1
|
Yu CC, Lin HY, Chan MWY, Wu SF, Chiou WY, Lee MS, Chi CL, Lin RI, Hsu FC, Yang HJ, Chen LC, Chew CH, Hung SK. Olaparib enhancing radiosensitization and anti-metastatic effect of oral cancer by targeting IL-17A signal. Cancer Cell Int 2024; 24:373. [PMID: 39529064 PMCID: PMC11552144 DOI: 10.1186/s12935-024-03547-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
PURPOSE We tested whether the PARP inhibitor, Olaparib, can effectively enhance radiosensitivity while inhibiting OSCC growth and metastasis in vitro and in vivo. Patient samples were used for survival validation. METHODS The present study investigated the effect of Olaparib and ionizing radiation (IR) on clonogenic, migratory, and invasive ability in human IR-sensitive (OML1) and IR-resistant (OML1-R) OSCC cell lines. We next explored the underlying mechanism with ELISA and a Western blotting assay. Two in vivo mouse models were established to investigate the efficacy of Olaparib combined with radiotherapy (RT) on local tumor growth and lung metastasis. IL-17 A expression was confirmed in tissue specimens of OSCC patients by immunohistochemistry. RESULTS We found that Olaparib, in combination with IR, substantially inhibited cell growth, migration, and invasion in vitro. Mechanistically, the Olaparib treatment significantly reduced the secretion of IL-17 A in irradiated OSCC cells by attenuating NF-κB and p38 activity. Consistently, Olaparib enhanced the radiosensitivity and, with RT, synergistically reduced both tumor growth and lung metastasis in mice. In addition, OSCC patients with high IL-17 A expression were substantially associated with an increased risk of lymph node involvement and worse survival. CONCLUSIONS This study has highlighted that Olaparib displays radiosensitizing and antimetastatic effects by inhibiting the IL-17 A-dependent signal. Remarkably, Olaparib could provide a remarkable anticancer efficacy to improve treatment response in OSCC patients with recurrent/metastatic disease after RT.
Collapse
Affiliation(s)
- Chih-Chia Yu
- Department of Medical Research, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, Taiwan
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, NO2. Min-Sheng Road, Dalin Town, Chia-Yi, Chia-Yi, 62247, Taiwan
| | - Hon-Yi Lin
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, NO2. Min-Sheng Road, Dalin Town, Chia-Yi, Chia-Yi, 62247, Taiwan
- School of Medicine, Tzu Chi University, Hualian, Taiwan
| | - Michael W Y Chan
- Department of Biomedical Sciences and Institute of Molecular Biology, National Chung Cheng University, Chia-Yi, Taiwan
- Epigenomics and Human Diseases Research Center, National Chung Cheng University, Min-Hsiung, Chiayi, Taiwan
- Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Fen Wu
- Department of Biomedical Sciences and Institute of Molecular Biology, National Chung Cheng University, Chia-Yi, Taiwan
| | - Wen-Yen Chiou
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, NO2. Min-Sheng Road, Dalin Town, Chia-Yi, Chia-Yi, 62247, Taiwan
- School of Medicine, Tzu Chi University, Hualian, Taiwan
| | - Moon-Sing Lee
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, NO2. Min-Sheng Road, Dalin Town, Chia-Yi, Chia-Yi, 62247, Taiwan
- School of Medicine, Tzu Chi University, Hualian, Taiwan
| | - Chen-Lin Chi
- Department of Pathology, Chiayi Chang Gung Memorial Hospital, Chia-Yi, Taiwan
| | - Ru-Inn Lin
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, NO2. Min-Sheng Road, Dalin Town, Chia-Yi, Chia-Yi, 62247, Taiwan
| | - Feng-Chun Hsu
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, NO2. Min-Sheng Road, Dalin Town, Chia-Yi, Chia-Yi, 62247, Taiwan
| | - Hsuan-Ju Yang
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, NO2. Min-Sheng Road, Dalin Town, Chia-Yi, Chia-Yi, 62247, Taiwan
| | - Liang-Cheng Chen
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, NO2. Min-Sheng Road, Dalin Town, Chia-Yi, Chia-Yi, 62247, Taiwan
- School of Medicine, Tzu Chi University, Hualian, Taiwan
| | - Chia-Hui Chew
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, NO2. Min-Sheng Road, Dalin Town, Chia-Yi, Chia-Yi, 62247, Taiwan
- School of Medicine, Tzu Chi University, Hualian, Taiwan
| | - Shih-Kai Hung
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, NO2. Min-Sheng Road, Dalin Town, Chia-Yi, Chia-Yi, 62247, Taiwan.
- School of Medicine, Tzu Chi University, Hualian, Taiwan.
| |
Collapse
|
2
|
Tang NN, Xu RB, Jiang B, Zhang HL, Wang XS, Chen DD, Zhu JJ. AHNAK2 Regulates NF-κB/MMP-9 Signaling to Promote Pancreatic Cancer Progression. Biochem Genet 2024:10.1007/s10528-024-10844-z. [PMID: 38864962 DOI: 10.1007/s10528-024-10844-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/16/2024] [Indexed: 06/13/2024]
Abstract
Early metastasis of pancreatic cancer (PaC) is a major cause of its high mortality rate. Previous studies have shown that AHNAK2 is involved in the progression of some tumors and is predicted to be an independent prognostic factor for PaC; however, the specific mechanisms through which AHNAK2 regulates PaC remain unclear. In this study, we examined the role of AHNAK2 in PaC and its potential molecular mechanisms. AHNAK2 mRNA and protein expression in PaC tissues and cells were measured using qRT-PCR and western blot analysis. After AHNAK2 knockdown using small interfering RNA, PaC cells were subjected to CCK-8 scratch, and Transwell assays to assess cell proliferation, migration, and invasion, respectively. Furthermore, the validation of the mechanistic pathway was achieved by western blot analysis. AHNAK2 mRNA and protein levels were up-regulated in PaC and silencing AHNAK2 significantly inhibited the proliferation, migration, and invasion of PaC cells. Mechanistically, AHNAK2 knockdown decreased the expression of phosphorylated p65, phosphorylated IκBα, and matrix metalloproteinase-9 (MMP-9), suggesting that activation of the NF-κB/MMP-9 signaling pathway was inhibited. Importantly, activation of NF-κB reversed the effects of AHNAK2 knockdown. Our findings indicate that AHNAK2 promotes PaC progression through the NF-kB/MMP-9 pathway and provides a theoretical basis for targeting AHNAK2 for the treatment of PaC.
Collapse
Affiliation(s)
- Na-Na Tang
- Department of Gastroenterology, Suqian First People's Hospital, Suqian, 223800, Jiangsu, China
| | - Rong-Bo Xu
- Department of Gastroenterology, Suqian First People's Hospital, Suqian, 223800, Jiangsu, China
| | - Bo Jiang
- Department of Gastroenterology, Suqian First People's Hospital, Suqian, 223800, Jiangsu, China
| | - Hai-Ling Zhang
- Department of Gastroenterology, Suqian First People's Hospital, Suqian, 223800, Jiangsu, China
| | - Xiao-Song Wang
- Department of Gastroenterology, Suqian First People's Hospital, Suqian, 223800, Jiangsu, China
| | - Dan-Dan Chen
- Department of Gastroenterology, Suqian First People's Hospital, Suqian, 223800, Jiangsu, China
| | - Ji-Jun Zhu
- Department of Gastroenterology, Suqian First People's Hospital, Suqian, 223800, Jiangsu, China.
| |
Collapse
|
3
|
Song M, Liang J, Wang L, Li W, Jiang S, Xu S, Tang L, Du Q, Liu G, Meng H, Zhai D, Shi S, Yang Y, Zhang L, Zhang B. IL-17A functions and the therapeutic use of IL-17A and IL-17RA targeted antibodies for cancer treatment. Int Immunopharmacol 2023; 123:110757. [PMID: 37579542 DOI: 10.1016/j.intimp.2023.110757] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/16/2023]
Abstract
Interleukin 17A (IL-17A) is a major member of the IL-17 cytokine family and is produced mainly by T helper 17 (Th17) cells. Other cells such as CD8+ T cells, γδ T cells, natural killer T cells and innate lymphoid-like cells can also produce IL-17A. In healthy individuals, IL-17A has a host-protective capacity, but excessive elevation of IL-17A is associated with the development of autoimmune diseases and cancer. Monoclonal antibodies (mAbs) targeting IL-17A (e.g., ixekizumab and secukinumab) or IL-17A receptor (IL-17RA) (e.g., brodalumab) would be investigated as potential treatments for these diseases. Currently, the application of IL-17A-targeted drugs in autoimmune diseases will provide new ideas for the treatment of tumors, and its combined application with immune checkpoint inhibitors has become a research hotspot. This article reviews the mechanism of action of IL-17A and the application of anti-IL-17A antibodies, focusing on the research progress on the mechanism of action and therapeutic blockade of IL-17A in various tumors such as colorectal cancer (CRC), lung cancer, gastric cancer and breast cancer. Moreover, we also include the results of therapeutic blockade in the field of cancer as well as recent advances in the regulation of IL-17A signaling.
Collapse
Affiliation(s)
- Meiying Song
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Jie Liang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Luoyang Wang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Wei Li
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Suli Jiang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Shuo Xu
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Lei Tang
- Department of Special Medicine, School of Basic Medical College, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Qiaochu Du
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Guixian Liu
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Haining Meng
- School of Emergency Medicine, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Dongchang Zhai
- Department of Special Medicine, School of Basic Medical College, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Shangheng Shi
- Department of Liver Transplantation, School of Clinical Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Yanyan Yang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Li Zhang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Bei Zhang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China.
| |
Collapse
|
4
|
Fang X, Xu J, Jin K, Qian J. Combining of immunotherapeutic approaches with chemotherapy for treatment of gastric cancer: Achievements and limitations. Int Immunopharmacol 2023; 118:110062. [PMID: 36965367 DOI: 10.1016/j.intimp.2023.110062] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/09/2023] [Accepted: 03/19/2023] [Indexed: 03/27/2023]
Abstract
Evidence reveals that gastric cancer (GC) is the fifth most common malignancy in humans, and about 770,000 people die from this cancer yearly. It has been reported that new cases and deaths from GC are more common in men than women. Therapeutic approaches, such as surgery, chemotherapy, and radiotherapy, have been common for treating GC. Nevertheless, due to the complications and limitations of these methods, researchers use novel approaches, such as immunotherapeutic or target therapies, to evaluate the effectiveness of treatment in patients with metastatic GC. Studies have shown that monotherapy is usually associated with unpromising outcomes, and combination therapy can be a more practical option for treating metastatic GC. Therefore, to clarify different aspects of chemotherapy and immunotherapy in patients with metastatic GC, this review discussed the achievements and challenges of combining immunotherapeutic methods with chemotherapeutic agents.
Collapse
Affiliation(s)
- Xingliang Fang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Jinfang Xu
- Department of Emergency Medicine, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, China
| | - Jun Qian
- Department of Colorectal Surgery, Xinchang People's Hospital, Affiliated Xinchang Hospital, Wenzhou Medical University, Xinchang, Zhejiang 312500, China.
| |
Collapse
|
5
|
Helicobacter pylori and Gastric Cancer: Pathogenetic Mechanisms. Int J Mol Sci 2023; 24:ijms24032895. [PMID: 36769214 PMCID: PMC9917787 DOI: 10.3390/ijms24032895] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer is the sixth most commonly diagnosed cancer and the fourth leading cause of cancer death worldwide. Helicobacter pylori (H. pylori) is one of the main risk factors for this type of neoplasia. Carcinogenetic mechanisms associated with H. pylori are based, on the one hand, on the onset of chronic inflammation and, on the other hand, on bacterial-specific virulence factors that can damage the DNA of gastric epithelial cells and promote genomic instability. Here, we review and discuss the major pathogenetic mechanisms by which H. pylori infection contributes to the onset and development of gastric cancer.
Collapse
|
6
|
Kang JH, Park S, Rho J, Hong EJ, Cho YE, Won YS, Kwon HJ. IL-17A promotes Helicobacter pylori-induced gastric carcinogenesis via interactions with IL-17RC. Gastric Cancer 2023; 26:82-94. [PMID: 36125689 PMCID: PMC9813207 DOI: 10.1007/s10120-022-01342-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/11/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Gastric cancer (GC) is a common malignancy worldwide, with a major attribution to Helicobacter pylori. Interleukin (IL)-17A has been reported to be up-regulated in serum and tumor of GC patients, but the precise mechanisms underlying its involvement in gastric tumorigenesis are yet to be established. Here, we investigated the roles of IL-17A in the pathogenesis of H. pylori-induced GC. METHODS GC was induced in IL-17A knockout (KO) and wild-type (WT) mice via N-methyl-N-nitrosourea (MNU) treatment and H. pylori infection. At 50 weeks after treatment, gastric tissues were examined by histopathology, immunohistochemistry, and immunoblot analyses. In vitro experiments on the human GC cell lines were additionally performed to elucidate the underlying mechanisms. RESULTS Deletion of IL-17A suppressed MNU and H. pylori-induced gastric tumor development accompanied by a decrease in gastric epithelial cell growth, oxidative stress, and expression of gastric epithelial stem cells markers. In AGS cells, recombinant human IL-17A (rhIL-17A) inhibited apoptosis and G1/S phase transition arrest while promoting reactive oxygen species production, sphere formation ability of cancer stem cells (CSC), and expression of stemness-related genes. In addition, rhIL-17A induced expression of IL-17RC, leading to NF-κB activation and increased NADPH oxidase 1 (NOX1) levels. Inhibition of NOX1 with GKT136901 attenuated rhIL-17A-mediated elevation of GC cell growth, ROS generation, and CSC stemness. Clinically, IL-17RC expressions were significantly upregulated in human GC compared with normal gastric tissues. CONCLUSION Our results suggest that IL-17A promotes gastric carcinogenesis, in part, by regulating IL-17RC/NF-κB/NOX1 pathway, supporting its potential as a target in human GC therapy.
Collapse
Affiliation(s)
- Jee Hyun Kang
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| | - Suyoung Park
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| | - Jinhyung Rho
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| | - Eun-Ju Hong
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| | - Young-Eun Cho
- Department of Food and Nutrition, Andong National University, Andong, Korea
| | - Young-Suk Won
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Chungbuk, Korea
| | - Hyo-Jung Kwon
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea.
| |
Collapse
|
7
|
Yuan C, Yuan J, Xiao H, Li H, Jiang Y, Zhai R, Zhai J, Xing H, Huang J. Genomic analysis of matrix metalloproteinases affecting the prognosis and immunogenic profile of gastric cancer. Front Genet 2023; 14:1128088. [PMID: 37144126 PMCID: PMC10151559 DOI: 10.3389/fgene.2023.1128088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/04/2023] [Indexed: 05/06/2023] Open
Abstract
This study systematically and comprehensively analyzed the characteristics of matrix metalloproteinases (MMPs) in gastric cancer (GC) and revealed the relationship between MMPs and prognoses, clinicopathological features, tumor microenvironment, gene mutations, and drug therapy response in patients with GC. Based on the mRNA expression profiles of 45 MMP-related genes in GC, we established a model that classified GC patients into three groups based on cluster analysis of the mRNA expression profiles. The 3 groups of GC patients showed significantly different prognoses as well as tumor microenvironmental characteristics. Next, we used Boruta's algorithm and PCA method to establish an MMP scoring system and found that lower MMP scores were associated with better prognoses, lower clinical stages, better immune cell infiltration, lower degrees of immune dysfunction and rejection, and more genetic mutations. Whereas a high MMP score was the opposite. These observations were further validated with data from other datasets, showing the robustness of our MMP scoring system. Overall, MMP could be involved in the tumor microenvironment (TME), clinical features, and prognosis of GC. An in-depth study of MMP patterns can better understand the indispensable role of MMP in the development of GC and reasonably assess the survival prognosis, clinicopathological features, and drug efficacy of different patients, thus providing clinicians with a broader vision of GC progression and treatment.
Collapse
Affiliation(s)
- Chaofeng Yuan
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jialin Yuan
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Huijie Xiao
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Haitao Li
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yang Jiang
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Rongnan Zhai
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jinjing Zhai
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hua Xing
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Hua Xing, ; Jiannan Huang,
| | - Jiannan Huang
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Hua Xing, ; Jiannan Huang,
| |
Collapse
|
8
|
Ibrahim WW, Sayed RH, Kandil EA, Wadie W. Niacin mitigates blood-brain barrier tight junctional proteins dysregulation and cerebral inflammation in ketamine rat model of psychosis: Role of GPR109A receptor. Prog Neuropsychopharmacol Biol Psychiatry 2022; 119:110583. [PMID: 35690118 DOI: 10.1016/j.pnpbp.2022.110583] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/05/2022] [Accepted: 06/05/2022] [Indexed: 01/25/2023]
Abstract
Dysregulated inflammatory responses and blood-brain barrier (BBB) dysfunction are recognized as central factors in the development of psychiatric disorders. The present study was designed to evaluate the effect of niacin on BBB integrity in ketamine-induced model of psychosis. Meanwhile, mepenzolate bromide (MPN), a GPR109A receptor blocker, was used to investigate the role of this receptor on the observed niacin's effect. Male Wistar rats received ketamine (30 mg/kg/day, i.p) for 5 consecutive days and then niacin (40 mg/kg/day, p.o), with or without MPN (5 mg/kg/day, i.p), was given for the subsequent 15 days. Three days before the end of experiment, rats were behaviorally tested using open field, novel object recognition, social interaction, and forced swimming tests. Niacin significantly ameliorated ketamine-induced behavioral deficits, amended gamma aminobutyric acid and glutamate concentration, decreased tumor necrosis factor-α and matrix metallopeptidase 9 levels, and increased netrin-1 contents in the hippocampus of rats. Niacin also augmented the hippocampal expression of ZO-1, occludin, and claudin-5 proteins, indicating the ability of niacin to restore the BBB integrity. Moreover, the histopathologic changes in hippocampal neurons were alleviated. Since all the beneficial effects of niacin in the present investigation were partially abolished by the co-administration of MPN; GPR109A receptor was proven to partially mediate the observed antipsychotic effects of niacin. These data revealed that GPR109A-mediated signaling pathways might represent potential targets for therapeutic interventions to prevent or slow the progression of psychosis.
Collapse
Affiliation(s)
- Weam W Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt.
| | - Esraa A Kandil
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt
| | - Walaa Wadie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt
| |
Collapse
|
9
|
Janiczek-Polewska M, Szylberg Ł, Malicki J, Marszałek A. Role of Interleukins and New Perspectives in Mechanisms of Resistance to Chemotherapy in Gastric Cancer. Biomedicines 2022; 10:1600. [PMID: 35884907 PMCID: PMC9312950 DOI: 10.3390/biomedicines10071600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/26/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022] Open
Abstract
Gastric cancer (GC) is the fourth most common cancer in the world in terms of incidence and second in terms of mortality. Chemotherapy is the main treatment for GC. The greatest challenge and major cause of GC treatment failure is resistance to chemotherapy. As such, research is ongoing into molecular evaluation, investigating mechanisms, and screening therapeutic targets. Several mechanisms related to both the tumor cells and the tumor microenvironment (TME) are involved in resistance to chemotherapy. TME promotes the secretion of various inflammatory cytokines. Recent studies have revealed that inflammatory cytokines affect not only tumor growth, but also chemoresistance. Cytokines in TME can be detected in blood circulation and TME cells. Inflammatory cytokines could serve as potential biomarkers in the assessment of chemoresistance and influence the management of therapeutics in GC. This review presents recent data concerning research on inflammatory cytokines involved in the mechanisms of chemoresistance and provides new clues in GC treatment.
Collapse
Affiliation(s)
- Marlena Janiczek-Polewska
- Department of Electroradiology, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
- Department of Clinical Oncology, Greater Poland Cancer Center, 61-866 Poznan, Poland
| | - Łukasz Szylberg
- Department of Perinatology, Gynaecology and Gynaecologic Oncology, Collegium Medicum, Nicolaus Copernicus University, 85-067 Bydgoszcz, Poland;
- Department of Tumor Pathology and Pathomorphology, Oncology Centrer of Franciszek Łukaszczyk Memorial Hospital, 85-796 Bydgoszcz, Poland
| | - Julian Malicki
- Department of Electroradiology, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
| | - Andrzej Marszałek
- Department of Oncologic Pathology, Prophylaxis Poznan University, Medical Sciences and Greater Poland Cancer Center, 61-866 Poznan, Poland;
| |
Collapse
|
10
|
Inflammation and Gastric Cancer. Diseases 2022; 10:diseases10030035. [PMID: 35892729 PMCID: PMC9326573 DOI: 10.3390/diseases10030035] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 11/17/2022] Open
Abstract
Gastric cancer remains a major killer globally, although its incidence has declined over the past century. It is the fifth most common cancer and the third most common reason for cancer-related deaths worldwide. Gastric cancer is the outcome of a complex interaction between environmental, host genetic, and microbial factors. There is significant evidence supporting the association between chronic inflammation and the onset of cancer. This association is particularly robust for gastrointestinal cancers in which microbial pathogens are responsible for the chronic inflammation that can be a triggering factor for the onset of those cancers. Helicobacter pylori is the most prominent example since it is the most widespread infection, affecting nearly half of the world’s population. It is well-known to be responsible for inducing chronic gastric inflammation progressing to atrophy, metaplasia, dysplasia, and eventually, gastric cancer. This review provides an overview of the association of the factors playing a role in chronic inflammation; the bacterial characteristics which are responsible for the colonization, persistence in the stomach, and triggering of inflammation; the microbiome involved in the chronic inflammation process; and the host factors that have a role in determining whether gastritis progresses to gastric cancer. Understanding these interconnections may improve our ability to prevent gastric cancer development and enhance our understanding of existing cases.
Collapse
|
11
|
Qi D, Lu J, Fu Z, Lv S, Hou L. Psoralen Promotes Proliferation, Migration, and Invasion of Human Extravillous Trophoblast Derived HTR-8/Svneo Cells in vitro by NF-κB Pathway. Front Pharmacol 2022; 13:804400. [PMID: 35462898 PMCID: PMC9024043 DOI: 10.3389/fphar.2022.804400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/23/2022] [Indexed: 11/25/2022] Open
Abstract
Recurrent spontaneous abortion (RSA) is a kind of pathological pregnancy, and abnormal function of trophoblast cells may be related to a variety of pregnancy complications including RSA. Psoralen is an effective ingredient extracted from Cullen corylifolium (L.) Medik. with multiple bioactivities mainly including anti-osteoporotic, anti-tumor, anti-inflammatory, and estrogen-like effects. However, the exact role of psoralen on trophoblast invasiveness has not been investigated thus far. In the present study, the effects of psoralen on the proliferation, migration, and invasion abilities of HTR-8/SVneo cells were evaluated by the CCK-8 and Transwell assays. The expression patterns of nuclear factor κB (NF-κB)/p65 and metalloproteinases (MMP)-2 and MMP-9 were characterized by further experiments including real-time quantitative polymerase chain reaction and Western blot. Indirect immunofluorescence was applied to track the NF-κB p65 translocation. Herein, we found that cell viability and invasive ability were promoted by psoralen in a concentration-dependent manner. Psoralen concentration-dependently enhanced both MMP-2 and MMP-9 expression and their activity of HTR-8/SVneo cells. Additionally, we observed accelerated nuclear accumulation and enhanced nuclear translocation of p65 in the presence of psoralen. Furthermore, invasiveness enhancement of psoralen on HTR-8/SVneo cells was partly eliminated by a NF-κB pathway inhibitor. Thus, our findings suggest that psoralen may serve as a potential repurpose drug candidate that can be used to induce migration and invasion of trophoblast cells through strengthening the NF-κB pathway.
Collapse
Affiliation(s)
- Dan Qi
- Department of Traditional Chinese Medicine, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
| | - Jingyuan Lu
- Department of Radiological Intervention, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
| | - Ziyi Fu
- Department of Traditional Chinese Medicine, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
| | - Shanshan Lv
- Department of Traditional Chinese Medicine, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
| | - Lili Hou
- Department of Traditional Chinese Medicine, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Lili Hou,
| |
Collapse
|
12
|
Yang E, Chua W, Ng W, Roberts TL. Peripheral Cytokine Levels as a Prognostic Indicator in Gastric Cancer: A Review of Existing Literature. Biomedicines 2021; 9:1916. [PMID: 34944729 PMCID: PMC8698340 DOI: 10.3390/biomedicines9121916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 12/16/2022] Open
Abstract
Although strong connections exist between the carcinogenesis of gastric cancer and chronic inflammation, gastric cancer is unique in that the chronic gastritis which frequently precedes carcinogenesis is strongly associated with H. pylori infection. The interplay between H. pylori virulence factors and host immune cells is complex but culminates in the activation of inflammatory pathways and transcription factors such as NF-κB, STAT3, and AP-1, all of which upregulate cytokine production. Due to the key role of cytokines in modulating the immune response against tumour cells as well as possibly stimulating tumour growth and proliferation, different patterns of cytokine secretion may be associated with varying patient outcomes. In relation to gastric cancer, interleukin-6, 8, 10, 17A, TNF, and IFN-γ may have pro-tumour properties, although interleukin-10, TNF, and IFN-γ may have anti-tumour effects. However, due to the lack of studies investigating patient outcomes, only a link between higher interleukin-6 levels and poorer prognosis has been demonstrated. Further investigations which link peripheral cytokine levels to patient prognosis may elucidate important pathological mechanisms in gastric cancer which adversely impact patient survival and allow treatments targeting these processes to be developed.
Collapse
Affiliation(s)
- Elton Yang
- School of Medicine, Western Sydney University, Campbelltown 2560, Australia; (E.Y.); (W.C.); (W.N.)
- Ingham Institute for Applied Medical Research, Liverpool 2170, Australia
| | - Wei Chua
- School of Medicine, Western Sydney University, Campbelltown 2560, Australia; (E.Y.); (W.C.); (W.N.)
- Ingham Institute for Applied Medical Research, Liverpool 2170, Australia
- Medical Oncology, Liverpool Hospital, Liverpool 2170, Australia
- Southwest Sydney Clinical School, University of New South Wales, Liverpool 2170, Australia
| | - Weng Ng
- School of Medicine, Western Sydney University, Campbelltown 2560, Australia; (E.Y.); (W.C.); (W.N.)
- Ingham Institute for Applied Medical Research, Liverpool 2170, Australia
- Medical Oncology, Liverpool Hospital, Liverpool 2170, Australia
- Southwest Sydney Clinical School, University of New South Wales, Liverpool 2170, Australia
| | - Tara Laurine Roberts
- School of Medicine, Western Sydney University, Campbelltown 2560, Australia; (E.Y.); (W.C.); (W.N.)
- Ingham Institute for Applied Medical Research, Liverpool 2170, Australia
- Southwest Sydney Clinical School, University of New South Wales, Liverpool 2170, Australia
| |
Collapse
|
13
|
Wang Y, Zhang J, Li YJ, Yu NN, Liu WT, Liang JZ, Xu WW, Sun ZH, Li B, He QY. MEST promotes lung cancer invasion and metastasis by interacting with VCP to activate NF-κB signaling. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:301. [PMID: 34560900 PMCID: PMC8464132 DOI: 10.1186/s13046-021-02107-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/16/2021] [Indexed: 11/23/2022]
Abstract
Background Cell invasion is a hallmark of metastatic cancer, leading to unfavorable clinical outcomes. In this study, we established two highly invasive lung cancer cell models (A549-i8 and H1299-i8) and identified mesoderm-specific transcript (MEST) as a novel invasive regulator of lung cancer. We aim to characterize its biological function and clinical significance in lung cancer metastasis. Methods Transwell invasion assay was performed to establish high-invasive lung cancer cell model. Immunohistochemistry (IHC) was used to detect MEST expression in tumor tissues. Mass spectrometry and bioinformatic analyses were used to identify MEST-regulated proteins and binding partners. Co-immunoprecipitation assay was performed to detect the interaction of MEST and VCP. The biological functions of MEST were investigated in vitro and in vivo. Immunofluorescence staining was conducted to explore the colocalization of MEST and VCP. Results MEST overexpression promoted metastasis of lung cancer cells in vivo and in vitro by activating NF-κB signaling. MEST increased the interaction between VCP and IκBα, which accelerated IκBα degradation and NF-κB activation. Such acceleration was abrogated by VCP silencing, indicating that MEST is an upstream activator of the VCP/IκBα/NF-κB signaling pathway. Furthermore, high expressions of MEST and VCP were associated with poor survival of lung cancer patients. Conclusion Collectively, these results demonstrate that MEST plays an important role in driving invasion and metastasis of lung cancer by interacting with VCP to coordinate the IκBα/NF-κB pathway. Targeting the MEST/VCP/IκBα/NF-κB signaling pathway may be a promising strategy to treat lung cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02107-1.
Collapse
Affiliation(s)
- Yang Wang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Jing Zhang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yang-Jia Li
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Nan-Nan Yu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Wan-Ting Liu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Jun-Ze Liang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Wen Wen Xu
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, Jinan University, Guangzhou, 510632, China
| | - Zheng-Hua Sun
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Bin Li
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Qing-Yu He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
14
|
Kriplani P, Guarve K. Recent Patents on Anti-Cancer Potential of Helenalin. Recent Pat Anticancer Drug Discov 2021; 15:132-142. [PMID: 32614752 DOI: 10.2174/1574892815666200702142601] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/08/2020] [Accepted: 05/15/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Arnica montana, containing helenalin as its principal active constituent, is the most widely used plant to treat various ailments. Recent studies indicate that Arnica and helenalin provide significant health benefits, including anti-inflammatory, neuroprotective, antioxidant, cholesterol-lowering, immunomodulatory, and most important, anti-cancer properties. OBJECTIVE The objective of the present study is to overview the recent patents of Arnica and its principal constituent helenalin, including new methods of isolation, and their use in the prevention of cancer and other ailments. METHODS Current prose and patents emphasizing the anti-cancer potential of helenalin and Arnica, incorporated as anti-inflammary agents in anti-cancer preparations, have been identified and reviewed with particular emphasis on their scientific impact and novelty. RESULTS Helenalin has shown its anti-cancer potential to treat multiple types of tumors, both in vitro and in vivo. It has also portrayed synergistic effects when given in combination with other anti- cancer drugs or natural compounds. New purification/isolation techniques are also developing with novel helenalin formulations and its synthetic derivatives have been developed to increase its solubility and bioavailability. CONCLUSION The promising anti-cancer potential of helenalin in various preclinical studies may open new avenues for therapeutic interventions in different tumors. Thus clinical trials validating its tumor suppressing and chemopreventive activities, particularly in conjunction with standard therapies, are immediately required.
Collapse
Affiliation(s)
- Priyanka Kriplani
- Department of Pharmaceutical Sciences, Guru Gobind Singh College of Pharmacy, Yamuna Nagar 135001, Haryana, India
| | - Kumar Guarve
- Department of Pharmaceutical Sciences, Guru Gobind Singh College of Pharmacy, Yamuna Nagar 135001, Haryana, India
| |
Collapse
|
15
|
NF-κB in Gastric Cancer Development and Therapy. Biomedicines 2021; 9:biomedicines9080870. [PMID: 34440074 PMCID: PMC8389569 DOI: 10.3390/biomedicines9080870] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer is considered one of the most common causes of cancer-related death worldwide and, thus, a major health problem. A variety of environmental factors including physical and chemical noxae, as well as pathogen infections could contribute to the development of gastric cancer. The transcription factor nuclear factor kappa B (NF-κB) and its dysregulation has a major impact on gastric carcinogenesis due to the regulation of cytokines/chemokines, growth factors, anti-apoptotic factors, cell cycle regulators, and metalloproteinases. Changes in NF-κB signaling are directed by genetic alterations in the transcription factors themselves, but also in NF-κB signaling molecules. NF-κB actively participates in the crosstalk of the cells in the tumor micromilieu with divergent effects on the heterogeneous tumor cell and immune cell populations. Thus, the benefits/consequences of therapeutic targeting of NF-κB have to be carefully evaluated. In this review, we address recent knowledge about the mechanisms and consequences of NF-κB dysregulation in gastric cancer development and therapy.
Collapse
|
16
|
The Roles of IL-17, IL-21, and IL-23 in the Helicobacter pylori Infection and Gastrointestinal Inflammation: A Review. Toxins (Basel) 2021; 13:toxins13050315. [PMID: 33924897 PMCID: PMC8147029 DOI: 10.3390/toxins13050315] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/17/2022] Open
Abstract
Although millions of people have been infected by Helicobacter pylori (H. pylori), only a small proportion of infected individuals will develop adverse outcomes, ranging from chronic gastritis to gastric cancer. Advanced development of the disease has been well-linked with chronic inflammation, which is significantly impacted by the adaptive and humoral immunity response. From the perspective of cellular immunity, this review aims to clarify the intricate axis between IL-17, IL-21, and IL-23 in H. pylori-related diseases and the pathogenesis of inflammatory gastrointestinal diseases. CD4+ helper T (Th)-17 cells, with the hallmark pleiotropic cytokine IL-17, can affect antimicrobial activity and the pathogenic immune response in the gut environment. These circumstances cannot be separated, as the existence of affiliated cytokines, including IL-21 and IL-23, help maintain Th17 and accommodate humoral immune cells. Comprehensive understanding of the dynamic interaction between molecular host responses in H. pylori-related diseases and the inflammation process may facilitate further development of immune-based therapy.
Collapse
|
17
|
Valenti M, Pavia G, Gargiulo L, Facheris P, Sanna F, Borroni RG, Costanzo A, Narcisi A. Biologic therapies for plaque type psoriasis in patients with previous malignant cancer: long-term safety in a single- center real-life population. J DERMATOL TREAT 2021; 33:1638-1642. [PMID: 33555951 DOI: 10.1080/09546634.2021.1886231] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION This is an Italian single-center retrospective study evaluating safety and efficacy of biologic agents in psoriatic patients with a previous diagnosis of malignant cancer. AIM Management of moderate and severe psoriasis patients with a past medical history of malignancies could be difficult because biologic agents are historically associated with a presumptive increased risk of neoplastic reactivation or of a new incoming cancer. The aim of this study is to assess the safety of biologics in patients with a previous cancer diagnosis. MATERIAL AND METHODS The study analyzed 16 moderate to severe psoriasis patients with a diagnosis of malignant cancer in the previous 10 years treated with biologic agents for up to at least 96 weeks. In five of these patients, cancer was diagnosed in the previous 5 years. RESULTS We observed a rapid decrease in PASI (psoriasis area severity index) reaching a 90% improvement in 100% of patients. Oncologic follow up did not show any worsening or reactivation of cancer during the entire observation period. No new malignancies were observed in the analyzed sample. CONCLUSIONS Biologic agents in our experience have demonstrated to be safe and effective in psoriatic patients with a past medical history of malignant cancer.
Collapse
Affiliation(s)
- M Valenti
- Dermatology Unit, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy.,Dermatology Unit, Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - G Pavia
- Dermatology Unit, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy.,Dermatology Unit, Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - L Gargiulo
- Dermatology Unit, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy.,Dermatology Unit, Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - P Facheris
- Dermatology Unit, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy.,Dermatology Unit, Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - F Sanna
- Dermatology Unit, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - R G Borroni
- Dermatology Unit, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy.,Dermatology Unit, Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - A Costanzo
- Dermatology Unit, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy.,Dermatology Unit, Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - A Narcisi
- Dermatology Unit, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| |
Collapse
|
18
|
Interleukin-17 modulates uPA and MMP2 expression in human periodontal ligament mesenchymal stem cells: Involvement of the ERK1/2 MAPK pathway. ARCH BIOL SCI 2021. [DOI: 10.2298/abs210929048o] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Periodontal disease is a chronic infection of periodontal tissue
characterized by extracellular matrix (ECM) degradation due to increased
expression of plasminogen activators and matrix metalloproteinases (MMPs)
and various proinflammatory cytokines, including interleukin (IL)-17.
Successful regeneration of damaged periodontal tissues depends on the proper
functionality of periodontal ligament mesenchymal stem cells (PDLMSCs),
especially the production of extracellular matrix proteases. We investigated
the influence of IL-17 on ECM remodeling through modulation of urokinasetype
plasminogen activator (uPA) and MMP2/MMP9 expression in human PDLMSCs at
mRNA, protein and activity levels using by RT-PCR, Western blotting and
zymography, respectively. Investigation of the involvement of MAPKs in these
processes in PDLMSCs was determined by Western blotting, as well as by
utilizing specific p38 and MEK1/2 inhibitors. Our results show that IL-17
activates MAPK signaling in PDLMSCs. Moreover, IL-17 had no effect on MMP9
expression, but it stimulated uPA and MMP2 gene and protein expression in
PDLMSCs through the activation of the ERK1/2 MAPK signaling pathway. The
obtained data suggest that IL-17 contributes to ECM degradation in the
periodontal ligament by stimulating uPA and MMP2 expression and activity in
PDLMSCs. This information is important for understanding periodontal disease
development and defining future directions of its treatment.
Collapse
|
19
|
Sexton RE, Al Hallak MN, Diab M, Azmi AS. Gastric cancer: a comprehensive review of current and future treatment strategies. Cancer Metastasis Rev 2020; 39:1179-1203. [PMID: 32894370 PMCID: PMC7680370 DOI: 10.1007/s10555-020-09925-3] [Citation(s) in RCA: 435] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023]
Abstract
Gastric cancer remains a major unmet clinical problem with over 1 million new cases worldwide. It is the fourth most commonly occurring cancer in men and the seventh most commonly occurring cancer in women. A major fraction of gastric cancer has been linked to variety of pathogenic infections including but not limited to Helicobacter pylori (H. pylori) or Epstein Barr virus (EBV). Strategies are being pursued to prevent gastric cancer development such as H. pylori eradication, which has helped to prevent significant proportion of gastric cancer. Today, treatments have helped to manage this disease and the 5-year survival for stage IA and IB tumors treated with surgery are between 60 and 80%. However, patients with stage III tumors undergoing surgery have a dismal 5-year survival rate between 18 and 50% depending on the dataset. These figures indicate the need for more effective molecularly driven treatment strategies. This review discusses the molecular profile of gastric tumors, the success, and challenges with available therapeutic targets along with newer biomarkers and emerging targets.
Collapse
Affiliation(s)
- Rachel E Sexton
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, HWCRC 732, Detroit, MI, 48201, USA
| | - Mohammed Najeeb Al Hallak
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, HWCRC 732, Detroit, MI, 48201, USA
| | - Maria Diab
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, HWCRC 732, Detroit, MI, 48201, USA
| | - Asfar S Azmi
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, HWCRC 732, Detroit, MI, 48201, USA.
| |
Collapse
|
20
|
Huang JC, Chen XH, Wang ZY, Li X, Chang LH, Zhang GH. Interleukin-17A Expression Correlated with the Prognosis of Chronic Rhinosinusitis with Nasal Polyps and the Anti-Interleukin-17A Effect in a Murine Nasal Polyps Model. ORL J Otorhinolaryngol Relat Spec 2020; 82:257-267. [PMID: 32726776 DOI: 10.1159/000507865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/29/2020] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To investigate the expression of interleukin-17A (IL-17A) in patients with chronic rhinosinusitis with nasal polyps (CRSwNP) and to analyze its effect on prognosis and to explore the role and mechanism of anti-IL-17A effect in vivo by establishing a murine nasal polyps (NP) model. METHODS Patients with CRSwNP who underwent endoscopic sinus surgery and matched control subjects were collected. We investigated IL-17A expression in human NP tissues using immunohistochemistry and analyzed their clinical features, including Lund-Mackay computed tomography scoring (LMCS) before surgery, Lund-Kennedy endoscopic scoring (LKES) before surgery (LKES B), LKES 6 months after surgery (LKES A), and reduction of LKES (LKES R). Then, after establishing the murine NP model to detect the expression and correlation of IL-17A and matrix metalloproteinase-9 (MMP-9) in nasal tissue, we studied nasal lavage fluid and serum by PCR and enzyme-linked immunosorbent assay in vivo. Anti-IL-17A treatment was administered in the murine NP model to confirm the function of IL-17A during the pathogenic processes. RESULTS IL-17A expression was upregulated in NP tissues from patients with CRSwNP compared with control subjects (p < 0.001). The number of IL-17A+ cells was significantly negatively correlated with LKES R in patients with CRSwNP (p < 0.01). However, there was no significant correlation between IL-17A and LMCS or LKES B (all p < 0.05). Further, IL-17A and MMP-9 were more abundant in nasal mucosa of the murine NP model compared with that of control mice (all p < 0.05), and severe polypoid lesions were apparently observed in murine NP models. Anti-IL-17A treatment downregulated the mRNA and protein expression of MMP-9 in nasal mucosa and reduced the number of polypoid lesions in the murine NP model (all p < 0.05). CONCLUSION Our results suggest that IL-17A plays a crucial role and may affect the prognosis of CRSwNP. Anti-IL-17A treatment may reduce the formation of polypoid lesions through inhibition of MMP-9 expression.
Collapse
Affiliation(s)
- Jian-Cong Huang
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiao-Hong Chen
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zhi-Yuan Wang
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xia Li
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Li-Hong Chang
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ge-Hua Zhang
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China,
| |
Collapse
|
21
|
Zhang Y, Zhou X, Zhang Q, Zhang Y, Wang X, Cheng L. Involvement of NF-κB signaling pathway in the regulation of PRKAA1-mediated tumorigenesis in gastric cancer. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:3677-3686. [PMID: 31841039 DOI: 10.1080/21691401.2019.1657876] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
AMP-activated alpha 1 catalytic subunit (PRKAA1) is one of the subunits of the mammalian 5'-AMP-activated protein kinase (AMPK) playing an important role in maintaining intracellular energy metabolism and associating with the risk of gastric cancer (GC). This paper aims to uncover the influences of PRKAA1 on the tumorigenesis of GC, as well as the underlying mechanisms. We found that Helicobacter pylori (H. pylori) infection markedly increased p-NF-κBp50 and NF-κBp50 expression, along with the PRKAA1 expression, which was inhibited by NF-κBp50 knockdown. NF-κBp50 and PRKAA1 expression were lower in non-tumor gastric tissues compared with that in GC tumor tissues. Up-regulation of PRKAA1 expression was correlated with poor survival in GC patients. MKN-45 and BGC-823 cells stably knockdown of PRKAA1 were transplanted into nude mice and observed the decreased cell metastasis in the lungs. PRKAA1 knockdown in GC cells showed significant decreases in the cell invasion and migration and inhibited MMP-2 expression and NF-κB activation, whereas PRKAA1 involved in NF-κBp50 mediated GC cell invasion and migration. In conclusion, our findings suggest the involvement of NF-κBp50 in the regulation of PRKAA1 in GC tumorigenesis.
Collapse
Affiliation(s)
- Yangmei Zhang
- Department of Oncology, Xuzhou Central Hospital, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xichang Zhou
- Department of Cancer Diagnosis and Treatment Center, Xuzhou Central Hospital, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qinglin Zhang
- Department of Central Laboratory, Xuzhou Central Hospital, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Youwei Zhang
- Department of Oncology, Xuzhou Central Hospital, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiang Wang
- Department of Oncology, Xuzhou Central Hospital, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Long Cheng
- Department of Cancer Diagnosis and Treatment Center, Xuzhou Central Hospital, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
22
|
Zhao J, Ji X, Wang Y, Wang X. Clinical Role of Serum Interleukin-17A in the Prediction of Refractory Mycoplasma pneumoniae Pneumonia in Children. Infect Drug Resist 2020; 13:835-843. [PMID: 32210598 PMCID: PMC7076716 DOI: 10.2147/idr.s240034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/22/2020] [Indexed: 01/24/2023] Open
Abstract
Background Mycoplasma pneumoniae pneumonia (MPP) is a common community-acquired pneumonia (CAP) in children, which may become refractory MPP (RMPP) to treatment. Objective The purpose of this study was to evaluate the clinical utility of measuring serum interleukin (IL)-17A to predict RMPP. Patients and Methods A retrospective clinical study at a single pediatric center included a review of the medical records of all children hospitalized for CAP between November 2015 and October 2019. The diagnosis of MPP was based on clinical presentation, chest radiography, and measurement of serum anti-Mycoplasma immunoglobulin IgM antibody titer using the microparticle agglutination method or sputum samples for Mycoplasma pneumoniae by PCR. Serum levels of IL-18 and IL-17A were determined by ELISA. Results Of the 625 children diagnosed with CAP, there were 154 children with MPP and without underlying diseases who were divided into a non-refractory MPP (NRMPP) group (n = 109) and a RMPP group (n = 45). The RMPP group had a higher incidence of tachypnea, cyanosis, hypoxia, segmental or lobar pneumonia, pleural effusion, and a longer period of hospitalization compared with NRMPP group (all P-values < 0.05). A serum IL-17A level above 10.8 pg/mL was a predictor for RMPP: area under the curve (AUC) 0.822; standard error (SE) 0.039; 95% confidence interval (CI) 0.746–0.897; diagnostic sensitivity and specificity of 77.8% and 77.1%, respectively. An LDH level above 436.5 IU/L and an IL-18 level above 464.5 pg/mL were the second most useful markers for RMPP: AUC 0.775, 0.775; SE 0.038, 0.039; 95% CI 0.700–0.850, 0.698–0.852; sensitivity 77.8%, 82.2%; specificity 62.4%, 59.6%; respectively. Conclusion This preliminary study of MPP in a pediatric population has shown that measurement of serum IL-17A may be a useful marker for the predictor of RMPP.
Collapse
Affiliation(s)
- Jiuling Zhao
- Department of Pediatrics, Tianjin Nankai Hospital, Tianjin, People's Republic of China.,Department of Pediatrics, Nankai Hospital Affiliated to Nankai University, Tianjin, People's Republic of China.,Nankai Clinical School, Tianjin Medical University, Tianjin, People's Republic of China
| | - Xin Ji
- School of Medical English and Health Communication, Tianjin Medical University, Tianjin, People's Republic of China
| | - Yushui Wang
- Department of Pediatrics, Tianjin Nankai Hospital, Tianjin, People's Republic of China
| | - Xin Wang
- Department of Pediatrics, Tianjin Nankai Hospital, Tianjin, People's Republic of China
| |
Collapse
|
23
|
Expression profiling revealed keratins and interleukins as potential biomarkers in squamous cell carcinoma of horn in Indian bullocks ( Bos indicus). 3 Biotech 2020; 10:92. [PMID: 32089987 DOI: 10.1007/s13205-020-2078-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 01/20/2020] [Indexed: 12/11/2022] Open
Abstract
Horn cancer is most prevalent in Bos indicus and poorly defined genetic landscape makes disease diagnosis and treatment difficult. In this study, RNA-Seq and data analysis using CLC Genomics Workbench was employed to identify biomarkers associated with horn cancer. As a result, a total of 149 genes were found significant differentially expressed in horn cancer samples compared to horn normal samples. The study revealed 'keratins' and 'interleukins' as apex groups of significant differentially expressed genes (DEGs). Functional analysis showed that the upregulated keratins support metastasis of tumor via cell proliferation, migration, and affecting cell stability, while downregulated interleukins along with other associated chemokine receptors deprive the immune response to tumor posing clear path for metastasis of horn cancer. Combi-action of both the group facilitates the tumor microenvironment to reproduce tumorigenesis. Analysis of pathways enriched in DEGs and exemplified protein-protein interaction network indicated actual role of DEGs in horn cancer at a fine level. Important effect of deregulated expression of keratin and interleukin genes in horn cancer enrolling their candidacy as potential biomarkers for horn cancer prognosis. This study appraises the possibility to mitigate horn cancer at fine resolution to extract attainable identification of prognostic molecular portraits.
Collapse
|
24
|
Abstract
Helicobacter pylori is a Gram-negative bacterium that infects the gastric epithelia of its human host. Everyone who is colonized with these pathogenic bacteria can develop gastric inflammation, termed gastritis. Additionally, a small proportion of colonized people develop more adverse outcomes, including gastric ulcer disease, gastric adenocarcinoma, or gastric mucosa-associated lymphoid tissue lymphoma. The development of these adverse outcomes is dependent on the establishment of a chronic inflammatory response. The development and control of this chronic inflammatory response are significantly impacted by CD4+ T helper cell activity. Noteworthy, T helper 17 (Th17) cells, a proinflammatory subset of CD4+ T cells, produce several proinflammatory cytokines that activate innate immune cell antimicrobial activity, drive a pathogenic immune response, regulate B cell responses, and participate in wound healing. Therefore, this review was written to take an intricate look at the involvement of Th17 cells and their affiliated cytokines (interleukin-17A [IL-17A], IL-17F, IL-21, IL-22, and IL-26) in regulating the immune response to H. pylori colonization and carcinogenesis.
Collapse
|
25
|
Fu Z, Lin L, Liu S, Qin M, He S, Zhu L, Huang J. Ginkgo Biloba Extract Inhibits Metastasis and ERK/Nuclear Factor kappa B (NF-κB) Signaling Pathway in Gastric Cancer. Med Sci Monit 2019; 25:6836-6845. [PMID: 31509521 PMCID: PMC6753842 DOI: 10.12659/msm.915146] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background Ginkgo biloba extract (EGb761), a standard extract of the Chinese traditional medicine Ginkgo biloba, plays an anti-tumor role in various cancers. However, whether EGb761 is involved in the invasion and metastasis of gastric cancer remains unclear. Material/Methods In the current study, cell viability assay, Western blotting, wound-healing assay, Transwell invasion assay, and orthotopic transplantation model were performed to explore the effects of EGb761 on gastric cancer. Results In vitro, the results showed that EGb761 suppressed the proliferation of gastric cancer cells in a dose-dependent manner. Furthermore, the migration and invasiveness were weakened and the protein levels of p-ERK1/2, NF-κB P65, NF-κB p-P65, and MMP2 were decreased by EGb761 or U0126 (an inhibitor of ERK signaling pathway) exposure in gastric cancer cells. Moreover, the combined treatment with EGb761 and U0126 significantly inhibited ERK, NF-κB signaling pathway, and the expression of MMP2 than those of single drug. In vivo, EGb761 inhibited the tumor growth and hepatic metastasis of gastric cancer in the mouse model. Results of immunohistochemistry indicated that the expression of ERK1/2, NF-κB P65 and MMP2 were decreased by EGb761 in the tumor tissues. Conclusions EGb761 plays a vital role in the suppression of metastasis and ERK/NF-κB signaling pathway in gastric cancer.
Collapse
Affiliation(s)
- Zhenhua Fu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Lan Lin
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Shiquan Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Mengbin Qin
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Siwei He
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Liye Zhu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Jiean Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| |
Collapse
|
26
|
Conway R, O'Neill L, McCarthy GM, Murphy CC, Fabre A, Kennedy S, Veale DJ, Wade SM, Fearon U, Molloy ES. Interleukin 12 and interleukin 23 play key pathogenic roles in inflammatory and proliferative pathways in giant cell arteritis. Ann Rheum Dis 2018; 77:1815-1824. [PMID: 30097452 DOI: 10.1136/annrheumdis-2018-213488] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 01/30/2023]
Abstract
OBJECTIVES The pathogenesis of giant cell arteritis (GCA) remains unclear. TH1 and TH17 pathways are implicated, but the proximal initiators and effector cytokines are unknown. Our aim was to assess the role of interleukin 12 (IL-12) and interleukin 23 (IL-23) in GCA pathogenesis. METHODS IL-12 and IL-23 expression were quantified by immunohistochemistry in temporal artery biopsies (TABs). Temporal artery (TA) explant, peripheral blood mononuclear cell (PBMC) and myofibroblast outgrowth culture models were established. PBMCs and TA explants were cultured for 24 hours in the presence or absence of IL-12 (50 ng/mL) or IL-23 (10 ng/mL). Gene expression in TA was quantified by real-time PCR and cytokine secretion by ELISA. Myofibroblast outgrowths were quantified following 28-day culture. RESULTS Immunohistochemistry demonstrated increased expression of interleukin 12p35 (IL-12p35) and interleukin 23p19 (IL-23p19) in biopsy-positive TAs, localised to inflammatory cells. IL-12p35 TA expression was significantly increased in those with cranial ischaemic complications (p=0.026) and large vessel vasculitis (p=0.006). IL-23p19 TA expression was increased in those with two or more relapses (p=0.007). In PBMC cultures, exogenous IL-12 significantly increased interleukin 6 (IL-6) (p=0.009), interleukin 22 (IL-22) (p=0.003) and interferon γ (IFN-γ) (p=0.0001) and decreased interleukin 8 (IL-8) (p=0.0006) secretion, while exogenous IL-23 significantly increased IL-6 (p=0.029), IL-22 (p=0.001), interleukin 17A (IL-17A) (p=0.0003) and interleukin 17F (IL-17F) (p=0.012) secretion. In ex vivo TA explants, IL-23 significantly increased gene expression of IL-8 (p=0.0001) and CCL-20 (p=0.027) and protein expression of IL-6 (p=0.002) and IL-8 (p=0.004). IL-12 (p=0.0005) and IL-23 (p<0.0001) stimulation increased the quantity of myofibroblast outgrowths from TABs. CONCLUSION IL-12 and IL-23 play central and distinct roles in stimulating inflammatory and proliferative pathways relevant to GCA pathogenesis.
Collapse
Affiliation(s)
- Richard Conway
- Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital Dublin, Academic Medical Centre, Dublin 4, Ireland
- CARD Newman Research Fellow, University College Dublin, Dublin, Ireland
| | - Lorraine O'Neill
- Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital Dublin, Academic Medical Centre, Dublin 4, Ireland
| | - Geraldine M McCarthy
- Mater Misericordiae University Hospital, Dublin Academic Medical Centre, Dublin, Ireland
| | - Conor C Murphy
- RCSI Department of Ophthalmology, Royal College of Surgeons of Ireland, Royal Victoria Eye and Ear Hospital, Dublin, Ireland
| | - Aurelie Fabre
- Department of Pathology, St Vincent's University Hospital, Dublin, Ireland
| | - Susan Kennedy
- Department of Pathology, St Vincent's University Hospital, Dublin, Ireland
| | - Douglas J Veale
- Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital Dublin, Academic Medical Centre, Dublin 4, Ireland
| | - Sarah M Wade
- Department of Molecular Rheumatology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Ursula Fearon
- Department of Molecular Rheumatology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Eamonn S Molloy
- Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital Dublin, Academic Medical Centre, Dublin 4, Ireland
| |
Collapse
|
27
|
Zheng Q, Diao S, Wang Q, Zhu C, Sun X, Yin B, Zhang X, Meng X, Wang B. IL-17A promotes cell migration and invasion of glioblastoma cells via activation of PI3K/AKT signalling pathway. J Cell Mol Med 2018; 23:357-369. [PMID: 30353649 PMCID: PMC6307791 DOI: 10.1111/jcmm.13938] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 09/06/2018] [Indexed: 12/17/2022] Open
Abstract
Glioblastomas (GBMs) are the most common of both benign and malignant primary brain tumours, in which the inflammatory and immunologic abnormalities are involved. Interleukin-17A (IL-17A) plays an important role in various inflammatory diseases and cancers. Several recent studies revealed that the expression of IL-17A was overexpressed in human GBMs tissue. However, the accurate role of IL-17A in GBMs remains unclear. In this study, we aimed to explore the effect of IL-17A on cell migration and invasion of GBMs and the mechanism by which the effects occurred. We found that exogenous IL-17A promoted significantly cell migration and invasion abilities in two GBMs cell lines (U87MG and U251) in a time-dependent manner. In addition, the protein expressions of PI3K, Akt and MMP-2/9 were increased in the GBMs cells challenged by IL-17A. Furthermore, a tight junction protein ZO-1 was down-regulated but Twist and Bmi1 were up-regulated. Treatment with a PI3K inhibitor (LY294002) significantly reduced the abilities of both migration and invasion in U87MG and U251 cells. LY294002 treatment also attenuated the IL-17A causing increases of protein levels of PI3K, AKT, MMP-2/9, Twist and the decreases of protein level of ZO-1 in the U87MG and U251 cells. Taken together, we concluded that IL-17A promotes the GBM cells migration and invasion via PI3K/AKT signalling pathway. IL-17A and its related signalling pathways may be potential therapeutic targets for GBM.
Collapse
Affiliation(s)
- Qianqian Zheng
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Shuo Diao
- Department of Neurosurgery, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qi Wang
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Chen Zhu
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xun Sun
- Department of Immunology, College of Basic Medical Sciences of China Medical University, Shenyang, China
| | - Bo Yin
- Department of Urology, ShengJing Hospital of China Medical University, Shenyang, China
| | - Xinwen Zhang
- Center of Implant Dentistry, School & Hospital of Stomatology, China Medical University, Shenyang, China
| | - Xin Meng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences of China Medical University, Shenyang, China
| | - Biao Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences of China Medical University, Shenyang, China
| |
Collapse
|
28
|
Chen X, Chang L, Li X, Huang J, Yang L, Lai X, Huang Z, Wang Z, Wu X, Zhao J, Bellanti JA, Zheng SG, Zhang G. Tc17/IL-17A Up-Regulated the Expression of MMP-9 via NF-κB Pathway in Nasal Epithelial Cells of Patients With Chronic Rhinosinusitis. Front Immunol 2018; 9:2121. [PMID: 30283454 PMCID: PMC6156140 DOI: 10.3389/fimmu.2018.02121] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/28/2018] [Indexed: 01/13/2023] Open
Abstract
Chronic rhinosinusitis (CRS) is a common chronic inflammatory disease of the upper airways involving nasal cavity and sinus. Deriving both from its clinical complexity with protean clinical manifestations as well its pathogenetic heterogeneity, the molecular mechanisms contributing to the pathogenesis of CRS remain unclear, and attract a wide interest in the field. Current evidences indicate that IL-17A is highly expressed in chronic rhinosinusitis with nasal polyps (CRSwNP). However, its pathogenetic role in regulation of tissue remodeling of CRSwNP remains unknown. The present study aimed to investigate the cellular origins and functions of IL-17A cytokine in CRSwNP, and further determined whether IL-17A could affect the expression of metalloproteinases (MMPs), the remodeling factors of CRSwNP. The results showed that the expression of IL-17A was upregulated in nasal tissues of patients with CRSwNP compared to those with chronic rhinosinusitis without nasal polyps (CRSsNP) and controls. CD8+ cytotoxic T lymphocytes (Tc) were major IL-17A producers in nasal tissues of CRSwNP. Interleukin (IL)-17-producing CD8+ T cells (Tc17) was significantly higher in nasal tissues of CRSwNP than CRSsNP and controls. Nonetheless, no difference was observed among the IL-17A in peripheral blood lymphocytes of these three groups. Moreover, in the same patients, IL-17A expression was negligible in lymphocytes of peripheral blood when compared with nasal tissues. Increased gene and protein expression of MMP-7 and MMP-9 in patients with CRSwNP compared with controls were observed. In CRSwNP samples, IL-17A receptor (IL-17AR) co-localized with MMP-9 and they were mainly expressed in the epithelial cells. MMP-9 expression was up-regulated both in Primary human nasal epithelial cells (PHNECs) and a nasal epithelial cell line (RPMI 2650) by IL-17A treatment, and diminished by anti-IL-17AR treatment. Furthermore, IL-17A promoted the expression of MMP-9 by activating the NF-κB signal pathway. Thus, our results have revealed a crucial role of IL-17A and Tc cells on pathogenesis and tissue remodeling of CRSwNP.
Collapse
Affiliation(s)
- Xiaohong Chen
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Lihong Chang
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xia Li
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jiancong Huang
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Luoying Yang
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaoping Lai
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zizhen Huang
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zhiyuan Wang
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xifu Wu
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jun Zhao
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Joseph A Bellanti
- Department of Pediatrics and Microbiology-Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Song Guo Zheng
- Division of Rheumatology, Milton S. Hershey Medical Center at Penn State University, Hershey, PA, United States
| | - Gehua Zhang
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
29
|
Koslawsky D, Zaretsky M, Alcalay R, Mazor O, Aharoni A, Papo N. A bi-specific inhibitor targeting IL-17A and MMP-9 reduces invasion and motility in MDA-MB-231 cells. Oncotarget 2018; 9:28500-28513. [PMID: 29983876 PMCID: PMC6033355 DOI: 10.18632/oncotarget.25526] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/14/2018] [Indexed: 12/17/2022] Open
Abstract
The cytokine IL-17A is associated with the progression of various cancers, but little is known about the molecular cross-talk between IL-17A and other tumor-promoting factors. Previous studies have shown that the IL-17A-mediated invasion of breast cancer cells can be inhibited by selective antagonists of the matrix metalloproteinase 9 (MMP-9), suggesting that the cross-talk between IL-17A and MMP-9 may promote cancer invasiveness and metastasis. Here, we present a novel strategy for developing cancer therapeutics, based on the simultaneous binding and inhibition of both IL-17A and MMP-9. To this end, we use a bi-specific heterodimeric fusion protein, comprising a natural inhibitor of MMPs (N-TIMP2) fused with an engineered extracellular domain (V3) of the IL-17A receptor. We show that, as compared with the mono-specific inhibitors of IL-17A (V3) and MMP-9 (N-TIMP2), the engineered bi-specific fusion protein inhibits both MMP-9 activation and IL-17A-induced cytokine secretion from fibroblasts and exhibits a synergistic inhibition of both the migration and invasion of breast cancer cells. Our findings demonstrate, for the first time, that dual targeting of inflammatory (IL-17A) and extracellular matrix remodeling (MMP) pathways can potentially be used as a novel therapeutic approach against cancer. Moreover, the platform developed here for generating the bi-specific IL-17A/MMP-9 inhibitor can be utilized for generating bi-specific inhibitors for other cytokines and MMPs.
Collapse
Affiliation(s)
- Dana Koslawsky
- Department of Biotechnology Engineering, The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Marianna Zaretsky
- Department of Life Sciences, The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ron Alcalay
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Ohad Mazor
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Amir Aharoni
- Department of Life Sciences, The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Niv Papo
- Department of Biotechnology Engineering, The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
30
|
Kong J, Zhang Y, Liu S, Li H, Liu S, Wang J, Qin X, Jiang X, Yang J, Zhang C, Zhang W. Melatonin attenuates angiotensin II-induced abdominal aortic aneurysm through the down-regulation of matrix metalloproteinases. Oncotarget 2017; 8:14283-14293. [PMID: 28179581 PMCID: PMC5362405 DOI: 10.18632/oncotarget.15093] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/24/2017] [Indexed: 01/15/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) affects more than 5% of the population in developed countries and the pharmacotherapies for AAA are limited. Here, we explored whether melatonin regulates the development of AAA. In smooth muscle cells, melatonin treatment decreases angiotensin II-induced matrix metalloproteinase 2 (MMP2) and MMP9 expression. Human antigen R (HuR) could bind with the adenylateuridylate-rich elements of MMP2 and MMP9 mRNAs 3′ untranslated region, resulting in the increased stability of MMP2 and MMP9 mRNAs. HuR is required for angiotensin II-induced MMP2 and MMP9 expression. Moreover, melatonin suppresses angiotensin II-induced HuR expression through inhibiting NF-?B signaling, leading to decreased MMP2 and MMP9 levels. Finally, melatonin attenuates the development of AAA in ApoE−/− mice infused with angiotensin II in vivo. These data support a role of HuR in the development of AAA and possible therapeutic roles for melatonin and/or HuR inhibition in AAA.
Collapse
Affiliation(s)
- Jing Kong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ya Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Shanshan Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Hongxuan Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Shangming Liu
- Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, Shandong University School of Medicine, Jinan, China
| | - Jingjing Wang
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan, China
| | - Xiaoteng Qin
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiuxin Jiang
- Department of General Surgery, Virtual Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Jianmin Yang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Cheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wencheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
31
|
Sokolova O, Naumann M. NF-κB Signaling in Gastric Cancer. Toxins (Basel) 2017; 9:toxins9040119. [PMID: 28350359 PMCID: PMC5408193 DOI: 10.3390/toxins9040119] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/14/2017] [Accepted: 03/22/2017] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is a leading cause of cancer death worldwide. Diet, obesity, smoking and chronic infections, especially with Helicobacter pylori, contribute to stomach cancer development. H. pylori possesses a variety of virulence factors including encoded factors from the cytotoxin-associated gene pathogenicity island (cagPAI) or vacuolating cytotoxin A (VacA). Most of the cagPAI-encoded products form a type 4 secretion system (T4SS), a pilus-like macromolecular transporter, which translocates CagA into the cytoplasm of the host cell. Only H. pylori strains carrying the cagPAI induce the transcription factor NF-κB, but CagA and VacA are dispensable for direct NF-κB activation. NF-κB-driven gene products include cytokines/chemokines, growth factors, anti-apoptotic factors, angiogenesis regulators and metalloproteinases. Many of the genes transcribed by NF-κB promote gastric carcinogenesis. Since it has been shown that chemotherapy-caused cellular stress could elicit activation of the survival factor NF-κB, which leads to acquisition of chemoresistance, the NF-κB system is recommended for therapeutic targeting. Research is motivated for further search of predisposing conditions, diagnostic markers and efficient drugs to improve significantly the overall survival of patients. In this review, we provide an overview about mechanisms and consequences of NF-κB activation in gastric mucosa in order to understand the role of NF-κB in gastric carcinogenesis.
Collapse
Affiliation(s)
- Olga Sokolova
- Institute of Experimental Internal Medicine, Otto von Guericke University Magdeburg, Magdeburg 39120, Germany.
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Otto von Guericke University Magdeburg, Magdeburg 39120, Germany.
| |
Collapse
|
32
|
Bagheri V, Memar B, Momtazi AA, Sahebkar A, Gholamin M, Abbaszadegan MR. Cytokine networks and their association with Helicobacter pylori infection in gastric carcinoma. J Cell Physiol 2017; 233:2791-2803. [PMID: 28121015 DOI: 10.1002/jcp.25822] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 12/16/2016] [Indexed: 12/20/2022]
Abstract
Cytokine networks as dynamic networks are pivotal aspects of tumor immunology, especially in gastric cancer (GC), in which infection, inflammation, and antitumor immunity are key elements of disease progression. In this review, we describe functional roles of well-known GC-modulatory cytokines, highlight the functions of cytokines with more recently described roles in GC, and emphasize the therapeutic potential of targeting the complex cytokine milieu. We also focus on the role of Helicobacter pylori (HP)-induced inflammation in GC and discuss how HP-induced chronic inflammation can lead to the induction of stem cell hyperplasia, morphological changes in gastric mucosa and GC development.
Collapse
Affiliation(s)
- Vahid Bagheri
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Human Genetic Division, Immunology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahram Memar
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pathology, Faculty of Medicine, Emam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Abbas Momtazi
- Department of Medical Biotechnology, Student Research Committee, Nanotechnology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehran Gholamin
- Human Genetic Division, Immunology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Abbaszadegan
- Human Genetic Division, Immunology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
33
|
Ren H, Wang Z, Zhang S, Ma H, Wang Y, Jia L, Li Y. IL-17A Promotes the Migration and Invasiveness of Colorectal Cancer Cells Through NF-κB-Mediated MMP Expression. Oncol Res 2017; 23:249-56. [PMID: 27098148 PMCID: PMC7838743 DOI: 10.3727/096504016x14562725373716] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Interleukin-17A (IL-17A) plays a significant role in many inflammatory diseases and cancers. The aim of this study is to investigate the effect of IL-17A on the invasiveness of colorectal cancer. In the study, we found that IL-17A could promote the migration and invasion of colorectal cancer cells. Furthermore, after being treated with IL-17A, the expression and activity of matrix metalloproteinase 2 (MMP-2) and MMP-9 were upregulated. Moreover, the nuclear/overall fractions and DNA-binding activity of p65 and p50 were dramatically elevated by IL-17A. Pretreatment with a nuclear factor-κB (NF-κB) inhibitor (PDTC) or PI3K/AKT inhibitor (LY294002) was proven to abolish the promoting effect of IL-17A on the invasion ability of colorectal cancer cells and upregulation of MMP-2/9. In conclusion, our findings demonstrated that IL-17A could promote the invasion of colorectal cancer cells by activating the PI3K/AKT/NF-κB signaling pathway and subsequently upregulating the expression of MMP-2/9. Our results suggest that IL-17A could serve as a promising therapeutic target for colorectal cancer.
Collapse
Affiliation(s)
- Hongtao Ren
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Liu D, Zhang R, Wu J, Pu Y, Yin X, Cheng Y, Wu J, Feng C, Luo Y, Zhang J. Interleukin-17A promotes esophageal adenocarcinoma cell invasiveness through ROS-dependent, NF-κB-mediated MMP-2/9 activation. Oncol Rep 2017; 37:1779-1785. [PMID: 28184939 DOI: 10.3892/or.2017.5426] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 12/28/2016] [Indexed: 11/06/2022] Open
Abstract
Interleukin-17A (IL-17A), a pro-inflammatory cytokine secreted primarily by Th17 cells, has been proved to be involved in the microenvironment of certain inflammation-related tumors. However, the role of IL-17A in cancer development has always been controversial. In this study, we investigated the effect of IL-17A on the regulation of esophageal adenocarcinoma (EAC) cell invasiveness and related molecular mechanism. Surface IL-17 receptor (IL-17R) expression on human EAC cell line OE19 was examined using flow cytometry. The effect of IL-17A on cell proliferation was measured by MTT assay. Cell migration and invasive ability in vitro were assessed by wound-healing and Matrigel-coated Transwell invasion assay. Intracellular reactive oxygen species (ROS) levels were determined by flow cytometry and fluorescence microscope. The protein expression levels of MMP-2, MMP-9, NF-κB and p-IκB-α were detected by western blotting. Our results showed that IL-17A promoted migration and invasion of OE19 cells in a dose-dependent manner, however it had less effect on OE19 cell proliferation. Furthermore, IL-17A treatment significantly upregulated the expression of MMP-2 and MMP-9, stimulated intracellular ROS production, increased IκB-α phosphorylation and NF-κB nuclear translocation. Nevertheless, IL-17A-induced expression of MMP-2/9 and OE19 cell invasiveness were both inhibited by pretreatment with N-acetyl-L-cysteine (NAC, a ROS scavenger) or pyrrolidine dithiocarbamate (PDTC, a NF-κB inhibitor). In conclusion, these findings demonstrate that IL-17A can promote the migration and invasiveness of EAC cells through ROS/NF-κB/MMP-2/9 signaling pathway activation, indicating that IL-17A may be a potential therapeutic target for EAC.
Collapse
Affiliation(s)
- Dong Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Rong Zhang
- Department of Gastroenterology, Shaanxi Provincal People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Jie Wu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yansong Pu
- Department of General Surgery, Shaanxi Provincal People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Xiaoran Yin
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yan Cheng
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jing Wu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Cheng Feng
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yumei Luo
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jun Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
35
|
Interleukins 17 and 23 in patients with gastric neoplasms. Sci Rep 2016; 6:37451. [PMID: 27869179 PMCID: PMC5116626 DOI: 10.1038/srep37451] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/25/2016] [Indexed: 12/12/2022] Open
Abstract
Recently there has been heightened interest in the potential significance of interleukin (IL)-17 and IL-23 in the development/progression of human malignancies. Here, we analyzed the systemic levels of these cytokines in 75 patients with different types of gastric neoplasms (carcinoma, gastrointestinal stromal tumors, neuroendocrine neoplasms, and lymphomas) and 42 healthy volunteers. We found that patients with all types of gastric neoplasms have significantly lower IL-23 levels. However, in comparison to the levels in healthy individuals, IL-17 concentrations were lower only in patients with types of gastric neoplasms other than carcinoma. Interestingly, IL-17 levels significantly differed between patients with early and advanced gastric carcinoma. No significant associations were detected between the systemic levels of examined interleukins and TNM staging. However, peripheral levels of IL-23 were correlated with the absolute numbers of circulating populations of bone marrow-derived mesenchymal and very small embryonic/epiblast-like stem cells in patients with gastric carcinoma. ROC curve analyses demonstrated that systemic levels of IL-17 seem to meet basic criteria for consideration as a helpful diagnostic marker in the detection of gastric carcinoma. In conclusion, our study provides translational evidence confirming the clinical significance of IL-17 and IL-23 in the pathogenesis of different types of gastric neoplasms in humans.
Collapse
|
36
|
Rempe RG, Hartz AMS, Bauer B. Matrix metalloproteinases in the brain and blood-brain barrier: Versatile breakers and makers. J Cereb Blood Flow Metab 2016; 36:1481-507. [PMID: 27323783 PMCID: PMC5012524 DOI: 10.1177/0271678x16655551] [Citation(s) in RCA: 464] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 05/26/2016] [Indexed: 02/01/2023]
Abstract
Matrix metalloproteinases are versatile endopeptidases with many different functions in the body in health and disease. In the brain, matrix metalloproteinases are critical for tissue formation, neuronal network remodeling, and blood-brain barrier integrity. Many reviews have been published on matrix metalloproteinases before, most of which focus on the two best studied matrix metalloproteinases, the gelatinases MMP-2 and MMP-9, and their role in one or two diseases. In this review, we provide a broad overview of the role various matrix metalloproteinases play in brain disorders. We summarize and review current knowledge and understanding of matrix metalloproteinases in the brain and at the blood-brain barrier in neuroinflammation, multiple sclerosis, cerebral aneurysms, stroke, epilepsy, Alzheimer's disease, Parkinson's disease, and brain cancer. We discuss the detrimental effects matrix metalloproteinases can have in these conditions, contributing to blood-brain barrier leakage, neuroinflammation, neurotoxicity, demyelination, tumor angiogenesis, and cancer metastasis. We also discuss the beneficial role matrix metalloproteinases can play in neuroprotection and anti-inflammation. Finally, we address matrix metalloproteinases as potential therapeutic targets. Together, in this comprehensive review, we summarize current understanding and knowledge of matrix metalloproteinases in the brain and at the blood-brain barrier in brain disorders.
Collapse
Affiliation(s)
- Ralf G Rempe
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Anika M S Hartz
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Björn Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
37
|
Bie Q, Sun C, Gong A, Li C, Su Z, Zheng D, Ji X, Wu Y, Guo Q, Wang S, Xu H. Non-tumor tissue derived interleukin-17B activates IL-17RB/AKT/β-catenin pathway to enhance the stemness of gastric cancer. Sci Rep 2016; 6:25447. [PMID: 27146881 PMCID: PMC4857095 DOI: 10.1038/srep25447] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/15/2016] [Indexed: 12/25/2022] Open
Abstract
Inflammation is a critical component involved in tumor progression. Interleukin-17 (IL-17) belongs to a relatively new family of cytokines that has been associated with the progression of cancers. However, the role of IL-17B/IL-17RB (IL-17 receptor B) signaling to stemness of gastric cancer remains unknown. Here, we confirmed that the expression of IL-17RB in gastric cancer tissues was significantly increased, that overexpression was associated with poor prognosis of gastric cancer patients, and that overexpression was positively correlated with some stemness markers. Interestingly, the expression of IL-17B was upregulated in patient serum rather than gastric tumor tissues. Furthermore, exogenous rIL-17B significantly promoted the stemness of gastric cancer cells depending on IL-17RB and induced the expression of IL-17RB. Simultaneously, the expression of phosphorylated AKT, GSK-3β, and β-catenin as well as the nuclear translocation of β-catenin were significantly increased in the MGC-803 cell in a dose-dependent manner, when treated with rIL-17B. The AKT inhibitor, LY294002, and the knockdown of AKT expression reversed the rIL-17B-induced upregulation of β-catenin and some stemness markers. Together, our results indicate that the IL-17B/IL-17RB signal can promote the growth and migration of tumor cells, and upregulate cell stemness through activating the AKT/β-catenin pathway in gastric cancer, suggesting that IL-17RB may be a novel target in human gastric cancer therapy.
Collapse
Affiliation(s)
- Qingli Bie
- Department of Immunology, School of medicine, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Caixia Sun
- Department of Anesthesiology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Aihua Gong
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Chunye Li
- Department of Anesthesiology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Zhaoliang Su
- Department of Immunology, School of medicine, Jiangsu University, Zhenjiang, Jiangsu, PR China.,Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Dong Zheng
- Department of Immunology, School of medicine, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Xiaoyun Ji
- Department of Immunology, School of medicine, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Yumin Wu
- Department of Immunology, School of medicine, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Qi Guo
- Department of Immunology, School of medicine, Jiangsu University, Zhenjiang, Jiangsu, PR China.,Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Shengjun Wang
- Department of Immunology, School of medicine, Jiangsu University, Zhenjiang, Jiangsu, PR China.,Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Huaxi Xu
- Department of Immunology, School of medicine, Jiangsu University, Zhenjiang, Jiangsu, PR China.,Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, PR China
| |
Collapse
|
38
|
TMPRSS4 promotes invasiveness of human gastric cancer cells through activation of NF-κB/MMP-9 signaling. Biomed Pharmacother 2016; 77:30-6. [DOI: 10.1016/j.biopha.2015.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/11/2015] [Indexed: 02/08/2023] Open
|
39
|
Huang T, Kang W, Zhang B, Wu F, Dong Y, Tong JHM, Yang W, Zhou Y, Zhang L, Cheng ASL, Yu J, To KF. miR-508-3p concordantly silences NFKB1 and RELA to inactivate canonical NF-κB signaling in gastric carcinogenesis. Mol Cancer 2016; 15:9. [PMID: 26801246 PMCID: PMC4724081 DOI: 10.1186/s12943-016-0493-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 01/19/2016] [Indexed: 12/14/2022] Open
Abstract
Background NF-κB signaling pathway plays an important role in gastric carcinogenesis. The basic expression and functional role of NFKB1 and RELA (components of canonical NF-κB pathway) in gastric cancer (GC) have not been well elucidated. In this study, the role of NFKB1 and RELA in gastric tumorigenesis will be investigated and their regulation by microRNAs (miRNAs) will be deeply explored. Methods The mRNA and protein expression of NFKB1 and RELA were investigated by qRT-PCR and Western blot in GC cell lines and primary tumors. The functional roles of NFKB1 and RELA in GC were demonstrated by MTT proliferation assay, monolayer colony formation, cell invasion and migration, cell cycle analysis and in vivo study through siRNA mediated knockdown. Identification of NFKB1 as a direct target of tumor suppressor miRNA miR-508-3p was achieved by expression regulation assays together with dual luciferase activity experiments. Results NFKB1 and RELA were up-regulated in GC cell lines and primary tumors compared with normal gastric epithelium cells and their upregulation correlation with poor survival in GC. siRNA mediated knockdown of NFKB1 or RELA exhibited anti-oncogenic effect both in vitro and in vivo. NFKB1 was further revealed to be a direct target of miR-508-3p in gastric tumorigenesis and their expression showed negative correlation in primary GC samples. miR-508-3p was down-regulated in GC cells compared with normal gastric epithelium samples and its ectopic expression in GC cell lines also exerts tumor suppressor function. NFKB1 re-expression was found to partly abolish the tumor-suppressive effect of miR-508-3p in GC. Conclusion All these findings supports that canonical NF-κB signaling pathway is activated in GC at least by the inactivation of miR-508-3p and this might have therapeutic potential in GC treatment. Electronic supplementary material The online version of this article (doi:10.1186/s12943-016-0493-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tingting Huang
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, PR China. .,Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, PR China. .,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, PR China. .,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, PR China.
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, PR China. .,Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, PR China. .,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, PR China. .,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, PR China.
| | - Bin Zhang
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University, Medical School, Nanjing, PR China.
| | - Feng Wu
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, PR China. .,Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, PR China. .,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, PR China.
| | - Yujuan Dong
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, PR China. .,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, PR China.
| | - Joanna H M Tong
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, PR China. .,Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, PR China. .,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, PR China.
| | - Weiqin Yang
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, PR China. .,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, PR China.
| | - Yuhang Zhou
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, PR China. .,Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, PR China. .,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, PR China.
| | - Li Zhang
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, PR China. .,Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, PR China. .,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, PR China.
| | - Alfred S L Cheng
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, PR China. .,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, PR China.
| | - Jun Yu
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, PR China. .,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, PR China. .,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, PR China.
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, PR China. .,Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, PR China. .,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, PR China. .,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, PR China.
| |
Collapse
|
40
|
Bornschein J, Seidel T, Langner C, Link A, Wex T, Selgrad M, Jechorek D, Meyer F, Bird-Lieberman E, Vieth M, Malfertheiner P. MMP2 and MMP7 at the invasive front of gastric cancer are not associated with mTOR expression. Diagn Pathol 2015; 10:212. [PMID: 26652716 PMCID: PMC4676863 DOI: 10.1186/s13000-015-0449-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 12/05/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Regulation of MMP expression by activation of mTOR signalling has been demonstrated for several tumor types, but has thus far not been confirmed in gastric cancer. FINDINGS The study compromised 128 patients who underwent gastric resection for cancer (66.4 % male; 86 intestinal, 42 diffuse type). Immunohistochemical staining of MMPs was performed to analyse the topographical pattern of MMP expression at the tumor center and the invasive front, respectively. MMP2 showed higher expression at the invasive front compared to the tumor center, whereas MMP7 staining scores were higher in the tumor center, and there was no difference for MMP9. The expression of p-mTOR was higher in the tumor center than at the invasive front, with a similar trend for mTOR. For intestinal type gastric cancer there was a weak correlation of MMP9 with expression of mTOR in the tumor center. Otherwise, there was no correlation of the MMPs with mTOR. By treatment of MKN45 gastric cancer cells with rapamycin, a reduction of p-mTOR in the Western blot was achieved; however, expression of MMPs remained unaffected. CONCLUSIONS Expression of MMP2 and MMP7 in gastric cancer is not associated with mTOR, MMP9 expression might be related to mTOR signalling in a subset of tumors.
Collapse
Affiliation(s)
- Jan Bornschein
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Leipziger Str. 44, Magdeburg, 39120, Germany.
| | - Tina Seidel
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Cosima Langner
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Thomas Wex
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Leipziger Str. 44, Magdeburg, 39120, Germany
- Department of Molecular Genetics, Medical Laboratory for Clinical Chemistry, Microbiology and Infectious Diseases, Am Neustädter Feld 47, Magdeburg, 39124, Germany
| | - Michael Selgrad
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Doerthe Jechorek
- Institute for Pathology, Otto-von-Guericke University, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Frank Meyer
- Department for General, Visceral and Vascular Surgery, Otto-von-Guericke University, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Elizabeth Bird-Lieberman
- Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Michael Vieth
- Institute for Pathology, Otto-von-Guericke University, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Peter Malfertheiner
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Leipziger Str. 44, Magdeburg, 39120, Germany
| |
Collapse
|
41
|
Roles of NGAL and MMP-9 in the tumor microenvironment and sensitivity to targeted therapy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:438-448. [PMID: 26278055 DOI: 10.1016/j.bbamcr.2015.08.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/08/2015] [Accepted: 08/10/2015] [Indexed: 12/15/2022]
Abstract
Various, diverse molecules contribute to the tumor microenvironment and influence invasion and metastasis. In this review, the roles of neutrophil gelatinase-associated lipocalin (NGAL) and matrix metalloproteinase-9 (MMP-9) in the tumor microenvironment and sensitivity to therapy will be discussed. The lipocalin family of proteins has many important functions. For example when NGAL forms a complex with MMP-9 it increases its stability which is important in cancer metastasis. Small hydrophobic molecules are bound by NGAL which can alter their entry into and efflux from cells. Iron transport and storage are also influenced by NGAL activity. Regulation of iron levels is important for survival in the tumor microenvironment as well as metastasis. Innate immunity is also regulated by NGAL as it can have bacteriostatic properties. NGAL and MMP-9 expression may also affect the sensitivity of cancer cells to chemotherapy as well as targeted therapy. Thus NGAL and MMP-9 play important roles in key processes involved in metastasis as well as response to therapy. This article is part of a Special Issue entitled: Tumor Microenvironment Regulation of Cancer Cell Survival, Metastasis, Inflammation, and Immune Surveillance edited by Peter Ruvolo and Gregg L. Semenza.
Collapse
|
42
|
Xu X, Chen L, Xu B, Xie Q, Sun M, Deng X, Wu C, Jiang J. Increased MT2-MMP expression in gastric cancer patients is associated with poor prognosis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:1985-1990. [PMID: 25973093 PMCID: PMC4396241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/23/2015] [Indexed: 06/04/2023]
Abstract
Matrix metalloproteinases (MMPs) are a family of proteolytic enzymes that contribute to tumorigenesis and metastasis due to their ability to degrade the extracellular matrix (ECM) and basement membrane. In despite of many reports in other solid tumors, the role of membrane type-2 MMP (MT2-MMP) in gastric cancer (GC) remains to be elucidated. The aim of this study was to investigate MT2-MMP expression in human GC tissue microarray (TMA) samples using immunohistochemistry (IHC). We found that MT2-MMP expression in tumor tissues was significantly higher compared to peritumoral tissues (P < 0.01). However, there were no statistically significant differences between MT2-MMP expression and clinicopathological parameters. In addition, univariate and multivariate Cox regression analysis showed GC patients with high MT2-MMP expression have poor overall survival (OS) compared to patients with low MT2-MMP expression (P = 0.013, P = 0.040, respectively). In conclusion, MT2-MMP is involved in GC invasion and metastasis and may serve as an independent prognostic factor for GC patients.
Collapse
Affiliation(s)
- Xiaoli Xu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University Jiangsu Changzhou 213003, China
| | - Lujun Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University Jiangsu Changzhou 213003, China
| | - Bin Xu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University Jiangsu Changzhou 213003, China
| | - Quanqin Xie
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University Jiangsu Changzhou 213003, China
| | - Mingfen Sun
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University Jiangsu Changzhou 213003, China
| | - Xu Deng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University Jiangsu Changzhou 213003, China
| | - Changping Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University Jiangsu Changzhou 213003, China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University Jiangsu Changzhou 213003, China
| |
Collapse
|