1
|
Kaushik A, Rana N, Ashawat MS, Ankalgi A, Sharma A. Alternatives to β-Lactams as Agents for the Management of Dentoalveolar Abscess. Curr Top Med Chem 2024; 24:1870-1882. [PMID: 38840393 DOI: 10.2174/0115680266289334240530104637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/25/2024] [Accepted: 05/04/2024] [Indexed: 06/07/2024]
Abstract
Dentoalveolar abscess are localized infections within the tooth or the surrounding alveolar bone, often resulting from untreated dental caries or dental trauma causing alveolar bone resorption or even loss. Serious consequences arising from the spread of a dental abscess can often lead to significant morbidity and mortality. The acute dentoalveolar abscess is a polymicrobial infection comprising strict anaerobes, such as anaerobic cocci i.e., Prevotella fusobacterium species, and facultative anaerobes i.e., Streptococci viridians and Streptococcus anginosus. Moreover, inappropriately managed dental infections can progress to severe submandibular space infections with associated serious complications, such as sepsis and airway obstruction. An audit of the Hull Royal Infirmary between 1999 and 2004 showed an increase in the number of patients presenting to oral and maxillofacial surgery services with dental sepsis. Thus, the scientific community is forced to focus on treatment strategies for the management of dentoalveolar abscess (DAA) and other related dental problems. The current treatment includes antibiotic therapy, including β-lactams and non-β- lactams drugs, but it leads to the development of resistant microorganisms due to improper and wide usage. Furthermore, the currently used β-lactam therapeutics is non-specific and easily hydrolyzed by the β-lactamase enzymes. Thus, the research focused on the non-β-lactams that can be the potential pharmacophore and helpful in the management of DAA, as the appropriate use and choice of antibiotics in dentistry plays an important role in antibiotic stewardship. The newer target for the choice is NLRP inflammasome, which is the major chemical mediator involved in dental problems. This review focused on pathogenesis and current therapeutics for the treatment of dentoalveolar abscesses.
Collapse
Affiliation(s)
- Aditi Kaushik
- Department of Pharmaceutical Sciences, Laureate Institute of Pharmacy, Kathog, Kangra, H.P, India
| | - Nidhika Rana
- Department of Pharmaceutical Sciences, Laureate Institute of Pharmacy, Kathog, Kangra, H.P, India
| | - Mahendra Singh Ashawat
- Department of Pharmaceutical Sciences, Laureate Institute of Pharmacy, Kathog, Kangra, H.P, India
| | - Amardeep Ankalgi
- Department of Pharmaceutical Sciences, Laureate Institute of Pharmacy, Kathog, Kangra, H.P, India
| | - Ankit Sharma
- Department of Pharmaceutical Sciences, Laureate Institute of Pharmacy, Kathog, Kangra, H.P, India
| |
Collapse
|
2
|
Zhao Y, Quan Y, Lei T, Fan L, Ge X, Hu S. The Role of Inflammasome NLPR3 in the Development and Therapy of Periodontitis. Int J Med Sci 2022; 19:1603-1614. [PMID: 36185327 PMCID: PMC9515687 DOI: 10.7150/ijms.74575] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/07/2022] [Indexed: 11/05/2022] Open
Abstract
Periodontitis is a chronic inflammatory disease that affects tooth-supporting tissues and even leads to tooth loss. NLRP3 inflammasomes play a critical role in periodontitis pathogenesis. Aberrant activation or overexpression of NLRP3 inflammasomes in cellular players, including osteoclasts, osteoblasts, periodontal ligament fibroblasts, and leukocytes often contributes to cellular dysfunction and environment abnormality, thus resulting in the disorganization of ligament and alveolar bone. In this review, we mainly focus on the negative regulation of NLRP3 inflammasome in periodontitis and highlight the importance of NLRP3 inflammasome as a candidate therapeutic target in periodontitis treatment. Then we elucidate the development status of NLRP3 inflammasome inhibitors and show their application potential for treating periodontitis. In summary, this review reveals the recent progress and perspectives of NLRP3 inflammasome and the therapeutic potential of NLRP3 inflammasome inhibitors in periodontitis.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Anesthesiology & Perioperative Medicine, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi 710100, China
| | - Yue Quan
- Department of Stomatology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi 710100, China
| | - Ting Lei
- Department of Anesthesiology & Perioperative Medicine, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi 710100, China
| | - Liumeizi Fan
- Department of Anesthesiology & Perioperative Medicine, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi 710100, China
| | - Xin Ge
- Department of Stomatology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi 710100, China
| | - Sheng Hu
- Department of Anesthesiology & Perioperative Medicine, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi 710100, China
| |
Collapse
|
3
|
Zhan C, Bai N, Zheng M, Wang Y, Wang Y, Zhang L, Li J, Li G, Zhao H, Liu G, Lou Q, Yang W, Li T, Li L, Li W. Tranilast prevents doxorubicin-induced myocardial hypertrophy and angiotensin II synthesis in rats. Life Sci 2020; 267:118984. [PMID: 33383049 DOI: 10.1016/j.lfs.2020.118984] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/13/2020] [Accepted: 12/19/2020] [Indexed: 02/08/2023]
Abstract
An increase in oxidative stress is an important pathological mechanism of heart injury induced by doxorubicin (DOX). Tranilast is an anti-allergy drug that has been shown to possess good antioxidant activity in previous studies. The overexpression and secretion of chymase by mast cells (MCs) increase the pathological overexpression of angiotensin II (Ang II), which plays a crucial role in myocardial hypertrophy and the deterioration of heart disease. The MC stabilizer tranilast (N-(3,4-dimethoxycinnamoyl) anthranilic acid; tran) prevents mast cells from degranulating, which may reduce DOX-induced Ang II synthesis. Therefore, in the present study, we hypothesized that tranilast will protect rats from DOX-induced myocardial damage via its antioxidant activity, thereby inhibiting Ang II expression. Thirty male Wistar rats were divided into three groups (n = 10 in each group) that received DOX, a combination of DOX and tranilast or saline (the control group) to test this hypothesis. Tranilast suppressed chymase expression, reduced Ang II levels and prevented the myocardial hypertrophy and the deterioration of heart function induced by DOX. Based on the findings of the present study, the suppression of chymase-dependent Ang-II production and the direct effect of tranilast on the inhibition of apoptosis and fibrosis because of its antioxidant stress capacity may contribute to the protective effect of tranilast against DOX-induced myocardial hypertrophy.
Collapse
Affiliation(s)
- Chengchuang Zhan
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Nan Bai
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Min Zheng
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yanyan Wang
- Department of Digestion, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453000, China
| | - Yuanqi Wang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Li Zhang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Jianqiang Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Guangnan Li
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Hongyan Zhao
- Department of Cardiology, The People's Hospital of Liaoning Province, Shenyang 110015, China
| | - Guangzhong Liu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Qi Lou
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Wen Yang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Tiankai Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Luyifei Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Weimin Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| |
Collapse
|
4
|
Nakashima T, Nagano S, Setoguchi T, Sasaki H, Saitoh Y, Maeda S, Komiya S, Taniguchi N. Tranilast enhances the effect of anticancer agents in osteosarcoma. Oncol Rep 2019; 42:176-188. [PMID: 31059083 PMCID: PMC6549073 DOI: 10.3892/or.2019.7150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 04/19/2019] [Indexed: 02/07/2023] Open
Abstract
Tranilast [N-(3′,4′-dimethoxycinnamoyl)-anthranilic acid], initially developed as an antiallergic drug, also exhibits a growth inhibitory effect on various types of cancer. Osteosarcoma is treated mainly with high-dose methotrexate, doxorubicin, cisplatin and ifosfamide; however, 20–30 % of patients cannot be cured of metastatic disease. We investigated whether tranilast enhances the anticancer effects of chemotherapeutic drugs and analyzed its mechanism of action in osteosarcomas. Tranilast inhibited proliferation of HOS, 143B, U2OS and MG-63 osteosarcoma cells in a dose-dependent manner, as well as enhancing the effects of cisplatin and doxorubicin. The average combination index at effect levels for tranilast in combination with cisplatin was 0.57 in HOS, 0.4 in 143B, 0.39 in U2OS and 0.51 in MG-63 cells. Tranilast and cisplatin synergistically inhibited the viability of osteosarcoma cells. In flow cytometric analysis, although tranilast alone did not induce significant apoptosis, the combination of tranilast and cisplatin induced early and late apoptotic cell death. Expression of cleaved caspase-3, cleaved poly(ADP-ribose) polymerase and p-H2AX was enhanced by tranilast in combination with cisplatin. Tranilast alone increased expression of p21 and Bim protein in a dose-dependent manner. Cell cycle analysis using flow cytometry demonstrated that the combination of tranilast and cisplatin increased the number of cells in the G2/M phase. Compared with cisplatin alone, the combination increased levels of phospho-cyclin-dependent kinase 1 (Y15). In the 143B xenograft model, tumor growth was significantly inhibited by combined tranilast and cisplatin compared with the controls, whereas cisplatin alone did not significantly inhibit tumor growth. In conclusion, tranilast has a cytostatic effect on osteosarcoma cells and enhances the effect of anticancer drugs, especially cisplatin. Enhanced sensitivity to cisplatin was mediated by increased apoptosis through G2/M arrest. Since tranilast has been clinically approved and has few adverse effects, clinical trials of osteosarcoma chemotherapy in combination with tranilast are expected.
Collapse
Affiliation(s)
- Takayuki Nakashima
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890‑8520, Japan
| | - Satoshi Nagano
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890‑8520, Japan
| | - Takao Setoguchi
- Department of Medical Joint Materials, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890‑8520, Japan
| | - Hiromi Sasaki
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890‑8520, Japan
| | - Yoshinobu Saitoh
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890‑8520, Japan
| | - Shingo Maeda
- Department of Medical Joint Materials, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890‑8520, Japan
| | - Setsuro Komiya
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890‑8520, Japan
| | - Noboru Taniguchi
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890‑8520, Japan
| |
Collapse
|
5
|
Han SH, Suh HS, Jo H, Oh Y, Mishra NK, Han S, Kim HS, Jung YH, Lee BM, Kim IS. Synthesis and anti-inflammatory evaluation of N-sulfonyl anthranilic acids via Ir(III)-catalyzed C-H amidation of benzoic acids. Bioorg Med Chem Lett 2017; 27:2129-2134. [PMID: 28389150 DOI: 10.1016/j.bmcl.2017.03.072] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/20/2017] [Accepted: 03/23/2017] [Indexed: 12/20/2022]
Abstract
The iridium(III)-catalyzed ortho-C-H amidation of benzoic acids with sulfonyl azides is described. These transformations allow the facile generation of N-sulfonyl anthranilic acids, which are known as crucial scaffolds found in biologically active molecules. In addition, all synthetic products were evaluated for in vitro anti-inflammatory activity against interleukin-1β (IL-1β) and cyclooxygenase-2 (COX-2) with lipopolysaccharide (LPS)-induced RAW264.7 cells. Notably, compounds 4c and 4d, generated from p-OMe- and p-Br-sulfonyl azides, were found to display potent anti-inflammatory property stronger than that of well-known NSAIDs ibuprofen.
Collapse
Affiliation(s)
- Sang Hoon Han
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyo Sun Suh
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyeim Jo
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yongguk Oh
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | | | - Sangil Han
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Young Hoon Jung
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea; Biocenter, Gyeonggido Business & Science Accelerator (GBSA), Suwon 16229, Republic of Korea
| | - Byung Mu Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
6
|
Fu L, Pan F, Jiao Y. Crocin inhibits RANKL-induced osteoclast formation and bone resorption by suppressing NF-κB signaling pathway activation. Immunobiology 2016; 222:597-603. [PMID: 27871781 DOI: 10.1016/j.imbio.2016.11.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/14/2016] [Accepted: 11/14/2016] [Indexed: 01/11/2023]
Abstract
Crocin is a dietary compound with antioxidant and anti-inflammatory properties, but its effects on bone resorption have not been well characterized. Here we address this issue by examining the direct effects of crocin on osteoclast cells in vitro. Osteoclastogenesis was induced by RANKL (receptor activator of NF-κB ligand) in mouse bone marrow-derived macrophages in the absence or presence of crocin at various concentrations. Further, the bone resorption activity of mature osteoclast treated with crocin was assessed by pit assay. Without altering cell viability, crocin was shown to inhibit the differentiation and function of osteoclast cells in a dose-dependent manner. Mechanistically, RANKL-induced NF-κB and NFATc1 activation, the critical signaling pathways for osteoclast differentiation and function, were both repressed by crocin in bone marrow-derived macrophages. Thus, crocin suppresses osteoclastogenesis through direct inhibition of intracellular molecular pathways, which may contribute to future development of anti-bone resorption treatment.
Collapse
Affiliation(s)
- Lijia Fu
- Department of Preparation Room, Daqing Oilfield General Hospital, Daqing 163001, Heilongjiang Province, China
| | - Fang Pan
- Department of Rheumatology, Daqing Oilfield General Hospital, Daqing 163001, Heilongjiang Province, China
| | - Yong Jiao
- Department of Orthopaedics, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, No. 5 Haiyun Cang, Dongzhimen District, Beijing 100070, China.
| |
Collapse
|
7
|
Said E, Elkashef WF, Abdelaziz RR. Tranilast ameliorates cyclophosphamide-induced lung injury and nephrotoxicity. Can J Physiol Pharmacol 2016; 94:347-58. [DOI: 10.1139/cjpp-2015-0070] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The world-wide increase in cancer incidence imposes a corresponding significant increase in the use of chemotherapeutic agents. Nephrotoxicity is a side effect frequently encountered with cyclophosphamide (CP), which is also well-known to cause acute and chronic lung toxicities. The current study focuses on the evaluation of the potential protective efficacy of tranilast against acute and subacute CP-induced lung and kidney injuries in male Swiss Albino mice. Intraperitoneal CP significantly impaired oxidant/anti-oxidant balance and increased inflammatory cell count in bronchoalveolar lavage fluid, serum creatinine, blood urea nitrogen (BUN), tumor necrosis factor-α (TNF-α) and lactate dehydrogenase (LDH) levels, with significant impairment of lung and kidney architectures. Tranilast taken orally for 8 and 14 days significantly enhanced mice anti-oxidant defense mechanisms; it increased lung and kidney SOD activity, GSH content and reduced lipid peroxidation. Tranilast significantly reduced serum creatinine and BUN. Furthermore, it decreased accumulation of inflammatory cells in the lungs. Serum TNF-α, LDH, total lung and kidney protein contents significantly declined as well. Histopathological examination revealed concomitant significant tissue recovery. Such results show a significant protective potential of tranilast against deleterious lung and kidney damage induced by CP, probably by enhancing host antioxidant defense mechanism, decreasing cytotoxicity, and decreasing expression of inflammatory cytokines.
Collapse
Affiliation(s)
- Eman Said
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| | | | - Rania R. Abdelaziz
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| |
Collapse
|
8
|
Ke K, Sul OJ, Rajasekaran M, Choi HS. MicroRNA-183 increases osteoclastogenesis by repressing heme oxygenase-1. Bone 2015; 81:237-246. [PMID: 26163109 DOI: 10.1016/j.bone.2015.07.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 07/03/2015] [Accepted: 07/06/2015] [Indexed: 11/22/2022]
Abstract
Emerging evidence suggests that microRNAs (miRs) influence skeletal structure by modulating osteoclastogenesis and bone resorption. We have demonstrated previously that the up-regulation of heme oxygenase-1 (HO-1) attenuated osteoclastogenesis in bone marrow-derived macrophages (BMMs). RANKL-induced osteoclastogenesis elevates microRNA-183 (miR-183) in BMM. We show here that HO-1 is a target gene of miR-183 and that this miRNA binds to the 3'-UTR of HO-1. We find that a synthetic inhibitor that binds to miR-183 decreases osteoclast (OC) differentiation and increases the expression of HO-1, while a mimic of endogenous mature miR-183 has the opposite effect. Moreover, the HO-1 inducers, resveratrol and piceatannol decrease the expression of miR-183, resulting in attenuated osteoclastogenesis. Our findings reveal how miR-183 affects OC formation.
Collapse
Affiliation(s)
- Ke Ke
- Department of Biological Sciences (BK21 Program), University of Ulsan, Ulsan 680-749, South Korea
| | - Ok-Joo Sul
- Department of Biological Sciences (BK21 Program), University of Ulsan, Ulsan 680-749, South Korea
| | - Monisha Rajasekaran
- Department of Biological Sciences (BK21 Program), University of Ulsan, Ulsan 680-749, South Korea
| | - Hye-Seon Choi
- Department of Biological Sciences (BK21 Program), University of Ulsan, Ulsan 680-749, South Korea.
| |
Collapse
|
9
|
Ke K, Safder MA, Sul OJ, Kim WK, Suh JH, Joe Y, Chung HT, Choi HS. Hemeoxygenase-1 maintains bone mass via attenuating a redox imbalance in osteoclast. Mol Cell Endocrinol 2015; 409:11-20. [PMID: 25841764 DOI: 10.1016/j.mce.2015.03.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/25/2015] [Accepted: 03/29/2015] [Indexed: 01/28/2023]
Abstract
Heme oxygenase-1 (HO-1) has long been considered to be an endogenous antioxidant. However, the role of HO-1 is highly controversial in developing metabolic diseases. We hypothesized that HO-1 plays a role in maintaining bone mass by alleviating a redox imbalance. We investigated its role in bone remodeling. The absence of HO-1 in mice led to decreased bone mass with elevated activity and number of OCs, as well as higher serum levels of reactive oxygen species (ROS). HO-1, which is constitutively expressed at a high level in osteoclast (OC) precursors, was down-regulated during OC differentiation. HO-1 deficiency in bone marrow macrophages (BMM) in vitro resulted in increased numbers and activity of OCs due to enhanced receptor activator of nuclear factor-κB ligand (RANKL) signaling. This was associated with increased activation of nuclear factor-κB and of nuclear factor of activated T-cells, cytoplasmic 1 along with elevated levels of intracellular calcium and ROS. Decreased bone mass in the absence of HO-1 appears to be mainly due to increased osteoclastogenesis and bone resorption resulting from elevated RANKL signaling in OCs. Our data highlight the potential role of HO-1 in maintaining bone mass by negatively regulating OCs.
Collapse
Affiliation(s)
- Ke Ke
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - M A Safder
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Ok-Joo Sul
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Woon-Ki Kim
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Jae-Hee Suh
- Department of Pathology, Ulsan University Hospital, Ulsan 682-714, Republic of Korea
| | - Yeonsoo Joe
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Hun-Taeg Chung
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Hye-Seon Choi
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749, Republic of Korea.
| |
Collapse
|
10
|
Abdelaziz RR, Elkashef WF, Said E. Tranilast reduces serum IL-6 and IL-13 and protects against thioacetamide-induced acute liver injury and hepatic encephalopathy. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:259-267. [PMID: 26164743 DOI: 10.1016/j.etap.2015.06.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 06/04/2023]
Abstract
Hepatic encephalopathy is a serious neuropsychiatric disorder usually affecting either acute or chronic hepatic failure patients. Hepatic encephalopathy was replicated in a validated rat model to assess the potential protective efficacy of tranilast against experimentally induced hepatic encephalopathy. Thioacetamide injection significantly impaired hepatic synthetic, metabolic and excretory functions with significant increase in serum NO, IL-6 and IL-13 levels and negative shift in the oxidant/antioxidant balance. Most importantly, there was a significant increase in serum ammonia levels with significant astrocytes' swelling and vacuolization; hallmarks of hepatic encephalopathy. Tranilast administration (300 mg/kg, orally) for 15 days significantly improved hepatic functions, restored oxidant/antioxidant balance, reduced serum NO, IL-6 and IL-13 levels. Meanwhile, serum ammonia significantly declined with significant reduction in astrocytes' swelling and vacuolization. Several mechanisms can be implicated in the observed hepato- and neuroprotective potentials of tranilast, such as its anti-inflammatory potential, its antioxidant potential as well as its immunomodulatory properties.
Collapse
Affiliation(s)
- Rania R Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Egypt
| | - Wagdi F Elkashef
- Department of Pathology, Faculty of Medicine, Mansoura University, Egypt
| | - Eman Said
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Egypt.
| |
Collapse
|