1
|
Martinez C, Xiong Y, Bartkowski A, Harada I, Ren X, Byerly J, Port E, Jin J, Irie H. A PROTAC degrader suppresses oncogenic functions of PTK6, inducing apoptosis of breast cancer cells. Cell Chem Biol 2025; 32:255-266.e8. [PMID: 39541980 PMCID: PMC11845306 DOI: 10.1016/j.chembiol.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 06/04/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024]
Abstract
Protein tyrosine kinase 6 (PTK6), a non-receptor tyrosine kinase, is an oncogenic driver in many tumor types. However, agents that therapeutically target PTK6 are lacking. Although several PTK6 kinase inhibitors have been developed, none have been clinically translated, which may be due to kinase-independent functions that compromise their efficacy. PTK6 kinase inhibitor treatment phenocopies some, but not all effects of PTK6 downregulation. PTK6 downregulation inhibits growth of breast cancer cells, but treatment with PTK6 kinase inhibitor does not. To chemically downregulate PTK6, we designed a PROTAC, MS105, which potently and specifically degrades PTK6. Treatment with MS105, but not PTK6 kinase inhibitor, inhibits growth and induces apoptosis of breast cancer cells, phenocopying the effects of PTK6 (short hairpin RNA) shRNA/CRISPR. In contrast, both MS105 and PTK6 kinase inhibitor effectively inhibit breast cancer cell migration, supporting the differing kinase dependencies of PTK6's oncogenic functions. Our studies support PTK6 degraders as a preferred approach to targeting PTK6 in cancer.
Collapse
Affiliation(s)
- Criseyda Martinez
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yan Xiong
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mount Sinai Center for Therapeutics Discovery, Department of Pharmacological Sciences, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alison Bartkowski
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ibuki Harada
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xiaoxiao Ren
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mount Sinai Center for Therapeutics Discovery, Department of Pharmacological Sciences, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jessica Byerly
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Elisa Port
- Department of Surgery, Mount Sinai Hospital, New York, NY 10029, USA
| | - Jian Jin
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mount Sinai Center for Therapeutics Discovery, Department of Pharmacological Sciences, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Hanna Irie
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
2
|
Ito K, Harada I, Martinez C, Sato K, Lee E, Port E, Byerly JH, Nayak A, Tripathi E, Zhu J, Irie HY. MARCH2, a Novel Oncogene-regulated SNAIL E3 Ligase, Suppresses Triple-negative Breast Cancer Metastases. CANCER RESEARCH COMMUNICATIONS 2024; 4:946-957. [PMID: 38457262 PMCID: PMC10977041 DOI: 10.1158/2767-9764.crc-23-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 01/02/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Epithelial-mesenchymal transition (EMT) in cancer promotes metastasis and chemotherapy resistance. A subset of triple-negative breast cancer (TNBC) exhibits a mesenchymal gene signature that is associated with poor patient outcomes. We previously identified PTK6 tyrosine kinase as an oncogenic driver of EMT in a subset of TNBC. PTK6 induces EMT by stabilizing SNAIL, a key EMT-initiating transcriptional factor. Inhibition of PTK6 activity reverses mesenchymal features of TNBC cells and suppresses their metastases by promoting SNAIL degradation via a novel mechanism. In the current study, we identify membrane-associated RING-CH2 (MARCH2) as a novel PTK6-regulated E3 ligase that promotes the ubiquitination and degradation of SNAIL protein. The MARCH2 RING domain is critical for SNAIL ubiquitination and subsequent degradation. PTK6 inhibition promotes the interaction of MARCH2 with SNAIL. Overexpression of MARCH2 exhibits tumor suppressive properties and phenocopies the effects of SNAIL downregulation and PTK6 inhibition in TNBC cells, such as inhibition of migration, anoikis resistance, and metastasis. Consistent with this, higher levels of MARCH2 expression in breast and other cancers are associated with better prognosis. We have identified MARCH2 as a novel SNAIL E3 ligase that regulates EMT and metastases of mesenchymal TNBC. SIGNIFICANCE EMT is a process directly linked to drug resistance and metastasis of cancer cells. We identified MARCH2 as a novel regulator of SNAIL, a key EMT driver, that promotes SNAIL ubiquitination and degradation in TNBC cells. MARCH2 is oncogene regulated and inhibits growth and metastasis of TNBC. These insights could contribute to novel strategies to therapeutically target TNBC.
Collapse
Affiliation(s)
- Koichi Ito
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ibuki Harada
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Criseyda Martinez
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Katsutoshi Sato
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Elisa Port
- Department of Surgery, Mount Sinai Hospital, New York, New York
| | - Jessica H. Byerly
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Anupma Nayak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ekta Tripathi
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jun Zhu
- Sema4, Stamford, Connecticut
| | - Hanna Y. Irie
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
3
|
Gao Y, Du P. miR-4529-3p Promotes the Progression of Retinoblastoma by Inhibiting RB1 Expression and Activating the ERK Signaling Pathway. Mol Biotechnol 2024; 66:102-111. [PMID: 37041423 DOI: 10.1007/s12033-023-00738-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/26/2023] [Indexed: 04/13/2023]
Abstract
Retinoblastoma (RB) is a malignant ocular cancer that affects children. Several microRNAs (miRNAs) have been implicated in RB regulation. The present study aimed to investigate the role of miR-4529-3p in RB pathogenesis. Scratch, Transwell, and Cell Counting Kit (CCK)-8 assays were conducted to assess the migratory, invasive, and proliferative abilities of RB cells. The expression levels of miR-4529-3p, RB1, and ERK pathway-related proteins were analyzed using western blotting and real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). Target relationships were verified using dual-luciferase reporter experiments. A murine RB model was developed to analyze the effects of miR-4529-3p on RB tumor growth in vivo. Our experiments revealed high levels of miR-4529-3p and low levels of RB1 in RB tissues. Functional analyses revealed that the migratory, invasive, and proliferative abilities of RB cells were repressed by miR-4529-3p inhibition. Similarly, p-ERK 1/2 protein levels were suppressed by miR-4529-3p inhibition. Furthermore, downregulation of miR-4529-3p limited tumor growth in vivo. Mechanistically, miR-4259-3p targets RB1. Interestingly, RB1 silencing abrogated the alleviative effects of miR-4529-3p downregulation in RB cells. MiR-4529-3p promotes RB progression by inhibiting RB1 and activating the ERK pathway. This evidence suggests that the miR-4529-3p/RB1 regulatory axis may be a prospective target for RB treatment in clinical settings.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Ophthalmology, Wuhan No.1 Hospital, No. 215, Zhongshan Avenue, Qiaokou District, Wuhan, 430022, Hubei, China.
| | - Pei Du
- Department of Ophthalmology, Wuhan No.1 Hospital, No. 215, Zhongshan Avenue, Qiaokou District, Wuhan, 430022, Hubei, China
| |
Collapse
|
4
|
Ono H, Murase Y, Yamashita H, Kato T, Asano D, Ishikawa Y, Watanabe S, Ueda H, Akahoshi K, Ogawa K, Kudo A, Akiyama Y, Tanaka S, Tanabe M. RRM1 is mediated by histone acetylation through gemcitabine resistance and contributes to invasiveness and ECM remodeling in pancreatic cancer. Int J Oncol 2023; 62:51. [PMID: 36866763 PMCID: PMC10019754 DOI: 10.3892/ijo.2023.5499] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 02/02/2023] [Indexed: 03/04/2023] Open
Abstract
The invasiveness of pancreatic cancer and its resistance to anticancer drugs define its malignant potential, and are considered to affect the peritumoral microenvironment. Cancer cells with resistance to gemcitabine exposed to external signals induced by anticancer drugs may enhance their malignant transformation. Ribonucleotide reductase large subunit M1 (RRM1), an enzyme in the DNA synthesis pathway, is upregulated during gemcitabine resistance, and its expression is associated with worse prognosis for pancreatic cancer. However, the biological function of RRM1 is unclear. In the present study, it was demonstrated that histone acetylation is involved in the regulatory mechanism related to the acquisition of gemcitabine resistance and subsequent RRM1 upregulation. The current in vitro study indicated that RRM1 expression is critical for the migratory and invasive potential of pancreatic cancer cells. Furthermore, a comprehensive RNA sequencing analysis showed that activated RRM1 induced marked changes in the expression levels of extracellular matrix‑related genes, including N‑cadherin, tenascin‑C and COL11A. RRM1 activation also promoted extracellular matrix remodeling and mesenchymal features, which enhanced the migratory invasiveness and malignant potential of pancreatic cancer cells. The present results demonstrated that RRM1 has a critical role in the biological gene program that regulates the extracellular matrix, which promotes the aggressive malignant phenotype of pancreatic cancer.
Collapse
Affiliation(s)
- Hiroaki Ono
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Yoshiki Murase
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Hironari Yamashita
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Tomotaka Kato
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Daisuke Asano
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Yoshiya Ishikawa
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Shuichi Watanabe
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Hiroki Ueda
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Keiichi Akahoshi
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Kosuke Ogawa
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Atsushi Kudo
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Yoshimitsu Akiyama
- Division of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Shinji Tanaka
- Division of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Minoru Tanabe
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| |
Collapse
|
5
|
Li J, Yang N, Tian X, Ouyang L, Jiang M, Zhang S. Interference of PTK6/GAB1 signaling inhibits cell proliferation, invasion, and migration of cervical cancer cells. Mol Med Rep 2022; 26:284. [PMID: 35894144 PMCID: PMC9366152 DOI: 10.3892/mmr.2022.12800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/08/2022] [Indexed: 11/18/2022] Open
Abstract
Protein tyrosine kinase 6 (PTK6) has shown important cancer-promoting effects in a variety of cancer types. Nonetheless, its vital role in cervical cancer has not been completely elucidated. The present study sought to address whether PTK6 is involved in the malignant progression of cervical cancer via its interaction with GRB2-associated binding 1 (GAB1). Western blotting was used to examine PTK6 and GAB1 expression levels. Cell Counting Kit-8, Transwell, wound healing, and terminal deoxynucleotidyl-transferase-mediated dUTP nick end labeling assays were performed to estimate the corresponding proliferative, migratory, invasive, and apoptotic abilities of the cells. Co-immunoprecipitation (Co-IP) assays confirmed binding of PTK6 to GAB1. The results revealed that the expression levels of PTK6 and GAB1 were markedly increased in cervical cancer cell lines compared with those noted in normal cervical epithelial cells. The cell proliferative, invasive, and migratory activities of cervical cancer cells were reduced in the absence of PTK6 expression, whereas the induction of apoptosis was aggravated under these conditions. The results of the Co-IP assay indicated that PTK6 expression was positively associated with GAB1. In addition, the suppressive effect of PTK6 silencing on the malignant phenotypes of cervical cancer cells was reversed following overexpression of GAB1. In summary, the present study indicated that knockdown of PTK6 expression protected against the malignant progression of cervical cancer, while overexpression of GAB1 counteracted the inhibitory effects of PTK6 knockdown on cervical cancer cells.
Collapse
Affiliation(s)
- Juan Li
- Department of Gynecology, Southern University of Science and Technology Hospital, Shenzhen, Guangdong 518055, P.R. China
| | - Nan Yang
- Department of Gynecology, Southern University of Science and Technology Hospital, Shenzhen, Guangdong 518055, P.R. China
| | - Xiaolei Tian
- Department of Gynecology, Southern University of Science and Technology Hospital, Shenzhen, Guangdong 518055, P.R. China
| | - Linglong Ouyang
- Department of Gynecology, Southern University of Science and Technology Hospital, Shenzhen, Guangdong 518055, P.R. China
| | - Man Jiang
- Department of Gynecology, Southern University of Science and Technology Hospital, Shenzhen, Guangdong 518055, P.R. China
| | - Shufang Zhang
- Department of Gynecology, Southern University of Science and Technology Hospital, Shenzhen, Guangdong 518055, P.R. China
| |
Collapse
|
6
|
Hsieh YP, Chen KC, Chen MY, Huang LY, Su AY, Chiang WF, Huang WT, Huang TT. Epigenetic Deregulation of Protein Tyrosine Kinase 6 Promotes Carcinogenesis of Oral Squamous Cell Carcinoma. Int J Mol Sci 2022; 23:4495. [PMID: 35562900 PMCID: PMC9104624 DOI: 10.3390/ijms23094495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 02/05/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) accounts for over 90% of oral cancers and causes considerable morbidity and mortality. Epigenetic deregulation is a common mechanism underlying carcinogenesis. DNA methylation deregulation is the epigenetic change observed during the transformation of normal cells to precancerous and eventually cancer cells. This study investigated the DNA methylation patterns of PTK6 during the development of OSCC. Bisulfite genomic DNA sequencing was performed to determine the PTK6 methylation level. OSCC animal models were established to examine changes in PTK6 expression in the different stages of OSCC development. The DNA methylation of PTK6 was decreased during the development of OSCC. The mRNA and protein expression of PTK6 was increased in OSCC cell lines compared with human normal oral keratinocytes. In mice, the methylation level of PTK6 decreased after treatment with 4-nitroquinoline 1-oxide and arecoline, and the mRNA and protein expression of PTK6 was increased. PTK6 hypomethylation can be a diagnostic marker of OSCC. Upregulation of PTK6 promoted the proliferation, migration, and invasion of OSCC cells. PTK6 promoted carcinogenesis and metastasis by increasing STAT3 phosphorylation and ZEB1 expression. The epigenetic deregulation of PTK6 can serve as a biomarker for the early detection of OSCC and as a treatment target.
Collapse
Grants
- MOHW107-TDU-B-212-114013, MOHW109-TDU-B-212-134016, MOHW110-TDU-B-212-144013, MOHW111-TDU-B-221-114012 Ministry of Health and Welfare
- 109-2314-B-006-013-, 109-2740-B-400-002-, 108-2314-B-006-018-, 106-2314-B-006-016-, and 104-2314-B-006-062- Ministry of Science and Technology, Taiwan
- CA-109-PP-18 National Health Research Institutes, Taiwan
- NCKUH-10902064, NCKUH-10604032, and NCKUH-10406031, NCKUH-11104013- National Cheng Kung University Hospital
- CMNCKU10517, CMNCKU10602, and CLFHR10801 Higher Education Sprout Project, Ministry of Education to the Headquarters of University Advancement at National Cheng Kung University (NCKU), Taiwan; Chi-Mei Medical Center, Liouying
Collapse
Affiliation(s)
- Yi-Ping Hsieh
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan;
| | - Ken-Chung Chen
- Institute of Oral Medicine, Department of Dentistry, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan; (K.-C.C.); (M.-Y.C.)
- Division of Oral and Maxillofacial Surgery, Department of Stomatology, National Cheng Kung University Hospital, Tainan 701401, Taiwan
| | - Meng-Yen Chen
- Institute of Oral Medicine, Department of Dentistry, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan; (K.-C.C.); (M.-Y.C.)
- Division of Oral and Maxillofacial Surgery, Department of Stomatology, National Cheng Kung University Hospital, Tainan 701401, Taiwan
| | - Ling-Yu Huang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan;
| | - An-Yu Su
- Department of Dentistry, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan;
| | - Wei-Fan Chiang
- Chi Mei Medical Center, Liouying, Tainan 72263, Taiwan;
- School of Dentistry, National Yang Ming University, Taipei 11221, Taiwan
| | | | - Tze-Ta Huang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan;
- Institute of Oral Medicine, Department of Dentistry, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan; (K.-C.C.); (M.-Y.C.)
- Division of Oral and Maxillofacial Surgery, Department of Stomatology, National Cheng Kung University Hospital, Tainan 701401, Taiwan
| |
Collapse
|
7
|
Jiang F, Huang X, Zhang F, Pan J, Wang J, Hu L, Chen J, Wang Y. Integrated Analysis of Multi-Omics Data to Identify Prognostic Genes for Pancreatic Cancer. DNA Cell Biol 2022; 41:305-318. [PMID: 35104421 DOI: 10.1089/dna.2021.0878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Pancreatic cancer (PC) is a common cause of cancer-related deaths. Current research shows that prognostic biomarkers play a key role in the treatment of PC. This study aimed to identify prognostic genes through bioinformatics research. We combined data from 175 cases of PC from the cancer genome atlas (TCGA) database with gene mutation expression, level distribution of methylation, mRNA expression, and through weighted correlation network analysis to nine hub genes. Subsequently, these genes were verified on TCGA and Gene Expression Profiling Interactive Analysis (GEPIA) platforms. Reverse transcription quantitative PCR (RT-qPCR) was performed to investigate the expression levels of 9 genes in PC cells and cancerous and 30 PC cases and corresponding adjacent tissues. CIBERSORT database analysis was conducted for hub genes. Our findings demonstrated that the 9 genes (MST1R, TMPRSS4, PTK6, KLF5, CGN, ABHD17C, MUC1, CAPN8, and B3GNT3) were prognostic biomarkers of PC identified from the top 10 genes of the 2 coexpression modules. The nine genes were then used to divide early PC cases into two subgroups with significant differences in prognosis and differences in function (digestion, extracellular cell adhesion). Further analysis revealed that the nine genes were highly expressed in PC tissues. In addition, MST1R, PTK6, ABHD17C, and CGN mRNA were expressed high in PC cells and clinical tissues. CIBERSORT analysis indicated that the expression of these genes was closely correlated with naive B cells, CD8+ T cells, and M0 macrophages. This suggests that these genes could play a carcinogenic role in the preservation of immune-dominant status for the tumor microenvironment. The nine key genes identified in this study could enhance our understanding of the molecular mechanisms associated with PC.
Collapse
Affiliation(s)
- Feng Jiang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaolu Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fan Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jingjing Pan
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Junjun Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lijuan Hu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jie Chen
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yumin Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
8
|
Wang J, Shen C, Li R, Wang C, Xiao Y, Kuang Y, Lao M, Xu S, Shi M, Cai X, Liang L, Xu H. Increased long noncoding RNA LINK-A contributes to rheumatoid synovial inflammation and aggression. JCI Insight 2021; 6:146757. [PMID: 34877935 PMCID: PMC8675191 DOI: 10.1172/jci.insight.146757] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 10/20/2021] [Indexed: 11/29/2022] Open
Abstract
Fibroblast-like synoviocytes (FLSs) play a key role in controlling synovial inflammation and joint destruction in rheumatoid arthritis (RA). The contribution of long noncoding RNAs (lncRNAs) to RA is largely unknown. Here, we show that the lncRNA LINK-A, located mainly in cytoplasm, has higher-than-normal expression in synovial tissues and FLSs from patients with RA. Synovial LINK-A expression was positively correlated with the severity of synovitis in patients with RA. LINK-A knockdown decreased migration, invasion, and expression and secretion of matrix metalloproteinases and proinflammatory cytokines in RA FLSs. Mechanistically, LINK-A controlled RA FLS inflammation and invasion through regulation of tyrosine protein kinase 6–mediated and leucine-rich repeat kinase 2–mediated HIF-1α. On the other hand, we also demonstrate that LINK-A could bind with microRNA 1262 as a sponge to control RA FLS aggression but not inflammation. Our findings suggest that increased level of LINK-A may contribute to FLS-mediated rheumatoid synovial inflammation and aggression. LINK-A might be a potential therapeutic target for RA.
Collapse
Affiliation(s)
- Jingnan Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chuyu Shen
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ruiru Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Cuicui Wang
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Youjun Xiao
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu Kuang
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minxi Lao
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Siqi Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Maohua Shi
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Cai
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Liuqin Liang
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hanshi Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Knockdown of microRNA-214-3p Promotes Tumor Growth and Epithelial-Mesenchymal Transition in Prostate Cancer. Cancers (Basel) 2021; 13:cancers13235875. [PMID: 34884984 PMCID: PMC8656576 DOI: 10.3390/cancers13235875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 11/22/2022] Open
Abstract
Simple Summary Prostate Cancer is the second leading cause of cancer-related deaths in the United States. In this study, we analyzed a molecule known as a microRNA, which regulates the expression of genes. microRNAs are involved in processes related to cancer onset and progression. Abnormal expression of microRNAs can promote prostate cancer. This study showed that knockdown of microRNA miR-214-3p enhanced the progression and of prostate cancer. In addition, miR-214 regulated the expression of many genes. These results are useful to better understand the function of miR-214-3p in prostate cancer and can be a useful target in the treatment of the disease. Abstract Abnormal expression of microRNA miR-214-3p (miR-214) is associated with multiple cancers. In this study, we assessed the effects of CRISPR/Cas9 mediated miR-214 depletion in prostate cancer (PCa) cells and the underlying mechanisms. Knockdown of miR-214 promoted PCa cell proliferation, invasion, migration, epithelial-mesenchymal transition (EMT), and increased resistance to anoikis, a key feature of PCa cells that undergo metastasis. The reintroduction of miR-214 in miR-214 knockdown cells reversed these effects and significantly suppressed cell proliferation, migration, and invasion. These in vitro studies are consistent with the role of miR-214 as a tumor suppressor. Moreover, miR-214 knockout increased tumor growth in PCa xenografts in nude mice supporting its anti-oncogenic role in PCa. Knockdown of miR-214 increased the expression of its target protein, Protein Tyrosine Kinase 6 (PTK6), a kinase shown to promote oncogenic signaling and tumorigenesis in PCa. In addition, miR-214 modulated EMT as exhibited by differential regulation of E-Cadherin, N-Cadherin, and Vimentin both in vitro and in vivo. RNA-seq analysis of miR-214 knockdown cells revealed altered gene expression related to PCa tumor growth pathways, including EMT and metastasis. Collectively, our findings reveal that miR-214 is a key regulator of PCa oncogenesis and is a potential novel therapeutic target for the treatment of the disease.
Collapse
|
10
|
Murase Y, Ono H, Ogawa K, Yoshioka R, Ishikawa Y, Ueda H, Akahoshi K, Ban D, Kudo A, Tanaka S, Tanabe M. Inhibitor library screening identifies ispinesib as a new potential chemotherapeutic agent for pancreatic cancers. Cancer Sci 2021; 112:4641-4654. [PMID: 34510663 PMCID: PMC8586681 DOI: 10.1111/cas.15134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 12/17/2022] Open
Abstract
Screening custom-made libraries of inhibitors may reveal novel drugs for treating pancreatic cancer. In this manner, we identified ispinesib as a candidate and attempted to determine its clinical efficacy and the biological significance of its functional target Eg5 in pancreatic cancer. One hundred compounds in our library were screened for candidate drugs using cell cytotoxicity assays. Ispinesib was found to mediate effective antitumor effects in pancreatic cancer. The clinical significance of the expression of the ispinesib target Eg5 was investigated in 165 pancreatic cancer patients by immunohistochemical staining and in Eg5-positive pancreatic cancer patient-derived xenograft (PDX) mouse models. Patients with Eg5-positive tumors experienced significantly poorer clinical outcomes than those not expressing Eg5 (overall survival; P < .01, recurrence-free survival; P < .01). Ispinesib or Eg5 inhibition with specific siRNA significantly suppressed cell proliferation and induced apoptosis in pancreatic cancer cell lines. Mechanistically, ispinesib acted by inducing incomplete mitosis with nuclear disruption, resulting in multinucleated monoastral spindle cells. In the PDX mouse model, ispinesib dramatically reduced tumor growth relative to vehicle control (652.2 mm3 vs 18.1 mm3 in mean tumor volume, P < .01 by ANOVA; 545 mg vs 28 mg in tumor weight, P < .01, by ANOVA). Ispinesib, identified by inhibitor library screening, could be a promising novel therapeutic agent for pancreatic cancer. The expression of its target Eg5 is associated with poorer postoperative prognosis and is important for the clinical efficacy of ispinesib in pancreatic cancer.
Collapse
Affiliation(s)
- Yoshiki Murase
- Department of Hepatobiliary and Pancreatic SurgeryGraduate School of MedicineTokyo Medical and Dental UniversityTokyoJapan
| | - Hiroaki Ono
- Department of Hepatobiliary and Pancreatic SurgeryGraduate School of MedicineTokyo Medical and Dental UniversityTokyoJapan
| | - Kosuke Ogawa
- Department of Hepatobiliary and Pancreatic SurgeryGraduate School of MedicineTokyo Medical and Dental UniversityTokyoJapan
| | - Risa Yoshioka
- Department of Hepatobiliary and Pancreatic SurgeryGraduate School of MedicineTokyo Medical and Dental UniversityTokyoJapan
| | - Yoshiya Ishikawa
- Department of Hepatobiliary and Pancreatic SurgeryGraduate School of MedicineTokyo Medical and Dental UniversityTokyoJapan
| | - Hiroki Ueda
- Department of Hepatobiliary and Pancreatic SurgeryGraduate School of MedicineTokyo Medical and Dental UniversityTokyoJapan
| | - Keiichi Akahoshi
- Department of Hepatobiliary and Pancreatic SurgeryGraduate School of MedicineTokyo Medical and Dental UniversityTokyoJapan
| | - Daisuke Ban
- Department of Hepatobiliary and Pancreatic SurgeryGraduate School of MedicineTokyo Medical and Dental UniversityTokyoJapan
| | - Atsushi Kudo
- Department of Hepatobiliary and Pancreatic SurgeryGraduate School of MedicineTokyo Medical and Dental UniversityTokyoJapan
| | - Shinji Tanaka
- Division of Molecular OncologyGraduate School of MedicineTokyo Medical and Dental UniversityTokyoJapan
| | - Minoru Tanabe
- Department of Hepatobiliary and Pancreatic SurgeryGraduate School of MedicineTokyo Medical and Dental UniversityTokyoJapan
| |
Collapse
|
11
|
Inhibition of histamine receptor H3 suppresses the growth and metastasis of human non-small cell lung cancer cells via inhibiting PI3K/Akt/mTOR and MEK/ERK signaling pathways and blocking EMT. Acta Pharmacol Sin 2021; 42:1288-1297. [PMID: 33159174 DOI: 10.1038/s41401-020-00548-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 09/24/2020] [Indexed: 12/22/2022]
Abstract
Recent evidence shows that the expression levels of histamine receptor H3 (Hrh3) are upregulated in several types of cancer. However, the role of Hrh3 in non-small cell lung cancer (NSCLC) has not been elucidated. In the present study, we showed that the expression levels of Hrh3 were significantly increased in NSCLC samples, and high levels of Hrh3 were associated with poor overall survival (OS) in NSCLC patients. In five human NSCLC cell lines tested, Hrh3 was significantly upregulated. In NSCLC cell lines H1975, H460, and A549, Hrh3 antagonist ciproxifan (CPX, 10-80 μM) exerted moderate and concentration-dependent inhibition on the cell growth and induced apoptosis, whereas its agonist RAMH (80 μM) reversed these effects. Furthermore, inhibition of Hrh3 by CPX or siRNA retarded the migration and invasion of NSCLC cells through inhibiting epithelial-mesenchymal transition (EMT) progression via reducing the phosphorylation of PI3K/Akt/mTOR and MEK/ERK signaling pathways. In nude mice bearing H1975 cell xenograft or A549 cell xenograft, administration of CPX (3 mg/kg every other day, intraperitoneal) significantly inhibited the tumor growth with increased E-cadherin and ZO-1 expression and decreased Fibronectin expression in tumor tissue. In conclusion, this study reveals that Hrh3 plays an important role in the growth and metastasis of NSCLC; it might be a potential therapeutic target against the lung cancer.
Collapse
|
12
|
Yu J, Lang Q, Zhong C, Wang S, Tian Y. Genome-Wide Identification of Autophagy Prognostic Signature in Pancreatic Cancer. Dose Response 2021; 19:15593258211023260. [PMID: 34262410 PMCID: PMC8252352 DOI: 10.1177/15593258211023260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 01/07/2023] Open
Abstract
Background: Autophagy plays a vital role in cancer development. However, there is currently no comprehensive study regarding the effects of autophagy-related genes (ARGs) on pancreatic cancer prognosis. Thus, this study aimed to establish an autophagy-related signature for predicting the prognosis of patients with pancreatic cancer. Methods: We identified and validated differentially-expressed ARGs using data from The Cancer Genome Atlas (TCGA) database, Genotype-Tissue Expression project (GTEx) and Expression Omnibus (GEO) database. We performed Cox proportional hazards regression analysis on the differentially-expressed ARGs to develop an autophagy-related signature. We tested the expression of these genes through western blotting and verified their prognostic values through gene expression profiling and interactive analyses (GEPIA). Results: We identified a total of 21 differentially-expressed ARGs and screened 4 OS-related ARGs (TP63, RAB24, APOL1, and PTK6). Both the training and validation sets showed that the autophagy-related signature was more accurate than the Tumor Node Metastasis (TNM) staging system. Moreover, the western blotting result showed that the expression of TP63, APOL1, and PTK6 was high, whereas that of RAB24 was low in cancer tissues. Conclusion: This 4-ARG signature might potentially help in providing personalized therapy to patients with cancer.
Collapse
Affiliation(s)
- Jianfa Yu
- Department of General Surgery, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning, China
| | - Qi Lang
- Department of General Surgery, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning, China
| | - Chongli Zhong
- Department of General Surgery, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning, China
| | - Shuang Wang
- Key Laboratory of Higher Education of Liaoning Province, Shenyang, Liaoning, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
13
|
Yin QH, Zhou Y, Li ZHY. miR-373 Suppresses Cell Proliferation and Apoptosis via Regulation of SIRT1/PGC-1α/NRF2 Axis in Pancreatic Cancer. CELL JOURNAL 2021; 23:199-210. [PMID: 34096221 PMCID: PMC8181315 DOI: 10.22074/cellj.2021.7038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/09/2019] [Indexed: 11/09/2022]
Abstract
Objective Our study aimed to investigate function and mechanism of miR-373 in proliferation and apoptosis of
pancreatic cancer (PC) cells by regulating NAD+-dependent histone deacetylase sirtulin 1 (SIRT1).
Materials and Methods This experimental study included two PC cell lines AsPC-1 and PANC-1 in which expression
levels of miR-373 and SIRT1 were manipulated. The level of miR-373 was detected by reverse transcription quantitative
polymerase chain reaction (RT-qPCR) method. Expression levels of SIRT1, BCL-2, BAX, cleaved CASPASE-8/9/3,
PARP, PGC-1α, NRF2, eNOS and iNOS were examined via RT-qPCR and western blotting, respectively. The binding
sites of miR-373 on the SIRT1 were examined via dual-luciferase assay. Cell proliferation and apoptosis were examined
by MTT assay, colony formation assay, Annexin-V/PI staining and TUNEL assay. The oxidative metabolic changes were
monitored by reactive oxygen species (ROS), malondialdehyde (MDA) and superoxide dismutase (SOD) detection.
Results miR-373 could specifically target the 3’-UTR of SIRT1 and reduce its expression in PC cells. Either elevated
expression of miR-373 or partial loss of SIRT1 inhibited cell proliferation and induced cell apoptosis. Accumulation of
BAX and cleaved CASPASE-8/9/3, inhibition of PGC-1α/NRF2 pathway, increase oxidative stress and reduction of
BCL-2 as well as uncleaved PARP were found in the presence of miR-373 or the absence of SIRT1. Overexpression
of SIRT1 could reduce anti-proliferative and pro-apoptotic effects of miR-373.
Conclusion Overall, this study concluded that miR-373-dependent SIRT1 inhibition displays anti-proliferative and pro-
apoptotic roles in PC cells via PGC-1α/NRF2 pathway, which highlights miR-373 as a potential target for PC treatment.
Collapse
Affiliation(s)
- Qing-Hua Yin
- Department of Hepatobiliary Surgery, The First Hospital of Changsha, Changsha 410000, P.R.China
| | - Yuan Zhou
- Department of Hepatobiliary Surgery, The First Hospital of Changsha, Changsha 410000, P.R.China
| | - Z Hi Yuan Li
- Department of Gastrointestinal Surgery, The Central Hospital of Hengyang City, Hengyang 421001, P.R.China
| |
Collapse
|
14
|
Ono H, Kato T, Murase Y, Nakamura Y, Ishikawa Y, Watanabe S, Akahoshi K, Ogura T, Ogawa K, Ban D, Kudo A, Akiyama Y, Tanaka S, Ito H, Tanabe M. C646 inhibits G2/M cell cycle-related proteins and potentiates anti-tumor effects in pancreatic cancer. Sci Rep 2021; 11:10078. [PMID: 33980911 PMCID: PMC8115044 DOI: 10.1038/s41598-021-89530-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/27/2021] [Indexed: 12/19/2022] Open
Abstract
The activity of histone acetyltransferases (HATs) plays a central role in an epigenetic modification in cooperation with HDACs (histone deacetyl transferases). It is likely that malfunction of this enzymatic machinery controlling epigenetic modification is relevant to carcinogenesis and tumor progression. However, in pancreatic cancer, the clinical relevance of HAT activity and histone acetylation has remained unclear. We identified that H3 acetylation was expressed in all pancreatic cancer patients, indicating that H3 acetylation may be essential in pancreatic cancer cells. We also found that the HAT inhibitor C646 augmented anti-tumor effects in vitro by inhibiting cell proliferation and cell cycle progression concomitantly with suppression of acetylated H3K9 and H3K27 expression. C646 or p300 and CBP (CREB-binding protein)-specific siRNA treatment inhibited the transcription of the G2/M cell cycle regulatory proteins cyclin B1 and CDK1 (cyclin-dependent kinase 1). C646 treatment also inhibited tumor growth in vivo in a xenograft mouse model. C646 could be an effective therapeutic agent for pancreatic cancer. The epigenetic status of pancreatic cancers based on their level of histone H3 acetylation may influence patient survival. Epigenetic stratification according to H3K27 acetylation could be useful for predicting disease prognosis as well as the therapeutic efficacy of C646 in pancreatic cancer.
Collapse
Affiliation(s)
- Hiroaki Ono
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.
- Department of Surgery, College of Human Medicine, Michigan State University, Lansing, MI, USA.
| | - Tomotaka Kato
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Yoshiki Murase
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Yutaro Nakamura
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Yoshiya Ishikawa
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Shuichi Watanabe
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Keiichi Akahoshi
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Toshiro Ogura
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Kosuke Ogawa
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Daisuke Ban
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Atsushi Kudo
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Yoshimitsu Akiyama
- Division of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinji Tanaka
- Division of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiromichi Ito
- Department of Surgery, College of Human Medicine, Michigan State University, Lansing, MI, USA
| | - Minoru Tanabe
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| |
Collapse
|
15
|
Ang HL, Yuan Y, Lai X, Tan TZ, Wang L, Huang BB, Pandey V, Huang RYJ, Lobie PE, Goh BC, Sethi G, Yap CT, Chan CW, Lee SC, Kumar AP. Putting the BRK on breast cancer: From molecular target to therapeutics. Am J Cancer Res 2021; 11:1115-1128. [PMID: 33391524 PMCID: PMC7738883 DOI: 10.7150/thno.49716] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022] Open
Abstract
BReast tumor Kinase (BRK, also known as PTK6) is a non-receptor tyrosine kinase that is highly expressed in breast carcinomas while having low expression in the normal mammary gland, which hints at the oncogenic nature of this kinase in breast cancer. In the past twenty-six years since the discovery of BRK, an increasing number of studies have strived to understand the cellular roles of BRK in breast cancer. Since then, BRK has been found both in vitro and in vivo to activate a multitude of oncoproteins to promote cell proliferation, metastasis, and cancer development. The compelling evidence concerning the oncogenic roles of BRK has also led, since then, to the rapid and exponential development of inhibitors against BRK. This review highlights recent advances in BRK biology in contributing to the “hallmarks of cancer”, as well as BRK's therapeutic significance. Importantly, this review consolidates all known inhibitors of BRK activity and highlights the connection between drug action and BRK-mediated effects. Despite the volume of inhibitors designed against BRK, none have progressed into clinical phase. Understanding the successes and challenges of these inhibitor developments are crucial for the future improvements of new inhibitors that can be clinically relevant.
Collapse
|
16
|
Shou Y, Yang L, Yang Y, Zhu X, Li F, Xu J. Identification of Signatures of Prognosis Prediction for Melanoma Using a Hypoxia Score. Front Genet 2020; 11:570530. [PMID: 33133157 PMCID: PMC7550673 DOI: 10.3389/fgene.2020.570530] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/08/2020] [Indexed: 01/16/2023] Open
Abstract
Melanoma is one of the most aggressive cancers. Hypoxic microenvironment affects multiple cellular pathways and contributes to tumor progression. The purpose of the research was to investigate the association between hypoxia and melanoma, and identify the prognostic value of hypoxia-related genes. Based on the GSVA algorithm, gene expression profile collected from The Cancer Genome Atlas (TCGA) was used for calculating the hypoxia score. The Kaplan–Meier plot suggested that a high hypoxia score was correlated with the inferior survival of melanoma patients. Using differential gene expression analysis and WGCNA, a total of 337 overlapping genes associated with hypoxia were determined. Protein-protein interaction network and functional enrichment analysis were conducted, and Lasso Cox regression was performed to establish the prognostic gene signature. Lasso regression showed that seven genes displayed the best features. A novel seven-gene signature (including ABCA12, PTK6, FERMT1, GSDMC, KRT2, CSTA, and SPRR2F) was constructed for prognosis prediction. The ROC curve inferred good performance in both the TCGA cohort and validation cohorts. Therefore, our study determined the prognostic implication of the hypoxia score in melanoma and showed a novel seven-gene signature to predict prognosis, which may provide insights into the prognosis evaluation and clinical decision making.
Collapse
Affiliation(s)
- Yanhong Shou
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Lu Yang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yongsheng Yang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaohua Zhu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Feng Li
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinhua Xu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Dermatology, Shanghai, China
| |
Collapse
|
17
|
Targeting protein tyrosine kinase 6 in cancer. Biochim Biophys Acta Rev Cancer 2020; 1874:188432. [PMID: 32956764 DOI: 10.1016/j.bbcan.2020.188432] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/27/2020] [Accepted: 09/04/2020] [Indexed: 11/21/2022]
Abstract
Protein tyrosine kinase 6 (PTK6) is the most well studied member of the PTK6 family of intracellular tyrosine kinases. While it is expressed at highest levels in differentiated cells in the regenerating epithelial linings of the gastrointestinal tract and skin, induction and activation of PTK6 is detected in several cancers, including breast and prostate cancer where high PTK6 expression correlates with worse outcome. PTK6 expression is regulated by hypoxia and cell stress, and its kinase activity is induced by several growth factor receptors implicated in cancer including members of the ERBB family, IGFR1 and MET. Activation of PTK6 at the plasma membrane has been associated with the epithelial mesenchymal transition and tumor metastasis. Several lines of evidence indicate that PTK6 has context dependent functions that depend on cell type, intracellular localization and kinase activation. Systemic disruption of PTK6 has been shown to reduce tumorigenesis in mouse models of breast and prostate cancer, and more recently small molecule inhibitors of PTK6 have exhibited efficacy in inhibiting tumor growth in animal models. Here we review data that suggest targeting PTK6 may have beneficial therapeutic outcomes in some cancers.
Collapse
|
18
|
Qian X, Chen Z, Chen SS, Liu LM, Zhang AQ. Integrated Analyses Identify Immune-Related Signature Associated with Qingyihuaji Formula for Treatment of Pancreatic Ductal Adenocarcinoma Using Network Pharmacology and Weighted Gene Co-Expression Network. J Immunol Res 2020; 2020:7503605. [PMID: 32537471 PMCID: PMC7256764 DOI: 10.1155/2020/7503605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023] Open
Abstract
The study aimed to clarify the potential immune-related targets and mechanisms of Qingyihuaji Formula (QYHJ) against pancreatic cancer (PC) through network pharmacology and weighted gene co-expression network analysis (WGCNA). Active ingredients of herbs in QYHJ were identified by the TCMSP database. Then, the putative targets of active ingredients were predicted with SwissTargetPrediction and the STITCH databases. The expression profiles of GSE32676 were downloaded from the GEO database. WGCNA was used to identify the co-expression modules. Besides, the putative targets, immune-related targets, and the critical module genes were mapped with the specific disease to select the overlapped genes (OGEs). Functional enrichment analysis of putative targets and OGEs was conducted. The overall survival (OS) analysis of OGEs was investigated using the Kaplan-Meier plotter. The relative expression and methylation levels of OGEs were detected in UALCAN, human protein atlas (HPA), Oncomine, DiseaseMeth version 2.0 and, MEXPRESS database, respectively. Gene set enrichment analysis (GSEA) was conducted to elucidate the key pathways of highly-expressed OGEs further. OS analyses found that 12 up-regulated OGEs, including CDK1, PLD1, MET, F2RL1, XDH, NEK2, TOP2A, NQO1, CCND1, PTK6, CTSE, and ERBB2 that could be utilized as potential diagnostic indicators for PC. Further, methylation analyses suggested that the abnormal up-regulation of these OGEs probably resulted from hypomethylation, and GSEA revealed the genes markedly related to cell cycle and proliferation of PC. This study identified CDK1, PLD1, MET, F2RL1, XDH, NEK2, TOP2A, NQO1, CCND1, PTK6, CTSE, and ERBB2 might be used as reliable immune-related biomarkers for prognosis of PC, which may be essential immunotherapies targets of QYHJ.
Collapse
Affiliation(s)
- Xiang Qian
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China
- Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Cancer Hospital, Hangzhou, China
| | - Zhuo Chen
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China
- Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Cancer Hospital, Hangzhou, China
| | - Sha Sha Chen
- Department of Traditional Chinese Medicine, Taizhou Cancer Hospital, Zhejiang, China
| | - Lu Ming Liu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, China
| | - Ai Qin Zhang
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China
- Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
19
|
Ayres Pereira M, Chio IIC. Metastasis in Pancreatic Ductal Adenocarcinoma: Current Standing and Methodologies. Genes (Basel) 2019; 11:E6. [PMID: 31861620 PMCID: PMC7016631 DOI: 10.3390/genes11010006] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/11/2019] [Accepted: 12/17/2019] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma is an extremely aggressive disease with a high metastatic potential. Most patients are diagnosed with metastatic disease, at which the five-year survival rate is only 3%. A better understanding of the mechanisms that drive metastasis is imperative for the development of better therapeutic interventions. Here, we take the reader through our current knowledge of the parameters that support metastatic progression in pancreatic ductal adenocarcinoma, and the experimental models that are at our disposal to study this process. We also describe the advantages and limitations of these models to study the different aspects of metastatic dissemination.
Collapse
Affiliation(s)
| | - Iok In Christine Chio
- Institute for Cancer Genetics, Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA;
| |
Collapse
|
20
|
Miah S, Banks CAS, Ogunbolude Y, Bagu ET, Berg JM, Saraf A, Tettey TT, Hattem G, Dayebgadoh G, Kempf CG, Sardiu M, Napper S, Florens L, Lukong KE, Washburn MP. BRK phosphorylates SMAD4 for proteasomal degradation and inhibits tumor suppressor FRK to control SNAIL, SLUG, and metastatic potential. SCIENCE ADVANCES 2019; 5:eaaw3113. [PMID: 31681835 PMCID: PMC6810434 DOI: 10.1126/sciadv.aaw3113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 09/13/2019] [Indexed: 05/06/2023]
Abstract
The tumor-suppressing function of SMAD4 is frequently subverted during mammary tumorigenesis, leading to cancer growth, invasion, and metastasis. A long-standing concept is that SMAD4 is not regulated by phosphorylation but ubiquitination. Our search for signaling pathways regulated by breast tumor kinase (BRK), a nonreceptor protein tyrosine kinase that is up-regulated in ~80% of invasive ductal breast tumors, led us to find that BRK competitively binds and phosphorylates SMAD4 and regulates transforming growth factor-β/SMAD4 signaling pathway. A constitutively active BRK (BRK-Y447F) phosphorylates SMAD4, resulting in its recognition by the ubiquitin-proteasome system, which accelerates SMAD4 degradation. Activated BRK-mediated degradation of SMAD4 is associated with the repression of tumor suppressor gene FRK and increased expression of mesenchymal markers, SNAIL, and SLUG. Thus, our data suggest that combination therapies targeting activated BRK signaling may have synergized the benefits in the treatment of SMAD4 repressed cancers.
Collapse
Affiliation(s)
- S. Miah
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - C. A. S. Banks
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Y. Ogunbolude
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - E. T. Bagu
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - J. M. Berg
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - A. Saraf
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - T. T. Tettey
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - G. Hattem
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - G. Dayebgadoh
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - C. G. Kempf
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - M. Sardiu
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - S. Napper
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Vaccine and Infectious Disease Organization–International Vaccine Centre, University of Saskatchewan, Saskatoon, SK S7 N 5E3, Canada
| | - L. Florens
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - K. E. Lukong
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - M. P. Washburn
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Departments of Pathology and Laboratory Medicine, University of Kansas Medical Centre, Kansas City, KS 66160, USA
| |
Collapse
|
21
|
Cagle P, Niture S, Srivastava A, Ramalinga M, Aqeel R, Rios-Colon L, Chimeh U, Suy S, Collins SP, Dahiya R, Kumar D. MicroRNA-214 targets PTK6 to inhibit tumorigenic potential and increase drug sensitivity of prostate cancer cells. Sci Rep 2019; 9:9776. [PMID: 31278310 PMCID: PMC6611815 DOI: 10.1038/s41598-019-46170-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/14/2019] [Indexed: 01/06/2023] Open
Abstract
Prostate cancer is the most commonly diagnosed cancer in men with African American men disproportionally suffering from the burden of this disease. Biomarkers that could discriminate indolent from aggressive and drug resistance disease are lacking. MicroRNAs are small non-coding RNAs that affect numerous physiological and pathological processes, including cancer development and have been suggested as biomarkers and therapeutic targets. In the present study, we investigated the role of miR-214 on prostate cancer cell survival/migration/invasion, cell cycle regulation, and apoptosis. miR-214 was differentially expressed between Caucasian and African American prostate cancer cells. Importantly, miR-214 overexpression in prostate cancer cells induced apoptosis, inhibiting cell proliferation and colony forming ability. miR-214 expression in prostate cancer cells also inhibited cell migration and 3D spheroid invasion. Mechanistically, miR-214 inhibited prostate cancer cell proliferation by targeting protein tyrosine kinase 6 (PTK6). Restoration of PTK6 expression attenuated the inhibitory effect of miR-214 on cell proliferation. Moreover, simultaneous inhibition of PTK6 by ibrutinib and miR-214 significantly reduced cell proliferation/survival. Our data indicates that miR-214 could act as a tumor suppressor in prostate cancer and could potentially be utilized as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Patrice Cagle
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, 27707, United States
| | - Suryakant Niture
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, 27707, United States
| | - Anvesha Srivastava
- Cancer Research Laboratory, Division of Science and Mathematics, University of the District of Columbia, Washington, DC, 20008, United States
| | - Malathi Ramalinga
- Cancer Research Laboratory, Division of Science and Mathematics, University of the District of Columbia, Washington, DC, 20008, United States
| | - Rasha Aqeel
- Cancer Research Laboratory, Division of Science and Mathematics, University of the District of Columbia, Washington, DC, 20008, United States
| | - Leslimar Rios-Colon
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, 27707, United States
| | - Uchechukwu Chimeh
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, 27707, United States
| | - Simeng Suy
- Department of Radiation Medicine, Georgetown University, Washington, DC, 20057, United States
| | - Sean P Collins
- Department of Radiation Medicine, Georgetown University, Washington, DC, 20057, United States
| | - Rajvir Dahiya
- VA Medical Center and University of California San Francisco, San Francisco, CA, 94121, United States
| | - Deepak Kumar
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, 27707, United States. .,Cancer Research Laboratory, Division of Science and Mathematics, University of the District of Columbia, Washington, DC, 20008, United States. .,Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC, 27707, United States.
| |
Collapse
|
22
|
Knudsen ES, Kumarasamy V, Ruiz A, Sivinski J, Chung S, Grant A, Vail P, Chauhan SS, Jie T, Riall TS, Witkiewicz AK. Cell cycle plasticity driven by MTOR signaling: integral resistance to CDK4/6 inhibition in patient-derived models of pancreatic cancer. Oncogene 2019; 38:3355-3370. [PMID: 30696953 PMCID: PMC6499706 DOI: 10.1038/s41388-018-0650-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 12/15/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), like many KRAS-driven tumors, preferentially loses CDKN2A that encodes an endogenous CDK4/6 inhibitor to bypass the RB-mediated cell cycle suppression. Analysis of a panel of patient-derived cell lines and matched xenografts indicated that many pancreatic cancers have intrinsic resistance to CDK4/6 inhibition that is not due to any established mechanism or published biomarker. Rather, there is a KRAS-dependent rapid adaptive response that leads to the upregulation of cyclin proteins, which participate in functional complexes to mediate resistance. In vivo, the degree of response is associated with the suppression of a gene-expression signature that is strongly prognostic in pancreatic cancer. Resistance is associated with an adaptive gene expression signature which is common to multiple kinase inhibitors, but is attenuated with MTOR inhibitors. Combination treatment with MTOR and CDK4/6 inhibitors had potent activity across a large number of patient derived models of PDAC underscoring the potential clinical efficacy.
Collapse
Affiliation(s)
- Erik S Knudsen
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA. .,Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA.
| | - Vishnu Kumarasamy
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA.,Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Amanda Ruiz
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA.,Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Jared Sivinski
- Department of Pharmacology, Universtiy of Arizona, Tucson, AZ, USA
| | - Sejin Chung
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA.,Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Adam Grant
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA.,Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Paris Vail
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA.,Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | - Tun Jie
- Department of Surgery, University of Arizona, Tucson, AZ, USA
| | - Taylor S Riall
- Department of Surgery, University of Arizona, Tucson, AZ, USA
| | - Agnieszka K Witkiewicz
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA. .,Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY, USA.
| |
Collapse
|
23
|
Qiu L, Levine K, Gajiwala KS, Cronin CN, Nagata A, Johnson E, Kraus M, Tatlock J, Kania R, Foley T, Sun S. Small molecule inhibitors reveal PTK6 kinase is not an oncogenic driver in breast cancers. PLoS One 2018; 13:e0198374. [PMID: 29879184 PMCID: PMC5991704 DOI: 10.1371/journal.pone.0198374] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/17/2018] [Indexed: 12/22/2022] Open
Abstract
Protein tyrosine kinase 6 (PTK6, or BRK) is aberrantly expressed in breast cancers, and emerging as an oncogene that promotes tumor cell proliferation, migration and evasion. Both kinase-dependent and -independent functions of PTK6 in driving tumor growth have been described, therefore targeting PTK6 kinase activity by small molecule inhibitors as a therapeutic approach to treat cancers remains to be validated. In this study, we identified novel, potent and selective PTK6 kinase inhibitors as a means to investigate the role of PTK6 kinase activity in breast tumorigenesis. We report here the crystal structures of apo-PTK6 and inhibitor-bound PTK6 complexes, providing the structural basis for small molecule interaction with PTK6. The kinase inhibitors moderately suppress tumor cell growth in 2D and 3D cell cultures. However, the tumor cell growth inhibition shows neither correlation with the PTK6 kinase activity inhibition, nor the total or activated PTK6 protein levels in tumor cells, suggesting that the tumor cell growth is independent of PTK6 kinase activity. Furthermore, in engineered breast tumor cells overexpressing PTK6, the inhibition of PTK6 kinase activity does not parallel the inhibition of tumor cell growth with a >500-fold shift in compound potencies (IC50 values). Overall, these findings suggest that the kinase activity of PTK6 does not play a significant role in tumorigenesis, thus providing important evidence against PTK6 kinase as a potential therapeutic target for breast cancer treatment.
Collapse
Affiliation(s)
- Luping Qiu
- Center of Therapeutic Innovation, Pfizer Inc., New York, NY, United States of America
| | - Kymberly Levine
- Center of Therapeutic Innovation, Pfizer Inc., New York, NY, United States of America
| | - Ketan S. Gajiwala
- Worldwide Medicinal Chemistry, Pfizer Inc., San Diego, CA, United States of America
| | - Ciarán N. Cronin
- Worldwide Medicinal Chemistry, Pfizer Inc., San Diego, CA, United States of America
| | - Asako Nagata
- Worldwide Medicinal Chemistry, Pfizer Inc., San Diego, CA, United States of America
| | - Eric Johnson
- Worldwide Medicinal Chemistry, Pfizer Inc., San Diego, CA, United States of America
| | - Michelle Kraus
- Worldwide Medicinal Chemistry, Pfizer Inc., San Diego, CA, United States of America
| | - John Tatlock
- Worldwide Medicinal Chemistry, Pfizer Inc., San Diego, CA, United States of America
| | - Robert Kania
- Worldwide Medicinal Chemistry, Pfizer Inc., San Diego, CA, United States of America
| | - Timothy Foley
- Primary Pharmacology, Pfizer Inc., Groton, CT, United States of America
| | - Shaoxian Sun
- Center of Therapeutic Innovation, Pfizer Inc., New York, NY, United States of America
- * E-mail:
| |
Collapse
|
24
|
PMTDS: a computational method based on genetic interaction networks for Precision Medicine Target-Drug Selection in cancer. QUANTITATIVE BIOLOGY 2017. [DOI: 10.1007/s40484-017-0126-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Xu XL, Ye YL, Wu ZM, He QM, Tan L, Xiao KH, Wu RY, Yu Y, Mai J, Li ZL, Peng XD, Huang Y, Li X, Zhang HL, Zhu XF, Qin ZK. Overexpression of PTK6 predicts poor prognosis in bladder cancer patients. J Cancer 2017; 8:3464-3473. [PMID: 29151930 PMCID: PMC5687160 DOI: 10.7150/jca.21318] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 07/22/2017] [Indexed: 12/14/2022] Open
Abstract
Protein tyrosine kinase 6 (PTK6) is a non-receptor tyrosine kinase and works as an oncogene in various cancers. Recently, PTK6 has been used as a therapeutic target for breast cancer patients in a clinical study. However, the prognostic value of PTK6 in bladder cancer (BC) remains vague. Therefore, we retrieved 3 independent investigations of Oncomine database and found that PTK6 is highly expressed in BC tissues compared with corresponding normal controls. Similar results were also observed in clinical specimens at both mRNA and protein levels. Immunohistochemical analysis indicated that PTK6 overexpression was highly related to the T classification, N classification, grade, recurrence, and poor prognosis of BC patients. Furthermore, we demonstrated that when PTK6 expression was knocked down by siRNAs, cell proliferation and migration were considerably inhibited in BC cell lines T24 and EJ. By these approaches, we are intended to elucidate PTK6 may be a reliable therapeutic target in BC and might benefit from PTK6 inhibitors in the future.
Collapse
Affiliation(s)
- Xue-Lian Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Cancer Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Yun-Lin Ye
- Department of Urological Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zhi-Ming Wu
- Department of Urological Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Qiu-Ming He
- Department of Urological Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Lei Tan
- Department of Urological Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Kang-Hua Xiao
- Department of Urological Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Rui-Yan Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Cancer Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Yan Yu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Cancer Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Jia Mai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Cancer Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Zhi-Ling Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Cancer Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xiao-Dan Peng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Cancer Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Yun Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Cancer Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xuan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Cancer Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Hai-Liang Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Cancer Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xiao-Feng Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Cancer Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Zi-Ke Qin
- Department of Urological Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| |
Collapse
|
26
|
Benzophenone-3 increases metastasis potential in lung cancer cells via epithelial to mesenchymal transition. Cell Biol Toxicol 2016; 33:251-261. [DOI: 10.1007/s10565-016-9368-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 10/19/2016] [Indexed: 01/06/2023]
|
27
|
Chen X, Song B, Lin Y, Cao L, Feng S, Zhang L, Wang F. PTK6 promotes hepatocellular carcinoma cell proliferation and invasion. Am J Transl Res 2016; 8:4354-4361. [PMID: 27830019 PMCID: PMC5095328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/09/2016] [Indexed: 06/06/2023]
Abstract
Protein tyrosine kinase 6 (PTK6) is a nonreceptor tyrosine kinase that plays a crucial role in some tumors. However, the role of PTK6 is still unknown in hepatocellular carcinoma (HCC). In this study, we demonstrated that the PTK6 expression was upregulated in HCC tissues compared with adjacent normal tissues. Moreover, PTK6 was upregulated in the HCC cell lines (Bel7402, Hep3B, SMMC7721 and HepG2) compared with the normal liver epithelial cell line (THLE3). Ectopic expression of PTK6 promoted SMMC7721 cell proliferation, colony formation and invasion. Moreover, inhibition PTK6 expression suppressed the SMMC7721 cell proliferation, colony formation and invasion. Overexpression of PTK6 suppressed ERK1/2 phosphorylated expression. These data suggested that PTK6 played an oncogene role in the development of HCC.
Collapse
Affiliation(s)
- Xiaohong Chen
- Department of Infectious Diseases, The Fourth Affiliatted Hospital of Harbin Medical University Harbin 150001, Heilongjiang, China
| | - Bo Song
- Department of Infectious Diseases, The Fourth Affiliatted Hospital of Harbin Medical University Harbin 150001, Heilongjiang, China
| | - Yuanlong Lin
- Department of Infectious Diseases, The Fourth Affiliatted Hospital of Harbin Medical University Harbin 150001, Heilongjiang, China
| | - Lijun Cao
- Department of Infectious Diseases, The Fourth Affiliatted Hospital of Harbin Medical University Harbin 150001, Heilongjiang, China
| | - Shiyan Feng
- Department of Infectious Diseases, The Fourth Affiliatted Hospital of Harbin Medical University Harbin 150001, Heilongjiang, China
| | - Lin Zhang
- Department of Infectious Diseases, The Fourth Affiliatted Hospital of Harbin Medical University Harbin 150001, Heilongjiang, China
| | - Fuxiang Wang
- Department of Infectious Diseases, The Fourth Affiliatted Hospital of Harbin Medical University Harbin 150001, Heilongjiang, China
| |
Collapse
|
28
|
Ono H, Basson MD, Ito H. P300 inhibition enhances gemcitabine-induced apoptosis of pancreatic cancer. Oncotarget 2016; 7:51301-51310. [PMID: 27322077 PMCID: PMC5239476 DOI: 10.18632/oncotarget.10117] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 05/17/2016] [Indexed: 01/14/2023] Open
Abstract
The transcriptional cofactor p300 has histone acetyltransferase activity (HAT) and has been reported to participate in chromatin remodeling and DNA repair. We hypothesized that targeting p300 can enhance the cytotoxicity of gemcitabine, which induces pancreatic cancer cell apoptosis by damaging DNA. Expression of p300 was confirmed in pancreatic cancer cell lines and human pancreatic adenocarcinoma tissues by western blotting and immunohistochemistry. When pancreatic cancer cells were treated with gemcitabine, p300 was recruited to chromatin within 24 hours, indicating the role in response to DNA damage. When p300 was gene-silenced with siRNA, histone acetylation was substantially reduced and pancreatic cancer cells were sensitized to gemcitabine. The selective p300 HAT inhibitor C646 similarly decreased histone acetylation, increased gemcitabine-induced apoptosis and thus enhanced the cytotoxicity of gemcitabine on pancreatic cancer cells. These findings indicate that p300 contributes to chemo-resistance of pancreatic cancer against gemcitabine and suggest that p300 and its HAT activity may be a potential therapeutic target to improve outcomes in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Hiroaki Ono
- Department of Surgery, Michigan State University, College of Human Medicine, Lansing, MI, USA
| | - Marc D. Basson
- Departments of Surgery, Basic Science and Pathology, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Hiromichi Ito
- Department of Surgery, Michigan State University, College of Human Medicine, Lansing, MI, USA
| |
Collapse
|
29
|
Harrington KM, Clevenger CV. Identification of NEK3 Kinase Threonine 165 as a Novel Regulatory Phosphorylation Site That Modulates Focal Adhesion Remodeling Necessary for Breast Cancer Cell Migration. J Biol Chem 2016; 291:21388-21406. [PMID: 27489110 PMCID: PMC5076809 DOI: 10.1074/jbc.m116.726190] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/27/2016] [Indexed: 01/09/2023] Open
Abstract
Accumulating evidence supports a role for prolactin (PRL) in the development and progression of human breast cancer. Although PRL is an established chemoattractant for breast cancer cells, the precise molecular mechanisms of how PRL regulates breast cancer cell motility and invasion are not fully understood. PRL activates the serine/threonine kinase NEK3, which was reported to enhance breast cancer cell migration, invasion, and the actin cytoskeletal reorganization necessary for these processes. However, the specific mechanisms of NEK3 activation in response to PRL signaling have not been defined. In this report, a novel PRL-inducible regulatory phosphorylation site within the activation segment of NEK3, threonine 165 (Thr-165), was identified. Phosphorylation at NEK3 Thr-165 was found to be dependent on activation of the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway using both pharmacological inhibition and siRNA-mediated knockdown approaches. Strikingly, inhibition of phosphorylation at NEK3 Thr-165 by expression of a phospho-deficient mutant (NEK3-T165V) resulted in increased focal adhesion size, formation of zyxin-positive focal adhesions, and reorganization of the actin cytoskeleton into stress fibers. Concordantly, NEK3-T165V cells exhibited migratory defects. Together, these data support a modulatory role for phosphorylation at NEK3 Thr-165 in focal adhesion maturation and/or turnover to promote breast cancer cell migration.
Collapse
Affiliation(s)
- Katherine M Harrington
- From the Department of Pathology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611 and
| | - Charles V Clevenger
- the Department of Pathology, Virginia Commonwealth University, Richmond, Virginia 23298
| |
Collapse
|
30
|
XU JINMEI, ZHOU YAN, GAO LONG, ZHOU SHUXIAN, LIU WEIHUA, LI XIAOAN. Stromal interaction molecule 1 plays an important role in gastric cancer progression. Oncol Rep 2016; 35:3496-504. [DOI: 10.3892/or.2016.4704] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/27/2015] [Indexed: 11/05/2022] Open
|
31
|
Mathur PS, Gierut JJ, Guzman G, Xie H, Xicola RM, Llor X, Chastkofsky MI, Perekatt AO, Tyner AL. Kinase-Dependent and -Independent Roles for PTK6 in Colon Cancer. Mol Cancer Res 2016; 14:563-73. [PMID: 26983689 DOI: 10.1158/1541-7786.mcr-15-0450] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/07/2016] [Indexed: 12/17/2022]
Abstract
UNLABELLED Disruption of the gene encoding Protein Tyrosine Kinase 6 (Ptk6) delayed differentiation and increased growth in the mouse intestine. However, Ptk6-null mice were also resistant to azoxymethane-induced colon tumorigenesis. To further explore functions of PTK6 in colon cancer, expression of epithelial and mesenchymal markers, as well as proliferation, migration, and xenograft tumor growth, was examined in human colon tumor cell lines with knockdown or overexpression of PTK6. PTK6 protein, transcript, and activation were also examined in a human colon tumor tissue array, using immunohistochemistry and qRT-PCR. Knockdown of PTK6 led to the epithelial-mesenchymal transition (EMT) in SW480 and HCT116 cells, whereas overexpression of PTK6 in SW620 cells restored an epithelial phenotype in a kinase-independent manner. PTK6 knockdown also increased xenograft tumor growth of SW480 cells, suggesting tumor suppressor functions. In clinical specimens, PTK6 expression was highest in normal differentiated epithelial cells and reduced in tumors. In contrast, overexpression of constitutively active PTK6 promoted STAT3 and ERK5 activation in colon cancer cells, and endogenous PTK6 promoted cell survival and oncogenic signaling in response to DNA-damaging treatments. These data indicate that PTK6 has complex, context-specific functions in colon cancer; PTK6 promotes the epithelial phenotype to antagonize the EMT in a kinase-independent manner, whereas activation of PTK6 promotes oncogenic signaling. IMPLICATIONS Understanding context-specific functions of PTK6 is important, because although it promotes cell survival and oncogenic signaling after DNA damage, expression of PTK6 in established tumors may maintain the epithelial phenotype, preventing tumor progression. Mol Cancer Res; 14(6); 563-73. ©2016 AACR.
Collapse
Affiliation(s)
- Priya S Mathur
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois
| | - Jessica J Gierut
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois
| | - Grace Guzman
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois
| | - Hui Xie
- Department of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, Illinois
| | - Rosa M Xicola
- Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Xavier Llor
- Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Michael I Chastkofsky
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois
| | - Ansu O Perekatt
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois
| | - Angela L Tyner
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
32
|
SUN XIANGXIU, LIN LIN, CHEN YING, LIU TIANFENG, LIU RONGHUA, WANG ZHONGDE, MOU KAI, XU JIA, LI BO, SONG HAIBO. Nitidine chloride inhibits ovarian cancer cell migration and invasion by suppressing MMP-2/9 production via the ERK signaling pathway. Mol Med Rep 2016; 13:3161-8. [DOI: 10.3892/mmr.2016.4929] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 01/12/2016] [Indexed: 11/06/2022] Open
|
33
|
Ono H, Basson MD, Ito H. PTK6 Potentiates Gemcitabine-Induced Apoptosis by Prolonging S-phase and Enhancing DNA Damage in Pancreatic Cancer. Mol Cancer Res 2015; 13:1174-1184. [PMID: 26013168 DOI: 10.1158/1541-7786.mcr-15-0034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 05/11/2015] [Indexed: 11/16/2022]
Abstract
UNLABELLED Protein Tyrosine Kinase 6 (PTK6) is a non-receptor-type tyrosine kinase known to be expressed in various cancers, including pancreatic cancer. The role of PTK6 in cancer chemoresistance remains unclear. Therefore, it was hypothesized that PTK6 mechanistically regulates gemcitabine resistance in pancreatic cancer. Gemcitabine treatment stimulated endogenous PTK6 overexpression in MIAPaCa2 and Panc1 cells. PTK6 gene silencing increased cell survival after gemcitabine treatment and decreased apoptosis, whereas PTK6 overexpression decreased cell survival and increased apoptosis. Selection for gemcitabine resistance revealed substantially lower PTK6 expression in the gemcitabine-resistant subclones compared with the parental lines, while restoring PTK6 rescued gemcitabine sensitivity. Gemcitabine induced phosphorylation of H2AX (γ-H2AX) and ataxia-telangiectasia mutated kinase (pATM), specific markers for DNA double-strand breaks. Both gemcitabine-induced phosphorylation of H2AX and ATM were reduced by PTK6 knockdown and increased by PTK6 overexpression. PTK6 overexpression also increased the S-phase fraction 48 hours after gemcitabine treatment. Although gemcitabine activated both caspase-8 (CASP8) and caspase-9 (CASP9), the effect of PTK6 on gemcitabine-induced apoptosis required CASP8 but not CASP9. In mouse xenografts, PTK6 overexpression in subcutaneous tumors attenuated tumor growth after gemcitabine treatment. In conclusion, PTK6 prolongs S-phase and increases the ability of gemcitabine to cause DNA damage in vitro and in vivo. IMPLICATIONS PTK6 affects cell cycle and DNA damage, thus making it an important therapeutic target to improve the outcomes of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Hiroaki Ono
- Department of Surgery, Michigan State University, College of Human Medicine, Lansing, Michigan
| | - Marc D Basson
- Department of Surgery, Michigan State University, College of Human Medicine, Lansing, Michigan
| | - Hiromichi Ito
- Department of Surgery, Michigan State University, College of Human Medicine, Lansing, Michigan.
| |
Collapse
|
34
|
Zhao S, Li J. Sphingosine-1-phosphate induces the migration of thyroid follicular carcinoma cells through the microRNA-17/PTK6/ERK1/2 pathway. PLoS One 2015; 10:e0119148. [PMID: 25748447 PMCID: PMC4351951 DOI: 10.1371/journal.pone.0119148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 01/09/2015] [Indexed: 11/18/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive lipid known to play a role in tumorigenesis and cancer progression. However, the molecular mechanisms of S1P regulated migration of papillary thyroid cancer cells are still unknown. In this study, we showed that S1P induced PTK6 mRNA and protein expression in two thyroid follicular cancer cell lines (ML-1 and FTC-133). Further studies demonstrated that induced PTK6 and its downstream signal component (ERK1/2) are involved in S1P-induced migration. Upon investigating the mechanisms behind this event, we found that miR-17 inhibited the expression of PTK6 through direct binding to its 3’-UTR. Through overexpression and knockdown studies, we found that miR-17 can significantly inhibit S1P-induced migration in thyroid follicular cancer cells. Interestingly, overexpression or knockdown of PTK6 or ERK1/2 effectively removed the inhibition of S1P-induced migration by miR-17. Furthermore, we showed that S1P decreased miR-17 expression levels. Meanwhile, in papillary thyroid cancers, miR-17 is downregulated and negatively associated with clinical staging, whereas PTK6 is upregulated and positively associated with clinical stages. Collectively, our work defines a novel signaling pathway implicated in the control of thyroid cancer migration.
Collapse
Affiliation(s)
- Shitao Zhao
- The Department of Breast and Thyroid Sugery, The First Affiliate Hospital of Liaoning Medical University. Jinzhou, Liaoning, China
| | - Jincheng Li
- The Department of Breast and Thyroid Sugery, The First Affiliate Hospital of Liaoning Medical University. Jinzhou, Liaoning, China
- * E-mail:
| |
Collapse
|
35
|
Chen Q, Li P, Li P, Xu Y, Li Y, Tang B. Isoquercitrin inhibits the progression of pancreatic cancer in vivo and in vitro by regulating opioid receptors and the mitogen-activated protein kinase signalling pathway. Oncol Rep 2015; 33:840-8. [PMID: 25434366 DOI: 10.3892/or.2014.3626] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 11/07/2014] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is a common malignant tumour that affects individuals worldwide. In recent years, the incidence and mortality rates of pancreatic cancer have continuously increased. Currently, the primary clinical treatment methods for pancreatic cancer include surgical resection, chemotherapy and radiotherapy. However, these treatment methods rarely produce satisfactory therapeutic outcomes. Extensive research has also proven that the effective components of several traditional Chinese medicines, particularly flavonoids extracted from plants, have significant antitumour effects. Isoquercitrin, which is one of the flavonoids found in Bidens pilosa extracts, has a significant antitumour effect. However, the antitumour effect of isoquercitrin and its mechanism of action remain unclear. The objective of the present study was to investigate the effect of isoquercitrin on the progression of pancreatic cancer and to further understand the biological characteristics of the participation of isoquercitrin in the progression of pancreatic cancer. In vitro, we found that a therapeutic dose of isoquercitrin significantly inhibited proliferation, promoted apoptosis and induced cell cycle arrest within the G1 phase in pancreatic cancer cells. Isoquercitrin activated caspase-3, -8 and -9 and reduced the mitochondrial membrane potential. In addition, isoquercitrin inhibited the expression level of the δ opioid receptor; however, isoquercitrin had no effect on the κ and µ opioid receptors. Furthermore, isoquercitrin inhibited extracellular signal-regulated kinase (ERK) phosphorylation and promoted c-Jun N-terminal kinase (JNK) phosphorylation. In vivo, we found that a therapeutic dose of isoquercitrin significantly inhibited xenograft growth in nude mice. In summary, the present study demonstrated that isoquercitrin inhibits human pancreatic cancer progression in vivo and in vitro and that its molecular mechanism may be closely related to opioid receptors and to the activation of the mitogen-activated protein kinase (MAPK) signalling pathway.
Collapse
Affiliation(s)
- Quan Chen
- Department of Anesthesiology, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Ping Li
- Department of Oncology, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Ping Li
- Department of Anesthesiology, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Yong Xu
- Department of Anesthesiology, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Yang Li
- Department of Hepatobiliary Surgery and Medical Oncology, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi 541001, P.R. China
| | - Bo Tang
- Department of Hepatobiliary Surgery and Medical Oncology, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi 541001, P.R. China
| |
Collapse
|