1
|
Mari-Ribeiro IP, Scorsim B, Ranucci L, Borin-Carvalho LA, Oliveira AVD, Portela-Castro ALDB. Integrating Genetic and Cytogenetic Data: A Diversity Study of Astyanax and Psalidodon (Characidae) Species from the Paraná River Basin. Zebrafish 2024; 21:300-309. [PMID: 38813664 DOI: 10.1089/zeb.2024.0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024] Open
Abstract
Astyanax is one of the most specious fish groups in the Neotropical region, with many cryptic species, which represents a challenge for correct identification through traditional taxonomic methods. Psalidodon is a recently resurrected genus group of species previously belonging to Astyanax, specifically those with extensive chromosomal variation of the A. scabripinnis and fasciatus complexes. In the present study, the mitochondrial genes cytochrome c oxidase subunit 1 (COI), mitochondrial ATP synthase 6 and 8 (ATPase 6/8), and NADH dehydrogenase subunit 2 (ND2) were used in conjunction with chromosomal data to characterize molecularly and cytogenetically populations of Astyanax and Psalidodon from rivers and streams of the Ivaí River Basin (Paraná Basin). The results demonstrated the effectiveness of the integrative use of molecular and cytogenetic techniques, with the confirmation of at least three species for the sampled sites: A. lacustris, P. paranae, and P. fasciatus, which showed inter- and intrapopulation karyotype variations. In addition, extensive haplotypic variation can be observed for these species within the Ivaí River Basin and throughout the Paraná River Basin. The data demonstrate a hidden diversity among the species analyzed, enrich the ichthyofaunistic knowledge of small rivers and streams, and contribute to future conservation projects in these areas.
Collapse
Affiliation(s)
- Isabelle Pereira Mari-Ribeiro
- Departamento de Biotecnologia, Genética e Biologia Celular (DBC), Universidade Estadual de Maringá (UEM), Maringá, Brazil
| | - Bárbara Scorsim
- Programa de Pós-graduação em Ecologia de Ambientes Aquáticos Continentais (PEA), Centro de Ciências Biológicas, Universidade Estadual de Maringá (UEM), Maringá, Brazil
| | - Leandro Ranucci
- Departamento de Biotecnologia, Genética e Biologia Celular (DBC), Universidade Estadual de Maringá (UEM), Maringá, Brazil
| | - Luciana Andréia Borin-Carvalho
- Departamento de Biotecnologia, Genética e Biologia Celular (DBC), Universidade Estadual de Maringá (UEM), Maringá, Brazil
| | - Alessandra Valéria de Oliveira
- Departamento de Biotecnologia, Genética e Biologia Celular (DBC), Universidade Estadual de Maringá (UEM), Maringá, Brazil
- Programa de Pós-graduação em Ecologia de Ambientes Aquáticos Continentais (PEA), Centro de Ciências Biológicas, Universidade Estadual de Maringá (UEM), Maringá, Brazil
- Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura-Nupélia, Centro de Ciências Biológicas, Universidade Estadual de Maringá (UEM), Maringá, Brazil
| | - Ana Luiza de Brito Portela-Castro
- Departamento de Biotecnologia, Genética e Biologia Celular (DBC), Universidade Estadual de Maringá (UEM), Maringá, Brazil
- Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura-Nupélia, Centro de Ciências Biológicas, Universidade Estadual de Maringá (UEM), Maringá, Brazil
| |
Collapse
|
2
|
Oliveira JIN, Cabral-de-Mello DC, Valente GT, Martins C. Transcribing the enigma: the B chromosome as a territory of uncharted RNAs. Genetics 2024; 227:iyae026. [PMID: 38513121 DOI: 10.1093/genetics/iyae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/10/2024] [Indexed: 03/23/2024] Open
Abstract
B chromosomes are supernumerary elements found in several groups of eukaryotes, including fungi, plants, and animals. Typically, these chromosomes either originate from their hosts through errors in meiosis or interspecifically through horizontal transfer. While many B chromosomes are primarily heterochromatic and possess a low number of coding genes, these additional elements are still capable of transcribing sequences and exerting influence on the expression of host genes. How B chromosomes escape elimination and which impacts can be promoted in the cell always intrigued the cytogeneticists. In pursuit of understanding the behavior and functional impacts of these extra elements, cytogenetic studies meet the advances of molecular biology, incorporating various techniques into investigating B chromosomes from a functional perspective. In this review, we present a timeline of studies investigating B chromosomes and RNAs, highlighting the advances and key findings throughout their history. Additionally, we identified which RNA classes are reported in the B chromosomes and emphasized the necessity for further investigation into new perspectives on the B chromosome functions. In this context, we present a phylogenetic tree that illustrates which branches either report B chromosome presence or have functional RNA studies related to B chromosomes. We propose investigating other unexplored RNA classes and conducting functional analysis in conjunction with cytogenetic studies to enhance our understanding of the B chromosome from an RNA perspective.
Collapse
Affiliation(s)
| | - Diogo C Cabral-de-Mello
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Rio Claro 13506-900, Brazil
| | - Guilherme T Valente
- Applied Biotechnology Laboratory, Clinical Hospital of Botucatu Medical School, Botucatu 18618-687, Brazil
| | - Cesar Martins
- Department of Structural and Functional Biology, Institute of Biosciences at Botucatu, São Paulo State University (UNESP), Botucatu 18618-689, Brazil
| |
Collapse
|
3
|
Nagao K, Tanaka Y, Kajitani R, Toyoda A, Itoh T, Kubota S, Goto Y. Bioinformatic and fine-scale chromosomal mapping reveal the nature and evolution of eliminated chromosomes in the Japanese hagfish, Eptatretus burgeri, through analysis of repetitive DNA families. PLoS One 2023; 18:e0286941. [PMID: 37639389 PMCID: PMC10461843 DOI: 10.1371/journal.pone.0286941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
In the Japanese hagfish, Eptatretus burgeri, approximately 21% of the genomic DNA in germ cells (2n = 52) consists of 16 chromosomes (eliminated [E]-chromosomes) that are eliminated from presumptive somatic cells (2n = 36). To uncover the eliminated genome (E-genome), we have identified 16 eliminated repetitive DNA families from eight hagfish species, with 11 of these repeats being selectively amplified in the germline genome of E. burgeri. Furthermore, we have demonstrated that six of these sequences, namely EEEb1-6, are exclusively localized on all 16 E-chromosomes. This has led to the hypothesis that the eight pairs of E-chromosomes are derived from one pair of ancestral chromosomes via multiple duplication events over a prolonged evolutionary period. NGS analysis has recently facilitated the re-assembly of two distinct draft genomes of E. burgeri, derived from the testis and liver. This advancement allows for the prediction of not only nonrepetitive eliminated sequences but also over 100 repetitive and eliminated sequences, accomplished through K-mer-based analysis. In this study, we report four novel eliminated repetitive DNA sequences (designated as EEEb7-10) and confirm the relative chromosomal localization of all eliminated repeats (EEEb1-10) by fluorescence in situ hybridization (FISH). With the exception of EEEb10, all sequences were exclusively detected on EEEb1-positive chromosomes. Surprisingly, EEEb10 was detected as an intense signal on EEEb1-positive chromosomes and as a scattered signal on other chromosomes in germ cells. The study further divided the eight pairs of E-chromosomes into six groups based on the signal distribution of each DNA family, and fiber-FISH experiments showed that the EEEb2-10 family was dispersed in the EEEb1-positive extended chromatin fiber. These findings provide new insights into the mechanisms underlying chromosome elimination and the evolution of E-chromosomes, supporting our previous hypothesis.
Collapse
Affiliation(s)
- Kohei Nagao
- Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| | - Yoshiki Tanaka
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Rei Kajitani
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, Japan
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Takehiko Itoh
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Souichirou Kubota
- Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| | - Yuji Goto
- Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| |
Collapse
|
4
|
Dalíková M, Provazníková I, Provazník J, Grof-Tisza P, Pepi A, Nguyen P. The Role of Repetitive Sequences in Repatterning of Major Ribosomal DNA Clusters in Lepidoptera. Genome Biol Evol 2023; 15:evad090. [PMID: 37226278 PMCID: PMC10257491 DOI: 10.1093/gbe/evad090] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023] Open
Abstract
Genes for major ribosomal RNAs (rDNA) are present in multiple copies mainly organized in tandem arrays. The number and position of rDNA loci can change dynamically and their repatterning is presumably driven by other repetitive sequences. We explored a peculiar rDNA organization in several representatives of Lepidoptera with either extremely large or numerous rDNA clusters. We combined molecular cytogenetics with analyses of second- and third-generation sequencing data to show that rDNA spreads as a transcription unit and reveal association between rDNA and various repeats. Furthermore, we performed comparative long read analyses among the species with derived rDNA distribution and moths with a single rDNA locus, which is considered ancestral. Our results suggest that satellite arrays, rather than mobile elements, facilitate homology-mediated spread of rDNA via either integration of extrachromosomal rDNA circles or ectopic recombination. The latter arguably better explains preferential spread of rDNA into terminal regions of lepidopteran chromosomes as efficiency of ectopic recombination depends on the proximity of homologous sequences to telomeres.
Collapse
Affiliation(s)
- Martina Dalíková
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Entomology, Biology Centre CAS, České Budějovice, Czech Republic
| | - Irena Provazníková
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Entomology, Biology Centre CAS, České Budějovice, Czech Republic
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jan Provazník
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Patrick Grof-Tisza
- Institute of Biology, Laboratory of Evolutionary Entomology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Adam Pepi
- Department of Biology, Tufts University
| | - Petr Nguyen
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Entomology, Biology Centre CAS, České Budějovice, Czech Republic
| |
Collapse
|
5
|
Rajpal VR, Sharma S, Sehgal D, Sharma P, Wadhwa N, Dhakate P, Chandra A, Thakur RK, Deb S, Rama Rao S, Mir BA, Raina SN. Comprehending the dynamism of B chromosomes in their journey towards becoming unselfish. Front Cell Dev Biol 2023; 10:1072716. [PMID: 36684438 PMCID: PMC9846793 DOI: 10.3389/fcell.2022.1072716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Investigated for more than a century now, B chromosomes (Bs) research has come a long way from Bs being considered parasitic or neutral to becoming unselfish and bringing benefits to their hosts. B chromosomes exist as accessory chromosomes along with the standard A chromosomes (As) across eukaryotic taxa. Represented singly or in multiple copies, B chromosomes are largely heterochromatic but also contain euchromatic and organellar segments. Although B chromosomes are derived entities, they follow their species-specific evolutionary pattern. B chromosomes fail to pair with the standard chromosomes during meiosis and vary in their number, size, composition and structure across taxa and ensure their successful transmission through non-mendelian mechanisms like mitotic, pre-meiotic, meiotic or post-meiotic drives, unique non-disjunction, self-pairing or even imparting benefits to the host when they lack drive. B chromosomes have been associated with cellular processes like sex determination, pathogenicity, resistance to pathogens, phenotypic effects, and differential gene expression. With the advancements in B-omics research, novel insights have been gleaned on their functions, some of which have been associated with the regulation of gene expression of A chromosomes through increased expression of miRNAs or differential expression of transposable elements located on them. The next-generation sequencing and emerging technologies will further likely unravel the cellular, molecular and functional behaviour of these enigmatic entities. Amidst the extensive fluidity shown by B chromosomes in their structural and functional attributes, we perceive that the existence and survival of B chromosomes in the populations most likely seem to be a trade-off between the drive efficiency and adaptive significance versus their adverse effects on reproduction.
Collapse
Affiliation(s)
- Vijay Rani Rajpal
- Department of Botany, Hansraj College, University of Delhi, Delhi, India,*Correspondence: Vijay Rani Rajpal, , ; Soom Nath Raina,
| | - Suman Sharma
- Department of Botany, Ramjas College, University of Delhi, Delhi, India
| | - Deepmala Sehgal
- Syngenta, International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Prashansa Sharma
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | - Nikita Wadhwa
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | | | - Atika Chandra
- Department of Botany, Maitreyi College, University of Delhi, New Delhi, India
| | - Rakesh Kr. Thakur
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Sohini Deb
- Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong, Meghalaya, India
| | - Satyawada Rama Rao
- Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong, Meghalaya, India
| | - Bilal Ahmad Mir
- Department of Botany, University of Kashmir, Srinagar, India
| | - Soom Nath Raina
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India,*Correspondence: Vijay Rani Rajpal, , ; Soom Nath Raina,
| |
Collapse
|
6
|
Silva DMZA, Castro JP, Goes CAG, Utsunomia R, Vidal MR, Nascimento CN, Lasmar LF, Paim FG, Soares LB, Oliveira C, Porto-Foresti F, Artoni RF, Foresti F. B Chromosomes in Psalidodon scabripinnis (Characiformes, Characidae) Species Complex. Animals (Basel) 2022; 12:2174. [PMID: 36077895 PMCID: PMC9454733 DOI: 10.3390/ani12172174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
B chromosomes are extra-genomic components of cells found in individuals and in populations of some eukaryotic organisms. They have been described since the first observations of chromosomes, but several aspects of their biology remain enigmatic. Despite being present in hundreds of fungi, plants, and animal species, only a small number of B chromosomes have been investigated through high-throughput analyses, revealing the remarkable mechanisms employed by these elements to ensure their maintenance. Populations of the Psalidodon scabripinnis species complex exhibit great B chromosome diversity, making them a useful material for various analyses. In recent years, important aspects of their biology have been revealed. Here, we review these studies presenting a comprehensive view of the B chromosomes in the P. scabripinnis complex and a new hypothesis regarding the role of the B chromosome in the speciation process.
Collapse
Affiliation(s)
- Duílio M. Z. A. Silva
- Laboratory of Biology and Genetics of Fishes, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu 18618-970, SP, Brazil
| | - Jonathan P. Castro
- Post-Graduate Program in Evolutionary Genetics and Molecular Biology, Department of Genetics and Evolution, Federal University of Sao Carlos, Sao Carlos 13565-905, SP, Brazil
- Laboratory of Evolutionary Genetics, Department of Structural, Molecular and Genetic Biology, State University of Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil
| | - Caio A. G. Goes
- Laboratory of Fish Genetics, Department of Biological Sciences, Faculty of Sciences, São Paulo State University, Bauru 17033-360, SP, Brazil
| | - Ricardo Utsunomia
- Laboratory of Fish Genetics, Department of Biological Sciences, Faculty of Sciences, São Paulo State University, Bauru 17033-360, SP, Brazil
- Laboratory of Fish Genetics, Department of Genetics, Institute of Biological Sciences and Health, Federal Rural University of Rio de Janeiro, Seropedica 23890-000, RJ, Brazil
| | - Mateus R. Vidal
- Laboratory of Biology and Genetics of Fishes, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu 18618-970, SP, Brazil
| | - Cristiano N. Nascimento
- Laboratory of Biology and Genetics of Fishes, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu 18618-970, SP, Brazil
| | - Lucas F. Lasmar
- Laboratory of Biology and Genetics of Fishes, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu 18618-970, SP, Brazil
| | - Fabilene G. Paim
- Laboratory of Biology and Genetics of Fishes, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu 18618-970, SP, Brazil
| | - Letícia B. Soares
- Laboratory of Biology and Genetics of Fishes, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu 18618-970, SP, Brazil
| | - Claudio Oliveira
- Laboratory of Biology and Genetics of Fishes, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu 18618-970, SP, Brazil
| | - Fábio Porto-Foresti
- Laboratory of Fish Genetics, Department of Biological Sciences, Faculty of Sciences, São Paulo State University, Bauru 17033-360, SP, Brazil
| | - Roberto F. Artoni
- Post-Graduate Program in Evolutionary Genetics and Molecular Biology, Department of Genetics and Evolution, Federal University of Sao Carlos, Sao Carlos 13565-905, SP, Brazil
- Laboratory of Evolutionary Genetics, Department of Structural, Molecular and Genetic Biology, State University of Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil
| | - Fausto Foresti
- Laboratory of Biology and Genetics of Fishes, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu 18618-970, SP, Brazil
| |
Collapse
|
7
|
Goes CAG, dos Santos RZ, Aguiar WRC, Alves DCV, Silva DMZDA, Foresti F, Oliveira C, Utsunomia R, Porto-Foresti F. Revealing the Satellite DNA History in Psalidodon and Astyanax Characid Fish by Comparative Satellitomics. Front Genet 2022; 13:884072. [PMID: 35801083 PMCID: PMC9253505 DOI: 10.3389/fgene.2022.884072] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/31/2022] [Indexed: 12/02/2022] Open
Abstract
Eukaryotic genomes are usually enriched in repetitive DNA sequences, which can be classified as dispersed or tandemly repeated elements. Satellite DNAs are noncoding monomeric sequences organized in a head-to-tail fashion that are generally located on the subtelomeric and/or pericentromeric heterochromatin. In general, a single species incorporates a diverse group of satellite DNA families, which collection is called satellitome. Here, we characterized three new satellitomes from distinct characid fish (Psalidodon fasciatus, P. bockmanni, and Astyanax lacustris) using a combination of genomic, cytogenetic, and bioinformatic protocols. We also compared our data with the available satellitome of P. paranae. We described 57 satellite DNA (satDNA) families of P. fasciatus (80 variants), 50 of P. bockmanni (77 variants), and 33 of A. lacustris (54 variants). Our analyses demonstrated that several sequences were shared among the analyzed species, while some were restricted to two or three species. In total, we isolated 104 distinctive satDNA families present in the four species, of which 10 were shared among all four. Chromosome mapping revealed that the clustered satDNA was mainly located in the subtelomeric and pericentromeric areas. Although all Psalidodon species demonstrated the same pattern of clusterization of satDNA, the number of clusters per genome was variable, indicating a high dynamism of these sequences. In addition, our results expand the knowledge of the As51 satellite DNA family, revealing that P. bockmanni and P. paranae exhibited an abundant variant of 39 bp, while P. fasciatus showed a variant of 43 bp. The majority of satDNAs in the satellitomes analyzed here presented a common library repetitive sequence in Psalidodon and Astyanax, with abundance variations in each species, as expected for closely related groups. In addition, we concluded that the most abundant satDNA in Psalidodon (As51) passed through a diversification process in this group, resulting in new variants exclusive of Psalidodon.
Collapse
Affiliation(s)
- Caio Augusto Gomes Goes
- Laboratório de Genética de Peixes, Faculdade Estadual Paulista “Júlio de Mesquita Filho”, Departamento de Ciências Biológicas, Faculdade de Ciências, Bauru, Brazil
| | - Rodrigo Zeni dos Santos
- Laboratório de Genética de Peixes, Faculdade Estadual Paulista “Júlio de Mesquita Filho”, Departamento de Ciências Biológicas, Faculdade de Ciências, Bauru, Brazil
| | - Weidy Rozendo Clemente Aguiar
- Laboratório de Genética de Peixes, Faculdade Estadual Paulista “Júlio de Mesquita Filho”, Departamento de Ciências Biológicas, Faculdade de Ciências, Bauru, Brazil
| | - Dálete Cássia Vieira Alves
- Instituto de Ciências Biológicas e da Saude, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | | | - Fausto Foresti
- Laboratório de Biologia e Genética de Peixes, Faculdade Estadual Paulista “Júlio de Mesquita Filho”, Instituto de Biociências, Botucatu, Brazil
| | - Claudio Oliveira
- Laboratório de Biologia e Genética de Peixes, Faculdade Estadual Paulista “Júlio de Mesquita Filho”, Instituto de Biociências, Botucatu, Brazil
| | - Ricardo Utsunomia
- Instituto de Ciências Biológicas e da Saude, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | - Fabio Porto-Foresti
- Laboratório de Genética de Peixes, Faculdade Estadual Paulista “Júlio de Mesquita Filho”, Departamento de Ciências Biológicas, Faculdade de Ciências, Bauru, Brazil
- *Correspondence: Fabio Porto-Foresti,
| |
Collapse
|
8
|
Goes CAG, Silva DMZDA, Utsunomia R, Nascimento NFD, Yasui GS, Senhorini JA, Hashimoto DT, Artoni RF, Foresti F, Porto-Foresti F. Sex-Dependent Inheritance of B Chromosomes in Psalidodon paranae (Teleostei, Characiformes) Revealed by Directed Crossings. Zebrafish 2021; 18:363-368. [PMID: 34935496 DOI: 10.1089/zeb.2021.0053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
B chromosomes are additional dispensable elements to the standard chromosomal set of an organism. In most cases, their transmission differs from Mendelian patterns, leading to their accumulation or extinction. The present study aimed to describe, for the first time, the transmission pattern of B chromosome in a population of Psalidodon paranae through directed crosses, as well as to analyze the populational dynamics of B chromosome. Our results revealed the possible elimination of B chromosome in crossings where only females were B-carriers, with a mean transmission rate (kB) of 0.149; however, kB was significantly higher in crossings involving male B-carriers (kB = 0.328-0.450). Moreover, we observed an increase in the frequency of B chromosomes in the natural population of P. paranae in the last two decades. These apparently contradictory results can make sense if the B chromosome provides adaptive advantages to their carriers. Here, we observed a differential transmission of B chromosomes in each sex of parental individuals, with higher transmission rates in crossing involving males B-carriers, in addition to describe the temporal changes of B chromosome frequency in P. paranae.
Collapse
Affiliation(s)
- Caio Augusto Gomes Goes
- Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade Estadual Paulista (UNESP) "Júlio de Mesquita Filho," Bauru, Brazil
| | | | - Ricardo Utsunomia
- Departamento de Genética, Instituto de Ciências Biológicas e da Saúde, ICBS, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | | | - George Shigueki Yasui
- Centro nacional de Pesquisa e Conservação da Biota Aquática Continental (CEPTA-ICMBIO), Pirassununga, Brazil
| | - José Augusto Senhorini
- Centro nacional de Pesquisa e Conservação da Biota Aquática Continental (CEPTA-ICMBIO), Pirassununga, Brazil
| | - Diogo Teruo Hashimoto
- Centro de Aquicultura da UNESP, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Jaboticabal, Brazil
| | - Roberto Ferreira Artoni
- Departamento de Biologia Estrutural, Molecular e Genética, Setor de Ciências Biológicas e da Saúde, Universidade Estadual de Ponta Grossa, Ponta Grossa, Brazil
| | - Fausto Foresti
- Departamento de Biologia Estrutural e Funcional, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Botucatu, Brazil
| | - Fábio Porto-Foresti
- Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade Estadual Paulista (UNESP) "Júlio de Mesquita Filho," Bauru, Brazil
| |
Collapse
|
9
|
Milani D, Ruiz-Ruano FJ, Camacho JPM, Cabral-de-Mello DC. Out of patterns, the euchromatic B chromosome of the grasshopper Abracris flavolineata is not enriched in high-copy repeats. Heredity (Edinb) 2021; 127:475-483. [PMID: 34482369 PMCID: PMC8551250 DOI: 10.1038/s41437-021-00470-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023] Open
Abstract
In addition to the normal set of standard (A) chromosomes, some eukaryote species harbor supernumerary (B) chromosomes. In most cases, B chromosomes show differential condensation with respect to A chromosomes and display dark C-bands of heterochromatin, and some of them are highly enriched in repetitive DNA. Here we perform a comprehensive NGS (next-generation sequencing) analysis of the repeatome in the grasshopper Abracris flavolineata aimed at uncovering the molecular composition and origin of its B chromosome. Our results have revealed that this B chromosome shows a DNA repeat content highly similar to the DNA repeat content observed for euchromatic (non-C-banded) regions of A chromosomes. Moreover, this B chromosome shows little enrichment for high-copy repeats, with only a few elements showing overabundance in B-carrying individuals compared to the 0B individuals. Consequently, the few satellite DNAs (satDNAs) mapping on the B chromosome were mostly restricted to its centromeric and telomeric regions, and they displayed much smaller bands than those observed on the A chromosomes. Our data support the intraspecific origin of the B chromosome from the longest autosome by misdivision, isochromosome formation, and additional restructuring, with accumulation of specific repeats in one or both B chromosome arms, yielding a submetacentric B. Finally, the absence of B-specific satDNAs, which are frequent in other species, along with its euchromatic nature, suggest that this B chromosome arose recently and might still be starting a heterochromatinization process. On this basis, it could be a good model to investigate the initial steps of B chromosome evolution.
Collapse
Affiliation(s)
- Diogo Milani
- Departamento de Biologia Geral e Aplicada, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Rio Claro, São Paulo, Brazil
| | - Francisco J Ruiz-Ruano
- Evolutionary Biology Centre, Department of Organismal Biology - Systematic Biology, Uppsala University, Uppsala, Sweden
- Norwich Research Park, School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Juan Pedro M Camacho
- Departamento de Genética, Facultad de Ciencias, UGR - Univ de Granada, Granada, Spain
| | - Diogo C Cabral-de-Mello
- Departamento de Biologia Geral e Aplicada, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Rio Claro, São Paulo, Brazil.
| |
Collapse
|
10
|
Silva DMZDA, Araya-Jaime C, Yamashita M, Vidal MR, Oliveira C, Porto-Foresti F, Artoni RF, Foresti F. Meiotic self-pairing of the Psalidodon (Characiformes, Characidae) iso-B chromosome: A successful perpetuation mechanism. Genet Mol Biol 2021; 44:e20210084. [PMID: 34617950 PMCID: PMC8495774 DOI: 10.1590/1678-4685-gmb-2021-0084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 08/14/2021] [Indexed: 11/22/2022] Open
Abstract
B chromosomes are non-essential additional genomic elements present in several animal and plant species. In fishes, species of the genus Psalidodon (Characiformes, Characidae) harbor great karyotype diversity, and multiple populations carry different types of non-essential B chromosomes. This study analyzed how the dispensable supernumerary B chromosome of Psalidodon paranae behaves during meiosis to overcome checkpoints and express its own meiosis-specific genes. We visualized the synaptonemal complexes of P. paranae individuals with zero, one, or two B chromosomes using immunodetection with anti-medaka SYCP3 antibody and fluorescence in situ hybridization with a (CA)15 microsatellite probe. Our results showed that B chromosomes self-pair in cells containing only one B chromosome. In cells with two identical B chromosomes, these elements remain as separate synaptonemal complexes or close self-paired elements in the nucleus territory. Overall, we reveal that B chromosomes can escape meiotic silencing of unsynapsed chromatin through a self-pairing process, allowing expression of their own genes to facilitate regular meiosis resulting in fertile individuals. This behavior, also seen in other congeneric species, might be related to their maintenance throughout the evolutionary history of Psalidodon.
Collapse
Affiliation(s)
| | - Cristian Araya-Jaime
- Universidad de La Serena, Instituto de Investigación
Multidisciplinar en Ciencia y Tecnología, La Serena, Chile
- Universidad de La Serena, Departamento de Biología, Laboratorio de
Genética y Citogenética Vegetal, La Serena, Chile
| | - Masakane Yamashita
- Hokkaido University, Faculty of Science, Department of Biological
Sciences, Laboratory of Reproductive & Developmental Biology, Sapporo,
Japan
| | - Mateus Rossetto Vidal
- Universidade Estadual Paulista (UNESP), Instituto de Biociências de
Botucatu, Departamento de Biologia Estrutural e Funcional, Botucatu, SP,
Brazil
| | - Claudio Oliveira
- Universidade Estadual Paulista (UNESP), Instituto de Biociências de
Botucatu, Departamento de Biologia Estrutural e Funcional, Botucatu, SP,
Brazil
| | - Fábio Porto-Foresti
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências,
Departamento de Ciências Biológicas, Bauru, SP, Brazil
| | - Roberto Ferreira Artoni
- Universidade Federal de São Carlos (UFSCAR), Departamento de
Genética e Evolução, São Carlos, SP, Brazil
- Universidade Estadual de Ponta Grossa (UEPG), Departamento de
Biologia Estrutural, Molecular e Genética, Ponta Grossa, PR, Brazil
| | - Fausto Foresti
- Universidade Estadual Paulista (UNESP), Instituto de Biociências de
Botucatu, Departamento de Biologia Estrutural e Funcional, Botucatu, SP,
Brazil
| |
Collapse
|
11
|
Dos Santos LP, Francisco CM, Campos Júnior EO, Castro JP, Utsunomia R, Morelli S, Porto-Foresti F, Foresti F, Artoni RF. Chromosomal Instability and Origin of B Chromosomes in the Amazonian Glass Tetra Moenkhausia oligolepis (Günther, 1864) (Characiformes, Characidae). Cytogenet Genome Res 2021; 161:249-256. [PMID: 34433167 DOI: 10.1159/000517091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/28/2021] [Indexed: 11/19/2022] Open
Abstract
B chromosomes occur in different species of the small characid fishes of the genus Moenkhausia. These supernumerary elements, that do not recombine with chromosomes of the standard A complement and follow their own evolutionary mechanism vary in number, morphology, and distribution. Here, we show karyotypic data of individuals of 2 populations of Moenkhausia oligolepis of the Brazilian Amazon (Pedro Correia and Taboquinha streams, Tocantins river basin), both with a diploid number of 50 chromosomes and karyotypic formula of 10m + 32sm + 8a. In addition to the normal complement, we also observed the occurrence of B chromosomes in the 2 populations with intra- and interindividual variation ranging from 0 to 10 Bs, independent of sex. The C-banding pattern evidenced heterochromatic blocks located mainly in the pericentromeric region of the chromosomes, while the B chromosomes appeared euchromatic. Silver-stained nucleolus organizer regions were identified in multiples sites, and some of these blocks were positive when stained with chromomycin A3. The karyotype analysis and the application of whole-chromosome painting in populations of M. oligolepis reinforce the conservation of the basal diploid number for the genus, as well as the evolutionary tendency in these fishes to carry B chromosomes. Both populations turned out to be in different stages of stability and expansion of their B chromosomes. We further suggest that the origin of these chromosomes is due to the formation of isochromosomes. Here, we identified a pair of complement A chromosomes involved in this process.
Collapse
Affiliation(s)
| | - Carine M Francisco
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Brazil
| | - Edimar O Campos Júnior
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Brazil
| | - Jonathan P Castro
- Post-Graduate Program in Evolutionary Biology, Department of Structural, Molecular and Genetic Biology, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Ricardo Utsunomia
- Department of Genetics, Institute of Biological and Health Sciences, ICBS, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - Sandra Morelli
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Brazil
| | - Fábio Porto-Foresti
- Department of Biological Sciences, Faculty of Sciences, Paulista State University (UNESP), Bauru, Brazil
| | - Fausto Foresti
- Department of Structural and Functional Biology, Botucatu Biosciences Institute, Paulista State University (UNESP), Botucatu, Brazil
| | - Roberto F Artoni
- Post-Graduate Program in Evolutionary Biology, Department of Structural, Molecular and Genetic Biology, State University of Ponta Grossa, Ponta Grossa, Brazil
| |
Collapse
|
12
|
Karamysheva T, Romanenko S, Makunin A, Rajičić M, Bogdanov A, Trifonov V, Blagojević J, Vujošević M, Orishchenko K, Rubtsov N. New Data on Organization and Spatial Localization of B-Chromosomes in Cell Nuclei of the Yellow-Necked Mouse Apodemus flavicollis. Cells 2021; 10:cells10071819. [PMID: 34359988 PMCID: PMC8305704 DOI: 10.3390/cells10071819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 11/17/2022] Open
Abstract
The gene composition, function and evolution of B-chromosomes (Bs) have been actively discussed in recent years. However, the additional genomic elements are still enigmatic. One of Bs mysteries is their spatial organization in the interphase nucleus. It is known that heterochromatic compartments are not randomly localized in a nucleus. The purpose of this work was to study the organization and three-dimensional spatial arrangement of Bs in the interphase nucleus. Using microdissection of Bs and autosome centromeric heterochromatic regions of the yellow-necked mouse (Apodemus flavicollis) we obtained DNA probes for further two-dimensional (2D)- and three-dimensional (3D)- fluorescence in situ hybridization (FISH) studies. Simultaneous in situ hybridization of obtained here B-specific DNA probes and autosomal C-positive pericentromeric region-specific probes further corroborated the previously stated hypothesis about the pseudoautosomal origin of the additional chromosomes of this species. Analysis of the spatial organization of the Bs demonstrated the peripheral location of B-specific chromatin within the interphase nucleus and feasible contact with the nuclear envelope (similarly to pericentromeric regions of autosomes and sex chromosomes). It is assumed that such interaction is essential for the regulation of nuclear architecture. It also points out that Bs may follow the same mechanism as sex chromosomes to avoid a meiotic checkpoint.
Collapse
Affiliation(s)
- Tatyana Karamysheva
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.O.); (N.R.)
- Correspondence: ; Tel.: +7-(383)-363-4963 (ext. 1332)
| | - Svetlana Romanenko
- Institute of Molecular and Cellular Biology, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (S.R.); (V.T.)
| | | | - Marija Rajičić
- Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, 11060 Belgrade, Serbia; (M.R.); (J.B.); (M.V.)
| | - Alexey Bogdanov
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Vladimir Trifonov
- Institute of Molecular and Cellular Biology, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (S.R.); (V.T.)
- Department of Genetic Technologies, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Jelena Blagojević
- Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, 11060 Belgrade, Serbia; (M.R.); (J.B.); (M.V.)
| | - Mladen Vujošević
- Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, 11060 Belgrade, Serbia; (M.R.); (J.B.); (M.V.)
| | - Konstantin Orishchenko
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.O.); (N.R.)
- Department of Genetic Technologies, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Nikolay Rubtsov
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.O.); (N.R.)
- Department of Genetic Technologies, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
13
|
The B Chromosomes of Prochilodus lineatus (Teleostei, Characiformes) Are Highly Enriched in Satellite DNAs. Cells 2021; 10:cells10061527. [PMID: 34204462 PMCID: PMC8235050 DOI: 10.3390/cells10061527] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 12/18/2022] Open
Abstract
B or supernumerary chromosomes are dispensable elements that are widely present in numerous eukaryotes. Due to their non-recombining nature, there is an evident tendency for repetitive DNA accumulation in these elements. Thus, satellite DNA plays an important role in the evolution and diversification of B chromosomes and can provide clues regarding their origin. The characiform Prochilodus lineatus was one of the first discovered fish species bearing B chromosomes, with all populations analyzed so far showing one to nine micro-B chromosomes and exhibiting at least three morphological variants (Ba, Bsm, and Bm). To date, a single satellite DNA is known to be located on the B chromosomes of this species, but no information regarding the differentiation of the proposed B-types is available. Here, we characterized the satellitome of P. lineatus and mapped 35 satellite DNAs against the chromosomes of P. lineatus, of which six were equally located on all B-types and this indicates a similar genomic content. In addition, we describe, for the first time, an entire population without B chromosomes.
Collapse
|
14
|
Goes CAG, Silva DMZDA, Utsunomia R, Yasui GS, Artoni RF, Foresti F, Porto-Foresti F. Establishment of rapid and non-invasive protocols to identify B-carrying individuals of Psalidodon paranae. Genet Mol Biol 2021; 44:e20200003. [PMID: 33769429 PMCID: PMC7995683 DOI: 10.1590/1678-4685-gmb-2020-0003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 02/12/2021] [Indexed: 11/23/2022] Open
Abstract
Supernumerary, or B, chromosomes are present in several eukaryotes, including characid fish of the genus Psalidodon. Notably, Psalidodon paranae carries the most studied B chromosome variant, a macro-B chromosome. The origin of this element was determined to be an isochromosome; however, data regarding its inheritance remain unavailable due to methodological barriers such as the lack of an efficient, non-invasive, and rapid protocol for identifying B-carrying individuals that would enable the design of efficient crossing experiments. Thus, in this study, we primarily aimed was to develop two non-invasive and fast (approximately 2 h) methods to identify the presence of B chromosomes in live specimens of P. paranae based on satellite DNA (satDNA) sequences known to be present in this element. The methods include fluorescence in situ hybridization in interphase nuclei and relative gene quantification of satDNAs using quantitative polymerase chain reaction. Our results reveal the efficiency of quick-fluorescence in situ hybridization and quantitative polymerase chain reaction for identifying B-carrying individuals using the proposed satDNA sequences and open up new possibilities to study B chromosomes.
Collapse
Affiliation(s)
- Caio Augusto Gomes Goes
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Faculdade de Ciências, Bauru, SP, Brazil
| | | | - Ricardo Utsunomia
- Universidade Federal Rural do Rio de Janeiro, Instituto de Ciências Biológicas e da Saúde, ICBS, Seropédica, RJ, Brazil
| | - George Shigueki Yasui
- Centro nacional de Pesquisa e Conservação da Biota Aquática Continental (CEPTA-ICMBIO), Pirassununga, SP, Brazil
| | - Roberto Ferreira Artoni
- Universidade Estadual de Ponta Grossa, Setor de Ciências Biológicas e da Saúde, Ponta Grossa, PR, Brazil
| | - Fausto Foresti
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Instituto de Biociências, Botucatu, SP, Brazil
| | - Fábio Porto-Foresti
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Faculdade de Ciências, Bauru, SP, Brazil
| |
Collapse
|
15
|
Silva DMZDA, Ruiz-Ruano FJ, Utsunomia R, Martín-Peciña M, Castro JP, Freire PP, Carvalho RF, Hashimoto DT, Suh A, Oliveira C, Porto-Foresti F, Artoni RF, Foresti F, Camacho JPM. Long-term persistence of supernumerary B chromosomes in multiple species of Astyanax fish. BMC Biol 2021; 19:52. [PMID: 33740955 PMCID: PMC7976721 DOI: 10.1186/s12915-021-00991-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/24/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Eukaryote genomes frequently harbor supernumerary B chromosomes in addition to the "standard" A chromosome set. B chromosomes are thought to arise as byproducts of genome rearrangements and have mostly been considered intraspecific oddities. However, their evolutionary transcendence beyond species level has remained untested. RESULTS Here we reveal that the large metacentric B chromosomes reported in several fish species of the genus Astyanax arose in a common ancestor at least 4 million years ago. We generated transcriptomes of A. scabripinnis and A. paranae 0B and 1B individuals and used these assemblies as a reference for mapping all gDNA and RNA libraries to quantify coverage differences between B-lacking and B-carrying genomes. We show that the B chromosomes of A. scabripinnis and A. paranae share 19 protein-coding genes, of which 14 and 11 were also present in the B chromosomes of A. bockmanni and A. fasciatus, respectively. Our search for B-specific single-nucleotide polymorphisms (SNPs) identified the presence of B-derived transcripts in B-carrying ovaries, 80% of which belonged to nobox, a gene involved in oogenesis regulation. Importantly, the B chromosome nobox paralog is expressed > 30× more than the A chromosome paralog. This indicates that the normal regulation of this gene is altered in B-carrying females, which could potentially facilitate B inheritance at higher rates than Mendelian law prediction. CONCLUSIONS Taken together, our results demonstrate the long-term survival of B chromosomes despite their lack of regular pairing and segregation during meiosis and that they can endure episodes of population divergence leading to species formation.
Collapse
Affiliation(s)
- Duílio Mazzoni Zerbinato de Andrade Silva
- Departamento de Biologia Estrutural e Funcional, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, UNESP, Distrito de Rubião Junior, Botucatu, SP, 18618-970, Brazil
| | - Francisco J Ruiz-Ruano
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36, Uppsala, Sweden.
- Departamento de Genética, Universidad de Granada, 18071, Granada, Spain.
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TU, UK.
| | - Ricardo Utsunomia
- Departamento de Genética, Instituto de Ciências Biológicas e da Saúde, ICBS, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 23897-000, Brazil
- Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade Estadual Paulista, UNESP, Campus de Bauru, Bauru, SP, 17033-360, Brazil
| | | | - Jonathan Pena Castro
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, UFSCAR, São Carlos, SP, 13565-905, Brazil
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, UEPG, Ponta Grossa, PR, 84030-900, Brazil
| | - Paula Paccielli Freire
- Departamento de Biologia Estrutural e Funcional, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, UNESP, Distrito de Rubião Junior, Botucatu, SP, 18618-970, Brazil
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, USP, São Paulo, SP, 05508-900, Brazil
| | - Robson Francisco Carvalho
- Departamento de Biologia Estrutural e Funcional, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, UNESP, Distrito de Rubião Junior, Botucatu, SP, 18618-970, Brazil
| | - Diogo T Hashimoto
- Centro de Aquicultura, Universidade Estadual Paulista, UNESP, Campus Jaboticabal, Jaboticabal, SP, 14884-900, Brazil
| | - Alexander Suh
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36, Uppsala, Sweden
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TU, UK
| | - Claudio Oliveira
- Departamento de Biologia Estrutural e Funcional, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, UNESP, Distrito de Rubião Junior, Botucatu, SP, 18618-970, Brazil
| | - Fábio Porto-Foresti
- Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade Estadual Paulista, UNESP, Campus de Bauru, Bauru, SP, 17033-360, Brazil
| | - Roberto Ferreira Artoni
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, UFSCAR, São Carlos, SP, 13565-905, Brazil
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, UEPG, Ponta Grossa, PR, 84030-900, Brazil
| | - Fausto Foresti
- Departamento de Biologia Estrutural e Funcional, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, UNESP, Distrito de Rubião Junior, Botucatu, SP, 18618-970, Brazil
| | | |
Collapse
|
16
|
Felicetti D, Haerter CAG, Baumgärtner L, Paiz LM, Takagui FH, Margarido VP, Blanco DR, Feldberg E, da Silva M, Lui RL. A New Variant B Chromosome in Auchenipteridae: The Role of (GATA)n and (TTAGGG)n Sequences in Understanding the Evolution of Supernumeraries in Trachelyopterus. Cytogenet Genome Res 2021; 161:70-81. [PMID: 33601372 DOI: 10.1159/000513107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/20/2020] [Indexed: 11/19/2022] Open
Abstract
Basic and molecular cytogenetic techniques were carried out in 3 Neotropical region populations of catfishes, two of Trachelyopterus galeatus (one from the marshlands of Paraguay River basin and another from Lago Catalão, Amazon River basin) and one of Trachelyopterus porosus, a sympatric population to T. galeatus from the Amazon River basin. This study aimed to describe and understand the structure and evolution of Trachelyopterus B chromosomes, mainly through physical mapping of repetitive elements. A diploid number of 58 chromosomes was found for all individuals, as well as the presence of B chromosomes. For T. porosus this is the first report of a supernumerary. The sympatric species of T. galeatus and T. porosus from Amazon River had 1-3 B chromosomes and T. galeatus from Paraguay River had 1-2 B chromosomes, all of them showed intra- and interindividual numerical variation. Two females of T. porosus exhibited a new variant B chromosome (B2), previously not seen in Auchenipteridae, which might have originated from B1 chromosomes. All B chromosomes were entirely heterochromatic. In contrast to all complement A and B2 chromosomes, in which the telomeric sequences were found in the telomeric regions, B1 chromosomes of all populations were totally marked by (TTAGGG)n probes. (GATA)n sequence sites were found through all complement A chromosomes, but B1 and B2 chromosomes exhibited only a clustered block in one of the chromosome arms. The most frequent B chromosomes (B1) in all populations/species, including those previously studied in Auchenipteridae catfishes, share the following characteristics: totally heterochromatic, small, metacentric, with accumulation of repetitive (TTAGGG)n sequences, and a low number of (GATA)n copies, which might suggest a common ancient origin in Trachelyopterus species/populations.
Collapse
Affiliation(s)
- Denise Felicetti
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Brazil
| | - Chrystian A G Haerter
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Brazil
| | - Lucas Baumgärtner
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Brazil
| | - Leonardo M Paiz
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Brazil
| | - Fábio H Takagui
- Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Vladimir P Margarido
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Brazil
| | - Daniel R Blanco
- Universidade Tecnológica Federal do Paraná, Santa Helena, Brazil
| | - Eliana Feldberg
- Instituto Nacional de Pesquisas da Amazônia, Coordenação de Biodiversidade, Manaus, Brazil
| | - Maelin da Silva
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Brazil
| | - Roberto L Lui
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Brazil,
| |
Collapse
|
17
|
dos Santos RZ, Calegari RM, Silva DMZDA, Ruiz-Ruano FJ, Melo S, Oliveira C, Foresti F, Uliano-Silva M, Porto-Foresti F, Utsunomia R. A Long-Term Conserved Satellite DNA That Remains Unexpanded in Several Genomes of Characiformes Fish Is Actively Transcribed. Genome Biol Evol 2021; 13:evab002. [PMID: 33502491 PMCID: PMC8210747 DOI: 10.1093/gbe/evab002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2021] [Indexed: 12/12/2022] Open
Abstract
Eukaryotic genomes contain large amounts of repetitive DNA sequences, such as tandemly repeated satellite DNAs (satDNAs). These sequences are highly dynamic and tend to be genus- or species-specific due to their particular evolutionary pathways, although there are few unusual cases of conserved satDNAs over long periods of time. Here, we used multiple approaches to reveal that an satDNA named CharSat01-52 originated in the last common ancestor of Characoidei fish, a superfamily within the Characiformes order, ∼140-78 Ma, whereas its nucleotide composition has remained considerably conserved in several taxa. We show that 14 distantly related species within Characoidei share the presence of this satDNA, which is highly amplified and clustered in subtelomeric regions in a single species (Characidium gomesi), while remained organized as small clusters in all the other species. Defying predictions of the molecular drive of satellite evolution, CharSat01-52 shows similar values of intra- and interspecific divergence. Although we did not provide evidence for a specific functional role of CharSat01-52, its transcriptional activity was demonstrated in different species. In addition, we identified short tandem arrays of CharSat01-52 embedded within single-molecule real-time long reads of Astyanax paranae (536 bp-3.1 kb) and A. mexicanus (501 bp-3.9 kb). Such arrays consisted of head-to-tail repeats and could be found interspersed with other sequences, inverted sequences, or neighbored by other satellites. Our results provide a detailed characterization of an old and conserved satDNA, challenging general predictions of satDNA evolution.
Collapse
Affiliation(s)
- Rodrigo Zeni dos Santos
- Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade
Estadual Paulista, UNESP, Campus de Bauru, Bauru, Sao Paulo, Brazil
| | - Rodrigo Milan Calegari
- Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade
Estadual Paulista, UNESP, Campus de Bauru, Bauru, Sao Paulo, Brazil
| | | | - Francisco J Ruiz-Ruano
- Department of Organismal Biology—Systematic Biology, Evolutionary Biology
Centre, Uppsala University, Uppsala, Sweden
| | - Silvana Melo
- Departamento de Biologia Estrutural e Funcional, Instituto de Biociências de
Botucatu, Universidade Estadual Paulista, UNESP, Botucatu, Sao Paulo,
Brazil
| | - Claudio Oliveira
- Departamento de Biologia Estrutural e Funcional, Instituto de Biociências de
Botucatu, Universidade Estadual Paulista, UNESP, Botucatu, Sao Paulo,
Brazil
| | - Fausto Foresti
- Departamento de Biologia Estrutural e Funcional, Instituto de Biociências de
Botucatu, Universidade Estadual Paulista, UNESP, Botucatu, Sao Paulo,
Brazil
| | | | - Fábio Porto-Foresti
- Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade
Estadual Paulista, UNESP, Campus de Bauru, Bauru, Sao Paulo, Brazil
| | - Ricardo Utsunomia
- Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade
Estadual Paulista, UNESP, Campus de Bauru, Bauru, Sao Paulo, Brazil
- Departamento de Genética, Instituto de Ciências Biológicas e da Saúde, ICBS,
Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janerio,
Brazil
| |
Collapse
|
18
|
Latitudinal Cline in Chromosome Numbers of Ice Cod A. glacialis (Gadidae) from Northeast Greenland. Genes (Basel) 2020; 11:genes11121515. [PMID: 33352937 PMCID: PMC7766978 DOI: 10.3390/genes11121515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 11/17/2022] Open
Abstract
The ice cod Arctogadus glacialis (Peters, 1872) is one of the few fish species endemic to the Arctic. With a circumpolar distribution, the species is confined to the fjords and shelves of the Arctic seas. Biological information on A. glacialis is scarce, with genomic information restricted to microsatellites. Within the frame of the TUNU-Programme: Arctic Ocean Fishes-Diversity, Adaptation and Conservation, we studied A. glacialis at the chromosomal level to explore fish diversity and evolutionary aspects. The analysis of over 50 individuals from the Northeast Greenland fjords between latitudes 71°09' N and 76°42' N revealed a remarkable intraspecific diversity epitomized by chromosome numbers spanning from 28 to 33, the occurrence of putative B chromosomes, and diversified patterns of distribution of heterochromatin and rDNAs. The number of B chromosomes followed a latitudinal gradient from 0-2 in the north to 2-5 in the south. Considering the benthic and rather stationary life history of this species, the observed chromosomal differences might have arisen independently, possibly driven and/or fostered by the dynamics of repetitive sequences, and are being fixed in relatively isolated fjord populations. The resulting latitudinal cline we observe today might have repercussions on the fate of local populations facing the ongoing climate-driven environmental changes.
Collapse
|
19
|
Nascimento CND, Troy WP, Alves JCP, Carvalho ML, Oliveira C, Foresti F. Molecular cytogenetic analyses reveal extensive chromosomal rearrangements and novel B chromosomes in Moenkhausia (Teleostei, Characidae). Genet Mol Biol 2020; 43:e20200027. [PMID: 33156889 PMCID: PMC7649911 DOI: 10.1590/1678-4685-gmb-2020-0027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 09/01/2020] [Indexed: 11/30/2022] Open
Abstract
The cytogenetic characteristics of five fish species of the Moenkhausia are described, based on the analysis of specimens collected in different headwater. All the species analyzed presented 2n=50 chromosomes. The C-banding revealed a similar distribution pattern of heterochromatic blocks in all the species, except Moenkhausia nigromarginata. The 5S rDNA sites were distributed on multiple chromosome pairs in all five species. Single and multiple histone H1 sites were observed in all the species, and histone H1 was shown to be co-located with the 18S rRNA gene in a single chromosome pair. The U2 snDNA gene was distributed at multiple sites in all the Moenkhausia species. The presence of B microchromosomes was confirmed in Moenkhausia forestii, while individuals of the three study populations of Moenkhausia oligolepis presented three morphologically distinct types of B chromosome. The chromosomal mapping of the 18S rDNA sites using the FISH technique revealed signals in the B chromosomes of M. forestii, while clusters of the H1 histone and U2 snDNA genes were found in the B chromosomes of M. forestii and M. oligolepis. The classical and molecular cytogenetic markers used in this study revealed ample variation in the Moenkhausia karyotypes, reflecting the dynamic nature of the chromosomal evolution.
Collapse
Affiliation(s)
- Cristiano Neves do Nascimento
- Universidade Estadual Paulista - UNESP, Instituto de Biociências, Departamento de Biologia Estrutural e Funcional, Botucatu, SP, Brazil
| | - Waldo Pinheiro Troy
- Universidade do Estado de Mato Grosso - UNEMAT, Departamento de Ciências Biológicas, Tangará da Serra, MT, Brazil
| | | | - Margarida Lima Carvalho
- Universidade Federal do Acre - UFAC, Centro de Ciências Biológicas e Naturais, Rio Branco, AC, Brazil
| | - Claudio Oliveira
- Universidade Estadual Paulista - UNESP, Instituto de Biociências, Departamento de Biologia Estrutural e Funcional, Botucatu, SP, Brazil
| | - Fausto Foresti
- Universidade Estadual Paulista - UNESP, Instituto de Biociências, Departamento de Biologia Estrutural e Funcional, Botucatu, SP, Brazil
| |
Collapse
|
20
|
B Chromosomes and Cytogenetic Characteristics of the Common Nase Chondrostoma nasus (Linnaeus, 1758). Genes (Basel) 2020; 11:genes11111317. [PMID: 33172121 PMCID: PMC7694786 DOI: 10.3390/genes11111317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/21/2022] Open
Abstract
Supernumerary B chromosomes (Bs) are very promising structures, among others, in that they are an additional genomic compartment for evolution. In this study, we tested the presence and frequency of B chromosomes and performed the first cytogenetic examination of the common nase (Chondrostoma nasus). We investigated the individuals from two populations in the Vistula River basin, in Poland, according to the chromosomal distribution of the C-bands and silver nucleolar organizer regions (Ag-NORs), using sequential staining with AgNO3 and chromomycin A3 (CMA3). Furthermore, we analyzed the chromosomal localization of two rDNA families (45S and 5S rDNA) using fluorescence in situ hybridization (FISH) with rDNA probes. Chondrostoma nasus individuals showed a standard (A) chromosome set consisting of 2n = 50: 12 metacentric, 32 submetacentric, and 6 acrocentric chromosomes (NF = 94). Fourteen out of the 20 analyzed individuals showed 1–2 mitotically unstable submetacentric B chromosomes of different sizes. Six of them, in 14.1% of the analyzed metaphase plates, had a single, medium-sized submetacentric B (Bsm) chromosome (2n = 51) with a heterochromatic block located in its pericentromeric region. The other seven individuals possessed a Bsm (2n = 51) in 19.4% of the analyzed metaphase plates, and a second Bsm chromosome (2n = 52), the smallest in the set, in 15.5% of metaphase plates, whereas one female was characterized by both Bsm chromosomes (2n = 52) in 14.3% of the analyzed metaphase plates. AgNORs, GC-rich DNA sites, and 28S rDNA hybridization sites were observed in the short arms of two submetacentric chromosome pairs of A set. The constitutive heterochromatin was visible as C bands in the centromeric regions of almost all Chondrostoma nasus chromosomes and in the pericentromeric region of several chromosome pairs. Two 5S rDNA hybridization sites in the pericentromeric position of the largest acrocentric chromosome pair were observed, whereas two other such sites in co-localization on a smaller pair of NOR chromosomes indicate a species-specific character. The results herein broaden our knowledge in the field of B chromosome distribution and molecular cytogenetics of Chondrostoma nasus: a freshwater species from the Leuciscidae family.
Collapse
|
21
|
Shape diversity of the fish genus Astyanax Baird & Girard, 1854 (Teleostei, Characidae) in adjacent basins. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00544-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Schemczssen-Graeff Z, Barbosa P, Castro JP, Silva MD, Almeida MCD, Moreira-Filho O, Artoni RF. Dynamics of Replication and Nuclear Localization of the B Chromosome in Kidney Tissue Cells in Astyanax scabripinnis (Teleostei: Characidae). Zebrafish 2020; 17:147-152. [PMID: 32159463 DOI: 10.1089/zeb.2019.1756] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
B chromosomes are extra genomic compounds found in different taxonomic groups, including plants and animals. Obtaining patterns of resolutive chromosomal bands is necessary to understand the nuclear organization, variability and nature of B chromosome chromatin and possible transcriptional regions. In this study, we analyzed 35 Astyanax scabripinnis specimens sampled from Fazenda Lavrinha, a stream in the Paraíba do Sul river basin, Brazil. Through the incorporation of the thymidine analog 5'-bromo-2'-deoxyuridine (5-BrdU) in vivo, it was possible to recognize the replicating regions of the B chromosome at the beginning of the S phase, differentially characterized in relationship to the regions of late replication. In this perspective, it is possible to suggest that the B chromosome of this species possesses a territory and the chromatin accessible for transcription, especially in the light (i.e., early replicating) bands (p1.1; p1.3; and p2.1 and q1.1, q1.3, q2.1, and q2.2). The late-replicating regions are corresponding to the blocks of constitutive heterochromatin. They show a preferential accumulation of satellite DNA As51. By the use of the fluorochrome chromomycin A3 (CMA3), it was possible to identify GC-rich chromosomal regions, corresponding to late-replicating parts of genome, confirming the revealed data by the replication banding and C-banding. In addition, the analysis by confocal microscopy in kidney cells indicates the location of a peripheral anchorage of this chromosome in the nuclear lamina, reinforcing the idea of downregulation of the associated regions.
Collapse
Affiliation(s)
- Zelinda Schemczssen-Graeff
- Programa de Pós-Graduação em Biologia Evolutiva, Laboratório de Genética Evolutiva, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Patrícia Barbosa
- Programa de Pós-Graduação em Genética Evolutiva e Biologia Molecular, Laboratório de Citogenética de Peixes, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Jonathan Pena Castro
- Programa de Pós-Graduação em Genética Evolutiva e Biologia Molecular, Laboratório de Citogenética de Peixes, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Maelin da Silva
- Programa de Pós-Graduação em Biologia Evolutiva, Laboratório de Genética Evolutiva, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Mara Cristina de Almeida
- Programa de Pós-Graduação em Biologia Evolutiva, Laboratório de Genética Evolutiva, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Orlando Moreira-Filho
- Programa de Pós-Graduação em Biologia Evolutiva, Laboratório de Genética Evolutiva, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brazil.,Programa de Pós-Graduação em Genética Evolutiva e Biologia Molecular, Laboratório de Citogenética de Peixes, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Roberto Ferreira Artoni
- Programa de Pós-Graduação em Biologia Evolutiva, Laboratório de Genética Evolutiva, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brazil.,Programa de Pós-Graduação em Genética Evolutiva e Biologia Molecular, Laboratório de Citogenética de Peixes, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| |
Collapse
|
23
|
Clark FE, Kocher TD. Changing sex for selfish gain: B chromosomes of Lake Malawi cichlid fish. Sci Rep 2019; 9:20213. [PMID: 31882583 PMCID: PMC6934658 DOI: 10.1038/s41598-019-55774-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/02/2019] [Indexed: 01/16/2023] Open
Abstract
B chromosomes are extra, non-essential chromosomes present in addition to the normal complement of A chromosomes. Many species of cichlid fish in Lake Malawi carry a haploid, female-restricted B chromosome. Here we show that this B chromosome exhibits drive, with an average transmission rate of 70%. The offspring of B-transmitting females exhibit a strongly female-biased sex ratio. Genotyping of these offspring reveals the B chromosome carries a female sex determiner that is epistatically dominant to an XY system on linkage group 7. We suggest that this sex determiner evolved to enhance the meiotic drive of the B chromosome. This is some of the first evidence that female meiotic drive can lead to the invasion of new sex chromosomes solely to benefit the driver, and not to compensate for skewed sex ratios.
Collapse
Affiliation(s)
- Frances E Clark
- Department of Biology, University of Maryland College Park, College Park, MD, 20742, USA.
| | - Thomas D Kocher
- Department of Biology, University of Maryland College Park, College Park, MD, 20742, USA
| |
Collapse
|
24
|
Castro JP, Hattori RS, Yoshinaga TT, Silva DMZDA, Ruiz-Ruano FJ, Foresti F, Santos MH, de Almeida MC, Moreira-Filho O, Artoni RF. Differential Expression of Genes Related to Sexual Determination Can Modify the Reproductive Cycle of Astyanax scabripinnis (Characiformes: Characidae) in B Chromosome Carrier Individuals. Genes (Basel) 2019; 10:E909. [PMID: 31717315 PMCID: PMC6896079 DOI: 10.3390/genes10110909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 01/09/2023] Open
Abstract
The species complex Astyanax scabripinnis is one of the most studied with respect to origin, distribution, and frequency of B chromosomes, and is considered a model organism for evolutionary studies. Research using population inferences about the occurrence and frequency of the B chromosome shows seasonal variation between sexes, which is associated with the presence of this supernumerary element. We hypothesized that the B chromosome could influence the sex ratio of these animals. Based on this assumption, the present work aimed to investigate if differences exist among levels of gene expression with qRT-PCR of the amh (associated with testicular differentiation) and foxl2a (associated with ovarian differentiation) genes between B-carrier and non-B-carrier individuals. The results showed that for the amh gene, the difference in expression between animals with B chromosomes was not accentuated compared to that in animals without this chromosome. Expression of foxl2a in B-carrier females, however, was reduced by 73.56% compared to females that lacked the B chromosome. Males had no difference in expression of the amh and foxl2a genes between carriers and non-carriers of the B chromosome. Results indicate that the presence of B chromosomes is correlated with the differential expression of sex-associated genes. An analysis of these results integrated with data from other studies on the reproductive cycle in the same species reveals that this difference in expression may be expanding the reproductive cycle of the species.
Collapse
Affiliation(s)
- Jonathan Pena Castro
- Departamento de Genética e Evolução, Programa de Pós-Graduação em Biologia Evolutiva e Genética Molecular, Universidade Federal de São Carlos, Rodovia Washington Luis, Km 235, Monjolinho, São Carlos, SP 13565-905, Brazil; (O.M.-F.); (R.F.A.)
| | - Ricardo Shohei Hattori
- Estação Experimental de Salmonicultura de Campos do Jordão, UPD-CJ (APTA/SAA), Campos do Jordão, São Paulo, SP 12460-000, Brazil;
| | - Túlio Teruo Yoshinaga
- Faculdade de Medicina Veterinária e Zootecnia da Universidade de São Paulo, Departamento de Cirurgia, Universidade de São Paulo, Butantã, Rua Professor Orlando Marque Paiva, São Paulo, SP 05508-270, Brazil;
| | - Duílio Mazzoni Zerbinato de Andrade Silva
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Distrito de Rubião Junior, s/n, Botucatu, SP 18618-970, Brazil; (D.M.Z.d.A.S.); (F.F.)
| | - Francisco J. Ruiz-Ruano
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, SE-752 36 Uppsala, Sweden;
| | - Fausto Foresti
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Distrito de Rubião Junior, s/n, Botucatu, SP 18618-970, Brazil; (D.M.Z.d.A.S.); (F.F.)
| | - Mateus Henrique Santos
- Departamento de Biologia Estrutural, Molecular e Genética, Programa de Pós-Graduação em Biologia Evolutiva, Universidade Estadual de Ponta Grossa, Avenida Carlos Cavalcanti, 4748, Ponta Grossa, PR 84030-900, Brazil; (M.H.S.); (M.C.d.A.)
| | - Mara Cristina de Almeida
- Departamento de Biologia Estrutural, Molecular e Genética, Programa de Pós-Graduação em Biologia Evolutiva, Universidade Estadual de Ponta Grossa, Avenida Carlos Cavalcanti, 4748, Ponta Grossa, PR 84030-900, Brazil; (M.H.S.); (M.C.d.A.)
| | - Orlando Moreira-Filho
- Departamento de Genética e Evolução, Programa de Pós-Graduação em Biologia Evolutiva e Genética Molecular, Universidade Federal de São Carlos, Rodovia Washington Luis, Km 235, Monjolinho, São Carlos, SP 13565-905, Brazil; (O.M.-F.); (R.F.A.)
| | - Roberto Ferreira Artoni
- Departamento de Genética e Evolução, Programa de Pós-Graduação em Biologia Evolutiva e Genética Molecular, Universidade Federal de São Carlos, Rodovia Washington Luis, Km 235, Monjolinho, São Carlos, SP 13565-905, Brazil; (O.M.-F.); (R.F.A.)
- Departamento de Biologia Estrutural, Molecular e Genética, Programa de Pós-Graduação em Biologia Evolutiva, Universidade Estadual de Ponta Grossa, Avenida Carlos Cavalcanti, 4748, Ponta Grossa, PR 84030-900, Brazil; (M.H.S.); (M.C.d.A.)
| |
Collapse
|
25
|
Serrano-Freitas ÉA, Silva DMZA, Ruiz-Ruano FJ, Utsunomia R, Araya-Jaime C, Oliveira C, Camacho JPM, Foresti F. Satellite DNA content of B chromosomes in the characid fish Characidium gomesi supports their origin from sex chromosomes. Mol Genet Genomics 2019; 295:195-207. [PMID: 31624915 DOI: 10.1007/s00438-019-01615-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 10/01/2019] [Indexed: 12/28/2022]
Abstract
The origin of supernumerary (B) chromosomes is clearly conditioned by their ancestry from the standard (A) chromosomes. Sequence similarity between A and B chromosomes is thus crucial to determine B chromosome origin. For this purpose, we compare here the DNA sequences from A and B chromosomes in the characid fish Characidium gomesi using two main approaches. First, we found 59 satellite DNA (satDNA) families constituting the satellitome of this species and performed FISH analysis for 18 of them. This showed the presence of six satDNAs on the B chromosome: one shared with sex chromosomes and autosomes, two shared with sex chromosomes, one shared with autosomes and two being B-specific. This indicated that B chromosomes most likely arose from the sex chromosomes. Our second approach consisted of the analysis of five repetitive DNA families: 18S and 5S ribosomal DNA (rDNA), the H3 histone gene, U2 snDNA and the most abundant satDNA (CgoSat01-184) on DNA obtained from microdissected B chromosomes and from B-lacking genomes. PCR and sequence analysis of these repetitive sequences was successful for three of them (5S rDNA, H3 histone gene and CgoSat01-184), and sequence comparison revealed that DNA sequences obtained from the B chromosomes displayed higher identity with C. gomesi genomic DNA than with those obtained from other Characidium species. Taken together, our results support the intraspecific origin of B chromosomes in C. gomesi and point to sex chromosomes as B chromosome ancestors, which raises interesting prospects for future joint research on the genetic content of sex and B chromosomes in this species.
Collapse
Affiliation(s)
- Érica A Serrano-Freitas
- Departamento de Morfologia, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, UNESP, Distrito de Rubião Junior, Botucatu, SP, 18618-970, Brazil.,Centro de Ciências Biológicas e da Saúde, Fundação Educacional de Penápolis, Funepe, Penápolis, SP, 16303-180, Brazil
| | - Duílio M Z A Silva
- Departamento de Morfologia, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, UNESP, Distrito de Rubião Junior, Botucatu, SP, 18618-970, Brazil.
| | - Francisco J Ruiz-Ruano
- Departamento de Genética, Universidad de Granada, 18071, Granada, Spain.,Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 75236, Uppsala, Sweden
| | - Ricardo Utsunomia
- Departamento de Genética, Instituto de Ciências Biológicas e da Saúde, ICBS, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 23897-000, Brazil
| | - Cristian Araya-Jaime
- Instituto de Investigación Multidisciplinar en Ciencia y Tecnología, Universidad de La Serena, 1720256, La Serena, Chile.,Laboratorio de Genética y Citogenética Vegetal, Departamento de Biología, Universidad de La Serena, 1720256, La Serena, Chile
| | - Claudio Oliveira
- Departamento de Morfologia, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, UNESP, Distrito de Rubião Junior, Botucatu, SP, 18618-970, Brazil
| | | | - Fausto Foresti
- Departamento de Morfologia, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, UNESP, Distrito de Rubião Junior, Botucatu, SP, 18618-970, Brazil
| |
Collapse
|
26
|
Traldi JB, Ziemniczak K, de Fátima Martinez J, Blanco DR, Lui RL, Schemberger MO, Nogaroto V, Moreira-Filho O, Vicari MR. Chromosome Mapping of H1 and H4 Histones in Parodontidae (Actinopterygii: Characiformes): Dispersed and/or Co-Opted Transposable Elements? Cytogenet Genome Res 2019; 158:106-113. [PMID: 31203273 DOI: 10.1159/000500987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2019] [Indexed: 01/22/2023] Open
Abstract
The karyotypes of the family Parodontidae consist of 2n = 54 chromosomes. The main chromosomal evolutionary changes of its species are attributed to chromosome rearrangements in repetitive DNA regions in their genomes. Physical mapping of the H1 and H4 histones was performed in 7 Parodontidae species to analyze the chromosome rearrangements involved in karyotype diversification in the group. In parallel, the observation of a partial sequence of an endogenous retrovirus (ERV) retrotransposon in the H1 histone sequence was evaluated to verify molecular co-option of the transposable elements (TEs) and to assess paralogous sequence dispersion in the karyotypes. Six of the studied species had an interstitial histone gene cluster in the short arm of the autosomal pair 13. Besides this interstitial cluster, in Apareiodon davisi, a probable further site was detected in the terminal region of the long arm in the same chromosome pair. The H1/H4 clusters in Parodon cf. pongoensis were located in the smallest chromosomes (pair 20). In addition, scattered H1 signals were observed on the chromosomes in all species. The H1 sequence showed an ERV in the open reading frame (ORF), and the scattered H1 signals on the chromosomes were attributed to the ERV's location. The H4 sequence had no similarity to the TEs and displayed no dispersed signals. Furthermore, the degeneration of the inner ERV in the H1 sequence (which overlapped a stretch of the H1 ORF) was discussed regarding the likelihood of molecular co-option of this retroelement in histone gene function in Parodontidae.
Collapse
|
27
|
Rodrigues PHDM, Dos Santos RZ, Silva DMZDA, Goes CAG, Oliveira C, Foresti F, Porto-Foresti F, Utsunomia R. Chromosomal and Genomic Dynamics of Satellite DNAs in Characidae (Characiformes, Teleostei) Species. Zebrafish 2019; 16:408-414. [PMID: 31145041 DOI: 10.1089/zeb.2019.1738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Satellite DNAs (satDNAs) are tandemly repeated DNA sequences with great abundance in eukaryotic genomes. A single species may carry up to hundreds of satDNA families, which is collectively called as "satellitome," each showing its own dynamics and evolution rates. In this context, all live species contain a satDNA library that may be partially or totally shared with other related species/populations. In the late few years, next-generation sequencing (NGS) and novel bioinformatic tools facilitated the massive characterization of these sequences at low costs, and consequently, comparing satDNAs between species. In this study, we characterized two novel satDNAs (MsaSat03-80 and MsaSat04-142) in three characid fish (Astyanax paranae and Astyanax fasciatus and two populations of Moenkhausia sanctaefilomenae) and mapped their chromosomal location to unveil the evolutionary dynamics of satDNA repeats in those species. Our results evidenced that MsaSat03 is present in the genomes of all analyzed species, but is clustered only in the chromosomes of M. sanctaefilomenae, exhibiting a conserved number and location of sites. Conversely, MsaSat04 sequences is restricted to M. sanctaefilomenae and shows a differential distribution between the two analyzed populations. Altogether, our analyses point to a complex history of satDNA families in characid fish and the utility of NGS data for comparative satDNA analysis.
Collapse
Affiliation(s)
| | - Rodrigo Zeni Dos Santos
- 1Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade Estadual Paulista-UNESP, Bauru, Brazil
| | | | - Caio Augusto Gomes Goes
- 1Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade Estadual Paulista-UNESP, Bauru, Brazil
| | - Claudio Oliveira
- 2Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista-UNESP, Botucatu, Brazil
| | - Fausto Foresti
- 2Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista-UNESP, Botucatu, Brazil
| | - Fábio Porto-Foresti
- 1Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade Estadual Paulista-UNESP, Bauru, Brazil
| | - Ricardo Utsunomia
- 1Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade Estadual Paulista-UNESP, Bauru, Brazil.,2Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista-UNESP, Botucatu, Brazil
| |
Collapse
|
28
|
Jehangir M, Ahmad SF, Cardoso AL, Ramos E, Valente GT, Martins C. De novo genome assembly of the cichlid fish Astatotilapia latifasciata reveals a higher level of genomic polymorphism and genes related to B chromosomes. Chromosoma 2019; 128:81-96. [PMID: 31115663 DOI: 10.1007/s00412-019-00707-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/27/2019] [Accepted: 05/07/2019] [Indexed: 12/15/2022]
Abstract
Supernumerary B chromosomes (Bs) are accessory elements to the regular chromosome set (As) and have been observed in a huge diversity of eukaryotic species. Although extensively investigated, the biological significance of Bs remains enigmatic. Here, we present de novo genome assemblies for the cichlid fish Astatotilapia latifasciata, a well-known model to study Bs. High coverage data with Illumina sequencing was obtained for males and females with 0B (B-), 1B, and 2B (B+) chromosomes to provide information regarding the diversity among these genomes. The draft assemblies comprised 771 Mb for the B- genome and 781 Mb for the B+ genome. Comparative analysis of the B+ and B- assemblies reveals syntenic discontinuity, duplicated blocks and several insertions, deletions, and inversions indicative of rearrangements in the B+ genome. Hundreds of transposable elements and 1546 protein coding sequences were annotated in the duplicated B+ regions. Our work contributes a list of thousands of genes harbored on the B chromosome, with functions in several biological processes, including the cell cycle.
Collapse
Affiliation(s)
- Maryam Jehangir
- Department of Morphology, Institute of Bioscience at Botucatu, São Paulo State University - UNESP, Botucatu, SP, 18618-689, Brazil
| | - Syed F Ahmad
- Department of Morphology, Institute of Bioscience at Botucatu, São Paulo State University - UNESP, Botucatu, SP, 18618-689, Brazil
| | - Adauto L Cardoso
- Department of Morphology, Institute of Bioscience at Botucatu, São Paulo State University - UNESP, Botucatu, SP, 18618-689, Brazil
| | - Erica Ramos
- Department of Morphology, Institute of Bioscience at Botucatu, São Paulo State University - UNESP, Botucatu, SP, 18618-689, Brazil
| | - Guilherme T Valente
- Bioprocess and Biotechnology Department, Agronomical Science Faculty, Sao Paulo State University - UNESP, Botucatu, SP, Brazil
| | - Cesar Martins
- Department of Morphology, Institute of Bioscience at Botucatu, São Paulo State University - UNESP, Botucatu, SP, 18618-689, Brazil.
| |
Collapse
|
29
|
Favarato RM, Braga Ribeiro L, Ota RP, Nakayama CM, Feldberg E. Cytogenetic Characterization of Two Metynnis Species (Characiformes, Serrasalmidae) Reveals B Chromosomes Restricted to the Females. Cytogenet Genome Res 2019; 158:38-45. [PMID: 31079097 DOI: 10.1159/000499954] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2018] [Indexed: 07/27/2024] Open
Abstract
Karyotypes and chromosomal characteristics with focus on B chromosomes of 2 species of the serrasalmid genus Metynnis, namely M. lippincottianus and M. maculatus, were examined using conventional (C-banding) and molecular (FISH mapping of minor and major rDNAs and Rex1, Rex3, and Rex6 retrotransposable elements) protocols. Both species possessed a diploid chromosome number of 2n = 62 and karyotypes composed of 32 metacentric + 28 submetacentric + 2 subtelocentric and 32 metacentric + 26 submetacentric + 4 subtelocentric, respectively; one small B element was found in the female genome of M. lippincottianus. C-banding revealed heterochromatin in the pericentromeric and terminal portions of all chromosomes of both species; the B chromosome was entirely heterochromatic. FISH showed 18S rDNA sites in 2 chromosome pairs in both species (pairs 19 and 22), and a large block in the B chromosome, while 5S rDNA signals were detected in the first pair of subtelocentric chromosomes in both species, moreover in M. maculatus an additional labeled pair 4 was observed. Mapping of the Rex1, Rex3, and Rex6 retrotransposable elements in the genomes of M. lippincottianus and M. maculatus indicated that they were dispersed throughout nearly all the chromosomes of the complement, except for the B chromosome of M. lippincottianus.
Collapse
|
30
|
Dhar MK, Kour J, Kaul S. Origin, Behaviour, and Transmission of B Chromosome with Special Reference to Plantago lagopus. Genes (Basel) 2019; 10:E152. [PMID: 30781667 PMCID: PMC6410184 DOI: 10.3390/genes10020152] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 11/30/2022] Open
Abstract
B chromosomes have been reported in many eukaryotic organisms. These chromosomes occur in addition to the standard complement of a species. Bs do not pair with any of the A chromosomes and they have generally been considered to be non-essential and genetically inert. However, due to tremendous advancements in the technologies, the molecular composition of B chromosomes has been determined. The sequencing data has revealed that B chromosomes have originated from A chromosomes and they are rich in repetitive elements. In our laboratory, a novel B chromosome was discovered in Plantago lagopus. Using molecular cytogenetic techniques, the B chromosome was found to be composed of ribosomal DNA sequences. However, further characterization of the chromosome using next generation sequencing (NGS) etc. revealed that the B chromosome is a mosaic of sequences derived from A chromosomes, 5S ribosomal DNA (rDNA), 45S rDNA, and various types of repetitive elements. The transmission of B chromosome through the female sex track did not follow the Mendelian principles. The chromosome was found to have drive due to which it was perpetuating in populations. The present paper attempts to summarize the information on nature, transmission, and origin of B chromosomes, particularly the current status of our knowledge in P. lagopus.
Collapse
Affiliation(s)
- Manoj K Dhar
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu-180006, India.
| | - Jasmeet Kour
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu-180006, India.
| | - Sanjana Kaul
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu-180006, India.
| |
Collapse
|
31
|
Ahmad SF, Martins C. The Modern View of B Chromosomes Under the Impact of High Scale Omics Analyses. Cells 2019; 8:E156. [PMID: 30781835 PMCID: PMC6406668 DOI: 10.3390/cells8020156] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/10/2019] [Accepted: 02/12/2019] [Indexed: 12/11/2022] Open
Abstract
Supernumerary B chromosomes (Bs) are extra karyotype units in addition to A chromosomes, and are found in some fungi and thousands of animals and plant species. Bs are uniquely characterized due to their non-Mendelian inheritance, and represent one of the best examples of genomic conflict. Over the last decades, their genetic composition, function and evolution have remained an unresolved query, although a few successful attempts have been made to address these phenomena. A classical concept based on cytogenetics and genetics is that Bs are selfish and abundant with DNA repeats and transposons, and in most cases, they do not carry any function. However, recently, the modern quantum development of high scale multi-omics techniques has shifted B research towards a new-born field that we call "B-omics". We review the recent literature and add novel perspectives to the B research, discussing the role of new technologies to understand the mechanistic perspectives of the molecular evolution and function of Bs. The modern view states that B chromosomes are enriched with genes for many significant biological functions, including but not limited to the interesting set of genes related to cell cycle and chromosome structure. Furthermore, the presence of B chromosomes could favor genomic rearrangements and influence the nuclear environment affecting the function of other chromatin regions. We hypothesize that B chromosomes might play a key function in driving their transmission and maintenance inside the cell, as well as offer an extra genomic compartment for evolution.
Collapse
Affiliation(s)
- Syed Farhan Ahmad
- Department of Morphology, Institute of Biosciences at Botucatu, Sao Paulo State University (UNESP), CEP 18618689, Botucatu, SP, Brazil.
| | - Cesar Martins
- Department of Morphology, Institute of Biosciences at Botucatu, Sao Paulo State University (UNESP), CEP 18618689, Botucatu, SP, Brazil.
| |
Collapse
|
32
|
Cunha MS, Fregonezi AR, Fava L, Hilsdorf AWS, Campos LAO, Dergam JA. Phylogeography and Historical Biogeography of the Astyanax bimaculatus Species Complex (Teleostei: Characidae) in Coastal Southeastern South America. Zebrafish 2019; 16:115-127. [DOI: 10.1089/zeb.2018.1668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Marina S. Cunha
- Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, Brazil
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Aline R. Fregonezi
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Lucioni Fava
- Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | - Lucio A. O. Campos
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Jorge A. Dergam
- Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
33
|
Castro JP, Hattori RS, Yoshinaga TT, Silva DMZDA, Foresti F, Santos MH, Almeida MC, Artoni RF. Differential Expression of dmrt1 in Astyanax scabripinnis (Teleostei, Characidade) Is Correlated with B Chromosome Occurrence. Zebrafish 2018; 16:182-188. [PMID: 30562152 DOI: 10.1089/zeb.2018.1650] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Astyanax is an abundant fish genus in South America. Some species of this group are characterized by the presence of B chromosomes and absence of morphologically differentiated sex chromosomes. In this study, we used quantitative real-time polymerase chain reaction to characterize mRNA expression of dmrt1 in Astyanax scabripinnis gonads. Maturing gonads of males with the B chromosome overexpressed dmrt1. Our findings suggest that B chromosomes may have an adaptive role in A. scabripinnis sex determination and maintenance.
Collapse
Affiliation(s)
- Jonathan Pena Castro
- 1 Departamento de Genética e Evolução, Programa de Pós-Graduação em Biologia Evolutiva e Genética Molecular, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Ricardo Shohei Hattori
- 2 Estação Experimental de Salmonicultura de Campos do Jordão, UPD-CJ (APTA/SAA), São Paulo, Brazil
| | - Túlio Teruo Yoshinaga
- 3 Faculdade de Medicina Veterinária e Zootecnia da Universidade de São Paulo, Departamento de Cirurgia, Universidade de São Paulo, Butantã, São Paulo, Brazil
| | | | - Fausto Foresti
- 4 Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, Brazil
| | - Mateus Henrique Santos
- 5 Departamento de Biologia Estrutural, Molecular e Genética, Programa de Pós-Graduação em Biologia Evolutiva, Universidade Estadual de Ponta Grossa, Ponta Grossa, Brazil
| | - Mara Cristina Almeida
- 5 Departamento de Biologia Estrutural, Molecular e Genética, Programa de Pós-Graduação em Biologia Evolutiva, Universidade Estadual de Ponta Grossa, Ponta Grossa, Brazil
| | - Roberto Ferreira Artoni
- 1 Departamento de Genética e Evolução, Programa de Pós-Graduação em Biologia Evolutiva e Genética Molecular, Universidade Federal de São Carlos, São Carlos, Brazil.,5 Departamento de Biologia Estrutural, Molecular e Genética, Programa de Pós-Graduação em Biologia Evolutiva, Universidade Estadual de Ponta Grossa, Ponta Grossa, Brazil
| |
Collapse
|
34
|
Piscor D, Pozzobon APB, Fernandes CA, Centofante L, Parise-Maltempi PP. Molecular Clock as Insight to Estimate the Evolutionary History and Times of Divergence for 10 Nominal Astyanax Species (Characiformes, Characidae): An Evolutionary Approach in Species with 2n = 36, 46, 48, and 50 Chromosomes. Zebrafish 2018; 16:98-105. [PMID: 30358520 DOI: 10.1089/zeb.2018.1647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Astyanax is a genus with a wide distribution ranging from the south United States to north of Patagonia (Argentina). The available cytogenetic data on Astyanax indicate a high karyotypic diversity, with diploid number of 36-52 chromosomes, presence of B chromosomes, heterochromatin polymorphism, and variations with respect to the number and localization of nucleolar organizer regions (NORs) and 18S and 5S ribosomal DNA sites. In the present study, we estimated the evolutionary history and times of divergence for 10 nominal Astyanax species from the South and Central/North American (Cna) continents, which present distinct chromosomal characteristics, based on molecular clocks inferred from mitochondrial DNA sequence. The molecular clock results indicate the origin of three distinct clades (Humeral dark spot [Hds]; Diffuse humeral spot [Dhs]; Cna group) during the late Miocene about 11.2 million years ago (Mya). Thus, Astyanax mexicanus (Cna) represent a species that diverged a long time ago (∼8.6 Mya) from the Hds group, and Astyanax schubarti is the oldest species (∼6.5 Mya) among the Dhs species.
Collapse
Affiliation(s)
- Diovani Piscor
- 1 Laboratório de Citogenética, Departamento de Biologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Rio Claro, Brazil.,2 Universidade Estadual de Mato Grosso do Sul (UEMS), Unidade de Mundo Novo, Mundo Novo, Brazil
| | - Allan Pierre Bonetti Pozzobon
- 3 Universidade Federal do Rio de Janeiro (UFRJ), Núcleo em Ecologia e Desenvolvimento Socioambiental de Macaé (NUPEM/UFRJ), Macaé, Brazil
| | | | - Liano Centofante
- 4 Laboratório de Genética Animal, Departamento de Biologia e Zoologia, Instituto de Biociências, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil
| | - Patricia Pasquali Parise-Maltempi
- 1 Laboratório de Citogenética, Departamento de Biologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Rio Claro, Brazil
| |
Collapse
|
35
|
Marques A, Klemme S, Houben A. Evolution of Plant B Chromosome Enriched Sequences. Genes (Basel) 2018; 9:genes9100515. [PMID: 30360448 PMCID: PMC6210368 DOI: 10.3390/genes9100515] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/13/2018] [Accepted: 10/18/2018] [Indexed: 01/10/2023] Open
Abstract
B chromosomes are supernumerary chromosomes found in addition to the normal standard chromosomes (A chromosomes). B chromosomes are well known to accumulate several distinct types of repeated DNA elements. Although the evolution of B chromosomes has been the subject of numerous studies, the mechanisms of accumulation and evolution of repetitive sequences are not fully understood. Recently, new genomic approaches have shed light on the origin and accumulation of different classes of repetitive sequences in the process of B chromosome formation and evolution. Here we discuss the impact of repetitive sequences accumulation on the evolution of plant B chromosomes.
Collapse
Affiliation(s)
- André Marques
- Laboratory of Genetic Resources, Federal University of Alagoas, Av. Manoel Severino Barbosa, 57309-005 Arapiraca-AL, Brazil.
| | - Sonja Klemme
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, CZ-37005 České Budějovice, Czech Republic.
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany.
| |
Collapse
|
36
|
Usso MC, Santos ARD, Gouveia JG, Frantine-Silva W, Araya-Jaime C, Oliveira MLMD, Foresti F, Giuliano-Caetano L, Dias AL. Genetic and Chromosomal Differentiation of Rhamdia quelen (Siluriformes, Heptapteridae) Revealed by Repetitive Molecular Markers and DNA Barcoding. Zebrafish 2018; 16:87-97. [PMID: 30227086 DOI: 10.1089/zeb.2018.1576] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Rhamdia quelen, a species of Heptapteridae, is considered to be a complex because of taxonomic and phylogenetic inconsistencies. Determining the physical location of repetitive DNA sequences on the chromosomes and the DNA barcode might increase our understanding of these inconsistencies within different groups of fish. To this end, we analyzed R. quelen populations from two river basins in Brazil, Paraguay and Parana, using DNA barcoding and different chromosomal markers, including U2 snDNA, which has never been analyzed for any Rhamdia species. Cytochrome c oxidase I gene sequence analysis revealed a significant differentiation among populations from the Miranda and Quexada rivers, with genetic distances compatible to those found among different species in neotropical fishes. Our results, in general, revealed a conservative chromosomal evolution in R. quelen and a differential distribution of some markers, such as 5S rDNA and U2 snDNA, in different populations. We suggest that R. quelen must undergo a major revision in its morphological, genetic, and cytogenetic molecular and taxonomic structure to elucidate possible operational taxonomic units.
Collapse
Affiliation(s)
- Mariana Campaner Usso
- 1 Departamento de Biologia Geral, Centro de Ciências Biológicas (CCB), Universidade Estadual de Londrina, Londrina, Brazil
| | - Angélica Rossotti Dos Santos
- 1 Departamento de Biologia Geral, Centro de Ciências Biológicas (CCB), Universidade Estadual de Londrina, Londrina, Brazil
| | - Juceli Gonzalez Gouveia
- 1 Departamento de Biologia Geral, Centro de Ciências Biológicas (CCB), Universidade Estadual de Londrina, Londrina, Brazil
| | - Wilson Frantine-Silva
- 1 Departamento de Biologia Geral, Centro de Ciências Biológicas (CCB), Universidade Estadual de Londrina, Londrina, Brazil
| | - Cristian Araya-Jaime
- 2 Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, Brazil
| | | | - Fausto Foresti
- 2 Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, Brazil
| | - Lucia Giuliano-Caetano
- 1 Departamento de Biologia Geral, Centro de Ciências Biológicas (CCB), Universidade Estadual de Londrina, Londrina, Brazil
| | - Ana Lúcia Dias
- 1 Departamento de Biologia Geral, Centro de Ciências Biológicas (CCB), Universidade Estadual de Londrina, Londrina, Brazil
| |
Collapse
|
37
|
Kichigin IG, Lisachov AP, Giovannotti M, Makunin AI, Kabilov MR, O'Brien PCM, Ferguson-Smith MA, Graphodatsky AS, Trifonov VA. First report on B chromosome content in a reptilian species: the case of Anolis carolinensis. Mol Genet Genomics 2018; 294:13-21. [PMID: 30146671 DOI: 10.1007/s00438-018-1483-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/22/2018] [Indexed: 11/26/2022]
Abstract
Supernumerary elements of the genome are often called B chromosomes. They usually consist of various autosomal sequences and, because of low selective pressure, are mostly pseudogenized and contain many repeats. There are numerous reports on B chromosomes in mammals, fish, invertebrates, plants, and fungi, but only a few of them have been studied using sequencing techniques. However, reptilian supernumerary chromosomes have been detected only cytogenetically and never sequenced or analyzed at the molecular level. One model squamate species with available genome sequence is Anolis carolinensis. The scope of the present article is to describe the genetic content of A. carolinensis supernumerary chromosomes. In this article, we confirm the presence of B chromosomes in this species by reverse painting and synaptonemal complex analysis. We applied low-pass high-throughput sequencing to analyze flow-sorted B chromosomes. Anole B chromosomes exhibit similar traits to other supernumerary chromosomes from different taxons: they contain two genes related to cell division control (INCENP and SPIRE2), are enriched in specific repeats, and show a high degree of pseudogenization. Therefore, the present study confirms that reptilian B chromosomes resemble supernumerary chromosomes of other taxons.
Collapse
Affiliation(s)
- Ilya G Kichigin
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, 630090, Russia.
| | - Artem P Lisachov
- Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia
| | - Massimo Giovannotti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Alex I Makunin
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, 630090, Russia
| | - Marsel R Kabilov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia
| | - Patricia C M O'Brien
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Malcolm A Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Alexander S Graphodatsky
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Vladimir A Trifonov
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
38
|
Coan RLB, Martins C. Landscape of Transposable Elements Focusing on the B Chromosome of the Cichlid Fish Astatotilapia latifasciata. Genes (Basel) 2018; 9:genes9060269. [PMID: 29882892 PMCID: PMC6027319 DOI: 10.3390/genes9060269] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 12/26/2022] Open
Abstract
B chromosomes (Bs) are supernumerary elements found in many taxonomic groups. Most B chromosomes are rich in heterochromatin and composed of abundant repetitive sequences, especially transposable elements (TEs). B origin is generally linked to the A-chromosome complement (A). The first report of a B chromosome in African cichlids was in Astatotilapia latifasciata, which can harbor 0, 1, or 2 Bs Classical cytogenetic studies found high a TE content on this B chromosome. In this study, we aimed to understand TE composition and expression in the A. latifasciata genome and its relation to the B chromosome. We used bioinformatics analysis to explore the genomic organization of TEs and their composition on the B chromosome. The bioinformatics findings were validated by fluorescent in situ hybridization (FISH) and real-time PCR (qPCR). A. latifasciata has a TE content similar to that of other cichlid fishes and several expanded elements on its B chromosome. With RNA sequencing data (RNA-seq), we showed that all major TE classes are transcribed in the brain, muscle, and male and female gonads. An evaluation of TE transcription levels between B- and B+ individuals showed that few elements are differentially expressed between these groups and that the expanded B elements are not highly transcribed. Putative silencing mechanisms may act on the B chromosome of A. latifasciata to prevent the adverse consequences of repeat transcription and mobilization in the genome.
Collapse
Affiliation(s)
- Rafael L B Coan
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), 18618-689 Botucatu, SP, Brazil.
| | - Cesar Martins
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), 18618-689 Botucatu, SP, Brazil.
| |
Collapse
|
39
|
Malimpensa GC, Traldi JB, Toyama D, Henrique-Silva F, Vicari MR, Moreira-Filho O. Chromosomal Mapping of Repeat DNA in Bergiaria westermanni (Pimelodidae, Siluriformes): Localization of 45S rDNA in B Chromosomes. Cytogenet Genome Res 2018; 154:99-106. [PMID: 29635248 DOI: 10.1159/000487652] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2017] [Indexed: 12/19/2022] Open
Abstract
The occurrence of repetitive DNA in autosomes and B chromosomes of Bergiaria westermanni was examined using conventional and molecular cytogenetic techniques. This species exhibited 2n = 56 chromosomes, with intra- and interindividual variation in the number of heterochromatic B chromosomes (from 0 to 4). The 5S rDNA was localized in pairs 1 and 5, and histone probes (H1, H3, and H4) and U2 small nuclear RNA were syntenic with 5S rDNA in pair 5. Histone sequences were also located in chromosome pair 14. The (GATA)n sequence was dispersed throughout the autosomes and B chromosomes, with clusters (microsatellite accumulation) in some chromosome regions. The telomeric probe revealed no signs of chromosomal rearrangements in the genome of B. westermanni. The 45S rDNA sites were detected in the terminal region of pair 27; these sites corresponded to a GC-rich heterochromatin block. In addition, 3 of the 4 B chromosomes also contained 45S rDNA copies. Silver nitrate staining in interphase nuclei provided indirect evidence of the expression of these rRNA genes in B chromosomes, indicating the probable origin of these elements. This report shows plasticity in the chromosomal localization of repeat DNA in B. westermanni and features a discussion of genomic diversification.
Collapse
Affiliation(s)
- Geovana C Malimpensa
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | | | | | | | | | | |
Collapse
|
40
|
Perazzo GX, Noleto RB, Vicari MR, Gava A, Cestari MM. B chromosome polymorphism in South American cichlid. NEOTROPICAL BIODIVERSITY 2018. [DOI: 10.1080/23766808.2018.1429164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
| | - Rafael Bueno Noleto
- Department of Biology, State University of Paraná, União da Vitória, Paraná, Brazil
| | - Marcelo Ricardo Vicari
- Department of Structural, Molecular and Genetical Biology, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Adriana Gava
- Biological Sciences Institute, Federal University of Rio Grande, Rio Grande, Brazil
| | | |
Collapse
|
41
|
High-throughput analysis unveils a highly shared satellite DNA library among three species of fish genus Astyanax. Sci Rep 2017; 7:12726. [PMID: 29018237 PMCID: PMC5635008 DOI: 10.1038/s41598-017-12939-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/20/2017] [Indexed: 01/08/2023] Open
Abstract
The high-throughput analysis of satellite DNA (satDNA) content, by means of Illumina sequencing, unveiled 45 satDNA families in the genome of Astyanax paranae, with repeat unit length (RUL) ranging from 6 to 365 bp and marked predominance of short satellites (median length = 59 bp). The analysis of chromosomal location of 35 satDNAs in A. paranae, A. fasciatus and A. bockmanni revealed that most satellites are shared between the three species and show highly similar patterns of chromosome distribution. The high similarity in satellite DNA content between these species is most likely due to their recent common descent. Among the few differences found, the ApaSat44-21 satellite was present only on the B chromosome of A. paranae, but not on the A or B chromosomes of the two other species. Likewise, the ApaSat20-18 satellite was B-specific in A. paranae but was however present on A and B chromosomes of A. fasciatus and A. bockmanni. The isochromosome nature of B chromosomes in these species was evidenced by the symmetric location of many satDNAs on both B chromosome arms, and the lower symmetry observed in the A. fasciatus BfMa chromosome suggests that it is older than those analyzed in A. paranae and A. bockmanni.
Collapse
|
42
|
|
43
|
Ruiz-Ruano FJ, Cabrero J, López-León MD, Sánchez A, Camacho JPM. Quantitative sequence characterization for repetitive DNA content in the supernumerary chromosome of the migratory locust. Chromosoma 2017; 127:45-57. [PMID: 28868580 DOI: 10.1007/s00412-017-0644-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 12/23/2022]
Abstract
Repetitive DNA is a major component in most eukaryotic genomes but is ignored in most genome sequencing projects. Here, we report the quantitative composition in repetitive DNA for a supernumerary (B) chromosome, in the migratory locust (Locusta migratoria), by Illumina sequencing of genomic DNA from B-carrying and B-lacking individuals and DNA obtained from a microdissected B chromosome, as well as the physical mapping of some elements. B chromosome DNA of 94.9% was repetitive, in high contrast with the 64.1% of standard (A) chromosomes. B chromosomes are enriched in satellite DNA (satDNA) (65.2% of B-DNA), with a single satellite (LmiSat02-176) comprising 55% of the B. Six satDNAs were visualized by FISH on the B chromosome, and the only A chromosome carrying all these satellites was autosome 9, pointing to this chromosome, along with autosome 8 (which shares histone genes with the B) as putative ancestors of the B chromosome. We found several transposable elements (TEs) showing nucleotidic variation specific to B-carrying individuals, which was also present in B-carrying transcriptomes. Remarkably, an interstitial region of the B chromosome included a 17 kb chimera composed of 29 different TEs, suggesting reiterative TE insertion in this B chromosome region.
Collapse
Affiliation(s)
- Francisco J Ruiz-Ruano
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, 18071, Granada, Spain.
| | - Josefa Cabrero
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, 18071, Granada, Spain
| | - María Dolores López-León
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, 18071, Granada, Spain
| | - Antonio Sánchez
- Departamento de Biología Experimental, Universidad de Jaén, Jaén, Spain
| | - Juan Pedro M Camacho
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, 18071, Granada, Spain
| |
Collapse
|
44
|
Milani D, Ramos É, Loreto V, Martí DA, Cardoso AL, de Moraes KCM, Martins C, Cabral-de-Mello DC. The satellite DNA AflaSAT-1 in the A and B chromosomes of the grasshopper Abracris flavolineata. BMC Genet 2017; 18:81. [PMID: 28851268 PMCID: PMC5575873 DOI: 10.1186/s12863-017-0548-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/22/2017] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Satellite DNAs (satDNAs) are organized in repetitions directly contiguous to one another, forming long arrays and composing a large portion of eukaryote genomes. These sequences evolve according to the concerted evolution model, and homogenization of repeats is observed at the intragenomic level. Satellite DNAs are the primary component of heterochromatin, located primarily in centromeres and telomeres. Moreover, satDNA enrichment in specific chromosomes has been observed, such as in B chromosomes, that can provide clues about composition, origin and evolution of this chromosome. In this study, we isolated and characterized a satDNA in A and B chromosomes of Abracris flavolineata by integrating cytogenetic, molecular and genomics approaches at intra- and inter-population levels, with the aim to understand the evolution of satDNA and composition of B chromosomes. RESULTS AflaSAT-1 satDNA was shared with other species and in A. flavolineata, was associated with another satDNA, AflaSAT-2. Chromosomal mapping revealed centromeric blocks variable in size in almost all chromosomes (except pair 11) of A complement for both satDNAs, whereas for B chromosome, only a small centromeric signal occurred. In distinct populations, variable number of AflaSAT-1 chromosomal sites correlated with variability in copy number. Instead of such variability, low sequence diversity was observed in A complement, but monomers from B chromosome were more variable, presenting also exclusive mutations. AflaSAT-1 was transcribed in five tissues of adults in distinct life cycle phases. CONCLUSIONS The sharing of AflaSAT-1 with other species is consistent with the library hypothesis and indicates common origin in a common ancestor; however, AflaSAT-1 was highly amplified in the genome of A. flavolineata. At the population level, homogenization of repeats in distinct populations was documented, but dynamic expansion or elimination of repeats was also observed. Concerning the B chromosome, our data provided new information on the composition in A. flavolineata. Together with previous results, the sequences of heterochromatic nature were not likely highly amplified in the entire B chromosome. Finally, the constitutive transcriptional activity suggests a possible unknown functional role, which should be further investigated.
Collapse
Affiliation(s)
- Diogo Milani
- Departamento de Biologia, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Rio Claro, São Paulo CEP 13506-900 Brazil
| | - Érica Ramos
- Departamento de Morfologia, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Botucatu, São Paulo Brazil
| | - Vilma Loreto
- Departamento de Genética, UFPE - Univ Federal de Pernambuco, Centro de Biociências/CB, Recife, Pernambuco Brazil
| | | | - Adauto Lima Cardoso
- Departamento de Morfologia, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Botucatu, São Paulo Brazil
| | | | - Cesar Martins
- Departamento de Morfologia, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Botucatu, São Paulo Brazil
| | - Diogo Cavalcanti Cabral-de-Mello
- Departamento de Biologia, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Rio Claro, São Paulo CEP 13506-900 Brazil
| |
Collapse
|
45
|
Utsunomia R, Ruiz-Ruano FJ, Silva DMZA, Serrano ÉA, Rosa IF, Scudeler PES, Hashimoto DT, Oliveira C, Camacho JPM, Foresti F. A Glimpse into the Satellite DNA Library in Characidae Fish (Teleostei, Characiformes). Front Genet 2017; 8:103. [PMID: 28855916 PMCID: PMC5557728 DOI: 10.3389/fgene.2017.00103] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 07/26/2017] [Indexed: 01/21/2023] Open
Abstract
Satellite DNA (satDNA) is an abundant fraction of repetitive DNA in eukaryotic genomes and plays an important role in genome organization and evolution. In general, satDNA sequences follow a concerted evolutionary pattern through the intragenomic homogenization of different repeat units. In addition, the satDNA library hypothesis predicts that related species share a series of satDNA variants descended from a common ancestor species, with differential amplification of different satDNA variants. The finding of a same satDNA family in species belonging to different genera within Characidae fish provided the opportunity to test both concerted evolution and library hypotheses. For this purpose, we analyzed here sequence variation and abundance of this satDNA family in ten species, by a combination of next generation sequencing (NGS), PCR and Sanger sequencing, and fluorescence in situ hybridization (FISH). We found extensive between-species variation for the number and size of pericentromeric FISH signals. At genomic level, the analysis of 1000s of DNA sequences obtained by Illumina sequencing and PCR amplification allowed defining 150 haplotypes which were linked in a common minimum spanning tree, where different patterns of concerted evolution were apparent. This also provided a glimpse into the satDNA library of this group of species. In consistency with the library hypothesis, different variants for this satDNA showed high differences in abundance between species, from highly abundant to simply relictual variants.
Collapse
Affiliation(s)
- Ricardo Utsunomia
- Department of Morphology, Institute of Biosciences, São Paulo State UniversityBotucatu, Brazil
| | | | - Duílio M Z A Silva
- Department of Morphology, Institute of Biosciences, São Paulo State UniversityBotucatu, Brazil
| | - Érica A Serrano
- Department of Morphology, Institute of Biosciences, São Paulo State UniversityBotucatu, Brazil
| | - Ivana F Rosa
- Department of Morphology, Institute of Biosciences, São Paulo State UniversityBotucatu, Brazil
| | - Patrícia E S Scudeler
- Department of Morphology, Institute of Biosciences, São Paulo State UniversityBotucatu, Brazil
| | | | - Claudio Oliveira
- Department of Morphology, Institute of Biosciences, São Paulo State UniversityBotucatu, Brazil
| | - Juan Pedro M Camacho
- Departamento de Genética, Facultad de Ciencias, Universidad de GranadaGranada, Spain
| | - Fausto Foresti
- Department of Morphology, Institute of Biosciences, São Paulo State UniversityBotucatu, Brazil
| |
Collapse
|
46
|
Unique sequence organization and small RNA expression of a "selfish" B chromosome. Chromosoma 2017; 126:753-768. [PMID: 28780664 DOI: 10.1007/s00412-017-0641-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 10/19/2022]
Abstract
B chromosomes are found in numerous plants and animals. These nonessential, supernumerary chromosomes are often composed primarily of noncoding DNA repeats similar to those found within transcriptionally "silenced" heterochromatin. In order to persist within their resident genomes, many B chromosomes exhibit exceptional cellular behaviors, including asymmetric segregation into gametes and induction of genome elimination during early development. An important goal in understanding these behaviors is to identify unique B chromosome sequences and characterize their transcriptional contributions. We investigated these properties by examining a paternally transmitted B chromosome known as paternal sex ratio (PSR), which is present in natural populations of the jewel wasp Nasonia vitripennis. To facilitate its own transmission, PSR severely biases the sex ratio by disrupting early chromatin remodeling processes. Through cytological mapping and other approaches, we identified multiple DNA repeats unique to PSR, as well as those found on the A chromosomes, suggesting that PSR arose through a merger of sequences from both within and outside the N. vitripennis genome. The majority of PSR-specific repeats are interspersed among each other across PSR's long arm, in contrast with the distinct "blocks" observed in other organisms' heterochromatin. Through transcriptional profiling, we identified a subset of repeat-associated, small RNAs expressed by PSR, most of which map to a single PSR-specific repeat. These RNAs are expressed at much higher levels than those arising from A chromosome-linked repeats, suggesting that in addition to its sequence organization, PSR's transcriptional properties differ substantially from the pericentromeric regions of the normal chromosomes.
Collapse
|
47
|
Melo S, Utsunomia R, Penitente M, Sobrinho-Scudeler PE, Porto-Foresti F, Oliveira C, Foresti F, Dergam JA. B chromosome dynamics in Prochilodus costatus (Teleostei, Characiformes) and comparisons with supernumerary chromosome system in other Prochilodus species. COMPARATIVE CYTOGENETICS 2017; 11:393-403. [PMID: 28919971 PMCID: PMC5596993 DOI: 10.3897/compcytogen.v11i2.12784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 04/13/2017] [Indexed: 06/07/2023]
Abstract
Within the genus Prochilodus Agassiz, 1829, five species are known to carry B chromosomes, i.e. chromosomes beyond the usual diploid number that have been traditionally considered as accessory for the genome. Chromosome microdissection and mapping of repetitive DNA sequences are effective tools to assess the DNA content and allow a better understanding about the origin and composition of these elements in an array of species. In this study, a novel characterization of B chromosomes in Prochilodus costatus Valenciennes, 1850 (2n=54) was reported for the first time and their sequence complementarity with the supernumerary chromosomes observed in Prochilodus lineatus (Valenciennes, 1836) and Prochilodus argenteus Agassiz, 1829 was investigated. The hybridization patterns obtained with chromosome painting using the micro B probe of P. costatus and the satDNA SATH1 mapping made it possible to assume homology of sequences between the B chromosomes of these congeneric species. Our results suggest that the origin of B chromosomes in the genus Prochilodus is a phylogenetically old event.
Collapse
Affiliation(s)
- Silvana Melo
- Departamento de Biologia Animal, Campus Universitário, Universidade Federal de Viçosa, 36570-000, Viçosa, Minas Gerais, Brazil
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Distrito de Rubião Junior, s/n, 18618-689, Botucatu, São Paulo, Brazil
| | - Ricardo Utsunomia
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Distrito de Rubião Junior, s/n, 18618-689, Botucatu, São Paulo, Brazil
| | - Manolo Penitente
- Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade Estadual Paulista, Campus de Bauru, 17033-360 Bauru, São Paulo, Brazil
| | - Patrícia Elda Sobrinho-Scudeler
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Distrito de Rubião Junior, s/n, 18618-689, Botucatu, São Paulo, Brazil
| | - Fábio Porto-Foresti
- Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade Estadual Paulista, Campus de Bauru, 17033-360 Bauru, São Paulo, Brazil
| | - Claudio Oliveira
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Distrito de Rubião Junior, s/n, 18618-689, Botucatu, São Paulo, Brazil
| | - Fausto Foresti
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Distrito de Rubião Junior, s/n, 18618-689, Botucatu, São Paulo, Brazil
| | - Jorge Abdala Dergam
- Departamento de Biologia Animal, Campus Universitário, Universidade Federal de Viçosa, 36570-000, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
48
|
Suárez P, Pinto Barroso ICG, Silva DDS, Milhomem SSR, Cabral-de-Mello DC, Martins C, Pieczarka JC, Nagamachi CY. Highest Diploid Number Among Gymnotiformes: First Cytogenetic Insights into Rhabdolichops (Sternopygidae). Zebrafish 2017; 14:272-279. [PMID: 28394248 DOI: 10.1089/zeb.2016.1405] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We report the first comparative cytogenetic analysis of two species from electrogenic fish of genus Rhabdolichops (Sternopygidae, Gymnotiformes): Rhabdolichops troscheli and Rhabdolichops cf eastwardi. R. troscheli has 2n = 54 (fundamental number [FN] = 66), whereas R. cf. eastwardi has 2n = 74 (FN = 78). C-banding revealed centromeric constitutive heterochromatin in both species. Ag-NORs mapped on pair 6 in R. troscheli and pair 30 in R. cf eastwardi. Fluorescense in situ hybridization with 18S rDNA probes confirmed the Ag-NOR staining results and revealed additional (presumably silent) ribosomal genes on pairs 12, 13, 21, 23, 26, and 27 in R. cf eastwardi. 5S rDNA was found on the centromeres of pair 7 in both species. Telomeric probes showed only distal locations. Dispersed signal patterns were obtained using probes for retrotransposons Rex1 and Rex3. Histone H1 and H3 genes were found together on pair 6 in R. cf eastwardi. The high diploid number found in Rhabdolichops suggests that chromosome fission may have contributed to its chromosomal evolution, phylogenetic relationship of the Sternopygidae suggests that this increase in diploid number could be a synapomorphic characteristic of genus Rhabdolichops. Although both species are phylogenetically close related, their karyotype structure has undergone divergent evolutionary directions. All in all, our results strongly suggest that R. cf eastwardi experencied recent intense genome reorganization.
Collapse
Affiliation(s)
- Pablo Suárez
- 1 Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará , Belém, Brazil
- 2 Instituto de Biología Subtropical , CONICET-UNaM, Puerto Iguazú, Argentina
| | - Inaê Cristina Guerreiro Pinto Barroso
- 1 Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará , Belém, Brazil
| | | | - Susana S R Milhomem
- 4 Instituto Federal de Educação , Ciência e Tecnologia de Goiás, Valparaiso de Goiás, Brazil
| | | | - Cesar Martins
- 6 Instituto de Biociências, Universidade Estadual Paulista Julio de Mesquita Filho , Botucatu, Brazil
| | - Julio Cesar Pieczarka
- 1 Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará , Belém, Brazil
| | - Cleusa Yoshiko Nagamachi
- 1 Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará , Belém, Brazil
| |
Collapse
|
49
|
Santos ARD, Usso MC, Gouveia JG, Araya-Jaime C, Frantine-Silva W, Giuliano-Caetano L, Foresti F, Dias AL. Chromosomal Mapping of Repetitive DNA Sequences in the Genus Bryconamericus (Characidae) and DNA Barcoding to Differentiate Populations. Zebrafish 2017; 14:261-271. [PMID: 28355106 DOI: 10.1089/zeb.2016.1380] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The mapping of repetitive DNA sites by fluorescence in situ hybridization has been widely used for karyotype studies in different species of fish, especially when dealing with related species or even genera presenting high chromosome variability. This study analyzed three populations of Bryconamericus, with diploid number preserved, but with different karyotype formulae. Bryconamericus ecai, from the Forquetinha river/RS, presented three new cytotypes, increasing the number of karyotype forms to seven in this population. Other two populations of Bryconamericus sp. from the Vermelho stream/PR and Cambuta river/PR exhibited interpopulation variation. The chromosome mapping of rDNA sites revealed unique markings among the three populations, showing inter- and intrapopulation variability located in the terminal region. The molecular analysis using DNA barcoding complementing the cytogenetic analysis also showed differentiation among the three populations. The U2 small nuclear DNA repetitive sequence exhibited conserved features, being located in the interstitial region of a single chromosome pair. This is the first report on its occurrence in the genus Bryconamericus. Data obtained revealed a karyotype variability already assigned to the genus, along with polymorphism of ribosomal sites, demonstrating that this group of fish can be undergoing a divergent evolutionary process, constituting a substantive model for studies of chromosomal evolution.
Collapse
Affiliation(s)
- Angélica Rossotti Dos Santos
- 1 Laboratório de Citogenética Animal, Departamento de Biologia Geral, Universidade Estadual de Londrina , Londrina, Brazil
| | - Mariana Campaner Usso
- 1 Laboratório de Citogenética Animal, Departamento de Biologia Geral, Universidade Estadual de Londrina , Londrina, Brazil
| | - Juceli Gonzalez Gouveia
- 1 Laboratório de Citogenética Animal, Departamento de Biologia Geral, Universidade Estadual de Londrina , Londrina, Brazil
| | - Cristian Araya-Jaime
- 2 Laboratório de Citogenética de Vertebrados, ICBM Facultad de Medicina, Universidad de Chile , Santiago, Chile .,3 Laboratório de Genética e Ecologia Animal, Departamento de Biologia Geral, Universidade Estadual de Londrina , Londrina, Brazil .,4 Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista , Botucatu, Brazil
| | - Wilson Frantine-Silva
- 3 Laboratório de Genética e Ecologia Animal, Departamento de Biologia Geral, Universidade Estadual de Londrina , Londrina, Brazil
| | - Lucia Giuliano-Caetano
- 1 Laboratório de Citogenética Animal, Departamento de Biologia Geral, Universidade Estadual de Londrina , Londrina, Brazil
| | - Fausto Foresti
- 4 Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista , Botucatu, Brazil
| | - Ana Lúcia Dias
- 1 Laboratório de Citogenética Animal, Departamento de Biologia Geral, Universidade Estadual de Londrina , Londrina, Brazil
| |
Collapse
|
50
|
Rajičić M, Romanenko SA, Karamysheva TV, Blagojević J, Adnađević T, Budinski I, Bogdanov AS, Trifonov VA, Rubtsov NB, Vujošević M. The origin of B chromosomes in yellow-necked mice (Apodemus flavicollis)-Break rules but keep playing the game. PLoS One 2017; 12:e0172704. [PMID: 28329013 PMCID: PMC5362141 DOI: 10.1371/journal.pone.0172704] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 02/08/2017] [Indexed: 12/30/2022] Open
Abstract
B chromosomes (Bs) are known for more than hundred years but their origin, structure and pattern of evolution are not well understood. In the past few years new methodological approaches, involving isolation of Bs followed by whole DNA amplification, DNA probe generation, and fluorescent in situ hybridization (FISH) or the B chromosome DNA sequencing, has allowed detailed analysis of their origin and molecular structure in different species. In this study we explored the origin of Bs in the yellow-necked wood mouse, Apodemus flavicollis, using generation of microdissected DNA probes followed by FISH on metaphase chromosomes. Bs of A. flavicollis were successfully isolated and DNA was used as the template for B-specific probes for the first time. We revealed homology of DNA derived from the analyzed B chromosomes to the pericentromeric region (PR) of sex chromosomes and subtelomeric region of two pairs of small autosomes, but lower homology to the rest of the Y chromosome. Moreover, all analysed Bs had the same structure regardless of their number per individual or the great geographic distance between examined populations from the Balkan Peninsula (Serbia) and Eastern Europe (south region of Russia and central Belarus). Therefore, it was suggested that B chromosomes in A. flavicollis have a unique common origin from the PR of sex chromosomes, and/or similar evolutionary pattern.
Collapse
Affiliation(s)
- M Rajičić
- Department for Genetic Research, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade Serbia
| | - S A Romanenko
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk Russia
| | - T V Karamysheva
- Institute of Cytology and Genetics, SB RAS, Novosibirsk Russia
| | - J Blagojević
- Department for Genetic Research, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade Serbia
| | - T Adnađević
- Department for Genetic Research, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade Serbia
| | - I Budinski
- Department for Genetic Research, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade Serbia
| | - A S Bogdanov
- Koltzov Institute of Developmental Biology, RAS, Moscow Russia
| | - V A Trifonov
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk Russia
| | - N B Rubtsov
- Institute of Cytology and Genetics, SB RAS, Novosibirsk Russia
| | - M Vujošević
- Department for Genetic Research, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade Serbia
| |
Collapse
|