1
|
Neuwirt E, Magnani G, Ćiković T, Wöhrle S, Fischer L, Kostina A, Flemming S, Fischenich NJ, Saller BS, Gorka O, Renner S, Agarinis C, Parker CN, Boettcher A, Farady CJ, Kesselring R, Berlin C, Backofen R, Rodriguez-Franco M, Kreutz C, Prinz M, Tholen M, Reinheckel T, Ott T, Groß CJ, Jost PJ, Groß O. Tyrosine kinase inhibitors can activate the NLRP3 inflammasome in myeloid cells through lysosomal damage and cell lysis. Sci Signal 2023; 16:eabh1083. [PMID: 36649377 DOI: 10.1126/scisignal.abh1083] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Inflammasomes are intracellular protein complexes that promote an inflammatory host defense in response to pathogens and damaged or neoplastic tissues and are implicated in inflammatory disorders and therapeutic-induced toxicity. We investigated the mechanisms of activation for inflammasomes nucleated by NOD-like receptor (NLR) protiens. A screen of a small-molecule library revealed that several tyrosine kinase inhibitors (TKIs)-including those that are clinically approved (such as imatinib and crizotinib) or are in clinical trials (such as masitinib)-activated the NLRP3 inflammasome. Furthermore, imatinib and masitinib caused lysosomal swelling and damage independently of their kinase target, leading to cathepsin-mediated destabilization of myeloid cell membranes and, ultimately, cell lysis that was accompanied by potassium (K+) efflux, which activated NLRP3. This effect was specific to primary myeloid cells (such as peripheral blood mononuclear cells and mouse bone marrow-derived dendritic cells) and did not occur in other primary cell types or various cell lines. TKI-induced lytic cell death and NLRP3 activation, but not lysosomal damage, were prevented by stabilizing cell membranes. Our findings reveal a potential immunological off-target of some TKIs that may contribute to their clinical efficacy or to their adverse effects.
Collapse
Affiliation(s)
- Emilia Neuwirt
- Institute of Neuropathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Giovanni Magnani
- Institute of Clinical Chemistry and Pathobiochemistry, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Tamara Ćiković
- Institute of Clinical Chemistry and Pathobiochemistry, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany.,Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, 81675 Munich, Germany
| | - Svenja Wöhrle
- Institute of Neuropathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Larissa Fischer
- Institute of Neuropathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Anna Kostina
- Institute of Neuropathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Stephan Flemming
- Bioinformatics Group, Faculty of Engineering, University of Freiburg, 79110 Freiburg, Germany
| | - Nora J Fischenich
- Institute of Neuropathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Benedikt S Saller
- Institute of Neuropathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Oliver Gorka
- Institute of Neuropathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Steffen Renner
- Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Claudia Agarinis
- Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland
| | | | - Andreas Boettcher
- Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland
| | | | - Rebecca Kesselring
- Department for General and Visceral Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) 69120 Heidelberg, Germany
| | - Christopher Berlin
- Department for General and Visceral Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) 69120 Heidelberg, Germany
| | - Rolf Backofen
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany.,Bioinformatics Group, Faculty of Engineering, University of Freiburg, 79110 Freiburg, Germany
| | | | - Clemens Kreutz
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany.,Institute of Medical Biometry and Statistics (IMBI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Martina Tholen
- Institute for Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Thomas Reinheckel
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) 69120 Heidelberg, Germany.,Institute for Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Thomas Ott
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany.,Faculty of Biology, Cell Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Christina J Groß
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Philipp J Jost
- Division of Clinical Oncology, Department of Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Olaf Groß
- Institute of Neuropathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
2
|
Perišić Nanut M, Žurga S, Konjar Š, Prunk M, Kos J, Sabotič J. The fungal Clitocybe nebularis lectin binds distinct cell surface glycoprotein receptors to induce cell death selectively in Jurkat cells. FASEB J 2022; 36:e22215. [PMID: 35224765 DOI: 10.1096/fj.202101056rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 01/01/2023]
Abstract
Clitocybe nebularis lectin (CNL) is a GalNAcβ1-4GlcNAc-binding lectin that exhibits an antiproliferative effect exclusively on the Jurkat leukemic T cell line by provoking homotypic aggregation and dose-dependent cell death. Cell death of Jurkat cells exhibited typical features of early apoptosis, but lacked the activation of initiating and executing caspases. None of the features of CNL-induced cell death were effectively blocked with the pan-caspase inhibitor or different cysteine peptidase inhibitors. Furthermore, CNL binding induced Jurkat cells to release the endogenous damage-associated molecular pattern molecule high-mobility group box 1 (HMGB1). A plant lectin with similar glycan-binding specificity, Wisteria floribunda agglutinin (WFA) showed less selective toxicity and induced cell death in Jurkat, Tall-104, and Hut-87 cell lines. HMGB1 release was also detected when Jurkat cells were treated with WFA. We identified the CD45 and CD43 cell surface glycoproteins on Jurkat cells as the main targets for CNL binding. However, the blockade of CD45 phosphatase activity failed to block either CNL-induced homotypic agglutination or cell death. Overall, our results indicate that CNL triggers atypical cell death selectively on Jurkat cells, suggesting the potential applicability of CNL in novel strategies for treating and/or detecting acute T cell leukemia.
Collapse
Affiliation(s)
| | - Simon Žurga
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Špela Konjar
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Mateja Prunk
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Janko Kos
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Jerica Sabotič
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
3
|
Luke CJ, Markovina S, Good M, Wight IE, Thomas BJ, Linneman JM, Lanik WE, Koroleva O, Coffman MR, Miedel MT, Gong Q, Andress A, Campos Guerrero M, Wang S, Chen L, Beatty WL, Hausmann KN, White FV, Fitzpatrick JAJ, Orvedahl A, Pak SC, Silverman GA. Lysoptosis is an evolutionarily conserved cell death pathway moderated by intracellular serpins. Commun Biol 2022; 5:47. [PMID: 35022507 PMCID: PMC8755814 DOI: 10.1038/s42003-021-02953-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/07/2021] [Indexed: 01/02/2023] Open
Abstract
Lysosomal membrane permeabilization (LMP) and cathepsin release typifies lysosome-dependent cell death (LDCD). However, LMP occurs in most regulated cell death programs suggesting LDCD is not an independent cell death pathway, but is conscripted to facilitate the final cellular demise by other cell death routines. Previously, we demonstrated that Caenorhabditis elegans (C. elegans) null for a cysteine protease inhibitor, srp-6, undergo a specific LDCD pathway characterized by LMP and cathepsin-dependent cytoplasmic proteolysis. We designated this cell death routine, lysoptosis, to distinguish it from other pathways employing LMP. In this study, mouse and human epithelial cells lacking srp-6 homologues, mSerpinb3a and SERPINB3, respectively, demonstrated a lysoptosis phenotype distinct from other cell death pathways. Like in C. elegans, this pathway depended on LMP and released cathepsins, predominantly cathepsin L. These studies suggested that lysoptosis is an evolutionarily-conserved eukaryotic LDCD that predominates in the absence of neutralizing endogenous inhibitors.
Collapse
Affiliation(s)
- Cliff J Luke
- Departments of Pediatrics, Washington University School of Medicine and the Children's Discovery Institute of St. Louis Children's Hospital, St. Louis, MO, USA.
- Siteman Cancer Center, and Washington University School of Medicine and the Children's Discovery Institute of St. Louis Children's Hospital, St. Louis, MO, USA.
| | - Stephanie Markovina
- Siteman Cancer Center, and Washington University School of Medicine and the Children's Discovery Institute of St. Louis Children's Hospital, St. Louis, MO, USA
- Radiation Oncology, Washington University School of Medicine and the Children's Discovery Institute of St. Louis Children's Hospital, St. Louis, MO, USA
| | - Misty Good
- Departments of Pediatrics, Washington University School of Medicine and the Children's Discovery Institute of St. Louis Children's Hospital, St. Louis, MO, USA
| | - Ira E Wight
- Departments of Pediatrics, Washington University School of Medicine and the Children's Discovery Institute of St. Louis Children's Hospital, St. Louis, MO, USA
| | - Brian J Thomas
- Departments of Pediatrics, Washington University School of Medicine and the Children's Discovery Institute of St. Louis Children's Hospital, St. Louis, MO, USA
| | - John M Linneman
- Departments of Pediatrics, Washington University School of Medicine and the Children's Discovery Institute of St. Louis Children's Hospital, St. Louis, MO, USA
| | - Wyatt E Lanik
- Departments of Pediatrics, Washington University School of Medicine and the Children's Discovery Institute of St. Louis Children's Hospital, St. Louis, MO, USA
| | - Olga Koroleva
- Departments of Pediatrics, Washington University School of Medicine and the Children's Discovery Institute of St. Louis Children's Hospital, St. Louis, MO, USA
| | - Maggie R Coffman
- Departments of Pediatrics, Washington University School of Medicine and the Children's Discovery Institute of St. Louis Children's Hospital, St. Louis, MO, USA
| | - Mark T Miedel
- Department of Computational and Systems biology, Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Qingqing Gong
- Departments of Pediatrics, Washington University School of Medicine and the Children's Discovery Institute of St. Louis Children's Hospital, St. Louis, MO, USA
| | - Arlise Andress
- Radiation Oncology, Washington University School of Medicine and the Children's Discovery Institute of St. Louis Children's Hospital, St. Louis, MO, USA
| | - Marlene Campos Guerrero
- Radiation Oncology, Washington University School of Medicine and the Children's Discovery Institute of St. Louis Children's Hospital, St. Louis, MO, USA
| | - Songyan Wang
- Radiation Oncology, Washington University School of Medicine and the Children's Discovery Institute of St. Louis Children's Hospital, St. Louis, MO, USA
| | - LiYun Chen
- Radiation Oncology, Washington University School of Medicine and the Children's Discovery Institute of St. Louis Children's Hospital, St. Louis, MO, USA
| | - Wandy L Beatty
- Molecular Microbiology, Washington University School of Medicine and the Children's Discovery Institute of St. Louis Children's Hospital, St. Louis, MO, USA
| | - Kelsey N Hausmann
- Molecular Microbiology, Washington University School of Medicine and the Children's Discovery Institute of St. Louis Children's Hospital, St. Louis, MO, USA
| | - Frances V White
- Department of Pathology and Immunology, Washington University School of Medicine and the Children's Discovery Institute of St. Louis Children's Hospital, St. Louis, MO, USA
| | - James A J Fitzpatrick
- Cell Biology and Physiology, Washington University School of Medicine and the Children's Discovery Institute of St. Louis Children's Hospital, St. Louis, MO, USA
- Neuroscience, and Washington University School of Medicine and the Children's Discovery Institute of St. Louis Children's Hospital, St. Louis, MO, USA
| | - Anthony Orvedahl
- Departments of Pediatrics, Washington University School of Medicine and the Children's Discovery Institute of St. Louis Children's Hospital, St. Louis, MO, USA
| | - Stephen C Pak
- Departments of Pediatrics, Washington University School of Medicine and the Children's Discovery Institute of St. Louis Children's Hospital, St. Louis, MO, USA
| | - Gary A Silverman
- Departments of Pediatrics, Washington University School of Medicine and the Children's Discovery Institute of St. Louis Children's Hospital, St. Louis, MO, USA.
- Siteman Cancer Center, and Washington University School of Medicine and the Children's Discovery Institute of St. Louis Children's Hospital, St. Louis, MO, USA.
- Cell Biology and Physiology, Washington University School of Medicine and the Children's Discovery Institute of St. Louis Children's Hospital, St. Louis, MO, USA.
- Genetics, Washington University School of Medicine and the Children's Discovery Institute of St. Louis Children's Hospital, St. Louis, MO, USA.
| |
Collapse
|
4
|
Targeting Lysosomes to Reverse Hydroquinone-Induced Autophagy Defects and Oxidative Damage in Human Retinal Pigment Epithelial Cells. Int J Mol Sci 2021; 22:ijms22169042. [PMID: 34445748 PMCID: PMC8396439 DOI: 10.3390/ijms22169042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 01/09/2023] Open
Abstract
In age-related macular degeneration (AMD), hydroquinone (HQ)-induced oxidative damage in retinal pigment epithelium (RPE) is believed to be an early event contributing to dysregulation of inflammatory cytokines and vascular endothelial growth factor (VEGF) homeostasis. However, the roles of antioxidant mechanisms, such as autophagy and the ubiquitin-proteasome system, in modulating HQ-induced oxidative damage in RPE is not well-understood. This study utilized an in-vitro AMD model involving the incubation of human RPE cells (ARPE-19) with HQ. In comparison to hydrogen peroxide (H2O2), HQ induced fewer reactive oxygen species (ROS) but more oxidative damage as characterized by protein carbonyl levels, mitochondrial dysfunction, and the loss of cell viability. HQ blocked the autophagy flux and increased proteasome activity, whereas H2O2 did the opposite. Moreover, the lysosomal membrane-stabilizing protein LAMP2 and cathepsin D levels declined with HQ exposure, suggesting loss of lysosomal membrane integrity and function. Accordingly, HQ induced lysosomal alkalization, thereby compromising the acidic pH needed for optimal lysosomal degradation. Pretreatment with MG132, a proteasome inhibitor and lysosomal stabilizer, upregulated LAMP2 and autophagy and prevented HQ-induced oxidative damage in wildtype RPE cells but not cells transfected with shRNA against ATG5. This study demonstrated that lysosomal dysfunction underlies autophagy defects and oxidative damage induced by HQ in human RPE cells and supports lysosomal stabilization with the proteasome inhibitor MG132 as a potential remedy for oxidative damage in RPE and AMD.
Collapse
|
5
|
The inhibitory NK receptor Ly49Q protects plasmacytoid dendritic cells from pyroptotic cell death. Mol Immunol 2021; 135:217-225. [PMID: 33932686 DOI: 10.1016/j.molimm.2021.03.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/09/2021] [Accepted: 03/18/2021] [Indexed: 01/07/2023]
Abstract
Ly49Q is an ITIM-bearing MHC class I receptor that is highly expressed in plasmacytoid dendritic cells (pDCs). Ly49Q is required for the TLR9-mediated IFN-I production in pDCs, although the mechanism is not fully understood. We here demonstrate that Ly49Q protects pDCs from pyroptotic cell death induced by CpG oligodeoxynucleotides (CpG). In the Ly49Q-deficient (Klra17-/-) mouse spleen, the number of ssDNA-positive pDCs increased significantly after CpG treatment, strongly suggesting that Klra17-/- pDCs were susceptible to CpG-induced cell death. In Klra17-/- bone-marrow-derived dendritic cells (BMDCs), CpG-induced cell death was accompanied by increased cathepsin B leakage from the vesicular compartments into the cytoplasm. Concurrently, IL-1β secretion increased in the CpG-treated Klra17-/- BMDCs, strongly suggesting that the CpG-induced cell death in these cells is pyroptotic in nature. Consistent with these observations, inhibiting cathepsin B or caspase 1 in CpG-stimulated Klra17-/- BMDCs reversed the increase in cell death. Pyroptotic cell death and IL-1β secretion were also observed in BMDCs derived from transgenic mice expressing an ITIM-less Ly49Q (Ly49Q-YF Tg). CpG also increased the IL-1β production and cell death in B2m-/- BMDCs. These results suggest that Ly49Q and MHC class I play important roles for protecting pyroptosis-like cell death of DCs by influencing lysosome state.
Collapse
|
6
|
Guiney SJ, Adlard PA, Lei P, Mawal CH, Bush AI, Finkelstein DI, Ayton S. Fibrillar α-synuclein toxicity depends on functional lysosomes. J Biol Chem 2021; 295:17497-17513. [PMID: 33453994 DOI: 10.1074/jbc.ra120.013428] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 10/01/2020] [Indexed: 02/05/2023] Open
Abstract
Neurodegeneration in Parkinson's disease (PD) can be recapitulated in animals by administration of α-synuclein preformed fibrils (PFFs) into the brain. However, the mechanism by which these PFFs induce toxicity is unknown. Iron is implicated in PD pathophysiology, so we investigated whether α-synuclein PFFs induce ferroptosis, an iron-dependent cell death pathway. A range of ferroptosis inhibitors were added to a striatal neuron-derived cell line (STHdhQ7/7 cells), a dopaminergic neuron-derived cell line (SN4741 cells), and WT primary cortical neurons, all of which had been intoxicated with α-synuclein PFFs. Viability was not recovered by these inhibitors except for liproxstatin-1, a best-in-class ferroptosis inhibitor, when used at high doses. High-dose liproxstatin-1 visibly enlarged the area of a cell that contained acidic vesicles and elevated the expression of several proteins associated with the autophagy-lysosomal pathway similarly to the known lysosomal inhibitors, chloroquine and bafilomycin A1. Consistent with high-dose liproxstatin-1 protecting via a lysosomal mechanism, we further de-monstrated that loss of viability induced by α-synuclein PFFs was attenuated by chloroquine and bafilomycin A1 as well as the lysosomal cysteine protease inhibitors, leupeptin, E-64D, and Ca-074-Me, but not other autophagy or lysosomal enzyme inhibitors. We confirmed using immunofluorescence microscopy that heparin prevented uptake of α-synuclein PFFs into cells but that chloroquine did not stop α-synuclein uptake into lysosomes despite impairing lysosomal function and inhibiting α-synuclein toxicity. Together, these data suggested that α-synuclein PFFs are toxic in functional lysosomes in vitro. Therapeutic strategies that prevent α-synuclein fibril uptake into lysosomes may be of benefit in PD.
Collapse
Affiliation(s)
- Stephanie J Guiney
- Melbourne Dementia Research Centre, Parkville, Victoria, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; University of Melbourne, Parkville, Victoria Australia
| | - Paul A Adlard
- Melbourne Dementia Research Centre, Parkville, Victoria, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; University of Melbourne, Parkville, Victoria Australia
| | - Peng Lei
- Melbourne Dementia Research Centre, Parkville, Victoria, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; University of Melbourne, Parkville, Victoria Australia; Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University/Collaborative Center for Biotherapy, Chengdu, China
| | - Celeste H Mawal
- Melbourne Dementia Research Centre, Parkville, Victoria, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, Parkville, Victoria, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; University of Melbourne, Parkville, Victoria Australia
| | - David I Finkelstein
- Melbourne Dementia Research Centre, Parkville, Victoria, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; University of Melbourne, Parkville, Victoria Australia
| | - Scott Ayton
- Melbourne Dementia Research Centre, Parkville, Victoria, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; University of Melbourne, Parkville, Victoria Australia.
| |
Collapse
|
7
|
Khalfin B, Lichtenstein A, Albeck A, Nathan I. Targeting Necrosis: Elastase-like Protease Inhibitors Curtail Necrotic Cell Death Both In Vitro and in Three In Vivo Disease Models. J Med Chem 2021; 64:1510-1523. [PMID: 33522230 DOI: 10.1021/acs.jmedchem.0c01683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Necrosis is the main mode of cell death, which leads to multiple clinical conditions affecting hundreds of millions of people worldwide. Its molecular mechanisms are poorly understood, hampering therapeutics development. Here, we identify key proteolytic activities essential for necrosis using various biochemical approaches, enzymatic assays, medicinal chemistry, and siRNA library screening. These findings provide strategies to treat and prevent necrosis, including known medicines used for other indications, siRNAs, and establish a platform for the design of new inhibitory molecules. Indeed, inhibitors of these pathways demonstrated protective activity in vitro and in vivo in animal models of traumatic brain injury, acute myocardial infarction, and drug-induced liver toxicity. Consequently, this study may pave the way for the development of novel therapies for the treatment, inhibition, or prevention of a large number of hitherto untreatable diseases.
Collapse
Affiliation(s)
- Boris Khalfin
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Alexandra Lichtenstein
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Amnon Albeck
- The Julius Spokojny Bioorganic Chemistry Laboratory, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Ilana Nathan
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
- Soroka University Medical Center, Beer Sheva 8457108, Israel
| |
Collapse
|
8
|
Batista LFS, Torrecilha RBP, Silva RB, Utsunomiya YT, Silva TBF, Tomokane TY, Pacheco AD, Bosco AM, Paulan SC, Rossi CN, Costa GNO, Marcondes M, Ciarlini PC, Nunes CM, Matta VLR, Laurenti MD. Chromosomal segments may explain the antibody response cooperation for canine leishmaniasis pathogenesis. Vet Parasitol 2020; 288:109276. [PMID: 33152678 DOI: 10.1016/j.vetpar.2020.109276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/22/2022]
Abstract
Visceral leishmaniasis (VL) is marked by hyperactivation of a humoral response secreting high quantity of immunoglobulins (Igs) that are inaccessible to intracellular parasites. Here we investigated the contributions of the antibody response to the canine leishmaniasis pathogenesis. Using correlation and genome-wide association analysis, we investigated the relationship of anti-Leishmania infantum immunoglobulin classes levels with parasite burden, clinical response, renal/hepatic biochemical, and oxidative stress markers in dogs from endemic areas of VL. Immunoglobulin G (IgG) and IgA were positively correlated with parasite burden on lymph node and blood. Increased IgG, IgA and IgE levels were associated with severe canine leishmaniasis (CanL) whereas IgM was elevated in uninfected exposed dogs. Correlations of IgM, IgG and IgA with creatinine, urea, AST and ALT levels in the serum were suggested an involvement of those Igs with renal and hepatic changes. The correlogram of oxidative radicals and antioxidants revealed a likely relationship of IgM, IgG and IgA with oxidative stress and lipid peroxidation in the blood, suggested as mechanisms mediating tissue damage and CanL worsening. The gene mapping on chromosomal segments associated with the quantitative variation of immunoglobulin classes identified genetic signatures involved with reactive oxygen species generation, phagolysosome maturation and rupture, free iron availability, Th1/Th2 differenciation and, immunoglobulin clearance. The findings demonstrated the roles of the antibody response as resistance or susceptibility markers and mediators of CanL pathogenesis. In addition we pinpointed candidate genes as potential targets for the therapy against the damage caused by exacerbated antibody response and parasitism in VL.
Collapse
Affiliation(s)
- Luís F S Batista
- Laboratório De Patologia De Doenças Infecciosas, Faculdade De Medicina, Universidade De São Paulo, São Paulo, CEP: 01246903, Brazil.
| | - Rafaela B P Torrecilha
- Departamento De Medicina Veterinária Preventiva e Reprodução Animal, Faculdade De Ciências Agrárias e Veterinárias, Univ Estadual Paulista, Jaboticabal, São Paulo, CEP: 14884-900, Brazil.
| | - Rafaela B Silva
- Escola de Saúde, Universidade Salvador, Salvador, Bahia, CEP: 41720-200, Brazil.
| | - Yuri T Utsunomiya
- Departamento de Apoio, Produção e Saúde Animal, Faculdade de Medicina Veterinária de Araçatuba, Univ Estadual Paulista, Araçatuba, São Paulo, CEP: 16015-050, Brazil.
| | - Thaís B F Silva
- Laboratório De Patologia De Doenças Infecciosas, Faculdade De Medicina, Universidade De São Paulo, São Paulo, CEP: 01246903, Brazil.
| | - Thaíse Y Tomokane
- Laboratório De Patologia De Doenças Infecciosas, Faculdade De Medicina, Universidade De São Paulo, São Paulo, CEP: 01246903, Brazil.
| | - Acácio D Pacheco
- Departamento de Clínica, Cirurgia e Reprodução Animal, Faculdade de Medicina Veterinária, Univ Estadual Paulista, Araçatuba, São Paulo, CEP: 16015-050, Brazil.
| | - Anelise M Bosco
- Departamento de Clínica, Cirurgia e Reprodução Animal, Faculdade de Medicina Veterinária, Univ Estadual Paulista, Araçatuba, São Paulo, CEP: 16015-050, Brazil.
| | - Silvana C Paulan
- Departamento de Apoio, Produção e Saúde Animal, Faculdade de Medicina Veterinária de Araçatuba, Univ Estadual Paulista, Araçatuba, São Paulo, CEP: 16015-050, Brazil.
| | - Claudio N Rossi
- Departamento de Clínica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, CEP 05508-270, Brazil.
| | - Gustavo N O Costa
- Departamento De Medicina Veterinária Preventiva e Reprodução Animal, Faculdade De Ciências Agrárias e Veterinárias, Univ Estadual Paulista, Jaboticabal, São Paulo, CEP: 14884-900, Brazil.
| | - Mary Marcondes
- Departamento de Clínica, Cirurgia e Reprodução Animal, Faculdade de Medicina Veterinária, Univ Estadual Paulista, Araçatuba, São Paulo, CEP: 16015-050, Brazil.
| | - Paulo C Ciarlini
- Departamento de Clínica, Cirurgia e Reprodução Animal, Faculdade de Medicina Veterinária, Univ Estadual Paulista, Araçatuba, São Paulo, CEP: 16015-050, Brazil.
| | - Cáris M Nunes
- Departamento de Apoio, Produção e Saúde Animal, Faculdade de Medicina Veterinária de Araçatuba, Univ Estadual Paulista, Araçatuba, São Paulo, CEP: 16015-050, Brazil.
| | - Vânia L R Matta
- Laboratório De Patologia De Doenças Infecciosas, Faculdade De Medicina, Universidade De São Paulo, São Paulo, CEP: 01246903, Brazil.
| | - Márcia D Laurenti
- Laboratório De Patologia De Doenças Infecciosas, Faculdade De Medicina, Universidade De São Paulo, São Paulo, CEP: 01246903, Brazil.
| |
Collapse
|
9
|
Reithofer M, Karacs J, Strobl J, Kitzmüller C, Polak D, Seif K, Kamalov M, Becker CFW, Greiner G, Schmetterer K, Stary G, Bohle B, Jahn-Schmid B. Alum triggers infiltration of human neutrophils ex vivo and causes lysosomal destabilization and mitochondrial membrane potential-dependent NET-formation. FASEB J 2020; 34:14024-14041. [PMID: 32860638 PMCID: PMC7589265 DOI: 10.1096/fj.202001413r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 01/30/2023]
Abstract
Aluminium salts have been used in vaccines for decades. However, the mechanisms underlying their adjuvant effect are still unclear. Neutrophils, the first immune cells at the injection site, can release cellular DNA together with granular material, so‐called neutrophil extracellular traps (NETs). In mice, NETs apparently play a role in aluminium hydroxide (alum)‐adjuvant immune response to vaccines. Although no experimental data exist, this effect is assumed to be operative also in humans. As a first step to verify this knowledge in humans, we demonstrate that the injection of alum particles into human skin biopsies ex vivo leads to similar tissue infiltration of neutrophils and NET‐formation. Moreover, we characterized the mechanism leading to alum‐induced NET‐release in human neutrophils as rapid, NADPH oxidase‐independent process involving charge, phagocytosis, phagolysosomal rupture, Ca2+‐flux, hyperpolarization of the mitochondrial membrane, and mitochondrial ROS. Extracellular flow and inhibition experiments suggested that no additional energy from oxidative phosphorylation or glycolysis is required for NET‐release. This study suggests a so far unappreciated role for neutrophils in the initial phase of immune responses to alum‐containing vaccines in humans and provides novel insights into bioenergetic requirements of NET‐formation.
Collapse
Affiliation(s)
- Manuel Reithofer
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Jasmine Karacs
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Johanna Strobl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Claudia Kitzmüller
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Dominika Polak
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Katharina Seif
- Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Meder Kamalov
- Institute of Biological Chemistry, Department of Chemistry, University of Vienna, Vienna, Austria
| | - Christian F W Becker
- Institute of Biological Chemistry, Department of Chemistry, University of Vienna, Vienna, Austria
| | - Georg Greiner
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Klaus Schmetterer
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine, Vienna, Austria
| | - Barbara Bohle
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Beatrice Jahn-Schmid
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Tie D, Da X, Natsuga K, Yamada N, Yamamoto O, Morita E. Bullous Pemphigoid IgG Induces Cell Dysfunction and Enhances the Motility of Epidermal Keratinocytes via Rac1/Proteasome Activation. Front Immunol 2019; 10:200. [PMID: 30809225 PMCID: PMC6379344 DOI: 10.3389/fimmu.2019.00200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/23/2019] [Indexed: 02/03/2023] Open
Abstract
Bullous pemphigoid (BP) is an autoimmune disease characterized by the formation of blisters, in which autoantibodies mainly target type XVII collagen (ColXVII) expressed in basal keratinocytes. BP IgG is known to induce the internalization of ColXVII from the plasma membrane of keratinocytes through macropinocytosis. However, the cellular dynamics following ColXVII internalization have not been completely elucidated. BP IgG exerts a precise effect on cultured keratinocytes, and the morphological/functional changes in BP IgG-stimulated cells lead to the subepidermal blistering associated with BP pathogenesis. Based on the electron microscopy examination, BP IgG-stimulated cells exhibit alterations in the cell membrane structure and the accumulation of intracellular vesicles. These morphological changes in the BP IgG-stimulated cells are accompanied by dysfunctional mitochondria, increased production of reactive oxygen species, increased motility, and detachment. BP IgG triggers the cascade leading to metabolic impairments and stimulates cell migration in the treated keratinocytes. These cellular alterations are reversed by pharmacological inhibitors of Rac1 or the proteasome pathway, suggesting that Rac1 and proteasome activation are involved in the effects of BP IgG on cultured keratinocytes. Our study highlights the role of keratinocyte kinetics in the direct functions of IgG in patients with BP.
Collapse
Affiliation(s)
- Duerna Tie
- Department of Dermatology, Shimane University Faculty of Medicine, Izumo, Japan
| | - Xia Da
- Department of Dermatology, Shimane University Faculty of Medicine, Izumo, Japan
| | - Ken Natsuga
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Nanako Yamada
- Division of Dermatology, Department of Medicine of Sensory and Motor Organs, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Osamu Yamamoto
- Division of Dermatology, Department of Medicine of Sensory and Motor Organs, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Eishin Morita
- Department of Dermatology, Shimane University Faculty of Medicine, Izumo, Japan,*Correspondence: Eishin Morita
| |
Collapse
|
11
|
Shu F, Shi Y. Systematic Overview of Solid Particles and Their Host Responses. Front Immunol 2018; 9:1157. [PMID: 29892295 PMCID: PMC5985299 DOI: 10.3389/fimmu.2018.01157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/08/2018] [Indexed: 12/17/2022] Open
Abstract
Crystalline/particulate substances trigger a plethora of signaling events in host cells. The most prominent consequence is the inflammatory reactions that underlie crystal arthropathies, such as gout and pseudogout. However, their impact on our health was underestimated. Recent work on the role of cholesterol crystal in the development of atherosclerosis and the harm of environmental particulates has set up new frontiers in our defense against their detrimental effects. On the other hand, in the last 100 years, crystalline/particulate substances have been used with increasing frequencies in our daily lives as a part of new industrial manufacturing and engineering. Importantly, they have become a tool in modern medicine, used as vaccine adjuvants and drug delivery vehicles. Their biological effects are also being dissected in great detail, particularly with regard to their inflammatory signaling pathways. Solid structure interaction with host cells is far from being uniform, with outcomes dependent on cell types and chemical/physical properties of the particles involved. In this review, we offer a systematic and broad outlook of this landscape and a sage analysis of the complex nature of this topic.
Collapse
Affiliation(s)
- Fei Shu
- Department of Basic Medical Sciences, Institute for Immunology, Center for Life Sciences, Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Peking University, Beijing, China
| | - Yan Shi
- Department of Basic Medical Sciences, Institute for Immunology, Center for Life Sciences, Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
12
|
Ogasawara S, Cheng XW, Inoue A, Hu L, Piao L, Yu C, Goto H, Xu W, Zhao G, Lei Y, Yang G, Kimura K, Umegaki H, Shi GP, Kuzuya M. Cathepsin K activity controls cardiotoxin-induced skeletal muscle repair in mice. J Cachexia Sarcopenia Muscle 2018; 9:160-175. [PMID: 29058826 PMCID: PMC5803616 DOI: 10.1002/jcsm.12248] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/30/2017] [Accepted: 09/05/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Cathepsin K (CatK) is a widely expressed cysteine protease that has gained attention because of its enzymatic and non-enzymatic functions in signalling. Here, we examined whether CatK-deficiency (CatK-/- ) would mitigate injury-related skeletal muscle remodelling and fibrosis in mice, with a special focus on inflammation and muscle cell apoptosis. METHODS Cardiotoxin (CTX, 20 μM/200 μL) was injected into the left gastrocnemius muscle of male wild-type (CatK+/+ ) and CatK-/- mice, and the mice were processed for morphological and biochemical studies. RESULTS On post-injection Day 14, CatK deletion ameliorated muscle interstitial fibrosis and remodelling and performance. At an early time point (Day 3), CatK-/- reduced the lesion macrophage and leucocyte contents and cell apoptosis, the mRNA levels of monocyte chemoattractant protein-1, toll-like receptor-2 and toll-like receptor-4, and the gelatinolytic activity related to matrix metalloproteinase-2/-9. CatK deletion also restored the protein levels of caspase-3 and cleaved caspase-8 and the ratio of the BAX to the Bcl-2. Moreover, CatK deficiency protected muscle fibre laminin and desmin disorder in response to CTX injury. These beneficial muscle effects were mimicked by CatK-specific inhibitor treatment. In vitro experiments demonstrated that pharmacological CatK inhibition reduced the apoptosis of C2C12 mouse myoblasts and the levels of BAX and caspase-3 proteins induced by CTX. CONCLUSIONS These results demonstrate that CatK plays an essential role in skeletal muscle loss and fibrosis in response to CTX injury, possibly via a reduction of inflammation and cell apoptosis, suggesting a novel therapeutic strategy for the control of skeletal muscle diseases by regulating CatK activity.
Collapse
Affiliation(s)
- Shinyu Ogasawara
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan
| | - Xian Wu Cheng
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan.,Institute of Innovation for Future Society, Nagoya University, Nagoya, 464-0814, Aichiken, Japan.,Department of Cardiology and ICU, Yanbian University Hospital, Yanji, 133000, Jilin, China.,Department of Internal Medicine, Kyung Hee University, Seoul, 130-702, Korea
| | - Aiko Inoue
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan.,Institute of Innovation for Future Society, Nagoya University, Nagoya, 464-0814, Aichiken, Japan
| | - Lina Hu
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan.,Department of Public Health, Guilin Medical College, Guilin, 541004, Guangxi, China
| | - Limei Piao
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan.,Department of Cardiology and ICU, Yanbian University Hospital, Yanji, 133000, Jilin, China
| | - Chenglin Yu
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan.,Department of Cardiology and ICU, Yanbian University Hospital, Yanji, 133000, Jilin, China
| | - Hiroki Goto
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan
| | - Wenhu Xu
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan.,Department of Cardiology and ICU, Yanbian University Hospital, Yanji, 133000, Jilin, China
| | - Guangxian Zhao
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan.,Department of Cardiology and ICU, Yanbian University Hospital, Yanji, 133000, Jilin, China
| | - Yanna Lei
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan.,Department of Cardiology and ICU, Yanbian University Hospital, Yanji, 133000, Jilin, China
| | - Guang Yang
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan.,Department of Cardiology and ICU, Yanbian University Hospital, Yanji, 133000, Jilin, China
| | - Kaoru Kimura
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan
| | - Hiroyuki Umegaki
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 20115, USA
| | - Masafumi Kuzuya
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan.,Institute of Innovation for Future Society, Nagoya University, Nagoya, 464-0814, Aichiken, Japan
| |
Collapse
|
13
|
Al-Akra L, Bae DH, Sahni S, Huang MLH, Park KC, Lane DJR, Jansson PJ, Richardson DR. Tumor stressors induce two mechanisms of intracellular P-glycoprotein-mediated resistance that are overcome by lysosomal-targeted thiosemicarbazones. J Biol Chem 2018; 293:3562-3587. [PMID: 29305422 DOI: 10.1074/jbc.m116.772699] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 11/12/2017] [Indexed: 11/06/2022] Open
Abstract
Multidrug resistance (MDR) is a major obstacle in cancer treatment due to the ability of tumor cells to efflux chemotherapeutics via drug transporters (e.g. P-glycoprotein (Pgp; ABCB1)). Although the mechanism of Pgp-mediated drug efflux is known at the plasma membrane, the functional role of intracellular Pgp is unclear. Moreover, there has been intense focus on the tumor micro-environment as a target for cancer treatment. This investigation aimed to dissect the effects of tumor micro-environmental stress on subcellular Pgp expression, localization, and its role in MDR. These studies demonstrated that tumor micro-environment stressors (i.e. nutrient starvation, low glucose levels, reactive oxygen species, and hypoxia) induce Pgp-mediated drug resistance. This occurred by two mechanisms, where stressors induced 1) rapid Pgp internalization and redistribution via intracellular trafficking (within 1 h) and 2) hypoxia-inducible factor-1α expression after longer incubations (4-24 h), which up-regulated Pgp and was accompanied by lysosomal biogenesis. These two mechanisms increased lysosomal Pgp and facilitated lysosomal accumulation of the Pgp substrate, doxorubicin, resulting in resistance. This was consistent with lysosomal Pgp being capable of transporting substrates into lysosomes. Hence, tumor micro-environmental stressors result in: 1) Pgp redistribution to lysosomes; 2) increased Pgp expression; 3) lysosomal biogenesis; and 4) potentiation of Pgp substrate transport into lysosomes. In contrast to doxorubicin, when stress stimuli increased lysosomal accumulation of the cytotoxic Pgp substrate, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), this resulted in the agent overcoming resistance. Overall, this investigation describes a novel approach to overcoming resistance in the stressful tumor micro-environment.
Collapse
Affiliation(s)
- Lina Al-Akra
- From the Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales 2006, Australia
| | - Dong-Hun Bae
- From the Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales 2006, Australia
| | - Sumit Sahni
- From the Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales 2006, Australia
| | - Michael L H Huang
- From the Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales 2006, Australia
| | - Kyung Chan Park
- From the Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales 2006, Australia
| | - Darius J R Lane
- From the Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales 2006, Australia
| | - Patric J Jansson
- From the Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales 2006, Australia
| | - Des R Richardson
- From the Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
14
|
Otero MG, Bessone IF, Hallberg AE, Cromberg LE, De Rossi MC, Saez TM, Levi V, Almenar-Queralt A, Falzone TL. Proteasome stress leads to APP axonal transport defects by promoting its amyloidogenic processing in lysosomes. J Cell Sci 2018; 131:jcs.214536. [DOI: 10.1242/jcs.214536] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 04/25/2018] [Indexed: 01/25/2023] Open
Abstract
Alzheimer Disease (AD) pathology includes the accumulation of poly-ubiquitinated proteins and failures in proteasome-dependent degradation. Whereas the distribution of proteasomes and its role in synaptic function have been studied, whether proteasome activity regulates the axonal transport and metabolism of the amyloid precursor protein (APP), remains elusive. Using live imaging in primary hippocampal neurons, we showed that proteasome inhibition rapidly and severely impairs the axonal transport of APP. Fluorescent cross-correlation analyses and membrane internalization blockage showed that plasma membrane APP do not contribute to transport defects. Moreover, by western blots and double-color APP imaging we demonstrated that proteasome inhibition precludes APP axonal transport by enhancing its endo-lysosomal delivery where β-cleavage is induced. Together, we found that proteasomes controls the distal transport of APP and can re-distribute Golgi-derived vesicles to the endo-lysosomal pathway. This crosstalk between proteasomes and lysosomes regulates APP intracellular dynamics, and defects in proteasome activity can be considered a contributing factor that lead to abnormal APP metabolism in AD.
Collapse
Affiliation(s)
- María Gabriela Otero
- Instituto de Biología Celular y Neurociencias, IBCN (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires. Paraguay 2155, Buenos Aires, CP1121, Argentina
| | - Ivan Fernandez Bessone
- Instituto de Biología Celular y Neurociencias, IBCN (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires. Paraguay 2155, Buenos Aires, CP1121, Argentina
| | - Alan Earle Hallberg
- Instituto de Biología Celular y Neurociencias, IBCN (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires. Paraguay 2155, Buenos Aires, CP1121, Argentina
| | - Lucas Eneas Cromberg
- Instituto de Biología Celular y Neurociencias, IBCN (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires. Paraguay 2155, Buenos Aires, CP1121, Argentina
| | - María Cecilia De Rossi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica-IQUIBICEN UBA-CONICET, CP1428EGA, Argentina
| | - Trinidad M. Saez
- Instituto de Biología Celular y Neurociencias, IBCN (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires. Paraguay 2155, Buenos Aires, CP1121, Argentina
- Instituto de Biología y Medicina Experimental, IBYME (CONICET). Vuelta de obligado 2490, Buenos Aires, CP 1428, Argentina
| | - Valeria Levi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica-IQUIBICEN UBA-CONICET, CP1428EGA, Argentina
| | - Angels Almenar-Queralt
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Tomás Luis Falzone
- Instituto de Biología Celular y Neurociencias, IBCN (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires. Paraguay 2155, Buenos Aires, CP1121, Argentina
- Instituto de Biología y Medicina Experimental, IBYME (CONICET). Vuelta de obligado 2490, Buenos Aires, CP 1428, Argentina
| |
Collapse
|
15
|
Biphasic ROS production, p53 and BIK dictate the mode of cell death in response to DNA damage in colon cancer cells. PLoS One 2017; 12:e0182809. [PMID: 28796811 PMCID: PMC5552129 DOI: 10.1371/journal.pone.0182809] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/31/2017] [Indexed: 01/08/2023] Open
Abstract
Necrosis, apoptosis and autophagic cell death are the main cell death pathways in multicellular organisms, all with distinct and overlapping cellular and biochemical features. DNA damage may trigger different types of cell death in cancer cells but the molecular events governing the mode of cell death remain elusive. Here we showed that increased BH3-only protein BIK levels promoted cisplatin- and UV-induced mitochondrial apoptosis and biphasic ROS production in HCT-116 wild-type cells. Nonetheless, early single peak of ROS formation along with lysosomal membrane permeabilization and cathepsin activation regulated cisplatin- and UV-induced necrosis in p53-null HCT-116 cells. Of note, necrotic cell death in p53-null HCT-116 cells did not depend on BIK, mitochondrial outer membrane permeabilization or caspase activation. These data demonstrate how cancer cells with different p53 background respond to DNA-damaging agents by integrating distinct cell signaling pathways dictating the mode of cell death.
Collapse
|
16
|
Orlowski GM, Sharma S, Colbert JD, Bogyo M, Robertson SA, Kataoka H, Chan FK, Rock KL. Frontline Science: Multiple cathepsins promote inflammasome-independent, particle-induced cell death during NLRP3-dependent IL-1β activation. J Leukoc Biol 2017; 102:7-17. [PMID: 28087651 PMCID: PMC6608057 DOI: 10.1189/jlb.3hi0316-152r] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 11/28/2016] [Accepted: 12/05/2016] [Indexed: 12/21/2022] Open
Abstract
Sterile particles cause several chronic, inflammatory diseases, characterized by repeating cycles of particle phagocytosis and inflammatory cell death. Recent studies have proposed that these processes are driven by the NLRP3 inflammasome, a platform activated by phagocytosed particles, which controls both caspase-1-dependent cell death (pyroptosis) and mature IL-1β secretion. After phagocytosis, particles can disrupt lysosomes, and inhibitor studies have suggested that the resulting release of a lysosomal protease-cathepsin B-into the cytosol somehow activates NLRP3. However, using primary murine macrophages, we found that particle-induced cell death occurs independent of NLRP3/caspase-1 and depends instead on multiple, redundant cathepsins. In contrast, nigericin, a soluble activator of NLRP3 inflammasomes, induced cell death that was dependent on the NLRP3. Interestingly, nigericin-induced cell death depended partly on a single cathepsin, cathepsin X. By inhibiting or silencing multiple cathepsins in macrophages, several key proinflammatory events induced by sterile particles are blocked, including cell death, pro-IL-1β production, and IL-1β secretion. These data suggest that cathepsins might be potential therapeutic targets in particulate-mediated inflammatory disease. In support of this concept, we find that a broad-spectrum cathepsin inhibitor can suppress particle-induced IL-1-dependent peritonitis.
Collapse
Affiliation(s)
- Gregory M Orlowski
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Shruti Sharma
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jeff D Colbert
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA; and
| | - Stephanie A Robertson
- Sandler Center for Drug Discovery, University of California, San Francisco, California, USA
| | - Hiroshi Kataoka
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Francis K Chan
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Kenneth L Rock
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA;
| |
Collapse
|
17
|
Jessop F, Hamilton RF, Rhoderick JF, Fletcher P, Holian A. Phagolysosome acidification is required for silica and engineered nanoparticle-induced lysosome membrane permeabilization and resultant NLRP3 inflammasome activity. Toxicol Appl Pharmacol 2017; 318:58-68. [PMID: 28126413 DOI: 10.1016/j.taap.2017.01.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/19/2017] [Accepted: 01/22/2017] [Indexed: 01/03/2023]
Abstract
NLRP3 inflammasome activation occurs in response to hazardous particle exposures and is critical for the development of particle-induced lung disease. Mechanisms of Lysosome Membrane Permeabilization (LMP), a central pathway for activation of the NLRP3 inflammasome by inhaled particles, are not fully understood. We demonstrate that the lysosomal vATPases inhibitor Bafilomycin A1 blocked LMP in vitro and ex vivo in primary murine macrophages following exposure to silica, multi-walled carbon nanotubes, and titanium nanobelts. Bafilomycin A1 treatment of particle-exposed macrophages also resulted in decreased active cathepsin L in the cytosol, a surrogate measure for leaked cathepsin B, which was associated with less NLRP3 inflammasome activity. Silica-induced LMP was partially dependent upon lysosomal cathepsins B and L, whereas nanoparticle-induced LMP occurred independent of cathepsin activity. Furthermore, inhibition of lysosomal cathepsin activity with CA-074-Me decreased the release of High Mobility Group Box 1. Together, these data support the notion that lysosome acidification is a prerequisite for particle-induced LMP, and the resultant leak of lysosome cathepsins is a primary regulator of ongoing NLRP3 inflammasome activity and release of HMGB1.
Collapse
Affiliation(s)
- Forrest Jessop
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
| | - Raymond F Hamilton
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
| | - Joseph F Rhoderick
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
| | - Paige Fletcher
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
| | - Andrij Holian
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States.
| |
Collapse
|
18
|
Bunderson-Schelvan M, Holian A, Hamilton RF. Engineered nanomaterial-induced lysosomal membrane permeabilization and anti-cathepsin agents. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2017; 20:230-248. [PMID: 28632040 PMCID: PMC6127079 DOI: 10.1080/10937404.2017.1305924] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Engineered nanomaterials (ENMs), or small anthropogenic particles approximately < 100 nm in size and of various shapes and compositions, are increasingly incorporated into commercial products and used for industrial and medical purposes. There is an exposure risk to both the population at large and individuals in the workplace with inhalation exposures to ENMs being a primary concern. Further, there is increasing evidence to suggest that certain ENMs may represent a significant health risk, and many of these ENMs exhibit distinct similarities with other particles and fibers that are known to induce adverse health effects, such as asbestos, silica, and particulate matter (PM). Evidence regarding the importance of lysosomal membrane permeabilization (LMP) and release of cathepsins in ENM toxicity has been accumulating. The aim of this review was to describe our current understanding of the mechanisms leading to ENM-associated pathologies, including LMP and the role of cathepsins with a focus on inflammation. In addition, anti-cathepsin agents, some of which have been tested in clinical trials and may prove useful for ameliorating the harmful effects of ENM exposure, are examined.
Collapse
Affiliation(s)
| | - Andrij Holian
- Center for Environmental Health Sciences, University of Montana, Missoula, MT 59812, USA
| | - Raymond F. Hamilton
- Center for Environmental Health Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
19
|
Proteasome inhibitor MG132 impairs autophagic flux through compromising formation of autophagosomes in Bombyx cells. Biochem Biophys Res Commun 2016; 479:690-696. [DOI: 10.1016/j.bbrc.2016.09.151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 09/28/2016] [Indexed: 01/01/2023]
|
20
|
58-F, a flavanone from Ophiopogon japonicus, prevents hepatocyte death by decreasing lysosomal membrane permeability. Sci Rep 2016; 6:27875. [PMID: 27306715 PMCID: PMC4910050 DOI: 10.1038/srep27875] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 05/26/2016] [Indexed: 12/13/2022] Open
Abstract
Lysosome membrane permeabilization (LMP) has been implicated in cell death. In the present study, we investigated the relationship between cell death and H2O2-/CCl4-induced LMP in hepatocytes in vitro and following acute liver injury in vivo. The key finding was that H2O2 triggered LMP by oxidative stress, as evidenced by a suppression of LAMP1 expression, a reduction in LysoTracker Green and AO staining, and the leakage of proton and cathepsin B/D from the lysosome to the cytoplasm, resulting in cell death. CCl4 also triggered hepatocyte death by decreasing lysosome LAMP1 expression and by inducing the accumulation of products of peroxidative lipids and oxidized proteins. Furthermore, a novel compound 5,8-dimethoxy-6-methyl-7-hydroxy-3-3(2-hydroxy-4-methoxybenzyl) chroman-4-one (58-F) was extracted from Ophiopogon japonicus and served as a potential therapeutic drug. In vivo and in vitro results showed that 58-F effectively rescued hepatocytes by decreasing LMP and by inducing lysosomal enzyme translocation to the cytosol.
Collapse
|
21
|
Katsnelson MA, Lozada-Soto KM, Russo HM, Miller BA, Dubyak GR. NLRP3 inflammasome signaling is activated by low-level lysosome disruption but inhibited by extensive lysosome disruption: roles for K+ efflux and Ca2+ influx. Am J Physiol Cell Physiol 2016; 311:C83-C100. [PMID: 27170638 DOI: 10.1152/ajpcell.00298.2015] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 05/05/2016] [Indexed: 12/28/2022]
Abstract
Nucleotide-binding domain, leucine-rich-repeat-containing family, pyrin domain-containing 3 (NLRP3) is a cytosolic protein that nucleates assembly of inflammasome signaling platforms, which facilitate caspase-1-mediated IL-1β release and other inflammatory responses in myeloid leukocytes. NLRP3 inflammasomes are assembled in response to multiple pathogen- or environmental stress-induced changes in basic cell physiology, including the destabilization of lysosome integrity and activation of K(+)-permeable channels/transporters in the plasma membrane (PM). However, the quantitative relationships between lysosome membrane permeabilization (LMP), induction of increased PM K(+) permeability, and activation of NLRP3 signaling are incompletely characterized. We used Leu-Leu-O-methyl ester (LLME), a soluble lysosomotropic agent, to quantitatively track the kinetics and extent of LMP in relation to NLRP3 inflammasome signaling responses (ASC oligomerization, caspase-1 activation, IL-1β release) and PM cation fluxes in murine bone marrow-derived dendritic cells (BMDCs). Treatment of BMDCs with submillimolar (≤1 mM) LLME induced slower and partial increases in LMP that correlated with robust NLRP3 inflammasome activation and K(+) efflux. In contrast, supramillimolar (≥2 mM) LLME elicited extremely rapid and complete collapse of lysosome integrity that was correlated with suppression of inflammasome signaling. Supramillimolar LLME also induced dominant negative effects on inflammasome activation by the canonical NLRP3 agonist nigericin; this inhibition correlated with an increase in NLRP3 ubiquitination. LMP elicited rapid BMDC death by both inflammasome-dependent pyroptosis and inflammasome-independent necrosis. LMP also triggered Ca(2+) influx, which attenuated LLME-stimulated NLRP3 inflammasome signaling but potentiated LLME-induced necrosis. Taken together, these studies reveal a previously unappreciated signaling network that defines the coupling between LMP, changes in PM cation fluxes, cell death, and NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Michael A Katsnelson
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Kristen M Lozada-Soto
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Hana M Russo
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Barbara A Miller
- Department of Pediatrics, Penn State Hershey Children's Hospital, Hershey, Pennsylvania
| | - George R Dubyak
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio; Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio;
| |
Collapse
|
22
|
Orlowski GM, Colbert JD, Sharma S, Bogyo M, Robertson SA, Rock KL. Multiple Cathepsins Promote Pro-IL-1β Synthesis and NLRP3-Mediated IL-1β Activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:1685-97. [PMID: 26195813 PMCID: PMC4530060 DOI: 10.4049/jimmunol.1500509] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/02/2015] [Indexed: 12/15/2022]
Abstract
Sterile particles induce robust inflammatory responses that underlie the pathogenesis of diseases like silicosis, gout, and atherosclerosis. A key cytokine mediating this response is IL-1β. The generation of bioactive IL-1β by sterile particles is mediated by the NOD-like receptor containing a pyrin domain 3 (NLRP3) inflammasome, although exactly how this occurs is incompletely resolved. Prior studies have found that the cathepsin B inhibitor, Ca074Me, suppresses this response, supporting a model whereby ingested particles disrupt lysosomes and release cathepsin B into the cytosol, somehow activating NLRP3. However, reports that cathepsin B-deficient macrophages have no defect in particle-induced IL-1β generation have questioned cathepsin B's involvement. In this study, we examine the hypothesis that multiple redundant cathepsins (not just cathepsin B) mediate this process by evaluating IL-1β generation in murine macrophages, singly or multiply deficient in cathepsins B, L, C, S and X. Using an activity-based probe, we measure specific cathepsin activity in living cells, documenting compensatory changes in cathepsin-deficient cells, and Ca074Me's dose-dependent cathepsin inhibition profile is analyzed in parallel with its suppression of particle-induced IL-1β secretion. Also, we evaluate endogenous cathepsin inhibitors cystatins C and B. Surprisingly, we find that multiple redundant cathepsins, inhibited by Ca074Me and cystatins, promote pro-IL-1β synthesis, and to our knowledge, we provide the first evidence that cathepsin X plays a nonredundant role in nonparticulate NLRP3 activation. Finally, we find cathepsin inhibitors selectively block particle-induced NLRP3 activation, independently of suppressing pro-IL-1β synthesis. Altogether, we demonstrate that both small molecule and endogenous cathepsin inhibitors suppress particle-induced IL-1β secretion, implicating roles for multiple cathepsins in both pro-IL-1β synthesis and NLRP3 activation.
Collapse
Affiliation(s)
- Gregory M Orlowski
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Jeff D Colbert
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Shruti Sharma
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305; and
| | - Stephanie A Robertson
- Sandler Center for Drug Discovery, University of California, San Francisco, San Francisco, CA 94158
| | - Kenneth L Rock
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655;
| |
Collapse
|