1
|
Zheng H, Xu B, Fan Y, Tuekprakhon A, Stamataki Z, Wang F. The role of immune regulation in HBV infection and hepatocellular carcinogenesis. Front Immunol 2025; 16:1506526. [PMID: 40160817 PMCID: PMC11949809 DOI: 10.3389/fimmu.2025.1506526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 02/19/2025] [Indexed: 04/02/2025] Open
Abstract
Hepatitis B virus (HBV) infection is a well-documented independent risk factor for developing hepatocellular carcinoma (HCC). Consequently, extensive research has focused on elucidating the mechanisms by which HBV induces hepatocarcinogenesis. The majority of studies are dedicated to understanding how HBV DNA integration into the host genome, viral RNA expression, and the resulting protein transcripts affect cellular processes and promote the malignant transformation of hepatocytes. However, considering that most acute HBV infections are curable, immune suppression potentially contributes to the critical challenges in the treatment of chronic infections. Regulatory T cells (Tregs) are crucial in immune tolerance. Understanding the interplay of Tregs within the liver microenvironment following HBV infection could offer novel therapeutic approaches for treating HBV infections and preventing HBV-related HCC. Two viewpoints to targeting Tregs in the liver microenvironment include means of reducing their inhibitory function and decreasing Treg frequency. As these strategies may disrupt the immune balance and lead to autoimmune responses, careful and comprehensive profiling of the patient's immunological status and genetic factors is required to successfully employ this promising therapeutic approach.
Collapse
Affiliation(s)
- Hailong Zheng
- Department of Hepatobiliary, Pancreatic, and Spleen Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Bingchen Xu
- Department of Hepatobiliary, Pancreatic, and Spleen Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Yiyu Fan
- Centre for Liver and Gastrointestinal Research, School of Infection, Inflammation & Immunology, College of Medicine and Health, University of Birmingham, Birmingham, United Kingdom
| | - Aekkachai Tuekprakhon
- Department of Hepatobiliary, Pancreatic, and Spleen Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
- Centre for Liver and Gastrointestinal Research, School of Infection, Inflammation & Immunology, College of Medicine and Health, University of Birmingham, Birmingham, United Kingdom
| | - Zania Stamataki
- Centre for Liver and Gastrointestinal Research, School of Infection, Inflammation & Immunology, College of Medicine and Health, University of Birmingham, Birmingham, United Kingdom
| | - Fei Wang
- Department of Hepatobiliary, Pancreatic, and Spleen Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| |
Collapse
|
2
|
Zhao CN, Chiang CL, Chiu WHK, Chan SKK, Li CBJ, Chen WW, Zheng DY, Chen WQ, Ji R, Lo CM, Jabbour SK, Chan CYA, Kong FM(S. Treatments of transarterial chemoembolization (TACE), stereotactic body radiotherapy (SBRT) and immunotherapy reshape the systemic tumor immune environment (STIE) in patients with unresectable hepatocellular carcinoma. JOURNAL OF THE NATIONAL CANCER CENTER 2025; 5:38-49. [PMID: 40040869 PMCID: PMC11873621 DOI: 10.1016/j.jncc.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/22/2024] [Accepted: 06/12/2024] [Indexed: 03/06/2025] Open
Abstract
Background The role of systemic tumor immune environment (STIE) is unclear in hepatocellular carcinoma (HCC). This study aimed to exam the cells in the STIE, their changes after transarterial chemoembolisation (TACE), stereotactic body radiotherapy (SBRT), and immunotherapy (IO) and explore their significance in the treatment response of patients with unresectable HCC. Methods This is a prospective biomarker study of patients with unresectable HCC. The treatment was sequential TACE, SBRT (27.5-40 Gy/5 fractions), and IO. The treatment response was assessed according to modified Response Evaluation Criteria in Solid Tumors (mRECIST) by magnetic resonance imaging (MRI) after 6 months of treatment. Longitudinal data of STIE cells was extracted from laboratory results of complete blood cell counts, including leukocytes, lymphocytes, neutrophils, monocytes, eosinophils, basophils, and platelets. Peripheral blood samples were collected at baseline and after TACE, SBRT, and IO for T-lymphocyte subtyping by flow cytometry. Generalized estimation equation was employed for longitudinal analyses. Results A total of 35 patients with unresectable HCC were enrolled: 23 patients in the exploratory cohort and 12 in the validation cohort. STIE circulating cells, especially lymphocytes, were heterogenous at baseline and changed differentially after TACE, SBRT, and IO in both cohorts. SBRT caused the greatest reduction of 0.7 × 109/L (95 % CI: 0.3 × 109/L-1.0 × 109/L, P < 0.001) in lymphocytes; less reduction was associated with significantly better treatment response. The analysis of T-lymphocyte lineage revealed that the baseline levels of CD4+ T cells (P = 0.010), type 1 T helper (Th1) cells (P = 0.007), and Th1/Th17 ratios (P = 0.001) were significantly higher in responders, while regulatory T (Treg) cells (P = 0.002), Th17 cells (P = 0.047), and Th2/Th1 ratios (P = 0.028) were significantly higher in non-responders. After treatment with TACE, SBRT and IO, T-lymphocyte lineage also changed differentially. More reductions were observed in CD25+CD8+ T cells and CD127+CD8+ T cells after SBRT in non-responders, while increases in natural killer T (NKT) cells after SBRT (10.4% vs. 3.4 %, P = 0.001) and increases in the lymphocyte counts were noted during IO in responders. Conclusions STIE cells are significant for treatment response, can be reshaped differentially after TACE, SBRT, and IO. The most significant changes of T-lymphocyte lineage are SBRT associated modulations in CD25+CD8+ T cells, CD127+CD8+ T cells, and NKT cells, which also have significant effects on the ultimate treatment response after TACE-SBRT-IO (ClinicalTrails.gov identifier: GCOG0001/NCT05061342).
Collapse
Affiliation(s)
- Cai-Ning Zhao
- Department of Clinical Oncology, University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Clinical Oncology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chi-Leung Chiang
- Department of Clinical Oncology, University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Clinical Oncology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wan-Hang Keith Chiu
- Department of Diagnostic Radiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Radiology & Imaging, Queen Elizabeth Hospital, Hong Kong, China
| | - Sik-Kwan Kenneth Chan
- Department of Clinical Oncology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chun-Bong James Li
- Department of Pediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wei-Wei Chen
- Department of Clinical Oncology, University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Clinical Oncology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Dan-Yang Zheng
- Department of Clinical Oncology, University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Clinical Oncology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wen-Qi Chen
- Department of Clinical Oncology, University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Ren Ji
- Department of Surgery, University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Chung-Mau Lo
- Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Salma K. Jabbour
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, USA
| | - Chi-Yan Albert Chan
- Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Feng-Ming (Spring) Kong
- Department of Clinical Oncology, University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Clinical Oncology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
3
|
Hong L, Herjan T, Chen X, Zagore LL, Bulek K, Wang H, Yang CFJ, Licatalosi DD, Li X, Li X. Act1 drives chemoresistance via regulation of antioxidant RNA metabolism and redox homeostasis. J Exp Med 2024; 221:e20231442. [PMID: 38861022 PMCID: PMC11167376 DOI: 10.1084/jem.20231442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/20/2024] [Accepted: 05/09/2024] [Indexed: 06/12/2024] Open
Abstract
The IL-17 receptor adaptor molecule Act1, an RNA-binding protein, plays a critical role in IL-17-mediated cancer progression. Here, we report a novel mechanism of how IL-17/Act1 induces chemoresistance by modulating redox homeostasis through epitranscriptomic regulation of antioxidant RNA metabolism. Transcriptome-wide mapping of direct Act1-RNA interactions revealed that Act1 binds to the 5'UTR of antioxidant mRNAs and Wilms' tumor 1-associating protein (WTAP), a key regulator in m6A methyltransferase complex. Strikingly, Act1's binding sites are located in proximity to m6A modification sites, which allows Act1 to promote the recruitment of elF3G for cap-independent translation. Loss of Act1's RNA binding activity or Wtap knockdown abolished IL-17-induced m6A modification and translation of Wtap and antioxidant mRNAs, indicating a feedforward mechanism of the Act1-WTAP loop. We then developed antisense oligonucleotides (Wtap ASO) that specifically disrupt Act1's binding to Wtap mRNA, abolishing IL-17/Act1-WTAP-mediated antioxidant protein production during chemotherapy. Wtap ASO substantially increased the antitumor efficacy of cisplatin, demonstrating a potential therapeutic strategy for chemoresistance.
Collapse
Affiliation(s)
- Lingzi Hong
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Tomasz Herjan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Xing Chen
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Leah L. Zagore
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Katarzyna Bulek
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Han Wang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | | | - Donny D. Licatalosi
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Takeda Pharmaceutical Company, San Diego, CA, USA
| | - Xiaoxia Li
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Xiao Li
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Computer and Data Sciences, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
4
|
Galasso L, Cerrito L, Maccauro V, Termite F, Mignini I, Esposto G, Borriello R, Ainora ME, Gasbarrini A, Zocco MA. Inflammatory Response in the Pathogenesis and Treatment of Hepatocellular Carcinoma: A Double-Edged Weapon. Int J Mol Sci 2024; 25:7191. [PMID: 39000296 PMCID: PMC11241080 DOI: 10.3390/ijms25137191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent among primary liver tumors (90%) and one of the main causes of cancer-related death. It develops usually in a chronically inflamed environment, ranging from compensatory parenchymal regeneration to fibrosis and cirrhosis: carcinogenesis can potentially happen in each of these stages. Inflammation determined by chronic viral infection (hepatitis B, hepatitis C, and hepatitis delta viruses) represents an important risk factor for HCC etiology through both viral direct damage and immune-related mechanisms. The deregulation of the physiological liver immunological network determined by viral infection can lead to carcinogenesis. The recent introduction of immunotherapy as the gold-standard first-line treatment for HCC highlights the role of the immune system and inflammation as a double-edged weapon in both HCC carcinogenesis and treatment. In this review we highlight how the inflammation is the key for the hepatocarcinogenesis in viral, alcohol and metabolic liver diseases.
Collapse
Affiliation(s)
- Linda Galasso
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (L.C.); (V.M.); (F.T.); (I.M.); (G.E.); (R.B.); (M.E.A.); (A.G.)
| | - Lucia Cerrito
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (L.C.); (V.M.); (F.T.); (I.M.); (G.E.); (R.B.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Valeria Maccauro
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (L.C.); (V.M.); (F.T.); (I.M.); (G.E.); (R.B.); (M.E.A.); (A.G.)
| | - Fabrizio Termite
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (L.C.); (V.M.); (F.T.); (I.M.); (G.E.); (R.B.); (M.E.A.); (A.G.)
| | - Irene Mignini
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (L.C.); (V.M.); (F.T.); (I.M.); (G.E.); (R.B.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Giorgio Esposto
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (L.C.); (V.M.); (F.T.); (I.M.); (G.E.); (R.B.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Raffaele Borriello
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (L.C.); (V.M.); (F.T.); (I.M.); (G.E.); (R.B.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Maria Elena Ainora
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (L.C.); (V.M.); (F.T.); (I.M.); (G.E.); (R.B.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (L.C.); (V.M.); (F.T.); (I.M.); (G.E.); (R.B.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Maria Assunta Zocco
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (L.C.); (V.M.); (F.T.); (I.M.); (G.E.); (R.B.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| |
Collapse
|
5
|
Yu X, Zhang H, Li J, Gu L, Cao L, Gong J, Xie P, Xu J. Construction of a prognostic prediction model in liver cancer based on genes involved in integrin cell surface interactions pathway by multi-omics screening. Front Cell Dev Biol 2024; 12:1237445. [PMID: 38374893 PMCID: PMC10875080 DOI: 10.3389/fcell.2024.1237445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/23/2024] [Indexed: 02/21/2024] Open
Abstract
Background: Liver cancer is a common malignant tumor with an increasing incidence in recent years. We aimed to develop a model by integrating clinical information and multi-omics profiles of genes to predict survival of patients with liver cancer. Methods: The multi-omics data were integrated to identify liver cancer survival-associated signal pathways. Then, a prognostic risk score model was established based on key genes in a specific pathway, followed by the analysis of the relationship between the risk score and clinical features as well as molecular and immunologic characterization of the key genes included in the prediction model. The function experiments were performed to further elucidate the undergoing molecular mechanism. Results: Totally, 4 pathways associated with liver cancer patients' survival were identified. In the pathway of integrin cell surface interactions, low expression of COMP and SPP1, and low CNVs level of COL4A2 and ITGAV were significantly related to prognosis. Based on above 4 genes, the risk score model for prognosis was established. Risk score, ITGAV and SPP1 were the most significantly positively related to activated dendritic cell. COL4A2 and COMP were the most significantly positively associated with Type 1 T helper cell and regulatory T cell, respectively. The nomogram (involved T stage and risk score) may better predict short-term survival. The cell assay showed that overexpression of ITGAV promoted tumorigenesis. Conclusion: The risk score model constructed with four genes (COMP, SPP1, COL4A2, and ITGAV) may be used to predict survival in liver cancer patients.
Collapse
Affiliation(s)
- Xiang Yu
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Radiology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Hao Zhang
- Department of Hepatobiliary Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Hepatobiliary Surgery, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Jinze Li
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Radiology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Lu Gu
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Radiology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Lei Cao
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Radiology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Jun Gong
- Department of Hepatobiliary Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Hepatobiliary Surgery, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Ping Xie
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Radiology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Jian Xu
- Department of Hepatobiliary Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Hepatobiliary Surgery, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
6
|
Sun L, Su Y, Jiao A, Wang X, Zhang B. T cells in health and disease. Signal Transduct Target Ther 2023; 8:235. [PMID: 37332039 PMCID: PMC10277291 DOI: 10.1038/s41392-023-01471-y] [Citation(s) in RCA: 315] [Impact Index Per Article: 157.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/20/2023] Open
Abstract
T cells are crucial for immune functions to maintain health and prevent disease. T cell development occurs in a stepwise process in the thymus and mainly generates CD4+ and CD8+ T cell subsets. Upon antigen stimulation, naïve T cells differentiate into CD4+ helper and CD8+ cytotoxic effector and memory cells, mediating direct killing, diverse immune regulatory function, and long-term protection. In response to acute and chronic infections and tumors, T cells adopt distinct differentiation trajectories and develop into a range of heterogeneous populations with various phenotype, differentiation potential, and functionality under precise and elaborate regulations of transcriptional and epigenetic programs. Abnormal T-cell immunity can initiate and promote the pathogenesis of autoimmune diseases. In this review, we summarize the current understanding of T cell development, CD4+ and CD8+ T cell classification, and differentiation in physiological settings. We further elaborate the heterogeneity, differentiation, functionality, and regulation network of CD4+ and CD8+ T cells in infectious disease, chronic infection and tumor, and autoimmune disease, highlighting the exhausted CD8+ T cell differentiation trajectory, CD4+ T cell helper function, T cell contributions to immunotherapy and autoimmune pathogenesis. We also discuss the development and function of γδ T cells in tissue surveillance, infection, and tumor immunity. Finally, we summarized current T-cell-based immunotherapies in both cancer and autoimmune diseases, with an emphasis on their clinical applications. A better understanding of T cell immunity provides insight into developing novel prophylactic and therapeutic strategies in human diseases.
Collapse
Affiliation(s)
- Lina Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China.
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China.
| |
Collapse
|
7
|
Abou-Fadel J, Reid V, Le A, Croft J, Zhang J. Key Members of the CmPn as Biomarkers Distinguish Histological and Immune Subtypes of Hepatic Cancers. Diagnostics (Basel) 2023; 13:diagnostics13061012. [PMID: 36980321 PMCID: PMC10047786 DOI: 10.3390/diagnostics13061012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/23/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023] Open
Abstract
Liver cancer, comprising hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), is a leading cause of cancer-related deaths worldwide. The liver is a primary metabolic organ for progesterone (PRG) and PRG exerts its effects through classic nuclear PRG receptors (nPRs) and non-classic membrane PRG receptors (mPRs) or a combination of both. Previous studies have shown that the CCM signaling complex (CSC) couples both nPRs and mPRs to form the CmPn (CSC-mPR-PRG-nPR) signaling network, which is involved in multiple cellular signaling pathways, including tumorigenesis of various cancers. Despite advances in treatment, 5-year survival rates for liver cancer patients remain low, largely due to the chemoresistant nature of HCCs. The lack of sensitive and specific biomarkers for liver cancer diagnosis and prognosis emphasizes the need for identifying new potential biomarkers. We propose the potential use of CmPn members’ expression data as prognostic biomarkers or biomarker signatures for the major types of hepatic cancer, including HCCs and CCAs, as well as rare subtypes such as undifferentiated pleomorphic sarcoma (UPS) and hepatic angiosarcoma (HAS). In this study, we investigated the CmPn network through RNAseq data and immunofluorescence techniques to measure alterations to key cancer pathways during liver tumorigenesis. Our findings reveal significant differential expression of multiple CmPn members, including CCM1, PAQR7, PGRMC1, and nPRs, in both HCCs and CCAs, highlighting the crucial roles of mPRs, nPRs, and CSC signaling during liver tumorigenesis. These key members of the CmPn network may serve as potential biomarkers for the diagnosis and prognosis of liver cancer subtypes, including rare subtypes.
Collapse
Affiliation(s)
| | | | | | | | - Jun Zhang
- Correspondence: ; Tel.: +1-(915)-215-4197
| |
Collapse
|
8
|
Olveira A, Augustin S, Benlloch S, Ampuero J, Suárez-Pérez JA, Armesto S, Vilarrasa E, Belinchón-Romero I, Herranz P, Crespo J, Guimerá F, Gómez-Labrador L, Martín V, Carrascosa JM. The Essential Role of IL-17 as the Pathogenetic Link between Psoriasis and Metabolic-Associated Fatty Liver Disease. Life (Basel) 2023; 13:419. [PMID: 36836776 PMCID: PMC9963792 DOI: 10.3390/life13020419] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/19/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Interleukin 17 (IL-17) is an effector cytokine that plays a key role in the pathogenesis of both psoriasis and metabolic-associated fatty liver disease (MAFLD), a condition that is more prevalent and severe in patients with psoriasis. In liver inflammation, IL-17 is mainly produced by CD4+ T (TH17) and CD8+ T cells (Tc17), although numerous other cells (macrophages, natural killer cells, neutrophils and Tγδ cells) also contribute to the production of IL-17. In hepatocytes, IL-17 mediates systemic inflammation and the recruitment of inflammatory cells to the liver, and it is also implicated in the development of fibrosis and insulin resistance. IL-17 levels have been correlated with progression from MAFLD to steatohepatitis, cirrhosis, and even hepatocellular carcinoma. Clinical trials have shown that inhibiting IL-17A in patients with psoriasis could potentially contribute to the improvement of metabolic and liver parameters. A better understanding of the key factors involved in the pathogenesis of these chronic inflammatory processes could potentially lead to more efficient treatment for both psoriasis and MAFLD, and help to develop holistic strategies to improve the management of these patients.
Collapse
Affiliation(s)
- Antonio Olveira
- Department of Digestive Diseases, La Paz University Hospital, 28046 Madrid, Spain
| | - Salvador Augustin
- Liver Unit, Vall d’Hebron Hospital Universitari, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Salvador Benlloch
- Department of Digestive Diseases, Arnau de Vilanova Hospital, Centro Biomédico en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 46015 Valencia, Spain
| | - Javier Ampuero
- Department of Digestive Diseases, Virgen del Rocío University Hospital, Lab 213, Institute of Biomedicine of Sevilla (IBIS), Department of Medicine, University of Sevilla, Centro Biomédico en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 41004 Sevilla, Spain
| | | | - Susana Armesto
- Department of Dermatology, Marqués de Valdecilla University Hospital, 39008 Santander, Spain
| | - Eva Vilarrasa
- Department of Dermatology, Santa Creu i Sant Pau Hospital, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Isabel Belinchón-Romero
- Dermatology Department, Alicante University General Hospital, Institute for Health and Biomedical Research (ISABIAL), Miguel Hernández University of Elche, 03202 Alicante, Spain
| | - Pedro Herranz
- Department of Dermatology, La Paz University Hospital, 28046 Madrid, Spain
| | - Javier Crespo
- Gastroenterology and Hepatology Department, Marqués de Valdecilla University Hospital, IDIVAL, School Medicine, University of Cantabria, 39005 Santander, Spain
| | - Francisco Guimerá
- Dermatology and Pathology Department, Canarias University Hospital, 38320 La Laguna, Spain
| | | | - Víctor Martín
- Immunology Franchise, Novartis Farmacéutica S.A., 28033 Madrid, Spain
| | - José Manuel Carrascosa
- Department of Dermatology, Germans Trias i Pujol University Hospital, Universitat Autònoma de Barcelona, IGTP, 08193 Badalona, Spain
| |
Collapse
|
9
|
Wang Z, Gao P, Sun W, Rehman AU, Jiang J, Xu S, Xue C, Zhu C, Qin X. Long noncoding RNA MyD88 functions as a promising diagnostic biomarker in hepatocellular carcinoma. Front Endocrinol (Lausanne) 2023; 14:938102. [PMID: 36793272 PMCID: PMC9922760 DOI: 10.3389/fendo.2023.938102] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 01/09/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most frequent malignancies. Alpha-fetoprotein (AFP) has some limitations in diagnosing early HCC. Recently, long noncoding RNAs (lncRNAs) showed great potential as tumor diagnostic biomarkers, and lnc-MyD88 was previously identified as a carcinogen in HCC. Here, we explored its diagnostic value as a plasma biomarker. MATERIALS AND METHODS Quantitative real-time PCR was adopted to detect lnc-MyD88 expression in plasma samples of 98 HCC patients, 52 liver cirrhosis (LC) patients, and 105 healthy people. The correlation between lnc-MyD88 and clinicopathological factors was analyzed through chi-square test. The receiver operating characteristic (ROC) curve was used to analyze the sensitivity, specificity, Youden index, and area under the curve (AUC) of lnc-MyD88 and AFP alone and in combination for the diagnosis of HCC. The relationship between MyD88 and immune infiltration was analyzed by single sample gene set enrichment analysis (ssGSEA) algorithm. RESULTS Lnc-MyD88 was highly expressed in plasma samples of HCC and hepatitis B virus (HBV)-associated HCC patients. Lnc-MyD88 had better diagnostic value than AFP in HCC patients using healthy people or LC patients as control (healthy people, AUC: 0.776 vs. 0.725; LC patients, AUC: 0.753 vs. 0.727). The multivariate analysis showed that lnc-MyD88 had great diagnostic value for distinguishing HCC from LC and healthy people. Lnc-MyD88 had no correlation with AFP. Lnc-MyD88 and AFP were independent diagnostic factors for HBV-associated HCC. The AUC, sensitivity, and Youden index of the combined diagnosis of lnc-MyD88 and AFP combined were higher than those of lnc-MyD88 and AFP alone. The ROC curve of lnc-MyD88 for the diagnosis of AFP-negative HCC was plotted with a sensitivity of 80.95%, a specificity of 79.59%, and an AUC value of 0.812 using healthy people as control. The ROC curve also presented its great diagnostic value using LC patients as control (sensitivity: 76.19%, specificity: 69.05%, AUC value: 0.769). Lnc-MyD88 expression was correlated with microvascular invasion in HBV-associated HCC patients. MyD88 was positively correlated with infiltrating immune cells and immune-related genes. CONCLUSION The high expression of plasma lnc-MyD88 in HCC is distinct and could be utilized as a promising diagnostic biomarker. Lnc-MyD88 had great diagnostic value for HBV-associated HCC and AFP-negative HCC, and it had higher efficacy in combination with AFP.
Collapse
Affiliation(s)
- Zhihuai Wang
- Department of General Surgery, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, China
- Graduate School of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Peng Gao
- Department of General Surgery, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Weijun Sun
- Department of General Surgery, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Adeel ur Rehman
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jiakai Jiang
- Department of General Surgery, The Changzhou No.3 People’s Hospital, Changzhou, China
| | - Suobao Xu
- Department of General Surgery, The Changzhou No.3 People’s Hospital, Changzhou, China
| | - Cailin Xue
- Department of General Surgery, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Chunfu Zhu
- Department of General Surgery, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, China
- Graduate School of Nanjing Medical University, Nanjing Medical University, Nanjing, China
- *Correspondence: Chunfu Zhu, ; Xihu Qin,
| | - Xihu Qin
- Department of General Surgery, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, China
- Graduate School of Nanjing Medical University, Nanjing Medical University, Nanjing, China
- *Correspondence: Chunfu Zhu, ; Xihu Qin,
| |
Collapse
|
10
|
Yoon JS, Lee CW. Protein phosphatases regulate the liver microenvironment in the development of hepatocellular carcinoma. Exp Mol Med 2022; 54:1799-1813. [PMID: 36380016 PMCID: PMC9722691 DOI: 10.1038/s12276-022-00883-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
The liver is a complicated heterogeneous organ composed of different cells. Parenchymal cells called hepatocytes and various nonparenchymal cells, including immune cells and stromal cells, are distributed in liver lobules with hepatic architecture. They interact with each other to compose the liver microenvironment and determine its characteristics. Although the liver microenvironment maintains liver homeostasis and function under healthy conditions, it also shows proinflammatory and profibrogenic characteristics that can induce the progression of hepatitis and hepatic fibrosis, eventually changing to a protumoral microenvironment that contributes to the development of hepatocellular carcinoma (HCC). According to recent studies, phosphatases are involved in liver diseases and HCC development by regulating protein phosphorylation in intracellular signaling pathways and changing the activities and characteristics of liver cells. Therefore, this review aims to highlight the importance of protein phosphatases in HCC development and in the regulation of the cellular components in the liver microenvironment and to show their significance as therapeutic targets.
Collapse
Affiliation(s)
- Joon-Sup Yoon
- grid.264381.a0000 0001 2181 989XDepartment of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, 16419 Republic of Korea
| | - Chang-Woo Lee
- grid.264381.a0000 0001 2181 989XDepartment of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, 16419 Republic of Korea ,grid.264381.a0000 0001 2181 989XDepartment of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351 Republic of Korea
| |
Collapse
|
11
|
Seven Hub Genes Predict the Prognosis of Hepatocellular Carcinoma and the Corresponding Competitive Endogenous RNA Network. JOURNAL OF ONCOLOGY 2022; 2022:3379330. [PMID: 36276270 PMCID: PMC9581604 DOI: 10.1155/2022/3379330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 12/24/2022]
Abstract
Purpose This study was aimed at identifying hub genes and ceRNA regulatory networks linked to prognosis in hepatocellular carcinoma (HCC) and to identify possible therapeutic targets. Methods Differential expression analyses were performed to detect the differentially expressed genes (DEGs) in the four datasets (GSE76427, GSE6764, GSE62232, and TCGA). The intersected DEmRNAs were identified to explore biological significance by enrichment analysis. We built a competitive endogenous RNA (ceRNA) network of lncRNA-miRNA-mRNA. The mRNAs of the ceRNA network were used to perform Cox and Kaplan-Meier analyses to obtain prognosis-related genes, followed by the selection of genes with an area under the curve >0.8 to generate the random survival forest model and obtain feature genes. Furthermore, the feature genes were subjected to least absolute shrinkage and selection operator (LASSO) and univariate Cox analyses were used to identify the hub genes. Finally, the infiltration status of immune cells in the HCC samples was determined. Results A total of 1923 intersected DEmRNAs were identified in four datasets and involved in cell cycle and carbon metabolism. ceRNA network was created using 10 lncRNAs, 67 miRNAs, and 1,923 mRNAs. LASSO regression model was performed to identify seven hub genes, SOCS2, MYOM2, FTCD, ADAMTSL2, TMEM106C, LARS, and KPNA2. Among them, TMEM106C, LARS, and KPNA2 had a poor prognosis. KPNA2 was considered a key gene base on LASSO and Cox analyses and involved in the ceRNA network. T helper 2 cells and T helper cells showed a higher degree of infiltration in HCC. Conclusion The findings revealed seven hub genes implicated in HCC prognosis and immune infiltration. A corresponding ceRNA network may help reveal their potential regulatory mechanism.
Collapse
|
12
|
Chen S, Gao Y, Wang Y, Daemen T. The combined signatures of hypoxia and cellular landscape provides a prognostic and therapeutic biomarker in hepatitis B virus-related hepatocellular carcinoma. Int J Cancer 2022; 151:809-824. [PMID: 35467769 PMCID: PMC9543189 DOI: 10.1002/ijc.34045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 03/13/2022] [Accepted: 04/05/2022] [Indexed: 11/18/2022]
Abstract
Prognosis and treatment options of hepatitis B virus-related hepatocellular carcinoma (HBV-HCC) are generally based on tumor burden and liver function. Yet, tumor growth and therapeutic resistance of HBV-HCC are strongly influenced by intratumoral hypoxia and cells infiltrating the tumor microenvironment (TME). We, therefore, studied whether linking parameters associated with hypoxia and TME cells could have a better prediction of prognosis and therapeutic responses. Quantification of 109 hypoxia-related genes and 64 TME cells was performed in 452 HBV-HCC tumors. Prognostic hypoxia and TME cells signatures were determined based on Cox regression and meta-analysis for generating the Hypoxia-TME classifier. Thereafter, the prognosis, tumor, and immune characteristics as well as the benefit of therapies in Hypoxia-TME defined subgroups were analyzed. Patients in the Hypoxialow /TMEhigh subgroup showed a better prognosis and therapeutic responses than any other subgroups, which can be well elucidated based on the differences in terms of immune-related molecules, tumor somatic mutations, and cancer cellular signaling pathways. Notably, our analysis furthermore demonstrated the synergistic influence of hypoxia and TME on tumor metabolism and proliferation. Besides, the classifier allowed a further subdivision of patients with early- and late-HCC stages. In addition, the Hypoxia-TME classifier was validated in another independent HBV-HCC cohort (n = 144) and several pan-cancer cohorts. Overall, the Hypoxia-TME classifier showed a pretreatment predictive value for prognosis and therapeutic responses, which might provide new directions for strategizing patients with optimal therapies.
Collapse
Affiliation(s)
- Shipeng Chen
- Department of Medical Microbiology and Infection Prevention, Tumor Virology and Cancer ImmunotherapyUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Yuzhen Gao
- Department of Clinical LaboratorySir Run Run Shaw Hospital, Zhejiang University School of MedicineHangzhouZhejiangChina
| | - Ying Wang
- Department of Laboratory MedicineShanghai Eastern Hepatobiliary Surgery HospitalShanghaiChina
- Research Center for Translational MedicineShanghai East Hospital, School of Life Sciences and Technology, Tongji UniversityShanghaiChina
| | - Toos Daemen
- Department of Medical Microbiology and Infection Prevention, Tumor Virology and Cancer ImmunotherapyUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| |
Collapse
|
13
|
Chen X, Zhao J, Herjan T, Hong L, Liao Y, Liu C, Vasu K, Wang H, Thompson A, Fox PL, Gastman BR, Li X, Li X. IL-17-induced HIF1α drives resistance to anti-PD-L1 via fibroblast-mediated immune exclusion. J Exp Med 2022; 219:e20210693. [PMID: 35389431 PMCID: PMC8996325 DOI: 10.1084/jem.20210693] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 02/01/2022] [Accepted: 03/23/2022] [Indexed: 12/28/2022] Open
Abstract
Increasing evidence suggests that intratumoral inflammation has an outsized influence on antitumor immunity. Here, we report that IL-17, a proinflammatory cytokine widely associated with poor prognosis in solid tumors, drives the therapeutic failure of anti-PD-L1. By timing the deletion of IL-17 signaling specifically in cancer-associated fibroblasts (CAFs) in late-stage tumors, we show that IL-17 signaling drives immune exclusion by activating a collagen deposition program in murine models of cutaneous squamous cell carcinoma (cSCC). Ablation of IL-17 signaling in CAFs increased the infiltration of cytotoxic T cells into the tumor mass and sensitized otherwise resistant cSCC to anti-PD-L1 treatment. Mechanistically, the collagen deposition program in CAFs was driven by IL-17-induced translation of HIF1α, which was mediated by direct binding of Act1, the adaptor protein of IL-17 receptor, to a stem-loop structure in the 3' untranslated region (UTR) in Hif1α mRNA. Disruption of Act1's binding to Hif1α mRNA abolished IL-17-induced collagen deposition and enhanced anti-PD-L1-mediated tumor regression.
Collapse
Affiliation(s)
- Xing Chen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Junjie Zhao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Tomasz Herjan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Lingzi Hong
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Yun Liao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Caini Liu
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Kommireddy Vasu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Han Wang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH
- Department of Computer and Data Sciences, School of Engineering, Case Western Reserve University, Cleveland, OH
| | - Austin Thompson
- School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Paul L. Fox
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Brian R. Gastman
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Department of Dermatology, Cleveland Clinic, Cleveland, OH
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, OH
| | - Xiao Li
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH
- Department of Computer and Data Sciences, School of Engineering, Case Western Reserve University, Cleveland, OH
| | - Xiaoxia Li
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
14
|
Li X, Zhang Z, Liu M, Fu X, A J, Chen G, Wu S, Dong JT. Establishment of a lncRNA-Based Prognostic Gene Signature Associated With Altered Immune Responses in HCC. Front Immunol 2022; 13:880288. [PMID: 35572559 PMCID: PMC9097819 DOI: 10.3389/fimmu.2022.880288] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/05/2022] [Indexed: 01/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy with higher mortality, and means are urgently needed to improve the prognosis. T cell exclusion (TCE) plays a pivotal role in immune evasion, and lncRNAs represent a large group of tumor development and progression modulators. Using the TCGA HCC dataset (n=374), we identified 2752 differentially expressed and 702 TCE-associated lncRNAs, of which 336 were in both groups. As identified using the univariate Cox regression analysis, those associated with overall survival (OS) were subjected to the LASSO-COX regression analysis to develop a prognosis signature. The model, which consisted of 11 lncRNAs and was named 11LNCPS for 11-lncRNA prognosis signature, was validated and performed better than two previous models. In addition to OS and TCE, higher 11LNCPS scores had a significant correlation with reduced infiltrations of CD8+ T cells and dendritic cells (DCs) and decreased infiltrations of Th1, Th2, and pro B cells. As expected, these infiltration alterations were significantly associated with worse OS in HCC. Analysis of published data indicates that HCCs with higher 11LNCPS scores were transcriptomically similar to those that responded better to PDL1 inhibitor. Of the 11LNCPS lncRNAs, LINC01134 and AC116025.2 seem more crucial, as their upregulations affected more immune cell types' infiltrations and were significantly associated with TCE, worse OS, and compromised immune responses in HCC. LncRNAs in the 11LNCPS impacted many cancer-associated biological processes and signaling pathways, particularly those involved in immune function and metabolism. The 11LNCPS should be useful for predicting prognosis and immune responses in HCC.
Collapse
Affiliation(s)
- Xiawei Li
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
- Laboratory Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zhiqian Zhang
- Laboratory Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Mingcheng Liu
- Laboratory Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xing Fu
- Laboratory Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jun A
- Laboratory Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Guoan Chen
- Laboratory Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Shian Wu
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jin-Tang Dong
- Laboratory Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
15
|
Fathi F, Saidi RF, Banafshe HR, Arbabi M, Lotfinia M, Motedayyen H. Changes in immune profile affect disease progression in hepatocellular carcinoma. Int J Immunopathol Pharmacol 2022; 36:3946320221078476. [PMID: 35226515 PMCID: PMC8891922 DOI: 10.1177/03946320221078476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objective: Hepatocellular carcinoma (HCC) as a chronic liver condition is largely associated with immune responses. Previous studies have revealed that different subsets of lymphocytes play fundamental roles in controlling or improving the development and outcome of solid tumors like HCC. Hence, this study aimed to investigate whether immune system changes were related to disease development in HCC patients. Methods: Peripheral blood mononuclear cells were isolated from 30 HCC patients and 30 healthy volunteers using Ficoll density centrifugation. The isolated cells were stained with different primary antibodies and percentages of different immune cells were determined by flow cytometry. Results: HCC patients indicated significant reductions in the numbers of CD4+ cells, Tbet+IFNγ+cells, and GATA+IL-4+cells in peripheral blood in comparison with healthy individuals (p < 0.05). There was no significant change in IL-17+RORγt+cells between patient and healthy groups. In contrast, Foxp3+CD127lowcell frequency was significantly higher in patients than healthy subjects (p < 0.0001). The numbers of Th1, Th2, and Th17 cells were significantly lower in HCC patients than healthy control (p < 0.0001), although the reduction in Th2 cell numbers was not statistically significant. On the contrary, Treg percentage showed a significant increase in patients compared to healthy subjects (p < 0.0001). Other data revealed that Th1, Th2, and Th17 cell frequencies were significantly higher in healthy individuals than patients with different TNM stages of HCC, with the exception of Th2 in patients with stage II HCC (p < 0.01-0.05). Treg percentage was significantly increased in patients with different TNM stages (p < 0.0001). Among all CD4+ T cells, the frequency of Th2 cell was significantly associated with TNM stages of HCC (p < 0.05). Conclusion: Our data provide further evidence to show that immune changes may participate in determining HCC progression and disease outcome. However, it should be mentioned that more investigations are needed to clarify our results and explain possible impacts of other immune cells on the pathogenesis of HCC.
Collapse
Affiliation(s)
- Farshid Fathi
- Department of Immunology, School of Medicine, 48455Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza F Saidi
- Division of Transplant Services, Department of Surgery, 12302SUNY Upstate Medical University Syracuse, Syracuse, NY, USA
| | - Hamid Reza Banafshe
- Physiology Research Center, 48462Kashan University of Medical Sciences, Kashan, Iran
| | - Mohsen Arbabi
- Department of Medical Parasitology, 48462Kashan University of Medical Sciences, Kashan, Iran
| | - Majid Lotfinia
- Physiology Research Center, 48462Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Motedayyen
- Autoimmune Diseases Research Center, 48462Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
16
|
Cho HJ, Cheong JY. Role of Immune Cells in Patients with Hepatitis B Virus-Related Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:ijms22158011. [PMID: 34360777 PMCID: PMC8348470 DOI: 10.3390/ijms22158011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) develops almost entirely in the presence of chronic inflammation. Chronic hepatitis B virus (HBV) infection with recurrent immune-mediated liver damage ultimately leads to cirrhosis and HCC. It is widely accepted that HBV infection induces the dysfunction of the innate and adaptive immune responses that engage various immune cells. Natural killer (NK) cells are associated with early antiviral and antitumor properties. On the other hand, inflammatory cells release various cytokines and chemokines that may promote HCC tumorigenesis. Moreover, immunosuppressive cells such as regulatory T cells (Treg) and myeloid-derived suppressive cells play a critical role in hepatocarcinogenesis. HBV-specific CD8+ T cells have been identified as pivotal players in antiviral responses, whilst extremely activated CD8+ T cells induce enormous inflammatory responses, and chronic inflammation can facilitate hepatocarcinogenesis. Controlling and maintaining the balance in the immune system is an important aspect in the management of HBV-related HCC. We conducted a review of the current knowledge on the immunopathogenesis of HBV-induced inflammation and the role of such immune activation in the tumorigenesis of HCC based on the recent studies on innate and adaptive immune cell dysfunction in HBV-related HCC.
Collapse
Affiliation(s)
| | - Jae-Youn Cheong
- Correspondence: ; Tel.: +82-31-219-6939; Fax: +82-31-219-5999
| |
Collapse
|
17
|
Chen X, Wang L, Hong L, Su Z, Zhong X, Zhou H, Zhang X, Wu J, Shao L. Identification of Aging-Related Genes Associated With Clinical and Prognostic Features of Hepatocellular Carcinoma. Front Genet 2021; 12:661988. [PMID: 34262594 PMCID: PMC8274591 DOI: 10.3389/fgene.2021.661988] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/04/2021] [Indexed: 01/04/2023] Open
Abstract
Background: Aging is a well-studied concept, but no studies have comprehensively analyzed the association between aging-related genes (AGs) and hepatocellular carcinoma (HCC) prognosis. Methods: Gene candidates were selected from differentially expressed genes and prognostic genes in The Cancer Genome Atlas (TCGA) database. A gene risk score for overall survival prediction was established using the least absolute shrinkage and selection operator (LASSO) regression analysis, and this was validated using data from the International Cancer Genome Consortium (ICGC) database. Functional analysis was conducted using gene ontology enrichment, Kyoto Encyclopedia of Genes and Genomes analysis, gene set enrichment analysis, and immune microenvironment and tumor stemness analyses. Results: Initially, 72 AGs from the TCGA database were screened as differentially expressed between normal and tumor tissues and as genes associated with HCC prognosis. Then, seven AGs (POLA1, CDK1, SOCS2, HDAC1, MAPT, RAE1, and EEF1E1) were identified using the LASSO regression analysis. The seven AGs were used to develop a risk score in the training set, and the risk was validated to have a significant prognostic value in the ICGC set (p < 0.05). Patients with high risk scores had lower tumor differentiation, higher stage, and worse prognosis (all p < 0.05). Multivariate Cox regression analyses also confirmed that the risk score was an independent prognostic factor for HCC in both the TCGA and ICGC sets (all p < 0.05). Further analysis showed that a high risk score was correlated with the downregulation of metabolism and tumor immunity. Conclusion: The risk score predicts HCC prognosis and could thus be used as a biomarker not only for predicting HCC prognosis but also for deciding on treatment.
Collapse
Affiliation(s)
- Xingte Chen
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Lei Wang
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Liang Hong
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Zhixiong Su
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Xiaohong Zhong
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Han Zhou
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Xueqing Zhang
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Junxin Wu
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Lingdong Shao
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| |
Collapse
|
18
|
Liu F, Hou W, Liang J, Zhu L, Luo C. LRP1B mutation: a novel independent prognostic factor and a predictive tumor mutation burden in hepatocellular carcinoma. J Cancer 2021; 12:4039-4048. [PMID: 34093808 PMCID: PMC8176260 DOI: 10.7150/jca.53124] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 04/23/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies globally and the second leading cause of cancer-related death. Low-density lipoprotein (LDL) receptor-related protein 1B (LRP1B) is one of the commonly mutated genes in HCC, but its role in HCC remains unclear. In this study, we analyzed the role of LRP1B mutation in HCC. The bioinformatics results show that LRP1B had a frequency of mutation in HCC patients, and LRP1B mutation was associated with a higher tumor mutation burden (TMB), and survival analysis proved that the prognosis of HCC patients with LRP1B mutation was poor. Univariate and multivariate COX regression analysis indicated that LRP1B mutation was an independent risk factor in evaluating HCC patients' prognosis. Correlation analysis showed that LRP1B mutation status was associated with the infiltration of 2 types of immune cells and higher expression of immune checkpoint gene human endogenous retrovirus-H long terminal repeat-associating protein 2 (HHLA2) in HCC patients. In summary, the results show that LRP1B mutation is associated with the higher TMB and poor prognosis of patients with HCC, and it was an independent risk factor for clinical outcomes of HCC patients. LRP1B gene mutations can serve as predictors in HCC patients with higher TMB and higher expression of HHLA2. The results of this study will be beneficial to future studies on targeted therapy and immunotherapy for HCC.
Collapse
Affiliation(s)
- Fahui Liu
- Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, PR China
| | - Wanyun Hou
- Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, PR China
| | - Jiadong Liang
- Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, PR China
| | - Lilan Zhu
- Youjiang Medical University for Nationalities, Baise 533000, Guangxi, PR China
| | - Chunying Luo
- Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, PR China.,Medical College of Guangxi University, Nanning, 530004, Guangxi, PR China
| |
Collapse
|
19
|
Sartorius K, An P, Winkler C, Chuturgoon A, Li X, Makarova J, Kramvis A. The Epigenetic Modulation of Cancer and Immune Pathways in Hepatitis B Virus-Associated Hepatocellular Carcinoma: The Influence of HBx and miRNA Dysregulation. Front Immunol 2021; 12:661204. [PMID: 33995383 PMCID: PMC8117219 DOI: 10.3389/fimmu.2021.661204] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/15/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatitis B virus (HBV)-associated hepatocellular carcinoma (HBV-HCC) pathogenesis is fueled by persistent HBV infection that stealthily maintains a delicate balance between viral replication and evasion of the host immune system. HBV is remarkably adept at using a combination of both its own, as well as host machinery to ensure its own replication and survival. A key tool in its arsenal, is the HBx protein which can manipulate the epigenetic landscape to decrease its own viral load and enhance persistence, as well as manage host genome epigenetic responses to the presence of viral infection. The HBx protein can initiate epigenetic modifications to dysregulate miRNA expression which, in turn, can regulate downstream epigenetic changes in HBV-HCC pathogenesis. We attempt to link the HBx and miRNA induced epigenetic modulations that influence both the HBV and host genome expression in HBV-HCC pathogenesis. In particular, the review investigates the interplay between CHB infection, the silencing role of miRNA, epigenetic change, immune system expression and HBV-HCC pathogenesis. The review demonstrates exactly how HBx-dysregulated miRNA in HBV-HCC pathogenesis influence and are influenced by epigenetic changes to modulate both viral and host genome expression. In particular, the review identifies a specific subset of HBx induced epigenetic miRNA pathways in HBV-HCC pathogenesis demonstrating the complex interplay between HBV infection, epigenetic change, disease and immune response. The wide-ranging influence of epigenetic change and miRNA modulation offers considerable potential as a therapeutic option in HBV-HCC.
Collapse
Affiliation(s)
- Kurt Sartorius
- Hepatitis Virus Diversity Research Unit, School of Internal Medicine, University of the Witwatersrand, Johannesburg, South Africa.,Department of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa.,Department of Surgery, University of KwaZulu-Natal Gastrointestinal Cancer Research Centre, Durban, South Africa
| | - Ping An
- Basic Research Laboratory, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Cheryl Winkler
- Basic Research Laboratory, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Anil Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, Durban, South Africa
| | - Xiaodong Li
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China.,Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Julia Makarova
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow, Russia.,Higher School of Economics University, Moscow, Russia
| | - Anna Kramvis
- Hepatitis Virus Diversity Research Unit, School of Internal Medicine, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
20
|
BRD4/8/9 are prognostic biomarkers and associated with immune infiltrates in hepatocellular carcinoma. Aging (Albany NY) 2020; 12:17541-17567. [PMID: 32927435 PMCID: PMC7521508 DOI: 10.18632/aging.103768] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/29/2020] [Indexed: 01/24/2023]
Abstract
Bromodomain (BRD)-containing proteins are a class of epigenetic readers with unique recognition for N-acetyl-lysine in histones and functions of gene transcription and chromatin modification, known to be critical in various cancers. However, little is known about the roles of distinct BRD-containing protein genes in hepatocellular carcinoma (HCC). Most recently, we investigated the transcriptional and survival data of BRD1, BRD2, BRD3, BRD4, BRD7, BRD8, BRD9 in HCC patients through ONCOMINE, UALCAN, Human Protein Atlas, GEPIA, cBioPortal, STRING, TIMER databases. BRD1/2/3/4/7/8/9 were over-expressed in HCC and were significantly associated with clinical cancer stages and pathological tumor grades. High mRNA expressions of BRD4/8/9 were promising candidate biomarkers in HCC patients. The rate of sequence alternations in BRD1/2/3/4/7/8/9 was relatively high (52%) in HCC patients, and the genetic alternations were correlated with shorter overall survival and disease-free survival in HCC patients. Additionally, the mRNA expression levels of individual BRD genes were significantly positively associated with the immune infiltrating levels of B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells. And the associations between BRD1/2/3/4/7/8/9 and diverse immune marker sets showed a significance. Overall, these results indicated that BRD4/8/9 could be potential prognostic markers and druggable epigenetic targets in HCC patients.
Collapse
|
21
|
Sartorius K, Swadling L, An P, Makarova J, Winkler C, Chuturgoon A, Kramvis A. The Multiple Roles of Hepatitis B Virus X Protein (HBx) Dysregulated MicroRNA in Hepatitis B Virus-Associated Hepatocellular Carcinoma (HBV-HCC) and Immune Pathways. Viruses 2020; 12:v12070746. [PMID: 32664401 PMCID: PMC7412373 DOI: 10.3390/v12070746] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
Currently, the treatment of hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC) [HBV-HCC] relies on blunt tools that are unable to offer effective therapy for later stage pathogenesis. The potential of miRNA to treat HBV-HCC offer a more targeted approach to managing this lethal carcinoma; however, the complexity of miRNA as an ancillary regulator of the immune system remains poorly understood. This review examines the overlapping roles of HBx-dysregulated miRNA in HBV-HCC and immune pathways and seeks to demonstrate that specific miRNA response in immune cells is not independent of their expression in hepatocytes. This interplay between the two pathways may provide us with the possibility of using candidate miRNA to manipulate this interaction as a potential therapeutic option.
Collapse
Affiliation(s)
- Kurt Sartorius
- Faculty of Commerce, Law and Management, University of the Witwatersrand, Johannesburg 2050, South Africa
- Department of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban 4041, South Africa;
- UKZN Gastrointestinal Cancer Research Centre, Durban 4041, South Africa
- Correspondence:
| | - Leo Swadling
- Division of Infection and Immunity, University College London, London WC1E6BT, UK;
| | - Ping An
- Basic Research Laboratory, Centre for Cancer Research, National Cancer Institute, Leidos Biomedical Research, Inc. Frederick Nat. Lab. for Cancer Research, Frederick, MD 20878, USA; (P.A.); (C.W.)
| | - Julia Makarova
- National Research University Higher School of Economics, Faculty of Biology and Biotechnology, 10100 Moscow, Russia;
| | - Cheryl Winkler
- Basic Research Laboratory, Centre for Cancer Research, National Cancer Institute, Leidos Biomedical Research, Inc. Frederick Nat. Lab. for Cancer Research, Frederick, MD 20878, USA; (P.A.); (C.W.)
| | - Anil Chuturgoon
- Department of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban 4041, South Africa;
| | - Anna Kramvis
- Hepatitis Virus Diversity Research Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2050, South Africa;
| |
Collapse
|
22
|
Lin P, wen DY, Chen G, Dang YW, He Y, Yang H. Predictive value of hypoxia, metabolism and immune factors for prognosis in hepatocellular carcinoma: a retrospective analysis and multicenter validation study. J Cancer 2020; 11:4145-4156. [PMID: 32368297 PMCID: PMC7196261 DOI: 10.7150/jca.41983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME), as a potent and pervasive factor of tumorigenesis and tumor progression, has a profound impact on the clinical outcomes of hepatocellular carcinoma (HCC). A systematic analysis of TME factors in HCC is still lacking and urgently needed. In this retrospective analysis and multicenter validation study, a total of 987 HCC patients with RNA-seq or microarray data and the corresponding clinical information from five cohorts were included. A TME risk score was developed based on five factors (hypoxia, nucleotide, TCA cycle, T helper cells and activated CD8 T cells). We also identified various types of clinical parameters and molecular features associated with the TME risk score. The TME risk factor network depicts close associations among the factors. Our TME risk score could be a practical and reliable predictor that can stratify patients according to distinct clinical outcomes and was validated by integrating five HCC patient cohorts (HR= 2.27, 95% CI: 1.79-2.86, P<0.001). Pan-cancer analysis also suggested that the prognostic signature was an effective prognostic indicator in 9,122 patients across 30 types of cancer. Correlation analysis revealed that the TME risk score was significantly associated with tumor progression-related clinical factors and molecular factors. TME factors are perturbations in HCC patients, and these alterations are vital determinants of both clinical outcomes and biological characteristics. The TME risk score we proposed is valuable for deciphering the molecular characteristics of the TME in HCC and is an effective prognostic predictor for HCC prognosis evaluation.
Collapse
Affiliation(s)
- Peng Lin
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Dong-yue wen
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yi-wu Dang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yun He
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Hong Yang
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
23
|
Kuen DS, Kim BS, Chung Y. IL-17-Producing Cells in Tumor Immunity: Friends or Foes? Immune Netw 2020; 20:e6. [PMID: 32158594 PMCID: PMC7049578 DOI: 10.4110/in.2020.20.e6] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/25/2020] [Accepted: 01/26/2020] [Indexed: 02/07/2023] Open
Abstract
IL-17 is produced by RAR-related orphan receptor gamma t (RORγt)-expressing cells including Th17 cells, subsets of γδT cells and innate lymphoid cells (ILCs). The biological significance of IL-17-producing cells is well-studied in contexts of inflammation, autoimmunity and host defense against infection. While most of available studies in tumor immunity mainly focused on the role of T-bet-expressing cells, including cytotoxic CD8+ T cells and NK cells, and their exhaustion status, the role of IL-17-producing cells remains poorly understood. While IL-17-producing T-cells were shown to be anti-tumorigenic in adoptive T-cell therapy settings, mice deficient in type 17 genes suggest a protumorigenic potential of IL-17-producing cells. This review discusses the features of IL-17-producing cells, of both lymphocytic and myeloid origins, as well as their suggested pro- and/or anti-tumorigenic functions in an organ-dependent context. Potential therapeutic approaches targeting these cells in the tumor microenvironment will also be discussed.
Collapse
Affiliation(s)
- Da-Sol Kuen
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea.,BK21 Plus Program, Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Byung-Seok Kim
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Yeonseok Chung
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea.,BK21 Plus Program, Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
24
|
Hsiao YW, Chiu LT, Chen CH, Shih WL, Lu TP. Tumor-Infiltrating Leukocyte Composition and Prognostic Power in Hepatitis B- and Hepatitis C-Related Hepatocellular Carcinomas. Genes (Basel) 2019; 10:genes10080630. [PMID: 31434354 PMCID: PMC6722571 DOI: 10.3390/genes10080630] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Tumor-infiltrating leukocytes (TILs) are immune cells surrounding tumor cells, and several studies have shown that TILs are potential survival predictors in different cancers. However, few studies have dissected the differences between hepatitis B- and hepatitis C-related hepatocellular carcinoma (HBV−HCC and HCV−HCC). Therefore, we aimed to determine whether the abundance and composition of TILs are potential predictors for survival outcomes in HCC and which TILs are the most significant predictors. Methods: Two bioinformatics algorithms, ESTIMATE and CIBERSORT, were utilized to analyze the gene expression profiles from 6 datasets, from which the abundance of corresponding TILs was inferred. The ESTIMATE algorithm examined the overall abundance of TILs, whereas the CIBERSORT algorithm reported the relative abundance of 22 different TILs. Both HBV−HCC and HCV−HCC were analyzed. Results: The results indicated that the total abundance of TILs was higher in non-tumor tissue regardless of the HCC type. Alternatively, the specific TILs associated with overall survival (OS) and recurrence-free survival (RFS) varied between subtypes. For example, in HBV−HCC, plasma cells (hazard ratio [HR] = 1.05; 95% CI 1.00–1.10; p = 0.034) and activated dendritic cells (HR = 1.08; 95% CI 1.01–1.17; p = 0.03) were significantly associated with OS, whereas in HCV−HCC, monocytes (HR = 1.21) were significantly associated with OS. Furthermore, for RFS, CD8+ T cells (HR = 0.98) and M0 macrophages (HR = 1.02) were potential biomarkers in HBV−HCC, whereas neutrophils (HR = 1.01) were an independent predictor in HCV−HCC. Lastly, in both HBV−HCC and HCV−HCC, CD8+ T cells (HR = 0.97) and activated dendritic cells (HR = 1.09) had a significant association with OS, while γ delta T cells (HR = 1.04), monocytes (HR = 1.05), M0 macrophages (HR = 1.04), M1 macrophages (HR = 1.02), and activated dendritic cells (HR = 1.15) were highly associated with RFS. Conclusions: These findings demonstrated that TILs are potential survival predictors in HCC and different kinds of TILs are observed according to the virus type. Therefore, further investigations are warranted to elucidate the role of TILs in HCC, which may improve immunotherapy outcomes.
Collapse
Affiliation(s)
- Yi-Wen Hsiao
- Institute of Epidemiology and Preventive Medicine, Department of Public Health, National Taiwan University, Taipei City 10617, Taiwan
| | - Lu-Ting Chiu
- Institute of Epidemiology and Preventive Medicine, Department of Public Health, National Taiwan University, Taipei City 10617, Taiwan
| | - Ching-Hsuan Chen
- Institute of Epidemiology and Preventive Medicine, Department of Public Health, National Taiwan University, Taipei City 10617, Taiwan
| | - Wei-Liang Shih
- Institute of Epidemiology and Preventive Medicine, Department of Public Health, National Taiwan University, Taipei City 10617, Taiwan
| | - Tzu-Pin Lu
- Institute of Epidemiology and Preventive Medicine, Department of Public Health, National Taiwan University, Taipei City 10617, Taiwan.
| |
Collapse
|
25
|
Zhang H, Jiang Z, Zhang L. Dual effect of T helper cell 17 (Th17) and regulatory T cell (Treg) in liver pathological process: From occurrence to end stage of disease. Int Immunopharmacol 2019; 69:50-59. [PMID: 30669025 DOI: 10.1016/j.intimp.2019.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 02/06/2023]
Abstract
Liver disease is a complicated pathological status with acute or chronic progressions, causing a series of damages to liver and massive burden to public health and society. Th17 and Treg, two subsets of CD4+ T helper cells, seem to keep a subtle balance in the maintenance of organic immune homeostasis including liver. The dysfunction of Th17/Treg balance in liver has been proved associated with hepatic injury and disease. Herein, we summarized the research advance of Th17 and Treg cells in different phenotypes of liver diseases in the past decade. It is known to all that hepatic diseases start from stimulations or infections like virus, autoimmune, alcohol and so on in the early stage, which would cause inflammation. With the disease consistently existed, severe outcomes like cirrhosis and hepatocellular carcinoma appear finally. In conclusion, it is found that Th17 and Treg cells serve as an important role in the immune response imbalance of liver diseases from the beginning to the end stage. However, the effect of these two subsets of CD4+ T helper cells is not a stereotype. Pathological role which exacerbates the disease and protective character which inhibits damage to liver are co-existed in the effect of Th17 and Treg cells. Still, more studies should be carried out to enrich the understandings of liver disease and Th17/Treg immune balance in the future.
Collapse
Affiliation(s)
- Haoran Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Zhenzhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China.
| | - Luyong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Center for Drug Screening and Pharmacodynamics Evaluation, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
26
|
Li S, Han X, Lyu N, Xie Q, Deng H, Mu L, Pan T, Huang X, Wang X, Shi Y, Zhao M. Mechanism and prognostic value of indoleamine 2,3-dioxygenase 1 expressed in hepatocellular carcinoma. Cancer Sci 2018; 109:3726-3736. [PMID: 30264546 PMCID: PMC6272112 DOI: 10.1111/cas.13811] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 09/23/2018] [Accepted: 09/25/2018] [Indexed: 12/13/2022] Open
Abstract
Indoleamine 2,3‐dioxygenase 1 (IDO1) is a tryptophan‐metabolizing enzyme that is widely distributed in normal or malignant tissues and contributes to immunologic tolerance and immune escape. However, in hepatocellular carcinoma (HCC), the characteristics and mechanism of IDO1 expression have not been well defined. In this study, IDO1 expression in tumor cells (T‐IDO1) was frequently detected (109/112) by immunohistochemistry in formalin‐fixed paraffin‐embedded specimens from HCC patients, and the expression patterns were mostly focal (102/109). Expression of T‐IDO1 was significantly associated with the infiltration of CD8+ T cells (P = .043), as well as younger age (<50 years old, P = .02). It was also found that IDO1 had diffuse expression in inflammatory cells in all specimens, which were defined as antigen‐presenting cells. Significant correlations among IDO1,IFNG, and CD8A transcriptional levels were observed in freshly resected HCC specimens; moreover, no constitutive IDO1 expression was detected in HCC cell lines until stimulated by interferon‐γ through the JAK2‐STAT1 signaling pathway, but not type I interferon. Survival analyses showed that increased T‐IDO1 and CD8+ T cell infiltration were significantly associated with superior overall survival (OS) (T‐IDO1, P = .003; CD8+ T cells, P = .004), and T‐IDO1 expression is an independent prognosis factor in both OS and disease‐free survival (OS, P = .007; disease‐free survival, P = .044). These findings indicated that T‐IDO1 expression in HCC is common and is dominantly driven by the host antitumor immune response, which is a favorable prognostic factor in HCC.
Collapse
Affiliation(s)
- Shaolong Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Minimally Invasive Interventional Division, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xue Han
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Minimally Invasive Interventional Division, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ning Lyu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Minimally Invasive Interventional Division, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qiankun Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,VIP Region, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Haijing Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Minimally Invasive Interventional Division, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Luwen Mu
- Department of Vascular Interventional Radiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tao Pan
- Department of Vascular Interventional Radiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xin Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Hepatobilliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xia Wang
- Department of Pathology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuanyuan Shi
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Ming Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Minimally Invasive Interventional Division, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
27
|
Zhang GL, Zhang T, Zhao QY, Lin CS, Gao ZL. Th17 cells over 5.9% at admission indicate poor prognosis in patients with HBV-related acute-on-chronic liver failure. Medicine (Baltimore) 2018; 97:e12656. [PMID: 30290645 PMCID: PMC6200497 DOI: 10.1097/md.0000000000012656] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Our previous study demonstrated that Th17 cells increased significantly in patients with hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF). However, their prognostic role in HBV-ACLF patients remains unknown.Sixty-eight consecutive HBV-ACLF patients were enrolled in this cohort study. Th17 cells were examined using flow cytometry. Disease severity scores were assessed. ROC curves were used to evaluate the value in predicting prognosis. Survival was analyzed using Kaplan-Meier curves. Predictors of mortality were determined by regression analysis.Th17 cells were significantly higher in HBV-ACLF patients compared to patients with chronic hepatitis B and normal controls (both P < .001). Also, Th17 cells were higher in nonsurviving HBV-ACLF patients than in surviving patients (P = .014). Th17 cells were positively correlated with CLIF-Consortium ACLF (CLIF-C ACLF) score (r = 0.240, P = .048). ROC curves showed that the frequency of Th17 cells had accuracy in predicting 90-day prognosis equivalent to MELD, MELD-Na and CLIF-C ACLF scores in HBV-ACLF (P = .34, P = .26, and P = .15, respectively). More importantly, the area under the ROC curve (AUROC) increased when Th17 cells were combined with MELD, MELD-Na or CLIF-C ACLF score than using Th17 cells alone (P = .021, P = .006, and P = .023, respectively). Kaplan-Meier analysis revealed that higher Th17 cells (≥5.9%) were closely associated with poor overall survival in HBV-ACLF (P = .0086). Additionally, multivariate regression analysis showed that the frequency of Th17 cells over 5.9% was an independent predictor of mortality (OR = 0.154, P = .025).Circulating Th17 cells positively correlated with disease severity in HBV-ACLF. The frequency of Th17 cells over 5.9% could serve as a prognostic biomarker for HBV-ACLF patients.
Collapse
Affiliation(s)
- Geng-Lin Zhang
- Department of Infectious Diseases
- Guangdong Provincial Key Laboratory of Liver Disease
| | - Ting Zhang
- Department of ultrasound, The Third Affiliated Hospital of Sun-Yat-sen University
| | - Qi-Yi Zhao
- Department of Infectious Diseases
- Guangdong Provincial Key Laboratory of Liver Disease
| | - Chao-Shuang Lin
- Department of Infectious Diseases
- Guangdong Provincial Key Laboratory of Liver Disease
| | - Zhi-Liang Gao
- Department of Infectious Diseases
- Guangdong Provincial Key Laboratory of Liver Disease
- Key Laboratory of Tropical Disease Control (Sun-Yat-sen University), Ministry of Education, Guangzhou, China
| |
Collapse
|
28
|
Interleukin 17 and peripheral IL-17-expressing T cells are negatively correlated with the overall survival of head and neck cancer patients. Oncotarget 2018. [PMID: 29515773 PMCID: PMC5839404 DOI: 10.18632/oncotarget.23934] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The presence and clinical significance of interleukin (IL)-17 and IL-17-expressing cells have recently been studied in several types of cancer, but their correlation to tumor development remains controversial. Additionally, the contribution of peripheral IL-17-expressing cells to head and neck cancer (HNC) progression is still poorly understood. We collected peripheral blood from healthy donors and HNC patients to isolate PBMCs. The percentages of IL-17-expressing cells and the production of inflammatory cytokines in PBMCs were measured to determine their association with clinical outcomes and overall survival in HNC. We evaluated the effect and potential mechanism of IL-17 on human oral squamous carcinomas in vitro using exogenous IL-17 stimulation. In comparison to healthy donors, the PBMCs of HNC patients have a significant accumulation of IL-17-expressing T cells and their frequencies were positively correlated with the disease stage. A significantly higher production of PBMC IL-17, TGF-β and IL-21 and plasma VEGF-A were found in HNC patients. Importantly, the 5-years overall survival of HNC patients with a higher percentage of IL-17-expressing cells is significantly decreased. Furthermore, the addition of IL-17 appeared to promote human oral squamous carcinoma cell proliferation via the production of IL-6 and VEGF-A. Our findings suggest that IL-17 has the potential to mediate pro-tumor immunity in the HNC tumor microenvironment. Enhanced IL-17-expressing cells, including Th17 and Tc17 cells, in the peripheral blood could be a significant predictor of a poor prognosis for HNC patients.
Collapse
|
29
|
Hus I, Bojarska-Junak A, Kamińska M, Dobrzyńska-Rutkowska A, Szatan K, Szymczyk A, Kukiełka-Budny B, Szczepanek D, Roliński J. Imbalance in circulatory iNKT, Th17 and T regulatory cell frequencies in patients with B-cell non-Hodgkin's lymphoma. Oncol Lett 2017; 14:7957-7964. [PMID: 29250184 DOI: 10.3892/ol.2017.7232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 09/05/2017] [Indexed: 12/25/2022] Open
Abstract
T cells are important in B-cell non-Hodgkin's lymphoma immunity, however the function of T cell subsets, including natural killer (iNKT), T helper (Th)17, and T regulatory cells remains to be elucidated. The present study analyzed the frequencies of iNKT, Th17 and T regulatory cells in the peripheral blood of 41 patients with B-cell non-Hodgkin lymphoma at diagnosis, then during and following immunochemotherapy R-CHOP/R-CVP. At lymphoma diagnosis, iNKT and Th17 frequencies were decreased and T regulatory cell frequencies were increased compared with healthy control group. The Th17 cell percentage was lower in patients with a worse prognosis and at a more advanced clinical stage and in contrast, the percentage of T regulatory cells was increased in patients at advanced stages of lymphoma, compared to earlier stages. There was an increase of iNKT and Th17 cells following R-CHOP/R-CVP therapy. In patients that responded, both prior to and following-treatment, percentages of iNKT and Th17 were higher and T regulatory cells were lower compared with patients with subsequent disease progression. Taken together, the results obtained demonstrated the opposing effects of T cell subsets in B-cell lymphoma immunity, with iNKT and Th17 inhibiting and T regulatory cells enhancing tumor growth. These alterations may be caused by malignant B-cells, however there may also be an axis of inverse feedback between T regulatory cells and their interaction with Th17 and iNKT cells.
Collapse
Affiliation(s)
- Iwona Hus
- Department of Clinical Transplantology, Medical University of Lublin, 20-081 Lublin, Poland
| | | | - Marzena Kamińska
- Department of Clinical Oncology, St. John of Dukla Lublin Region Cancer Center, 20-090 Lublin, Poland
| | | | - Karolina Szatan
- Department of Clinical Oncology, St. John of Dukla Lublin Region Cancer Center, 20-090 Lublin, Poland
| | - Agnieszka Szymczyk
- Department of Clinical Transplantology, Medical University of Lublin, 20-081 Lublin, Poland
| | - Bożena Kukiełka-Budny
- Department of Clinical Oncology, St. John of Dukla Lublin Region Cancer Center, 20-090 Lublin, Poland
| | - Dariusz Szczepanek
- Department of Neurosurgery and Paediatric Neurosurgery, Medical University of Lublin, Lublin 20-954, Poland
| | - Jacek Roliński
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
30
|
Paquissi FC. Immunity and Fibrogenesis: The Role of Th17/IL-17 Axis in HBV and HCV-induced Chronic Hepatitis and Progression to Cirrhosis. Front Immunol 2017; 8:1195. [PMID: 29033929 PMCID: PMC5626935 DOI: 10.3389/fimmu.2017.01195] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/11/2017] [Indexed: 12/13/2022] Open
Abstract
Cirrhosis is a common final pathway for most chronic liver diseases; representing an increasing burden worldwide and is associated with increased morbidity and mortality. Current evidence has shown that, after an initial injury, the immune response has a significant participation in the ongoing damage, and progression from chronic viral hepatitis (CVH) to cirrhosis, driving the activation and maintenance of main fibrogenic pathways. Among immune deregulations, those related to the subtype 17 of T helper lymphocytes (Th17)/interleukin-17 (IL-17) axis have been recognized as key immunopathological and prognostic elements in patients with CVH. The Th17/IL-17 axis has been found involved in several points of fibrogenesis chain from the activation of stellate cells, increased expression of profibrotic factors as TGF-β, promotion of the myofibroblastic or epithelial–mesenchymal transition, stimulation of the synthesis of collagen, and induction of imbalance between matrix metalloproteinases and tissue inhibitors of metalloproteinases (TIMPs). It also promotes the recruitment of inflammatory cells and increases the expression of proinflammatory cytokines such as IL-6 and IL-23. So, the Th17/IL-17 axis is simultaneously the fuel and the flame of a sustained proinflammatory and profibrotic environment. This work aims to present the immunopathologic and prognostic role of the Th17/IL-17 axis and related pathways in fibrogenesis and progression to cirrhosis in patients with liver disease due to hepatitis B virus (HBV) and hepatitis C virus (HCV).
Collapse
|
31
|
Tavakolpour S, Mirsafaei HS, Elkaei Behjati S, Ghasemiadl M, Akhlaghdoust M, Sali S. Toward cure chronic hepatitis B infection and hepatocellular carcinoma prevention: Lessons learned from nucleos(t)ide analogues therapy. Immunol Lett 2017; 190:206-212. [PMID: 28827021 DOI: 10.1016/j.imlet.2017.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/03/2017] [Indexed: 12/16/2022]
Abstract
Nucleos(t)ide analogues (NAs) could successfully suppress hepatitis B virus (HBV) replication in patients with chronic hepatitis B (CHB). However, due to probable development of drug resistance or low/delayed response, these treatments may not be satisfactory. In addition to the HBV DNA polymerase inhibiting activity, these drugs could lead to changes in cytokines profiles. It is important to monitor these changes so that they could be used as target of treatment. Evaluating the previously reported immune responses due to NAs treatments, it was concluded that interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), interleukin-4 (IL-4), and IL-12 increase after the treatment. This will be followed by the improved capacity of immune cells for eliminating HBV. In contrast, regulatory responses including IL-10 and transforming growth factor-beta (TGF-β) significantly decreased as the result of NAs therapy. Unexpectedly, T helper (Th) 17-associated cytokines also decreased significantly. These results could be used to employ the new strategies to suppress viral replication, minimize HBV DNA levels, inducing hepatitis B e antigen (HBeAg) seroconversion or even hepatitis B surface antigen (HBsAg) seroclearance. In order to accomplish these goals, extended treatment with high dose of both IL-12 and IFN in combination with high barrier to resistance NA might significantly improve the HBsAg seroclearance rate. Considering the danger of emerging aberrant immune responses, determining the optimum dosage as well as close monitoring of patients during the treatment is strongly advised. In order to make HBV immunotherapy practical, further studies are needed to confirm these results.
Collapse
Affiliation(s)
- Soheil Tavakolpour
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | | | - Somayeh Elkaei Behjati
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojtaba Ghasemiadl
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meisam Akhlaghdoust
- Pars Advanced and Minimally Invasive Manners Research Center, Pars Hospital, Tehran, Iran
| | - Shahnaz Sali
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Tu JF, Pan HY, Ying XH, Lou J, Ji JS, Zou H. Mast Cells Comprise the Major of Interleukin 17-Producing Cells and Predict a Poor Prognosis in Hepatocellular Carcinoma. Medicine (Baltimore) 2016; 95:e3220. [PMID: 27043690 PMCID: PMC4998551 DOI: 10.1097/md.0000000000003220] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
IL-17 and IL-17-producing cells have been found in many types of human cancers and murine models. However, the source of tumor-infiltrating IL-17 and IL-17-producing cells in HCC and the prognostic values remain poorly understood. A total of 57 HCC patients were enrolled in this study, and immunofluorescence double stain was used to evaluate the colocalization of CD3 T cells, CD4 T cells, CD56 NK cells, CD20 B cells, CD68 Macrophages, and MCT mast cells with IL-17. The prognostic value of IL-17-producing cells was evaluated by Kaplan-Meier analysis and Cox regression model. MCT mast cells, but not other cells, were the predominant IL-17-producing cell type. Overall survival analysis revealed that the increasing intratumoral-infiltrated MCT mast cells were significantly associated with poor prognosis. Immunofluorescence double stain showed a positive correlation between the number of MCT mast cells and MCVs. These findings indicated the major IL-17-producing cells in HCC were MCT mast cells and these cells infiltration may promote tumor progression by angiogenesis. Increased MCT mast cells was associated with a poor prognosis, indicating therapy targeting MCT mast cells might be an effective strategy in controlling intratumor IL-17 infiltration and MCVs.
Collapse
Affiliation(s)
- Jian-Fei Tu
- From the Department of Radiology (J-FT, X-HY, J-SJ), Lishui Hospital Affiliated to Zhejiang University; Department of Infection Diseases (H-YP); Department of Tumor Surgery (JL), the First Affiliated Hospital Zhejiang University; and Department of Cardiology (HZ), Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang Province, China
| | | | | | | | | | | |
Collapse
|
33
|
Liu Y, Gao LF, Liang XH, Ma CH. Role of Tim-3 in hepatitis B virus infection: An overview. World J Gastroenterol 2016; 22:2294-2303. [PMID: 26900291 PMCID: PMC4735003 DOI: 10.3748/wjg.v22.i7.2294] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 10/08/2015] [Accepted: 12/21/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) infection has received increasing public attention. HBV is the prototypical member of hepadnaviruses, which naturally infect only humans and great apes and induce the acute and persistent chronic infection of hepatocytes. A large body of evidence has demonstrated that dysfunction of the host anti-viral immune response is responsible for persistent HBV replication, unresolved inflammation and disease progression. Many regulatory factors are involved in immune dysfunction. Among these, T cell immunoglobulin domain and mucin domain-3 (Tim-3), one of the immune checkpoint proteins, has attracted increasing attention due to its critical role in regulating both adaptive and innate immune cells. In chronic HBV infection, Tim-3 expression is elevated in many types of immune cells, such as T helper cells, cytotoxic T lymphocytes, dendritic cells, macrophages and natural killer cells. Tim-3 over-expression is often accompanied by impaired function of the above-mentioned immunocytes, and Tim-3 inhibition can at least partially rescue impaired immune function and thus promote viral clearance. A better understanding of the regulatory role of Tim-3 in host immunity during HBV infection will shed new light on the mechanisms of HBV-related liver disease and suggest new therapeutic methods for intervention.
Collapse
|
34
|
Boghal RH, Stephenson B, Afford SC. Immune cell communication in liver disease and liver regeneration. SIGNALING PATHWAYS IN LIVER DISEASES 2015:110-129. [DOI: 10.1002/9781118663387.ch8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
35
|
Sachdeva M, Chawla YK, Arora SK. Immunology of hepatocellular carcinoma. World J Hepatol 2015; 7:2080-2090. [PMID: 26301050 PMCID: PMC4539401 DOI: 10.4254/wjh.v7.i17.2080] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/28/2015] [Accepted: 07/22/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is primarily a malignancy of the liver, advancing from a damaged, cirrhotic liver to HCC. Globally, HCC is the sixth most prevalent cancer and the third-most prevalent reason for neoplastic disease-related deaths. A diverse array of infiltrating immunocytes regulates the development and progression of HCC, as is the case in many other cancers. An understanding of the various immune components during HCC becomes necessary so that novel therapeutic strategies can be designed to combat the disease. A dysregulated immune system (including changes in the number and/or function of immune cells, cytokine levels, and the expression of inhibitory receptors or their ligands) plays a key role in the development of HCC. Alterations in either the innate or adaptive arm of the immune system and cross-talk between them make the immune system tolerant to tumors, leading to disease progression. In this review, we have discussed the status and roles of various immune effector cells (e.g., dendritic cells, natural killer cells, macrophages, and T cells), their cytokine profile, and the chemokine-receptor axis in promoting or impeding HCC.
Collapse
|
36
|
Punt S, van Vliet ME, Spaans VM, de Kroon CD, Fleuren GJ, Gorter A, Jordanova ES. FoxP3(+) and IL-17(+) cells are correlated with improved prognosis in cervical adenocarcinoma. Cancer Immunol Immunother 2015; 64:745-53. [PMID: 25795131 PMCID: PMC4456995 DOI: 10.1007/s00262-015-1678-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/03/2015] [Indexed: 12/21/2022]
Abstract
Cervical adenocarcinoma comprises approximately 15 % of cervical cancer cases. This histological subtype has different characteristics than cervical squamous cell carcinoma, which may influence disease progression. To study whether the infiltration of T cell subpopulations was correlated with cervical adenocarcinoma patient survival, similar to squamous cell carcinoma, the tumor-infiltrating T cells, Tregs, Th17 cells and IL-17+ cell frequencies were analyzed in a cohort of cervical adenocarcinoma patients (n = 67). Intraepithelial, stromal and total cell frequencies were scored using triple immunofluorescence. The majority of Tregs were present in the tumor stroma, while other T cells and IL-17+ cells infiltrated the tumor epithelium three times more frequently. A high total number of Tregs were significantly correlated with improved disease-specific and disease-free survival (p = 0.010, p = 0.007). Within the tumor epithelium, a high T cell frequency was significantly correlated with improved disease-free survival (p = 0.034). In particular, a low number of both Tregs and IL-17+ cells were correlated with poor disease-specific survival (p = 0.007). A low number of Tregs combined with Th17 cells present were also correlated with poor survival (p = 0.018). An increased number of IL-17+ cells were significantly correlated with the absence of vaso-invasion (p = 0.001), smaller tumor size (p = 0.030) and less infiltration depth (p = 0.021). These results suggest that Tregs and IL-17+ cells represent a beneficial immune response, whereas Th17 cells might represent a poor response in cervical adenocarcinoma. This contrasts with the correlations described in squamous cell carcinoma, suggesting that the local immune response in cervical adenocarcinoma contributes differently to tumor growth than in squamous cell carcinoma.
Collapse
Affiliation(s)
- Simone Punt
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Vivian M. Spaans
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Gynaecology, Leiden University Medical Center, Leiden, The Netherlands
| | - Cornelis D. de Kroon
- Department of Gynaecology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gert Jan Fleuren
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Arko Gorter
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ekaterina S. Jordanova
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Center for Gynecological Oncology Amsterdam, VUMC, Amsterdam, The Netherlands
| |
Collapse
|
37
|
Punt S, Langenhoff JM, Putter H, Fleuren GJ, Gorter A, Jordanova ES. The correlations between IL-17 vs. Th17 cells and cancer patient survival: a systematic review. Oncoimmunology 2015; 4:e984547. [PMID: 25949881 DOI: 10.4161/2162402x.2014.984547] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 10/31/2014] [Indexed: 12/22/2022] Open
Abstract
Both IL-17 and Th17 cells have been ascribed tumor promoting as well as tumor suppressing functions. We reviewed the literature on correlations between IL-17 versus Th17 cells and survival in human cancer, following the PRISMA guidelines. Serum, formalin-fixed, paraffin-embedded (FFPE) tissue and peripheral blood samples were most frequently studied. High IL-17 quantities were correlated with poor prognosis, whereas high Th17 cell frequencies were correlated with improved prognosis. Since Th17 cells are a subpopulation of IL-17+ cells and had a different correlation with prognosis than total IL-17, we substantiate that a distinction should be made between Th17 and other IL-17+ cells.
Collapse
Affiliation(s)
- Simone Punt
- Department of Pathology; Leiden University Medical Center ; Leiden, The Netherlands
| | | | - H Putter
- Department of Medical Statistics and Bioinformatics; Leiden University Medical Center ; Leiden, The Netherlands
| | - Gert Jan Fleuren
- Department of Pathology; Leiden University Medical Center ; Leiden, The Netherlands
| | - Arko Gorter
- Department of Pathology; Leiden University Medical Center ; Leiden, The Netherlands
| | | |
Collapse
|
38
|
Interleukin-17A and interleukin-17F gene polymorphisms and hepatitis B virus-related hepatocellular carcinoma risk in a Chinese population. Med Oncol 2014; 32:355. [PMID: 25429834 DOI: 10.1007/s12032-014-0355-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 11/12/2014] [Indexed: 12/16/2022]
Abstract
Interleukin (IL)-17A and IL-17F are inflammatory cytokines, which play a critical function in inflammation. Genetic variations in the IL-17A and IL-17F genes may be associated with a risk of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC), which is a typical inflammation-related cancer. However, their relationship with HBV-related HCC has not been thoroughly investigated. We conducted a case-control study including 155 patients with HBV-related HCC and 171 healthy controls to assess the association between IL-17A rs4711998, IL-17A rs2275913, and IL-17F rs763780 polymorphisms and risk of HCC. Genotypes were determined by polymerase chain reaction-restriction fragment length polymorphism and DNA sequencing. There were no significant differences in the genotype and allele frequencies of IL-17A rs4711998, IL-17A rs2275913, and IL-17F rs763780 polymorphisms between the HBV-related HCC patients and healthy controls. However, our results revealed a statistically significant association between the ACA haplotype and increased HCC risk [odds ratio (OR) 1.820, 95 % confidence interval (CI) 1.181-2.624, P = 0.013]. In contrast, the GCG haplotype was associated with a significantly decreased risk of HBV-related HCC (OR 0.454, 95 % CI 0.112-0.898, P = 0.035). Our results suggest that IL-17A rs4711998, IL-17A rs2275913, and IL-17F rs763780 polymorphisms do not contribute to HBV-related HCC susceptibility independently. However, the ACA and GCG haplotypes in the IL-17 gene might be a risk factor and a protective marker, respectively, for HBV-related HCC in a Chinese population.
Collapse
|