWWP2A and its paralog PWWP2B form a stable complex with NuRD subunits MTA1/2/3:HDAC1/2:RBBP4/7, but not with MBD2/3, p66α/β, and CHD3/4. PWWP2A competes with MBD3 for binding to MTA1, thus defining a new variant NuRD complex that is mutually exclusive with the MBD2/3 containing NuRD. In mESCs, PWWP2A/B is most enriched at highly transcribed genes. Loss of PWWP2A/B leads to increases in histone acetylation predominantly at highly expressed genes, accompanied by decreases in Pol II elongation. Collectively, these findings suggest a role for PWWP2A/B in regulating transcription through the fine-tuning of histone acetylation dynamics at actively transcribed genes. Transcription regulation requires recruitment of different epigenetic regulators to the chromatin. Here the authors provide evidence that an H3K36me3 reader PWWP2A forms a variant NuRD complex and plays a role in regulating transcription and histone acetylation dynamics.
Collapse
Affiliation(s)
- Tianyi Zhang
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Guifeng Wei
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Christopher J Millard
- Leicester Institute for Structural and Chemical Biology and Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| | - Rebecca Konietzny
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom.,Agilent Technologies, Hewlett-Packard-Str. 8, 76337, Waldbronn, Germany
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| | - John W R Schwabe
- Leicester Institute for Structural and Chemical Biology and Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Neil Brockdorff
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom.
| |
Collapse
|
13
|
Hanigan TW, Danes JM, Taha TY, Frasor J, Petukhov PA. Histone deacetylase inhibitor-based chromatin precipitation for identification of targeted genomic loci. J Biol Methods 2018; 5. [PMID: 29682593 PMCID: PMC5909381 DOI: 10.14440/jbm.2018.216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Histone deacetylase (HDAC) catalyzes the removal of acetyl marks from histones, effectively regulating gene expression. Genome wide chromatin immunoprecipitation (ChIP) studies have shown HDACs are present on numerous active and repressed genes. However, HDAC inhibitors (HDACi) only regulate a small subset of this population in a cell type dependent fashion. To determine genomic locations directly targeted by HDACi, we developed a chromatin precipitation method using a photoreactive HDAC inhibitor probe (photomate). We validate this method by analyzing several canonical HDACi regulated genes, CDKN1A and FOSL1, and compare it to traditional ChIP using HDAC1 antibodies. We show that HDACi target HDACs bound at the promoter regions but not gene bodies, differing from HDAC1 antibody-based ChIP in the case of CDKN1A. This approach is anticipated to be useful for genome wide studies to identify the subset of genes directly regulated by an HDACi in a given cell type.
Collapse
Affiliation(s)
- Thomas W Hanigan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois, 833 South Wood Street, Chicago, IL 60612, USA
| | - Jeanne M Danes
- Department of Physiology and Biophysics, College of Medicine, University of Illinois, 835 S. Wolcott Street, Chicago, IL 60612, USA
| | - Taha Y Taha
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois, 833 South Wood Street, Chicago, IL 60612, USA
| | - Jonna Frasor
- Department of Physiology and Biophysics, College of Medicine, University of Illinois, 835 S. Wolcott Street, Chicago, IL 60612, USA
| | - Pavel A Petukhov
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois, 833 South Wood Street, Chicago, IL 60612, USA
| |
Collapse
|
14
|
Pan P, W Skaer C, Wang HT, Oshima K, Huang YW, Yu J, Zhang J, M Yearsley M, A Agle K, R Drobyski W, Chen X, Wang LS. Loss of free fatty acid receptor 2 enhances colonic adenoma development and reduces the chemopreventive effects of black raspberries in ApcMin/+ mice. Carcinogenesis 2016; 38:86-93. [PMID: 27866157 DOI: 10.1093/carcin/bgw122] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/09/2016] [Accepted: 11/16/2016] [Indexed: 12/17/2022] Open
Abstract
We previously showed that black raspberries (BRBs) have beneficial effects in human colorectal cancer and a mouse model of colorectal cancer (ApcMin/+). The current study investigated the role of free fatty acid receptor 2 (FFAR2) in colon carcinogenesis and whether the FFAR2 signaling pathway contributes to BRB-mediated chemoprevention in mice. FFAR2 (also named GPR43) is a member of the G-protein-coupled receptor family that is expressed in leukocytes and colon. ApcMin/+ and ApcMin/+-FFAR2-/- mice were given a control diet or the control diet supplemented with 5% BRBs for 8 weeks. FFAR2 deficiency promoted colonic polyp development, with 100% incidence and increased polyp number and size. The ApcMin/+ mice developed colonic tubular adenoma, whereas the ApcMin/+-FFAR2-/- mice developed colonic tubular adenoma with high-grade dysplasia. FFAR2 deficiency also enhanced the cAMP-PKA-CREB-HDAC pathway, downstream of FFAR2 signaling, and increased activation of the Wnt pathway, and raised the percentage of GR-1+ neutrophils in colonic lamina propria (LP) and increased infiltration of GR-1+ neutrophils into colonic polyps. BRBs suppressed colonic polyp development and inhibited the cAMP-PKA-CREB-HDAC and Wnt pathways in the ApcMin/+ mice but not the ApcMin/+-FFAR2-/- mice. They also increased the percentage of GR-1+ neutrophils and cytokine secretion in colonic LP and decreased the infiltration of GR-1+ neutrophils and IL-1β expression in colon polyps of ApcMin/+ mice but not ApcMin/+-FFAR2-/- mice. These results suggest that loss of FFAR2 drives colon tumorigenesis and that BRBs require functional FFAR2 to be chemopreventive. BRBs have the potential to modulate the host immune system, thereby enhancing the antitumor immune microenvironment.
Collapse
Affiliation(s)
- Pan Pan
- Division of Hematology and Oncology, Department of Medicine
| | | | | | | | - Yi-Wen Huang
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jianhua Yu
- Division of Hematology, Department of Internal Medicine, College of Medicine
| | | | - Martha M Yearsley
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | | | | | | | | |
Collapse
|
15
|
Luo H, Shenoy A, Li X, Jin Y, Jin L, Cai Q, Tang M, Liu Y, Chen H, Reisman D, Wu L, Seto E, Qiu Y, Dou Y, Casero R, Lu J. MOF Acetylates the Histone Demethylase LSD1 to Suppress Epithelial-to-Mesenchymal Transition. Cell Rep 2016; 15:2665-78. [DOI: 10.1016/j.celrep.2016.05.050] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 03/22/2016] [Accepted: 05/12/2016] [Indexed: 12/22/2022] Open
|
16
|
Lillico R, Stesco N, Khorshid Amhad T, Cortes C, Namaka MP, Lakowski TM. Inhibitors of enzymes catalyzing modifications to histone lysine residues: structure, function and activity. Future Med Chem 2016; 8:879-97. [PMID: 27173004 DOI: 10.4155/fmc-2016-0021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Gene expression is partly controlled by epigenetic mechanisms including histone-modifying enzymes. Some diseases are caused by changes in gene expression that can be mitigated by inhibiting histone-modifying enzymes. This review covers the enzyme inhibitors targeting histone lysine modifications. We summarize the enzymatic mechanisms of histone lysine acetylation, deacetylation, methylation and demethylation and discuss the biochemical roles of these modifications in gene expression and in disease. We discuss inhibitors of lysine acetylation, deacetylation, methylation and demethylation defining their structure-activity relationships and their potential mechanisms. We show that there are potentially indiscriminant off-target effects on gene expression even with the use of selective epigenetic enzyme inhibitors.
Collapse
Affiliation(s)
- Ryan Lillico
- Faculty of Health Sciences, College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
- Pharmaceutical Analysis Laboratory, College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nicholas Stesco
- Faculty of Health Sciences, College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
- Pharmaceutical Analysis Laboratory, College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Tina Khorshid Amhad
- Faculty of Health Sciences, College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
- Joint Laboratory of Biological Psychiatry Between Shantou University Medical College and College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Rehabilitation Medicine, Health Sciences Centre (HSC), Winnipeg, MB, Canada
| | - Claudia Cortes
- Joint Laboratory of Biological Psychiatry Between Shantou University Medical College and College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Rehabilitation Medicine, Health Sciences Centre (HSC), Winnipeg, MB, Canada
| | - Mike P Namaka
- Faculty of Health Sciences, College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
- Joint Laboratory of Biological Psychiatry Between Shantou University Medical College and College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Rehabilitation Medicine, Health Sciences Centre (HSC), Winnipeg, MB, Canada
| | - Ted M Lakowski
- Faculty of Health Sciences, College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
- Pharmaceutical Analysis Laboratory, College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
17
|
Nakayama T, Mikoshiba K, Akagawa K. The cell- and tissue-specific transcription mechanism of the TATA-less syntaxin 1A gene. FASEB J 2015; 30:525-43. [PMID: 26391271 DOI: 10.1096/fj.15-275529] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 08/31/2015] [Indexed: 11/11/2022]
Abstract
Syntaxin 1A (Stx1a) plays an important role in regulation of neuronal synaptic function. To clarify the mechanism of basic transcriptional regulation and neuron-specific transcription of Stx1a we cloned the Stx1a gene from rat, in which knowledge of the expression profile was accumulated, and elucidated that Stx1a consisting of 10 exons, possesses multiple transcription initiation sites and a 204-bp core promoter region (CPR) essential for transcription in PC12 cells. The TATA-less, conserved, GC-rich CPR has 2 specific protein (SP) sites that bind SP1 and are responsible for 65% of promoter activity. The endogenous CPR, including 23 CpG sites, is not methylated in PC12 cells, which express Stx1a and fetal rat skin keratinocyte (FRSK) cells, which do not, although an exogenous methylated CPR suppresses reporter activity in both lines. Trichostatin A (TSA) and class I histone deacetylase (HDAC) inhibitors, but not 5-azacytidine, induce Stx1a in FRSK cells. Acetylated histone H3 only associates to the CPR in FRSK cells after TSA addition, whereas the high acetylated histone H3-CPR association in PC12 cells was unchanged following treatment. HDAC inhibitor induction of Stx1a was negated by mithramycin A and deletion/mutation of 2 SP sites. HDAC1, HDAC2, and HDAC8 detach from the CPR when treated with TSA in FRSK cells and are associated with the CPR in lungs, and acetylated histone H3 associates to this region in the brain. In the first study characterizing a syntaxin promoter, we show that association of SP1 and acetylated histone H3 to CPR is important for Stx1a transcription and that HDAC1, HDAC2, and HDAC8 decide cell/tissue specificity in a suppressive manner.
Collapse
Affiliation(s)
- Takahiro Nakayama
- *Department of Physiology, Kyorin University School of Medicine, Tokyo, Japan; and RIKEN Brain Science Institute, Neuro-Developmental Disorder Research Group, Laboratory for Developmental Neurobiology, Saitama, Japan
| | - Katsuhiko Mikoshiba
- *Department of Physiology, Kyorin University School of Medicine, Tokyo, Japan; and RIKEN Brain Science Institute, Neuro-Developmental Disorder Research Group, Laboratory for Developmental Neurobiology, Saitama, Japan
| | - Kimio Akagawa
- *Department of Physiology, Kyorin University School of Medicine, Tokyo, Japan; and RIKEN Brain Science Institute, Neuro-Developmental Disorder Research Group, Laboratory for Developmental Neurobiology, Saitama, Japan
| |
Collapse
|
18
|
Han L, Pandian GN, Chandran A, Sato S, Taniguchi J, Kashiwazaki G, Sawatani Y, Hashiya K, Bando T, Xu Y, Qian X, Sugiyama H. A Synthetic DNA-Binding Domain Guides Distinct Chromatin-Modifying Small Molecules to Activate an Identical Gene Network. Angew Chem Int Ed Engl 2015; 54:8700-3. [PMID: 26094767 DOI: 10.1002/anie.201503607] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Indexed: 12/20/2022]
Abstract
Synthetic dual-function ligands targeting specific DNA sequences and histone-modifying enzymes were applied to achieve regulatory control over multi-gene networks in living cells. Unlike the broad array of targeting small molecules for histone deacetylases (HDACs), few modulators are known for histone acetyltransferases (HATs), which play a central role in transcriptional control. As a novel chemical approach to induce selective HAT-regulated genes, we conjugated a DNA-binding domain (DBD) "I" to N-(4-chloro-3-trifluoromethyl-phenyl)-2-ethoxy-benzamide (CTB), an artificial HAT activator. In vitro enzyme activity assays and microarray studies were used to demonstrate that distinct functional small molecules could be transformed to have identical bioactivity when conjugated with a targeting DBD. This proof-of-concept synthetic strategy validates the switchable functions of HDACs and HATs in gene regulation and provides a molecular basis for developing versatile bioactive ligands.
Collapse
Affiliation(s)
- Le Han
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan).,Shanghai Key Laboratory of Chemical Biology, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237 (China)
| | - Ganesh N Pandian
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Yoshida-Ushinomiyacho, Sakyo-ku, Kyoto 606-8501 (Japan)
| | - Anandhakumar Chandran
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan)
| | - Shinsuke Sato
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Yoshida-Ushinomiyacho, Sakyo-ku, Kyoto 606-8501 (Japan)
| | - Junichi Taniguchi
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan)
| | - Gengo Kashiwazaki
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan)
| | - Yoshito Sawatani
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan)
| | - Kaori Hashiya
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan)
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan)
| | - Yufang Xu
- Shanghai Key Laboratory of Chemical Biology, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237 (China)
| | - Xuhong Qian
- Shanghai Key Laboratory of Chemical Biology, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237 (China)
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan). .,Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Yoshida-Ushinomiyacho, Sakyo-ku, Kyoto 606-8501 (Japan).
| |
Collapse
|
19
|
Han L, Pandian GN, Chandran A, Sato S, Taniguchi J, Kashiwazaki G, Sawatani Y, Hashiya K, Bando T, Xu Y, Qian X, Sugiyama H. A Synthetic DNA-Binding Domain Guides Distinct Chromatin-Modifying Small Molecules to Activate an Identical Gene Network. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201503607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|