1
|
Ma Z, Wang J, Li C. Research Progress on miRNAs and Artificial miRNAs in Insect and Disease Resistance and Breeding in Plants. Genes (Basel) 2024; 15:1200. [PMID: 39336791 PMCID: PMC11431169 DOI: 10.3390/genes15091200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that are expressed in a tissue- and temporal-specific manner during development. They have been found to be highly conserved during the evolution of different species. miRNAs regulate the expression of several genes in various organisms, with some regulating the expression of multiple genes with similar or completely unrelated functions. Frequent disease and insect pest infestations severely limit agricultural development. Thus, cultivating resistant crops via miRNA-directed gene regulation in plants, insects, and pathogens is an important aspect of modern breeding practices. To strengthen the application of miRNAs in sustainable agriculture, plant endogenous or exogenous miRNAs have been used for plant breeding. Consequently, the development of biological pesticides based on miRNAs has become an important avenue for future pest control methods. However, selecting the appropriate miRNA according to the desired target traits in the target organism is key to successfully using this technology for pest control. This review summarizes the progress in research on miRNAs in plants and other species involved in regulating plant disease and pest resistance pathways. We also discuss the molecular mechanisms of relevant target genes to provide new ideas for future research on pest and disease resistance and breeding in plants.
Collapse
Affiliation(s)
- Zengfeng Ma
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Rice Genetics and Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning 530007, China
| | - Jianyu Wang
- Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430070, China
- School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Changyan Li
- Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430070, China
| |
Collapse
|
2
|
Oliver JE, Rotenberg D, Agosto-Shaw K, McInnes HA, Lahre KA, Mulot M, Adkins S, Whitfield AE. Multigenic Hairpin Transgenes in Tomato Confer Resistance to Multiple Orthotospoviruses Including Sw-5 Resistance-Breaking Tomato Spotted Wilt Virus. PHYTOPATHOLOGY 2024; 114:1137-1149. [PMID: 37856697 DOI: 10.1094/phyto-07-23-0256-kc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Tomato spotted wilt virus (TSWV) and related thrips-borne orthotospoviruses are a threat to food and ornamental crops. Orthotospoviruses have the capacity for rapid genetic change by genome segment reassortment and mutation. Genetic resistance is one of the most effective strategies for managing orthotospoviruses, but there are multiple examples of resistance gene breakdown. Our goal was to develop effective multigenic, broad-spectrum resistance to TSWV and other orthotospoviruses. The most conserved sequences for each open reading frame (ORF) of the TSWV genome were identified, and comparison with other orthotospoviruses revealed sequence conservation within virus clades; some overlapped with domains with well-documented biological functions. We made six hairpin constructs, each of which incorporated sequences matching portions of all five ORFs. Tomato plants expressing the hairpin transgene were challenged with TSWV by thrips and leaf-rub inoculation, and four constructs provided strong protection against TSWV in foliage and fruit. To determine if the hairpin constructs provided protection against other emerging orthotospoviruses, we challenged the plants with tomato chlorotic spot virus and resistance-breaking TSWV and found that the same constructs also provided resistance to these related viruses. Antiviral hairpin constructs are an effective way to protect plants from multiple orthotospoviruses and are an important strategy in the fight against resistance-breaking TSWV and emerging viruses. Targeting of all five viral ORFs is expected to increase the durability of resistance, and combining them with other resistance genes could further extend the utility of this disease control strategy. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Jonathan E Oliver
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66502
| | - Dorith Rotenberg
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| | - Karolyn Agosto-Shaw
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| | - Holly A McInnes
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| | - Kirsten A Lahre
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| | - Michaël Mulot
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| | - Scott Adkins
- U.S. Department of Agriculture-Agricultural Research Service-USHRL, Fort Pierce, FL 34945
| | - Anna E Whitfield
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
3
|
Khoshnami M, Zare B, Mardani-Mehrabad H, Rakhshandehroo F, Baghery MA, Malboobi MA. Assessment of co-infection with BNYVV and BSCTV on resistance against Rhizomania disease in transgenic sugar beet plants. Transgenic Res 2023; 32:475-485. [PMID: 37656262 DOI: 10.1007/s11248-023-00364-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 08/17/2023] [Indexed: 09/02/2023]
Abstract
Sugar beet is an economically important crop and one of the major sources of sucrose around the world. Beet necrotic yellow vein virus (BNYVV) and Beet severe curly top virus (BSCTV) are two widespread viruses in sugar beet that cause severe damage to its performance. Previously, we have successfully produced resistance to BNYVV based on RNA silencing in sugar beet by introducing constructs carrying the viral coat-protein-encoding DNA sequence, CP21, in sense and anti-sense orientations. Yet, the RNA silencing-mediated resistance to a specific virus could be affected by other ones as a part of synergistic interactions. In this study, we assayed the specificity of the induced resistance against BNYVV in two sets of transgenic events, S3 and S6 carrying 5'-UTR with or without CP21-coding sequences, respectively. These events were subjected to viral challenges with either BNYVV, an Iranian isolate of BSCTV (BSCTV-Ir) or both. All the plants inoculated with just BSCTV-Ir displayed curly-leaf symptoms. However, partial resistance was evident in S3 events as shown by mild symptoms and reduced PCR amplification of the BSCTV-Ir coat protein encoding sequence. Based on the presented data, resistance to BNYVV was stable in almost all the transgenic plants co-infected with BSCTV-Ir, except for one event, S3-229. In general, it seems that the co-infection does not affect the resistance to BNYVV in transgenic plants. These findings demonstrated that the introduced RNA silencing-mediated resistance against BNYVV in transgenic sugar beets is specific and is not suppressed after co-infection with a heterologous virus.
Collapse
Affiliation(s)
- Maryam Khoshnami
- Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology, Pazhouhesh Boulevard, Karaj Highway, Tehran, Iran
- Department of Plant Pathology, College of Agriculture and Natural Resources, Science and Research Branch, Islamic Azad University, Shohadaye Hesarak Boulevard, Daneshgah Square, Satary Highway, Tehran, Iran
| | - Bahar Zare
- Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology, Pazhouhesh Boulevard, Karaj Highway, Tehran, Iran
| | - Hamideh Mardani-Mehrabad
- Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology, Pazhouhesh Boulevard, Karaj Highway, Tehran, Iran
- Department of Plant Pathology, College of Agriculture and Natural Resources, Science and Research Branch, Islamic Azad University, Shohadaye Hesarak Boulevard, Daneshgah Square, Satary Highway, Tehran, Iran
| | - Farshad Rakhshandehroo
- Department of Plant Pathology, College of Agriculture and Natural Resources, Science and Research Branch, Islamic Azad University, Shohadaye Hesarak Boulevard, Daneshgah Square, Satary Highway, Tehran, Iran
| | - Mohammad Amin Baghery
- Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology, Pazhouhesh Boulevard, Karaj Highway, Tehran, Iran
| | - Mohammad Ali Malboobi
- Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology, Pazhouhesh Boulevard, Karaj Highway, Tehran, Iran.
| |
Collapse
|
4
|
Qi S, Zhang S, Islam MM, El-Sappah AH, Zhang F, Liang Y. Natural Resources Resistance to Tomato Spotted Wilt Virus (TSWV) in Tomato ( Solanum lycopersicum). Int J Mol Sci 2021; 22:ijms222010978. [PMID: 34681638 PMCID: PMC8538096 DOI: 10.3390/ijms222010978] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/26/2022] Open
Abstract
Tomato spotted wilt virus (TSWV) is one of the most destructive diseases affecting tomato (Solanum lycopersicum) cultivation and production worldwide. As defenses against TSWV, natural resistance genes have been identified in tomato, including Sw-1a, Sw-1b, sw-2, sw-3, sw-4, Sw-5, Sw-6, and Sw-7. However, only Sw-5 exhibits a high level of resistance to the TSWV. Thus, it has been cloned and widely used in the breeding of tomato with resistance to the disease. Due to the global spread of TSWV, resistance induced by Sw-5 decreases over time and can be overcome or broken by a high concentration of TSWV. How to utilize other resistance genes and identify novel resistance resources are key approaches for breeding tomato with resistance to TSWV. In this review, the characteristics of natural resistance genes, natural resistance resources, molecular markers for assisted selection, and methods for evaluating resistance to TSWV are summarized. The aim is to provide a theoretical basis for identifying, utilizing resistance genes, and developing tomato varieties that are resistant to TSWV.
Collapse
Affiliation(s)
- Shiming Qi
- College of Horticulture, Northwest A&F University, Xianyang 712100, China; (S.Q.); (S.Z.); (M.M.I.); (A.H.E.-S.); (F.Z.)
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Xianyang 712100, China
| | - Shijie Zhang
- College of Horticulture, Northwest A&F University, Xianyang 712100, China; (S.Q.); (S.Z.); (M.M.I.); (A.H.E.-S.); (F.Z.)
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Xianyang 712100, China
| | - Md. Monirul Islam
- College of Horticulture, Northwest A&F University, Xianyang 712100, China; (S.Q.); (S.Z.); (M.M.I.); (A.H.E.-S.); (F.Z.)
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Xianyang 712100, China
| | - Ahmed H. El-Sappah
- College of Horticulture, Northwest A&F University, Xianyang 712100, China; (S.Q.); (S.Z.); (M.M.I.); (A.H.E.-S.); (F.Z.)
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Xianyang 712100, China
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Fei Zhang
- College of Horticulture, Northwest A&F University, Xianyang 712100, China; (S.Q.); (S.Z.); (M.M.I.); (A.H.E.-S.); (F.Z.)
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Xianyang 712100, China
| | - Yan Liang
- College of Horticulture, Northwest A&F University, Xianyang 712100, China; (S.Q.); (S.Z.); (M.M.I.); (A.H.E.-S.); (F.Z.)
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Xianyang 712100, China
- Correspondence: ; Tel.: +86-29-8708-2613
| |
Collapse
|
5
|
Zhang Z, Zheng K, Zhao L, Su X, Zheng X, Wang T. Occurrence, Distribution, Evolutionary Relationships, Epidemiology, and Management of Orthotospoviruses in China. Front Microbiol 2021; 12:686025. [PMID: 34421843 PMCID: PMC8371445 DOI: 10.3389/fmicb.2021.686025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/25/2021] [Indexed: 11/17/2022] Open
Abstract
Orthotospoviruses are responsible for serious crop losses worldwide. Orthotospoviral diseases have spread rapidly in China over the past 10 years and are now found in 19 provinces. Currently, 17 Orthotospovirus species have been reported in China, including eight newly identified species from this genus. The number of new highly pathogenic Orthotospovirus strains or species has increased, likely because of the virus species diversity, the wide range of available hosts, adaptation of the viruses to different climates, and multiple transmission routes. This review describes the distribution of Orthotospovirus species, host plants, typical symptoms of infection under natural conditions, the systemic infection of host plants, spatial clustering characteristics of virus particles in host cells, and the orthotospoviral infection cycle in the field. The evolutionary relationships of orthotospoviruses isolated from China and epidemiology are also discussed. In order to effectively manage orthotospoviral disease, future research needs to focus on deciphering the underlying mechanisms of systemic infection, studying complex/mixed infections involving the same or different Orthotospovirus species or other viruses, elucidating orthotospovirus adaptative mechanisms to multiple climate types, breeding virus-resistant plants, identifying new strains and species, developing early monitoring and early warning systems for plant infection, and studying infection transmission routes.
Collapse
Affiliation(s)
- Zhongkai Zhang
- Key Lab of Agricultural Biotechnology of Yunnan Province, Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | | | | | | | | | | |
Collapse
|
6
|
Current Status and Potential of RNA Interference for the Management of Tomato Spotted Wilt Virus and Thrips Vectors. Pathogens 2021; 10:pathogens10030320. [PMID: 33803131 PMCID: PMC8001667 DOI: 10.3390/pathogens10030320] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/20/2021] [Accepted: 02/27/2021] [Indexed: 12/16/2022] Open
Abstract
Tomato spotted wilt virus (TSWV) is the type member of the genus Orthotospovirus in the family Tospoviridae and order Bunyavirales. TSWV, transmitted by several species of thrips, causes significant disease losses to agronomic and horticultural crops worldwide, impacting both the yield and quality of the produce. Management strategies include growing virus-resistant cultivars, cultural practices, and managing thrips vectors through pesticide application. However, numerous studies have reported that TSWV isolates can overcome host-plant resistance, while thrips are developing resistance to pesticides that were once effective. RNA interference (RNAi) offers a means of host defence by using double-stranded (ds) RNA to initiate gene silencing against invading viruses. However, adoption of this approach requires production and use of transgenic plants and thus limits the practical application of RNAi against TSWV and other viruses. To fully utilize the potential of RNAi for virus management at the field level, new and novel approaches are needed. In this review, we summarize RNAi and highlight the potential of topical or exogenous application of RNAi triggers for managing TSWV and thrips vectors.
Collapse
|
7
|
Tabein S, Jansen M, Noris E, Vaira AM, Marian D, Behjatnia SAA, Accotto GP, Miozzi L. The Induction of an Effective dsRNA-Mediated Resistance Against Tomato Spotted Wilt Virus by Exogenous Application of Double-Stranded RNA Largely Depends on the Selection of the Viral RNA Target Region. FRONTIERS IN PLANT SCIENCE 2020; 11:533338. [PMID: 33329620 PMCID: PMC7732615 DOI: 10.3389/fpls.2020.533338] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 11/09/2020] [Indexed: 06/02/2023]
Abstract
Tomato spotted wilt virus (TSWV) is a devastating plant pathogen, causing huge crop losses worldwide. Unfortunately, due to its wide host range and emergence of resistance breaking strains, its management is challenging. Up to now, resistance to TSWV infection based on RNA interference (RNAi) has been achieved only in transgenic plants expressing parts of the viral genome or artificial microRNAs targeting it. Exogenous application of double-stranded RNAs (dsRNAs) for inducing virus resistance in plants, namely RNAi-based vaccination, represents an attractive and promising alternative, already shown to be effective against different positive-sense RNA viruses and viroids. In the present study, the protection efficacy of exogenous application of dsRNAs targeting the nucleocapsid (N) or the movement protein (NSm) coding genes of the negative-sense RNA virus TSWV was evaluated in Nicotiana benthamiana as model plant and in tomato as economically important crop. Most of the plants treated with N-targeting dsRNAs, but not with NSm-targeting dsRNAs, remained asymptomatic until 40 (N. benthamiana) and 63 (tomato) dpi, while the remaining ones showed a significant delay in systemic symptoms appearance. The different efficacy of N- and NSm-targeting dsRNAs in protecting plants is discussed in the light of their processing, mobility and biological role. These results indicate that the RNAi-based vaccination is effective also against negative-sense RNA viruses but emphasize that the choice of the target viral sequence in designing RNAi-based vaccines is crucial for its success.
Collapse
Affiliation(s)
- Saeid Tabein
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, Iran
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Marco Jansen
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
- Laboratory of Virology, Department of Plant Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Emanuela Noris
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Anna Maria Vaira
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Daniele Marian
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | | | - Gian Paolo Accotto
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Laura Miozzi
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| |
Collapse
|
8
|
Zhu M, van Grinsven IL, Kormelink R, Tao X. Paving the Way to Tospovirus Infection: Multilined Interplays with Plant Innate Immunity. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:41-62. [PMID: 30893008 DOI: 10.1146/annurev-phyto-082718-100309] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Tospoviruses are among the most important plant pathogens and cause serious crop losses worldwide. Tospoviruses have evolved to smartly utilize the host cellular machinery to accomplish their life cycle. Plants mount two layers of defense to combat their invasion. The first one involves the activation of an antiviral RNA interference (RNAi) defense response. However, tospoviruses encode an RNA silencing suppressor that enables them to counteract antiviral RNAi. To further combat viral invasion, plants also employ intracellular innate immune receptors (e.g., Sw-5b and Tsw) to recognize different viral effectors (e.g., NSm and NSs). This leads to the triggering of a much more robust defense against tospoviruses called effector-triggered immunity (ETI). Tospoviruses have further evolved their effectors and can break Sw-5b-/Tsw-mediated resistance. The arms race between tospoviruses and both layers of innate immunity drives the coevolution of host defense and viral genes involved in counter defense. In this review, a state-of-the-art overview is presented on the tospoviral life cycle and the multilined interplays between tospoviruses and the distinct layers of defense.
Collapse
Affiliation(s)
- Min Zhu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China;
| | - Irene Louise van Grinsven
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, 6708PB Wageningen, The Netherlands
| | - Richard Kormelink
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, 6708PB Wageningen, The Netherlands
| | - Xiaorong Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China;
| |
Collapse
|
9
|
Prasad Babu K, Maligeppagol M, Asokan R, Krishna Reddy M. Screening of a multi-virus resistant RNAi construct in cowpea through transient vacuum infiltration method. Virusdisease 2019; 30:269-278. [PMID: 31179366 PMCID: PMC6531525 DOI: 10.1007/s13337-018-00509-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 12/29/2018] [Indexed: 11/24/2022] Open
Abstract
Plant viruses are the most devastating pathogens causing substantial economic losses in many crops. Current viral disease management relies on prophylactics, roguing and insect vector control, since in most crops resistant gene pools for resistance breeding are unavailable. RNA interference, a sequence dependent gene silencing mechanism holds great potential in imparting virus resistance. In this study, the efficacy of a RNAi gene construct developed against four viruses commonly infesting tomato and chilli viz., capsicum chlorosis virus, groundnut bud necrosis virus, cucumber mosaic virus and chilli veinal mottle virus was evaluated. A 3546 bp dsRNA-forming construct comprising sense-intron-antisense fragments in binary vector pBI121 (hpRNAi-MVR) was mobilized into Agrobacterium tumefaciens. Cowpea (Vigna unguiculata) was used as an indicator plant for GBNV agroinfiltration to evaluate the efficacy of hpRNAi-MVR construct in conferring GBNV resistance. The type of agroinfiltration, bacterial concentration and incubation-temperatures were optimized. Vacuum infiltration of three pulses of 20-30 s at 66.66 kPa were effective than syringe infiltration. Of the five Agrobacterial concentrations, OD600 0.5 was more efficient. Incubation temperature of 31 ± 1 °C was favorable for development of disease symptoms than 20 ± 1 °C and 26 ± 1 °C. ELISA revealed a 35% decline in viral load in hpRNAi-MVR infiltrated plants compared to vector control plants. Quantitative real time PCR results have shown a viral gene silencing to the extent of 930-990 folds in hpRNAi-MVR infiltrated plants compared to vector control. This approach is simple, rapid and efficient to screen the efficacy of RNAi constructs developed for the RNAi mediated plant virus management.
Collapse
Affiliation(s)
- K. Prasad Babu
- Division of Biotechnology, ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake Post, Hessaraghatta, Bangalore, 560089 India
- Department of Biotechnology, Centre for Post-graduate Studies, Jain University, Bangalore, India
| | - Manamohan Maligeppagol
- Division of Biotechnology, ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake Post, Hessaraghatta, Bangalore, 560089 India
| | - R. Asokan
- Division of Biotechnology, ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake Post, Hessaraghatta, Bangalore, 560089 India
| | - M. Krishna Reddy
- Division of Plant Pathology, ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake Post, Hessaraghatta, Bangalore, 560089 India
| |
Collapse
|
10
|
Carbonell A, López C, Daròs JA. Fast-Forward Identification of Highly Effective Artificial Small RNAs Against Different Tomato spotted wilt virus Isolates. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:142-156. [PMID: 30070616 DOI: 10.1094/mpmi-05-18-0117-ta] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Artificial small RNAs (sRNAs), including artificial microRNAs (amiRNAs) and synthetic trans-acting small interfering RNAs (syn-tasiRNAs), are used to silence viral RNAs and confer antiviral resistance in plants. Here, the combined use of recent high-throughput methods for generating artificial sRNA constructs and the Tomato spotted wilt virus (TSWV)-Nicotiana benthamiana pathosystem allowed for the simple and rapid identification of amiRNAs with high anti-TSWV activity. A comparative analysis between the most effective amiRNA construct and a syn-tasiRNA construct including the four most effective amiRNA sequences showed that both were highly effective against two different TSWV isolates. These results highlight the usefulness of this high-throughput methodology for the fast-forward identification of artificial sRNAs with high antiviral activity prior to time-consuming generation of stably transformed plants.
Collapse
Affiliation(s)
- Alberto Carbonell
- 1 Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), 46022 Valencia, Spain; and
| | - Carmelo López
- 2 Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022 Valencia, Spain
| | - José-Antonio Daròs
- 1 Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), 46022 Valencia, Spain; and
| |
Collapse
|
11
|
Simko I, Richardson CE, Wintermantel WM. Variation within Lactuca spp. for Resistance to Impatiens necrotic spot virus. PLANT DISEASE 2018; 102:341-348. [PMID: 30673527 DOI: 10.1094/pdis-06-17-0790-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Lettuce (Lactuca sativa L.) production in coastal California, one of the major lettuce-producing areas of the United States, is regularly affected by outbreaks of Impatiens necrotic spot virus (INSV), a member of the genus Orthotospovirus. Transmission of INSV among lettuce crops in this growing region has been attributed predominantly to the western flower thrips (Frankliniella occidentalis). INSV is acquired by first- or second-instar thrips nymphs feeding on infected host plants (not necessarily lettuce). The virus replicates within the insect vector, and is transmitted to new plants by adult thrips as they feed on epidermal and mesophyll cells of susceptible host plants. All currently grown cultivars of lettuce are susceptible to the disease. Screening lettuce for resistance to INSV under field conditions is problematic because natural infections appear sporadically and the virus is not evenly distributed across infected fields. We have developed a greenhouse-based assay that uses viruliferous thrips in combination with mechanical inoculation that allows dependable, year-round screening for resistance. In all, 89 cultivars, breeding lines, and plant introductions of cultivated lettuce, together with 53 accessions from 11 other Lactuca spp., 4 accessions from two dandelion (Taraxacum) species, and 4 tomato (Solanum lycopersicum L.) lines were evaluated for resistance to INSV. All tested material was susceptible to INSV to varying degrees, with the exception of two tomato lines that carry the Sw-5 gene that confers resistance to Tomato spotted wilt virus, a virus closely related to INSV. In cultivated lettuce, a partial resistance to INSV was observed in cultivars Amazona, Ancora, Antigua, Commodore, Eruption, Iceberg, La Brillante, Merlot, Telluride, and Tinto. Limited comparison of the greenhouse-based screening results with the data from opportunistic evaluations of resistance on 775 lettuce accessions from six field trials indicates consistency of results from both greenhouse and field environments. The most resistant lettuce accessions are being incorporated into our breeding program for introgression of resistance into lettuce breeding lines.
Collapse
Affiliation(s)
- Ivan Simko
- United States Department of Agriculture-Agricultural Research Service, U.S. Agricultural Research Station, Crop Improvement and Protection Research Unit, Salinas, CA 93905
| | - Claire E Richardson
- United States Department of Agriculture-Agricultural Research Service, U.S. Agricultural Research Station, Crop Improvement and Protection Research Unit, Salinas, CA 93905
| | - William M Wintermantel
- United States Department of Agriculture-Agricultural Research Service, U.S. Agricultural Research Station, Crop Improvement and Protection Research Unit, Salinas, CA 93905
| |
Collapse
|
12
|
Abstract
The genus Tospovirus is unique within the family Bunyaviridae in that it is made up of viruses that infect plants. Initially documented over 100 years ago, tospoviruses have become increasingly important worldwide since the 1980s due to the spread of the important insect vector Frankliniella occidentalis and the discovery of new viruses. As a result, tospoviruses are now recognized globally as emerging agricultural diseases. Tospoviruses and their vectors, thrips species in the order Thysanoptera, represent a major problem for agricultural and ornamental crops that must be managed to avoid devastating losses. In recent years, the number of recognized species in the genus has increased rapidly, and our knowledge of the molecular interactions of tospoviruses with their host plants and vectors has expanded. In this review, we present an overview of the genus Tospovirus with particular emphasis on new understandings of the molecular plant-virus and vector-virus interactions as well as relationships among genus members.
Collapse
Affiliation(s)
- J E Oliver
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506;
| | - A E Whitfield
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506;
| |
Collapse
|
13
|
Wagaba H, Patil BL, Mukasa S, Alicai T, Fauquet CM, Taylor NJ. Artificial microRNA-derived resistance to Cassava brown streak disease. J Virol Methods 2016; 231:38-43. [PMID: 26912232 PMCID: PMC4819903 DOI: 10.1016/j.jviromet.2016.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 12/08/2015] [Accepted: 02/08/2016] [Indexed: 11/23/2022]
Abstract
Artificial miRNAs (amiRNA) were generated targeting conserved sequences within the genomes of the two causal agents of Cassava brown streak disease (CBSD): Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV). Transient expression studies on ten amiRNAs targeting 21nt conserved sequences of P1(CBSV and UCBSV), P3(CBSV and UCBSV), CI(UCBSV), NIb(CBSV and UCBSV), CP(UCBSV) and the un-translated region (3'-UTR) were tested in Nicotiana benthamiana. Four out of the ten amiRNAs expressed the corresponding amiRNA at high levels. Transgenic N. benthamiana plants were developed for the four amiRNAs targeting the P1 and NIb genes of CBSV and the P1 and CP genes of UCBSV and shown to accumulate miRNA products. Transgenic plants challenged with CBSV and UCBSV isolates showed resistance levels that ranged between ∼20-60% against CBSV and UCBSV and correlated with expression levels of the transgenically derived miRNAs. MicroRNAs targeting P1 and NIb of CBSV showed protection against CBSV and UCBSV, while amiRNAs targeting the P1 and CP of UCBSV showed protection against UCBSV but were less efficient against CBSV. These results indicate a potential application of amiRNAs for engineering resistance to CBSD-causing viruses in cassava.
Collapse
Affiliation(s)
- Henry Wagaba
- National Crops Resources Research Institute, Namulonge, P.O. Box 7084, Kampala, Uganda; Makerere University, P.O. Box 7062, University Rd, Kampala, Uganda
| | - Basavaprabhu L Patil
- ICAR-National Research Center on Plant Biotechnology, IARI, Pusa Campus, New Delhi 110012, India
| | - Settumba Mukasa
- Makerere University, P.O. Box 7062, University Rd, Kampala, Uganda
| | - Titus Alicai
- National Crops Resources Research Institute, Namulonge, P.O. Box 7084, Kampala, Uganda
| | - Claude M Fauquet
- Centro Internacional de Agricultura Tropical, Cali, Apartado Aéreo 6713, Cali, Colombia
| | - Nigel J Taylor
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA.
| |
Collapse
|
14
|
Ramesh SV, Pappu HR. Sequence characterization, molecular phylogeny reconstruction and recombination analysis of the large RNA of Tomato spotted wilt virus (Tospovirus: Bunyaviridae) from the United States. BMC Res Notes 2016; 9:200. [PMID: 27038777 PMCID: PMC4818514 DOI: 10.1186/s13104-016-1999-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 03/21/2016] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Tomato spotted wilt virus (TSWV; Tospovirus: Bunyaviridae) has been an economically important virus in the USA for over 30 years. However the complete sequence of only one TSWV isolate PA01 characterized from pepper in Pennsylvania is available. RESULTS The large (L) RNA of a TSWV WA-USA isolate was cloned and sequenced. It consisted of 8914 nucleotides (nt) encoding a single open reading frame of 8640 nts in the viral-complementary sense. The ORF potentially codes for RNA-dependent RNA polymerase (RdRp) of 330.9 kDa. Two untranslated regions of 241 and 33 nucleotides were present at the 5' and 3' termini, respectively that shared conserved tospoviral sequences. Phylogenetic analysis using nucleotide sequences of the complete L RNA showed that TSWV WA-USA isolate clustered with the American and Asian TSWV isolates which formed a distinct clade from Euro-Asiatic Tospoviruses. Phylogeny of the amino acid sequence of all tospoviral RdRps used in this study showed that all the known TSWV isolates including the USA isolate described in this study formed a distinct and a close cluster with that of Impateins necrotic spot virus. Multiple sequence alignment revealed conserved motifs in the RdRp of TSWV. Recombination analysis identified two recombinants including the TSWV WA-USA isolate. Among them, three recombination events were detected in the conserved motifs of the RdRp. CONCLUSIONS Sequence analysis and phylogenetic analysis of the L RNA showed distinct clustering with selected TSWV isolates reported from elsewhere. Conserved motifs in the core polymerase region of the RdRp and recombination events were identified.
Collapse
Affiliation(s)
- Shunmugiah V. Ramesh
- />Department of Plant Pathology, Washington State University, 123 Vogel Plant BiologicalSciences, Pullman, WA 99164 USA
- />ICAR-Directorate of Soybean Research, Khandwa Road, Indore, 452 001 Madhya Pradesh India
| | - Hanu R. Pappu
- />Department of Plant Pathology, Washington State University, 123 Vogel Plant BiologicalSciences, Pullman, WA 99164 USA
| |
Collapse
|
15
|
Mitter N, Zhai Y, Bai AX, Chua K, Eid S, Constantin M, Mitchell R, Pappu HR. Evaluation and identification of candidate genes for artificial microRNA-mediated resistance to tomato spotted wilt virus. Virus Res 2016; 211:151-8. [PMID: 26454192 DOI: 10.1016/j.virusres.2015.10.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 09/29/2015] [Accepted: 10/01/2015] [Indexed: 01/12/2023]
Abstract
Tomato spotted wilt virus (TSWV) is an economically important viral pathogen of a wide range of field and horticultural crops. We developed an artificial microRNA (amiRNA) strategy against TSWV, targeting the nucleoprotein (N) and silencing suppressor (NSs) genes. The amiRNA constructs replaced the natural miRNA in a shortened Arabidopsis 173-nucleotide (nt) miR159a precursor backbone (athmiR159a) without the stem base extending beyond the miR/miR* duplex. Further, each amiRNA was modified to contain a mismatch (wobble) sequence at nucleotide position 12 and 13 on the complementary strand amiRNA*, mimicking the endogenous miR159a sequence structure. Transient expression in Nicotiana benthamiana demonstrated that the introduction of a wobble sequence did not alter amiRNA expression levels. Following challenge inoculation with TSWV, plants expressing N-specific amiRNAs with or without the wobble remained asymptomatic and were negative for TSWV by ELISA. In contrast, plants expressing the NSs-specific amiRNAs were symptomatic and accumulated high levels of TSWV. Similar findings were obtained in stably transformed Nicotiana tabacum plants. Our results show that a shortened 173-nt athmiR159a backbone is sufficient to express amiRNAs and that the presence of mismatch at position 12-13 does not influence amiRNA expression or conferring of resistance. We also show that selection of target gene and positional effect are critical in amiRNA-based approach for introducing resistance. These findings open the possibility of employing the amiRNA approach for broad-spectrum resistance to tospoviruses as well as other viruses.
Collapse
Affiliation(s)
- Neena Mitter
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Ying Zhai
- Department of Plant Pathology, Washington State University, Pullman, WA, USA
| | - Anh Xu Bai
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Keith Chua
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Sahar Eid
- Department of Plant Pathology, Washington State University, Pullman, WA, USA
| | - Myrna Constantin
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Roger Mitchell
- Queensland Agricultural Biotechnology Centre, University of Queensland, Ritchie Building, Research Road, QLD 4072, Australia
| | - Hanu R Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA, USA.
| |
Collapse
|
16
|
Patil BL, Kumar PL. Pigeonpea sterility mosaic virus: a legume-infecting Emaravirus from South Asia. MOLECULAR PLANT PATHOLOGY 2015; 16:775-86. [PMID: 25640756 PMCID: PMC6638375 DOI: 10.1111/mpp.12238] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Pigeonpea sterility mosaic virus (PPSMV), a species of the genus Emaravirus, is the causal agent of sterility mosaic disease (SMD) of pigeonpea [Cajanus cajan (L.) Millsp]. This disease, dubbed the 'green plague', as the infected plants remain in the vegetative state without flower production, has been reported from India and a few other South-East Asian countries. SMD is estimated to result in an annual yield loss of over US$300 million in India alone. The aetiology of SMD, which remained a mystery for over 70 years, was resolved with the discovery of PPSMV in 2000 and its complete genome sequence in 2014. AETIOLOGY AND VIRUS TRANSMISSION SMD is characterized by stunted and bushy plants, leaves of reduced size with chlorotic rings or mosaic symptoms, and partial or complete cessation of flower production (i.e. sterility). The causal agent of the disease is PPSMV, a virus with a segmented, negative-sense, single-stranded RNA genome, transmitted in a semi-persistent manner by an eriophyid mite Aceria cajani Channabassavanna (Acari: Arthropoda). Both the virus and vector are highly specific to pigeonpea and a few of its wild relatives, such as C. scarabaeoides and C. cajanifolius. Under experimental conditions, PPSMV was transmitted to Nicotiana benthamiana by sap inoculation using fresh extract of SMD-infected leaves (but not to pigeonpea); however, purified nucleoprotein preparations are not infectious. The virus was also transmitted to French bean (Phaseolus vulgaris L.) using viruliferous eriophyid mites. PPSMV is not seed transmitted in pigeonpea or other hosts known to be infected by this virus. On the basis of the differential host reactions in different geographical locations, the occurrence of diverse PPSMV strains was suspected. HOST RANGE AND EPIDEMIOLOGY PPSMV can infect several genotypes of cultivated and wild relatives of pigeonpea. Experimental hosts include N. benthamiana, N. clevelandii, P. vulgaris and Chrozophora rottleri. However, pigeonpea alone and a few wild species of Cajanus were found to support the vector A. cajani. SMD is endemic in most of the pigeonpea-growing regions of India, but the incidence varies widely between regions and years. In nature, A. cajani populations were almost exclusively observed on SMD-infected pigeonpea, but not on healthy plants, indicating a strong communalistic relationship between the virus-infected plants and the vector. The epidemiology of SMD involves the virus, mite vector, cultivar and environmental conditions. Infected perennial and volunteer plants serve as a source for both the virus and its vector mites, and play an important role in the disease cycle. GENOME ORGANIZATION, GENE FUNCTION AND TAXONOMY The PPSMV genome contains five segments of single-stranded RNA that are predicted to encode proteins in negative sense. The ribonucleoprotein complex is encased in quasi-spherical, membrane-bound virus particles of 100-150 nm. The largest segment, RNA-1, is 7022 nucleotides in length and codes for RNA-dependent RNA polymerase (2295 amino acids); RNA-2, with a sequence length of 2223 nucleotides, codes for glycoproteins (649 amino acids); RNA-3, with a sequence length of 1442 nucleotides, codes for nucleocapsid protein (309 amino acids); RNA-4, with a sequence length of 1563 nucleotides, codes for a putative movement protein p4 (362 amino acids); and RNA-5, with a sequence length of 1689 nucleotides, codes for p5 (474 amino acids), a protein with unknown function. PPSMV was recently classified as a species in the genus Emaravirus, a genus whose members show features resembling those of members of the genera Tospovirus (Family: Bunyaviridae) and Tenuivirus, both of which comprise single-stranded RNA viruses that encode proteins by an ambisense strategy. SMD CONTROL The disease is mainly controlled using SMD-resistant cultivars. However, the occurrence of distinct strains/isolates of PPSMV in different locations makes it difficult to incorporate broad-spectrum resistance. Studies on the inheritance of SMD resistance in different cultivars against different isolates of PPSMV indicate that the resistance is mostly governed by recessive genes, although there are contrasting interpretations of the data. Genetic engineering through RNA-interference (RNAi) and resistant gene-based strategies are some of the potential approaches for the transgenic control of SMD. Seed treatment or soil and foliar application of a number of organophosphorus-based insecticides or acaricides, which are recommended for the management of the vector mites, are seldom practised because of prohibitive costs and also their risks to human health and the environment.
Collapse
Affiliation(s)
- Basavaprabhu L Patil
- ICAR-National Research Centre on Plant Biotechnology, IARI, Pusa Campus, New Delhi, 110012, India
| | - P Lava Kumar
- International Institute of Tropical Agriculture, Oyo Road, PMB 5320, Ibadan, Nigeria
| |
Collapse
|
17
|
Yazhisai U, Rajagopalan PA, Raja JAJ, Chen TC, Yeh SD. Untranslatable tospoviral NSs fragment coupled with L conserved region enhances transgenic resistance against the homologous virus and a serologically unrelated tospovirus. Transgenic Res 2015; 24:635-49. [PMID: 25721329 DOI: 10.1007/s11248-015-9865-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 02/03/2015] [Indexed: 10/23/2022]
Abstract
Tospoviruses cause severe damages to important crops worldwide. In this study, Nicotiana benthamiana transgenic lines carrying individual untranslatable constructs comprised of the conserved region of the L gene (denoted as L), the 5' half of NSs coding sequence (NSs) or the antisense fragment of whole N coding sequence (N) of Watermelon silver mottle virus (WSMoV), individually or in combination, were generated. A total of 15-17 transgenic N. benthamiana lines carrying individual transgenes were evaluated against WSMoV and the serologically unrelated Tomato spotted wilt virus (TSWV). Among lines carrying single or chimeric transgenes, the level of resistance ranged from susceptible to completely resistant against WSMoV. From the lines carrying individual transgenes and highly resistant to WSMoV (56-63% of lines assayed), 30% of the L lines (3/10 lines assayed) and 11% of NSs lines (1/9 lines assayed) were highly resistant against TSWV. The chimeric transgenes provided higher degrees of resistance against WSMoV (80-88%), and the NSs fragment showed an additive effect to enhance the resistance to TSWV. Particularly, the chimeric transgenes with the triple combination of fragments, namely L/NSs/N or HpL/NSs/N (a hairpin construct), provided a higher degree of resistance (both 50%, with 7/14 lines assayed) against TSWV. Our results indicate that the untranslatable NSs fragment is able to enhance the transgenic resistance conferred by the L conserved region. The better performance of L/NSs/N and HpL/NSs/N in transgenic N. benthamiana lines suggests their potential usefulness in generating high levels of enhanced transgenic resistance against serologically unrelated tospoviruses in agronomic crops.
Collapse
Affiliation(s)
- Uthaman Yazhisai
- Department of Plant Pathology, College of Agriculture and Natural Resource, National Chung Hsing University, 250-Kuo-Kuang Road, Taichung, 40227, Taiwan, ROC
| | | | | | | | | |
Collapse
|
18
|
Olson KE, Franz AWE. Advances in genetically modified Aedes aegypti to control transmission of dengue viruses. Future Virol 2015. [DOI: 10.2217/fvl.15.38] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT Dengue viruses (DENV) are mosquito-borne viruses that infect millions of humans each year. DENVs are endemic in tropical regions of the world and maintained in a transmission cycle between mosquito vectors (Aedes aegypti) and humans. DEN disease control relies on vector control approaches that have had limited success and are difficult to sustain. Genetically modified mosquitoes (GMM) may be an alternative control strategy to limit DENV transmission. GMM-based control strategies include: conditional expression of a dominant lethal gene (RIDL) to reduce vector populations; and introgression of antipathogen (AP) genes into wild-type vectors for population replacement. In this review, we describe novel GMM-based strategies to limit DENV transmission and discuss potential hurdles to their successful implementation in the field.
Collapse
Affiliation(s)
- Ken E Olson
- Arthropod-borne & Infectious Diseases Laboratory, Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Alexander WE Franz
- Department of Veterinary Pathobiology, 303 Connaway Hall, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
19
|
The role of RNA interference (RNAi) in arbovirus-vector interactions. Viruses 2015; 7:820-43. [PMID: 25690800 PMCID: PMC4353918 DOI: 10.3390/v7020820] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/10/2014] [Accepted: 02/04/2015] [Indexed: 12/22/2022] Open
Abstract
RNA interference (RNAi) was shown over 18 years ago to be a mechanism by which arbovirus replication and transmission could be controlled in arthropod vectors. During the intervening period, research on RNAi has defined many of the components and mechanisms of this antiviral pathway in arthropods, yet a number of unexplored questions remain. RNAi refers to RNA-mediated regulation of gene expression. Originally, the term described silencing of endogenous genes by introduction of exogenous double-stranded (ds)RNA with the same sequence as the gene to be silenced. Further research has shown that RNAi comprises three gene regulation pathways that are mediated by small RNAs: the small interfering (si)RNA, micro (mi)RNA, and Piwi-interacting (pi)RNA pathways. The exogenous (exo-)siRNA pathway is now recognized as a major antiviral innate immune response of arthropods. More recent studies suggest that the piRNA and miRNA pathways might also have important roles in arbovirus-vector interactions. This review will focus on current knowledge of the role of the exo-siRNA pathway as an arthropod vector antiviral response and on emerging research into vector piRNA and miRNA pathway modulation of arbovirus-vector interactions. Although it is assumed that arboviruses must evade the vector’s antiviral RNAi response in order to maintain their natural transmission cycles, the strategies by which this is accomplished are not well defined. RNAi is also an important tool for arthropod gene knock-down in functional genomics studies and in development of arbovirus-resistant mosquito populations. Possible arbovirus strategies for evasion of RNAi and applications of RNAi in functional genomics analysis and arbovirus transmission control will also be reviewed.
Collapse
|
20
|
Blair CD, Olson KE. Mosquito immune responses to arbovirus infections. CURRENT OPINION IN INSECT SCIENCE 2014; 3:22-29. [PMID: 25401084 PMCID: PMC4228475 DOI: 10.1016/j.cois.2014.07.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The principal mosquito innate immune response to virus infections, RNA interference (RNAi), differs substantially from the immune response to bacterial and fungal infections. The exo-siRNA pathway constitutes the major anti-arboviral RNAi response and its essential genetic components have been identified. Recent research has also implicated the Piwi-interacting RNA pathway in mosquito anti-arboviral immunity, but Piwi gene-family components involved are not well-defined. Arboviruses must evade or suppress RNAi without causing pathogenesis in the vector to maintain their transmission cycle, but little is known about mechanisms of arbovirus modulation of RNAi. Genetic manipulation of mosquitoes to enhance their RNAi response can limit arbovirus infection and replication and could be used in novel strategies for interruption of arbovirus transmission and greatly reduce disease.
Collapse
Affiliation(s)
- Carol D. Blair
- Corresponding author, Address: Arthropod-borne and Infectious Diseases Laboratory, 1692 Campus Delivery, Colorado State University, Fort Collins, CO 80523-1692, USA, telephone 970-491-8243,
| | | |
Collapse
|