1
|
Wen H, Deng H, Li B, Chen J, Zhu J, Zhang X, Yoshida S, Zhou Y. Mitochondrial diseases: from molecular mechanisms to therapeutic advances. Signal Transduct Target Ther 2025; 10:9. [PMID: 39788934 PMCID: PMC11724432 DOI: 10.1038/s41392-024-02044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/28/2024] [Accepted: 10/31/2024] [Indexed: 01/12/2025] Open
Abstract
Mitochondria are essential for cellular function and viability, serving as central hubs of metabolism and signaling. They possess various metabolic and quality control mechanisms crucial for maintaining normal cellular activities. Mitochondrial genetic disorders can arise from a wide range of mutations in either mitochondrial or nuclear DNA, which encode mitochondrial proteins or other contents. These genetic defects can lead to a breakdown of mitochondrial function and metabolism, such as the collapse of oxidative phosphorylation, one of the mitochondria's most critical functions. Mitochondrial diseases, a common group of genetic disorders, are characterized by significant phenotypic and genetic heterogeneity. Clinical symptoms can manifest in various systems and organs throughout the body, with differing degrees and forms of severity. The complexity of the relationship between mitochondria and mitochondrial diseases results in an inadequate understanding of the genotype-phenotype correlation of these diseases, historically making diagnosis and treatment challenging and often leading to unsatisfactory clinical outcomes. However, recent advancements in research and technology have significantly improved our understanding and management of these conditions. Clinical translations of mitochondria-related therapies are actively progressing. This review focuses on the physiological mechanisms of mitochondria, the pathogenesis of mitochondrial diseases, and potential diagnostic and therapeutic applications. Additionally, this review discusses future perspectives on mitochondrial genetic diseases.
Collapse
Affiliation(s)
- Haipeng Wen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Hui Deng
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Junyu Chen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Junye Zhu
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Xian Zhang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China.
| |
Collapse
|
2
|
Du J, Zhang C, Liu F, Liu X, Wang D, Zhao D, Shui G, Zhao Y, Yan C. Distinctive metabolic remodeling in TYMP deficiency beyond mitochondrial dysfunction. J Mol Med (Berl) 2023; 101:1237-1253. [PMID: 37603049 DOI: 10.1007/s00109-023-02358-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 07/09/2023] [Accepted: 08/14/2023] [Indexed: 08/22/2023]
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is caused by mutations in the TYMP gene, which encodes thymidine phosphorylase (TP). As a cytosolic metabolic enzyme, TP defects affect biological processes that are thought to not be limited to the abnormal replication of mitochondrial DNA. This study aimed to elucidate the characteristic metabolic alterations and associated homeostatic regulation caused by TYMP deficiency. The pathogenicity of novel TYMP variants was evaluated in terms of clinical features, genetic analysis, and structural instability. We analyzed plasma samples from three patients with MNGIE; three patients with m.3243A > G mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS); and four healthy controls (HC) using both targeted and untargeted metabolomics techniques. Transcriptomics analysis and bioenergetic studies were performed on skin fibroblasts from participants in these three groups. A TYMP overexpression experiment was conducted to rescue the observed changes. Compared with controls, specific alterations in nucleosides, bile acids, and steroid metabolites were identified in the plasma of MNGIE patients. Comparable mitochondrial dysfunction was present in fibroblasts from patients with TYMP deficiency and in those from patients with the m.3243A > G mutation. Distinctively decreased sterol regulatory element binding protein (SREBP) regulated cholesterol metabolism and fatty acid (FA) biosynthesis as well as reduced FA degradation were revealed in fibroblasts with TYMP deficiency. The restoration of thymidine phosphorylase activity rescued the observed changes in MNGIE fibroblasts. Our findings indicated that more widespread metabolic disturbance may be caused by TYMP deficiency in addition to mitochondrial dysfunction, which expands our knowledge of the biochemical outcome of TYMP deficiency. KEY MESSAGES: Distinct metabolic profiles in patients with TYMP deficiency compared to those with m.3243A > G mutation. TYMP deficiency leads to a global disruption of nucleoside metabolism. Cholesterol and fatty acid metabolism are inhibited in individuals with MNGIE. TYMP is functionally related to SREBP-regulated pathways. Potential metabolite biomarkers that could be valuable clinical tools to improve the diagnosis of MNGIE.
Collapse
Affiliation(s)
- Jixiang Du
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Chao Zhang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Fuchen Liu
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Xihan Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Dongdong Wang
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Dandan Zhao
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of the Chinese Academy of Sciences, Beijing, 101408, China
| | - Yuying Zhao
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Chuanzhu Yan
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
- Qingdao Key Lab of Mitochondrial Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao, 266103, China.
| |
Collapse
|
3
|
Bianco F, Lattanzio G, Lorenzini L, Mazzoni M, Clavenzani P, Calzà L, Giardino L, Sternini C, Costanzini A, Bonora E, De Giorgio R. Enteric Neuromyopathies: Highlights on Genetic Mechanisms Underlying Chronic Intestinal Pseudo-Obstruction. Biomolecules 2022; 12:biom12121849. [PMID: 36551277 PMCID: PMC9776039 DOI: 10.3390/biom12121849] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Severe gut motility disorders are characterized by the ineffective propulsion of intestinal contents. As a result, the patients develop disabling/distressful symptoms, such as nausea and vomiting along with altered bowel habits up to radiologically demonstrable intestinal sub-obstructive episodes. Chronic intestinal pseudo-obstruction (CIPO) is a typical clinical phenotype of severe gut dysmotility. This syndrome occurs due to changes altering the morpho-functional integrity of the intrinsic (enteric) innervation and extrinsic nerve supply (hence neuropathy), the interstitial cells of Cajal (ICC) (mesenchymopathy), and smooth muscle cells (myopathy). In the last years, several genes have been identified in different subsets of CIPO patients. The focus of this review is to cover the most recent update on enteric dysmotility related to CIPO, highlighting (a) forms with predominant underlying neuropathy, (b) forms with predominant myopathy, and (c) mitochondrial disorders with a clear gut dysfunction as part of their clinical phenotype. We will provide a thorough description of the genes that have been proven through recent evidence to cause neuro-(ICC)-myopathies leading to abnormal gut contractility patterns in CIPO. The discovery of susceptibility genes for this severe condition may pave the way for developing target therapies for enteric neuro-(ICC)-myopathies underlying CIPO and other forms of gut dysmotility.
Collapse
Affiliation(s)
- Francesca Bianco
- Department of Veterinary Sciences, University of Bologna, 40064 Ozzano Emilia, Italy
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Giulia Lattanzio
- Department of Veterinary Sciences, University of Bologna, 40064 Ozzano Emilia, Italy
| | - Luca Lorenzini
- Department of Veterinary Sciences, University of Bologna, 40064 Ozzano Emilia, Italy
| | - Maurizio Mazzoni
- Department of Veterinary Sciences, University of Bologna, 40064 Ozzano Emilia, Italy
| | - Paolo Clavenzani
- Department of Veterinary Sciences, University of Bologna, 40064 Ozzano Emilia, Italy
| | - Laura Calzà
- IRET Foundation, 40064 Ozzano Emilia, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Luciana Giardino
- Department of Veterinary Sciences, University of Bologna, 40064 Ozzano Emilia, Italy
- IRET Foundation, 40064 Ozzano Emilia, Italy
| | - Catia Sternini
- UCLA/DDRC, Division of Digestive Diseases, Departments Medicine and Neurobiology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90001, USA
| | - Anna Costanzini
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Elena Bonora
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Correspondence: (E.B.); (R.D.G.); Tel.: +39-051-2094761 (E.B.); +39-0532-236631 (R.D.G.)
| | - Roberto De Giorgio
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: (E.B.); (R.D.G.); Tel.: +39-051-2094761 (E.B.); +39-0532-236631 (R.D.G.)
| |
Collapse
|
4
|
Badv RS, Ghahvechi Akbari M, Heidari M, Safavi M. Mitochondrial Neurogastrointestinal Encephalopathy (MNGIE) Disease. ARCHIVES OF IRANIAN MEDICINE 2022; 25:847-848. [PMID: 37543914 PMCID: PMC10685842 DOI: 10.34172/aim.2022.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/27/2022] [Indexed: 08/08/2023]
Affiliation(s)
- Reza Shervin Badv
- Pediatrics Neurology Department, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Masood Ghahvechi Akbari
- Physical Medicine and Rehabilitation Department, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Heidari
- Pediatrics Neurology Department, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Moeinadin Safavi
- Molecular Pathology and Cytogenetics Division, Pathology Department, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Kalkan Uçar S, Yazıcı H, Canda E, Er E, Bulut FD, Eraslan C, Onay H, Bax BE, Çoker M. Clinical spectrum of early onset "Mediterranean" (homozygous p.P131L mutation) mitochondrial neurogastrointestinal encephalomyopathy. JIMD Rep 2022; 63:484-493. [PMID: 36101829 PMCID: PMC9458607 DOI: 10.1002/jmd2.12315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 11/25/2022] Open
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive mitochondrial disorder characterized by cumulative and progressive gastrointestinal and neurological findings. This retrospective observational study, aimed to explore the time of presentation, diagnosis and clinical follow-up of 13 patients with a confirmed MNGIE disease of Mediterranean origin. The mean age of symptom onset was 7 years (6 months-21 years) and the average diagnosis age was 15.4 years ±8.4. Four of 13 patients (30%) died before 30 years at the mean age of 19.7 years ±6.8. Cachexia and gastrointestinal symptoms were observed in all patients (100%). The mean body mass index standard deviation score at diagnosis was 4.8 ± 2.8. At least three subocclusive episodes were presented in patients who died in last year of their life. The main neurological symptom found in most patients was peripheral neuropathy (92%). Ten patients (77%) had leukoencephalopathy and the remaining three patients without were under 10 years of age. The new homozygous "Mediterranean" TYMP mutation, p.P131L (c.392 C > T) was associated with an early presentation and poor prognosis in nine patients (69%) from five separates families. Based on the observations from this Mediterranean MNGIE cohort, we propose that the unexplained abdominal pain combined with cachexia is an indicator of MNGIE. High-platelet counts and nerve conduction studies may be supportive laboratory findings and the frequent subocclusive episodes could be a negative prognostic factor for mortality. Finally, the homozygous p.P131L (c.392 C > T) mutation could be associated with rapid progressive disease with poor prognosis.
Collapse
Affiliation(s)
- Sema Kalkan Uçar
- Department of Pediatrics, Division of Metabolism and NutritionEge University Medical FacultyIzmirTurkey
| | - Havva Yazıcı
- Department of Pediatrics, Division of Metabolism and NutritionEge University Medical FacultyIzmirTurkey
| | - Ebru Canda
- Department of Pediatrics, Division of Metabolism and NutritionEge University Medical FacultyIzmirTurkey
| | - Esra Er
- Department of Pediatrics, Division of Metabolism and NutritionEge University Medical FacultyIzmirTurkey
| | - Fatma Derya Bulut
- Department of Pediatrics, Division of Metabolism and NutritionÇukurova University Medical FacultyAdanaTurkey
| | - Cenk Eraslan
- Department of Radiology, Division of NeuroradiologyEge University Medical FacultyBornovaTurkey
| | - Hüseyin Onay
- Department of GeneticsEge University Medical FacultyIzmirTurkey
| | - Bridget Elizabeth Bax
- Institute of Molecular and Clinical SciencesSt George's University of LondonLondonUK
| | - Mahmut Çoker
- Department of Pediatrics, Division of Metabolism and NutritionEge University Medical FacultyIzmirTurkey
| |
Collapse
|
6
|
Almannai M, El-Hattab AW, Azamian MS, Ali M, Scaglia F. Mitochondrial DNA maintenance defects: potential therapeutic strategies. Mol Genet Metab 2022; 137:40-48. [PMID: 35914366 PMCID: PMC10401187 DOI: 10.1016/j.ymgme.2022.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/03/2022] [Accepted: 07/03/2022] [Indexed: 10/17/2022]
Abstract
Mitochondrial DNA (mtDNA) replication depends on the mitochondrial import of hundreds of nuclear encoded proteins that control the mitochondrial genome maintenance and integrity. Defects in these processes result in an expanding group of disorders called mtDNA maintenance defects that are characterized by mtDNA depletion and/or multiple mtDNA deletions with variable phenotypic manifestations. As it applies for mitochondrial disorders in general, current treatment options for mtDNA maintenance defects are limited. Lately, with the development of model organisms, improved understanding of the pathophysiology of these disorders, and a better knowledge of their natural history, the number of preclinical studies and existing and planned clinical trials has been increasing. In this review, we discuss recent preclinical studies and current and future clinical trials concerning potential therapeutic options for the different mtDNA maintenance defects.
Collapse
Affiliation(s)
- Mohammed Almannai
- Genetics and Precision Medicine Department (GPM), King Abdullah Specialized Children's Hospital (KASCH), King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Ayman W El-Hattab
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Mahshid S Azamian
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - May Ali
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA; Joint BCM-CUHK Center of Medical Genetics, Prince of Wales Hospital, Shatin, Hong Kong.
| |
Collapse
|
7
|
López-Gómez C, Cámara Y, Hirano M, Martí R. 232nd ENMC international workshop: Recommendations for treatment of mitochondrial DNA maintenance disorders. 16 - 18 June 2017, Heemskerk, The Netherlands. Neuromuscul Disord 2022; 32:609-620. [PMID: 35641351 DOI: 10.1016/j.nmd.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 11/24/2022]
Affiliation(s)
| | - Yolanda Cámara
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Michio Hirano
- Columbia University Irving Medical Center, New York, USA
| | - Ramon Martí
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
8
|
Bianco F, Lattanzio G, Lorenzini L, Diquigiovanni C, Mazzoni M, Clavenzani P, Calzà L, Giardino L, Sternini C, Bonora E, De Giorgio R. Novel understanding on genetic mechanisms of enteric neuropathies leading to severe gut dysmotility. Eur J Histochem 2021; 65. [PMID: 34818877 PMCID: PMC8636838 DOI: 10.4081/ejh.2021.3289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/03/2021] [Indexed: 11/24/2022] Open
Abstract
The enteric nervous system (ENS) is the third division of the autonomic nervous system and the largest collection of neurons outside the central nervous system (CNS). The ENS has been referred to as “the brain-in-thegut” or “the second brain of the human body” because of its highly integrated neural circuits controlling a vast repertoire of gut functions, including absorption/secretion, splanchnic blood vessels, some immunological aspects, intestinal epithelial barrier, and gastrointestinal (GI) motility. The latter function is the result of the ENS fine-tuning over smooth musculature, along with the contribution of other key cells, such as enteric glia (astrocyte-like cells supporting and contributing to neuronal activity), interstitial cells of Cajal (the pacemaker cells of the GI tract involved in neuromuscular transmission), and enteroendocrine cells (releasing bioactive substances, which affect gut physiology). Any noxa insult perturbing the ENS complexity may determine a neuropathy with variable degree of neuro-muscular dysfunction. In this review we aim to cover the most recent update on genetic mechanisms leading to enteric neuropathies ranging from Hirschsprung’s disease (characterized by lack of any enteric neurons in the gut wall) up to more generalized form of dysmotility such as chronic intestinal pseudo-obstruction (CIPO) with a significant reduction of enteric neurons. In this line, we will discuss the role of the RAD21 mutation, which we have demonstrated in a family whose affected members exhibited severe GI dysmotility. Other genes contributing to gut motility abnormalities will also be presented. In conclusion, the knowledge on the molecular mechanisms involved in enteric neuropathy may unveil strategies to better manage patients with neurogenic gut dysmotility and pave the way to targeted therapies.
Collapse
Affiliation(s)
- Francesca Bianco
- Department of Veterinary Sciences; Department of Medical and Surgical Sciences, University of Bologna.
| | | | | | | | | | | | | | | | - Catia Sternini
- UCLA/DDRC, Division of Digestive Diseases, Departments Medicine and Neurobiology, David Geffen School of Medicine, UCLA, Los Angeles CA.
| | - Elena Bonora
- Department of Medical and Surgical Sciences, University of Bologna.
| | | |
Collapse
|
9
|
Ramón J, Vila-Julià F, Molina-Granada D, Molina-Berenguer M, Melià MJ, García-Arumí E, Torres-Torronteras J, Cámara Y, Martí R. Therapy Prospects for Mitochondrial DNA Maintenance Disorders. Int J Mol Sci 2021; 22:6447. [PMID: 34208592 PMCID: PMC8234938 DOI: 10.3390/ijms22126447] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial DNA depletion and multiple deletions syndromes (MDDS) constitute a group of mitochondrial diseases defined by dysfunctional mitochondrial DNA (mtDNA) replication and maintenance. As is the case for many other mitochondrial diseases, the options for the treatment of these disorders are rather limited today. Some aggressive treatments such as liver transplantation or allogeneic stem cell transplantation are among the few available options for patients with some forms of MDDS. However, in recent years, significant advances in our knowledge of the biochemical pathomechanisms accounting for dysfunctional mtDNA replication have been achieved, which has opened new prospects for the treatment of these often fatal diseases. Current strategies under investigation to treat MDDS range from small molecule substrate enhancement approaches to more complex treatments, such as lentiviral or adenoassociated vector-mediated gene therapy. Some of these experimental therapies have already reached the clinical phase with very promising results, however, they are hampered by the fact that these are all rare disorders and so the patient recruitment potential for clinical trials is very limited.
Collapse
Affiliation(s)
- Javier Ramón
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ferran Vila-Julià
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - David Molina-Granada
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Miguel Molina-Berenguer
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Maria Jesús Melià
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Elena García-Arumí
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Javier Torres-Torronteras
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Yolanda Cámara
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ramon Martí
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
10
|
Boschetti E, D’Angelo R, Tardio ML, Costa R, Giordano C, Accarino A, Malagelada C, Clavenzani P, Tugnoli V, Caio G, Righi V, Garone C, D'Errico A, Cenacchi G, Dotti MT, Stanghellini V, Sternini C, Pironi L, Rinaldi R, Carelli V, De Giorgio R. Evidence of enteric angiopathy and neuromuscular hypoxia in patients with mitochondrial neurogastrointestinal encephalomyopathy. Am J Physiol Gastrointest Liver Physiol 2021; 320:G768-G779. [PMID: 33655764 PMCID: PMC8202202 DOI: 10.1152/ajpgi.00047.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a rare autosomal recessive disease caused by thymidine phosphorylase (TP) enzyme defect. As gastrointestinal changes do not revert in patients undergone TP replacement therapy, one can postulate that other unexplored mechanisms contribute to MNGIE pathophysiology. Hence, we focused on the local TP angiogenic potential that has never been considered in MNGIE. In this study, we investigated the enteric submucosal microvasculature and the effect of hypoxia on fibrosis and enteric neurons density in jejunal full-thickness biopsies collected from patients with MNGIE. Orcein staining was used to count blood vessels based on their size. Fibrosis was assessed using the Sirius Red and Fast Green method. Hypoxia and neoangiogenesis were determined via hypoxia-inducible-factor-1α (HIF-1α) and vascular endothelial cell growth factor (VEGF) protein expression, respectively. Neuron-specific enolase was used to label enteric neurons. Compared with controls, patients with MNGIE showed a decreased area of vascular tissue, but a twofold increase of submucosal vessels/mm2 with increased small size and decreased medium and large size vessels. VEGF positive vessels, fibrosis index, and HIF-1α protein expression were increased, whereas there was a diminished thickness of the longitudinal muscle layer with an increased interganglionic distance and reduced number of myenteric neurons. We demonstrated the occurrence of an angiopathy in the GI tract of patients with MNGIE. Neoangiogenetic changes, as detected by the abundance of small size vessels in the jejunal submucosa, along with hypoxia provide a morphological basis to explain neuromuscular alterations, vasculature breakdown, and ischemic abnormalities in MNGIE.NEW & NOTEWORTHY Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is characterized by a genetically driven defect of thymidine phosphorylase, a multitask enzyme playing a role also in angiogenesis. Indeed, major gastrointestinal bleedings are life-threatening complications of MNGIE. Thus, we focused on jejunal submucosal vasculature and showed intestinal microangiopathy as a novel feature occurring in this disease. Notably, vascular changes were associated with neuromuscular abnormalities, which may explain gut dysfunction and help to develop future therapeutic approaches in MNGIE.
Collapse
Affiliation(s)
- Elisa Boschetti
- 1Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy,2Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Roberto D’Angelo
- 3IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC interaziendale Clinica Neurologica Metropolitana (NeuroMet), Neurologia AOU S. Orsola-Malpighi, Bologna, Italy
| | | | - Roberta Costa
- 1Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Carla Giordano
- 5Department of Medico-Surgical Sciences and Biotechnologies, University “La Sapienza”, Roma, Italy
| | - Anna Accarino
- 6Digestive System Research Unit, University Hospital Vall d'Hebron;
Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD); Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carolina Malagelada
- 6Digestive System Research Unit, University Hospital Vall d'Hebron;
Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD); Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Paolo Clavenzani
- 7Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Vitaliano Tugnoli
- 1Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giacomo Caio
- 8Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Valeria Righi
- 9Department of Life Quality Studies, University of Bologna, Bologna, Italy
| | - Caterina Garone
- 2Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | | - Giovanna Cenacchi
- 1Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Maria Teresa Dotti
- 10Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | | | - Catia Sternini
- 11Digestive-Disease-Division, Departments of Medicine and Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Loris Pironi
- 2Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Rita Rinaldi
- 3IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC interaziendale Clinica Neurologica Metropolitana (NeuroMet), Neurologia AOU S. Orsola-Malpighi, Bologna, Italy
| | - Valerio Carelli
- 1Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy,12IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Roberto De Giorgio
- 8Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
11
|
Pitceathly RD, Keshavan N, Rahman J, Rahman S. Moving towards clinical trials for mitochondrial diseases. J Inherit Metab Dis 2021; 44:22-41. [PMID: 32618366 PMCID: PMC8432143 DOI: 10.1002/jimd.12281] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022]
Abstract
Primary mitochondrial diseases represent some of the most common and severe inherited metabolic disorders, affecting ~1 in 4,300 live births. The clinical and molecular diversity typified by mitochondrial diseases has contributed to the lack of licensed disease-modifying therapies available. Management for the majority of patients is primarily supportive. The failure of clinical trials in mitochondrial diseases partly relates to the inefficacy of the compounds studied. However, it is also likely to be a consequence of the significant challenges faced by clinicians and researchers when designing trials for these disorders, which have historically been hampered by a lack of natural history data, biomarkers and outcome measures to detect a treatment effect. Encouragingly, over the past decade there have been significant advances in therapy development for mitochondrial diseases, with many small molecules now transitioning from preclinical to early phase human interventional studies. In this review, we present the treatments and management strategies currently available to people with mitochondrial disease. We evaluate the challenges and potential solutions to trial design and highlight the emerging pharmacological and genetic strategies that are moving from the laboratory to clinical trials for this group of disorders.
Collapse
Affiliation(s)
- Robert D.S. Pitceathly
- Department of Neuromuscular DiseasesUCL Queen Square Institute of Neurology and The National Hospital for Neurology and NeurosurgeryLondonUK
| | - Nandaki Keshavan
- Mitochondrial Research GroupUCL Great Ormond Street Institute of Child HealthLondonUK
- Metabolic UnitGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| | - Joyeeta Rahman
- Mitochondrial Research GroupUCL Great Ormond Street Institute of Child HealthLondonUK
| | - Shamima Rahman
- Mitochondrial Research GroupUCL Great Ormond Street Institute of Child HealthLondonUK
- Metabolic UnitGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| |
Collapse
|
12
|
Finsterer J. Clinical Therapeutic Management of Human Mitochondrial Disorders. Pediatr Neurol 2020; 113:66-74. [PMID: 33053453 DOI: 10.1016/j.pediatrneurol.2020.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/25/2020] [Accepted: 07/03/2020] [Indexed: 12/29/2022]
Abstract
Despite recent advances in the elucidation of etiology and pathogenesis of mitochondrial disorders, their therapeutic management remains challenging. This review focuses on currently available therapeutic options for human mitochondrial disorders. Current treatment of mitochondrial disorders relies on symptomatic, multidisciplinary therapies of various manifestations in organs such as the brain, muscle, nerves, eyes, ears, endocrine organs, heart, intestines, kidneys, lungs, bones, bone marrow, cartilage, immune system, and skin. If respiratory chain functions are primarily or secondarily impaired, antioxidants or cofactors should be additionally given one by one. All patients with mitochondrial disorders should be offered an individually tailored diet and physical training program. Irrespective of the pathogenesis, all patients with mitochondrial disorders should avoid exposure to mitochondrion-toxic agents and environments. Specific treatment can be offered for stroke-like episodes, mitochondrial epilepsy, mitochondrial neurogastrointestinal encephalopathy, Leber hereditary optic neuropathy, thiamine-responsive Leigh syndrome, primary coenzyme Q deficiency, primary carnitine deficiency, Friedreich ataxia, ethylmalonic encephalopathy, acyl-CoA dehydrogenase deficiency, pyruvate dehydrogenase deficiency, and hereditary vitamin E deficiency. Preventing the transmission of mitochondrial DNA-related mitochondrial disorders can be achieved by mitochondrion replacement therapy (spindle transfer, pronuclear transfer). In conclusion, specific and nonspecific therapies for human mitochondrial disorders are available, and beneficial effects have been anecdotally reported. However, double-blind, placebo-controlled studies to confirm effectiveness are lacking for the majority of the measures applied to mitochondrial disorders. Transmission of certain mitochondrial disorders can be prevented by mitochondrion replacement therapy. A multidisciplinary approach is required to meet the therapeutic challenges of patients with mitochondrial disorders.
Collapse
|
13
|
Vila-Julià F, Cabrera-Pérez R, Cámara Y, Molina-Berenguer M, Lope-Piedrafita S, Hirano M, Mingozzi F, Torres-Torronteras J, Martí R. Efficacy of adeno-associated virus gene therapy in a MNGIE murine model enhanced by chronic exposure to nucleosides. EBioMedicine 2020; 62:103133. [PMID: 33232869 PMCID: PMC7689515 DOI: 10.1016/j.ebiom.2020.103133] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Preclinical studies have shown that gene therapy is a feasible approach to treat mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). However, the genetic murine model of the disease (Tymp/Upp1 double knockout, dKO) has a limited functional phenotype beyond the metabolic imbalances, and so the studies showing efficacy of gene therapy have relied almost exclusively on demonstrating correction of the biochemical phenotype. Chronic oral administration of thymidine (dThd) and deoxyuridine (dUrd) to dKO mice deteriorates the phenotype of the animals, providing a better model to test therapy approaches. METHODS dKO mice were treated with both dThd and dUrd in drinking water from weaning until the end of the study. At 8 - 11 weeks of age, mice were treated with several doses of adeno-associated virus (AAV) serotype 8 vector carrying the human TYMP coding sequence under the control of different liver-specific promoters (TBG, AAT, or HLP). The biochemical profile and functional phenotype were studied over the life of the animals. FINDINGS Nucleoside exposure resulted in 30-fold higher plasma nucleoside levels in dKO mice compared with non-exposed wild type mice. AAV-treatment provided elevated TP activity in liver and lowered systemic nucleoside levels in exposed dKO mice. Exposed dKO mice had enlarged brain ventricles (assessed by magnetic resonance imaging) and motor impairment (rotarod test); both were prevented by AAV treatment. Among all promoters tested, AAT showed the best efficacy. INTERPRETATION Our results show that AAV-mediated gene therapy restores the biochemical homeostasis in the murine model of MNGIE and, for the first time, demonstrate that this treatment improves the functional phenotype. FUNDING This work was funded in part by the Spanish Instituto de Salud Carlos III, and the Generalitat de Catalunya. The disclosed funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Collapse
Affiliation(s)
- Ferran Vila-Julià
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, and Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Catalonia, Spain
| | - Raquel Cabrera-Pérez
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, and Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Catalonia, Spain
| | - Yolanda Cámara
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, and Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Catalonia, Spain
| | - Miguel Molina-Berenguer
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, and Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Catalonia, Spain
| | - Silvia Lope-Piedrafita
- Servei de Ressonància Magnètica Nuclear, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Catalonia, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Catalonia, Spain
| | - Michio Hirano
- Department of Neurology, H. Houston Merritt Neuromuscular Research Center, Columbia University Irving Medical Center, New York, NY, United States
| | | | - Javier Torres-Torronteras
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, and Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Catalonia, Spain.
| | - Ramon Martí
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, and Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Catalonia, Spain.
| |
Collapse
|
14
|
Sergeeva O, Zhang Y, Kenyon J, Miller-Atkins G, Sergeev M, Verbus E, Iyer R, Sexton S, Kepe V, Avril N, Saunthararajah Y, Chan ER, Lee Z. Liver background uptake of [ 18F]FLT in PET imaging. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2020; 10:212-225. [PMID: 33224617 PMCID: PMC7675117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/29/2020] [Indexed: 06/11/2023]
Abstract
High liver uptake presents a problem for 3'-deoxy-3'-[18F]fluorothymidine ([18F]FLT) as a radiotracer for imaging cellular proliferation in the liver with positron emission tomography (PET). This investigation re-visited some issues related to the high liver background uptake of [18F]FLT with an animal model of woodchucks. Several enzymes involved in the hepatic catabolism of FLT, thymidine phosphorylase (TP, TYMP), uridine 5'-diphospho-glucuronosyl-transferases (UDP-GTs, short for UGTs), and β-glucuronidase (GUSB), their homology as well as hepatic expression between the human and the woodchuck was examined. Inhibitors of these enzymes, TP inhibitor (TPI) tipiracil hydrochloride, UGT inhibitor probenecid, β-glucuronidase inhibitor L-aspartate, were administered to the animals at human equivalent doses either intravenously (i.v.) and orally before the injection of tracer-dose [18F]FLT for PET imaging to examine any changes in liver uptake. Liver tissue samples were harvested from the animals after PET imaging and used to perform polymerase chain reaction (PCR) for TP expression or assays for enzymatic activities of TP and β-glucuronidase. Non-radiolabeled (cold) FLT was also applied for enzyme saturation. Animals administered with TPI displayed lower radioactivity in the liver in comparison with the baseline scan. The application of probenecid did not change [18F]FLT liver uptake even though it reduced renal uptake. L-aspartate reduced the liver background uptake of [18F]FLT slightly. The application of cold FLT reduced overall uptake of [18F]FLT including the liver background. Therefore, the combined application of cold FLT and [18F]FLT merits further clinical investigation for reducing liver background uptake of [18F]FLT.
Collapse
Affiliation(s)
- Olga Sergeeva
- Department of Radiology, Case Western Reserve UniversityCleveland, OH, USA
| | - Yifan Zhang
- Department of Radiology, Case Western Reserve UniversityCleveland, OH, USA
| | - Jonathan Kenyon
- Department of Biology, Case Western Reserve UniversityCleveland, OH, USA
| | | | - Maxim Sergeev
- Nuclear Medicine, University Hospitals Cleveland Medical CenterCleveland, OH, USA
| | - Emily Verbus
- Surgery, University Hospitals Cleveland Medical CenterCleveland, OH, USA
| | - Renuka Iyer
- Medical Oncology, Rowell Park Cancer CenterBuffalo, NY, USA
| | - Sandra Sexton
- Medical Oncology, Rowell Park Cancer CenterBuffalo, NY, USA
| | - Vladimir Kepe
- Nuclear Medicine, Cleveland ClinicCleveland, OH, USA
| | - Norbert Avril
- Department of Radiology, Case Western Reserve UniversityCleveland, OH, USA
- Nuclear Medicine, University Hospitals Cleveland Medical CenterCleveland, OH, USA
| | | | | | - Zhenghong Lee
- Department of Radiology, Case Western Reserve UniversityCleveland, OH, USA
- Nuclear Medicine, University Hospitals Cleveland Medical CenterCleveland, OH, USA
| |
Collapse
|
15
|
D'Angelo R, Boschetti E, Amore G, Costa R, Pugliese A, Caporali L, Gramegna LL, Papa V, Vizioli L, Capristo M, Contin M, Mohamed S, Cenacchi G, Lodi R, Morelli MC, Fasano L, Pisani L, Cescon M, Tonon C, Pinna AD, Dotti MT, Sicurelli F, Scarpelli M, Filosto M, Casali C, Pironi L, Carelli V, De Giorgio R, Rinaldi R. Liver transplantation in mitochondrial neurogastrointestinal encephalomyopathy (MNGIE): clinical long-term follow-up and pathogenic implications. J Neurol 2020; 267:3702-3710. [PMID: 32683607 DOI: 10.1007/s00415-020-10051-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 01/21/2023]
Abstract
We report the longest follow-up of clinical and biochemical features of two previously reported adult mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) patients treated with liver transplantation (LT), adding information on a third, recently transplanted, patient. All three patients overcame the early post-operative period and tolerated immunosuppressive therapy. Plasma nucleoside levels dramatically decreased, with evidence of clinical improvement of ambulation and neuropathy. Conversely, other features of MNGIE, as gastrointestinal dysmotility, low weight, ophthalmoparesis, and leukoencephalopathy were essentially unchanged. A similar picture characterized two patients treated with allogenic hematopoietic stem cell transplantation (AHSCT). In conclusion, LT promptly and stably normalizes nucleoside imbalance in MNGIE, stabilizing or improving some clinical parameters with marginal periprocedural mortality rate as compared to AHSCT. Nevertheless, restoring thymidine phosphorylase (TP) activity, achieved by both LT and AHSCT, does not allow a full clinical recovery, probably due to consolidated cellular damage and/or incomplete enzymatic tissue replacement.
Collapse
Affiliation(s)
- Roberto D'Angelo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Interaziendale Clinica Neurologica Rete Metropolitana (NeuroMet), Neurologia AOU S. Orsola-Malpighi, Policlinico Sant'Orsola-Malpighi, Building #2, Via Albertoni, 15, 40138, Bologna, Italy.
| | - Elisa Boschetti
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giulia Amore
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Roberta Costa
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessia Pugliese
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Leonardo Caporali
- UOC Clinica Neurologica, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Laura Ludovica Gramegna
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.,Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Valentina Papa
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Luca Vizioli
- Department of Organ Insufficiency and Transplantation, St. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Mariantonietta Capristo
- UOC Clinica Neurologica, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Manuela Contin
- UOC Clinica Neurologica, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Susan Mohamed
- UOC Clinica Neurologica, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Giovanna Cenacchi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Raffaele Lodi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Maria Cristina Morelli
- Department of Organ Insufficiency and Transplantation, St. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Luca Fasano
- Respiratory and Critical Care Unit, St. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Lara Pisani
- Respiratory and Critical Care Unit, St. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Matteo Cescon
- Department of Organ Insufficiency and Transplantation, St. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Caterina Tonon
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.,Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Antonio Daniele Pinna
- Department of Organ Insufficiency and Transplantation, St. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Maria Teresa Dotti
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Francesco Sicurelli
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | | | - Massimiliano Filosto
- Center for Neuromuscular Diseases, Unit of Neurology, ASST "Spedali Civili", Brescia, Italy
| | - Carlo Casali
- Department of Medico-Surgical Sciences and Biotechnologies, University 'La Sapienza', Roma, Italy
| | - Loris Pironi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Valerio Carelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,UOC Clinica Neurologica, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Roberto De Giorgio
- Department of Morphology, Surgery and Experimental Medicine, St. Anna Hospital, University of Ferrara, Ferrara, Italy
| | - Rita Rinaldi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Interaziendale Clinica Neurologica Rete Metropolitana (NeuroMet), Neurologia AOU S. Orsola-Malpighi, Policlinico Sant'Orsola-Malpighi, Building #2, Via Albertoni, 15, 40138, Bologna, Italy
| |
Collapse
|
16
|
Kripps K, Nakayuenyongsuk W, Shayota BJ, Berquist W, Gomez-Ospina N, Esquivel CO, Concepcion W, Sampson JB, Cristin DJ, Jackson WE, Gilliland S, Pomfret EA, Kueht ML, Pettit RW, Sherif YA, Emrick LT, Elsea SH, Himes R, Hirano M, Van Hove JLK, Scaglia F, Enns GM, Larson AA. Successful liver transplantation in mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). Mol Genet Metab 2020; 130:58-64. [PMID: 32173240 PMCID: PMC8399858 DOI: 10.1016/j.ymgme.2020.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/19/2022]
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a fatal disorder characterized by progressive gastrointestinal dysmotility, peripheral neuropathy, leukoencephalopathy, skeletal myopathy, ophthalmoparesis, and ptosis. MNGIE stems from deficient thymidine phosphorylase activity (TP) leading to toxic elevations of plasma thymidine. Hematopoietic stem cell transplant (HSCT) restores TP activity and halts disease progression but has high transplant-related morbidity and mortality. Liver transplant (LT) was reported to restore TP activity in two adult MNGIE patients. We report successful LT in four additional MNGIE patients, including a pediatric patient. Our patients were diagnosed between ages 14 months and 36 years with elevated thymidine levels and biallelic pathogenic variants in TYMP. Two patients presented with progressive gastrointestinal dysmotility, and three demonstrated progressive peripheral neuropathy with two suffering limitations in ambulation. Two patients, including the child, had liver dysfunction and cirrhosis. Following LT, thymidine levels nearly normalized in all four patients and remained low for the duration of follow-up. Disease symptoms stabilized in all patients, with some manifesting improvements, including intestinal function. No patient died, and LT appeared to have a more favorable safety profile than HSCT, especially when liver disease is present. Follow-up studies will need to document the long-term impact of this new approach on disease outcome. Take Home Message: Liver transplantation is effective in stabilizing symptoms and nearly normalizing thymidine levels in patients with mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) and may have an improved safety profile over hematopoietic stem cell transplant.
Collapse
Affiliation(s)
- KimberlyA Kripps
- Department of Pediatrics, Section of Genetics and Metabolism, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Brian J Shayota
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - William Berquist
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Natalia Gomez-Ospina
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Carlos O Esquivel
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Waldo Concepcion
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jacinda B Sampson
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA
| | - David J Cristin
- Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Whitney E Jackson
- Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Samuel Gilliland
- Department of Anesthesia, University of Colorado School of Medicine, Aurora, CO, USA
| | - Elizabeth A Pomfret
- Division of Transplant Surgery, University of Colorado School of Medicine, Aurora, CO, USA
| | - Michael L Kueht
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Rowland W Pettit
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Youmna A Sherif
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Lisa T Emrick
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sarah H Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ryan Himes
- Department of Gastroenterology, Hepatology and Nutrition, Baylor College of Medicine, Houston, TX, USA
| | - Michio Hirano
- Department of Neurology, Columbia University Medical Center, New York City, NY, USA
| | - Johan L K Van Hove
- Department of Pediatrics, Section of Genetics and Metabolism, University of Colorado School of Medicine, Aurora, CO, USA
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, USA; Joint BCM-CUHK Center of Medical Genetics, Prince of Wales Hospital, ShaTin, Hong Kong
| | - Gregory M Enns
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Austin A Larson
- Department of Pediatrics, Section of Genetics and Metabolism, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
17
|
Madhok J, Leong J, Cohn J. Anesthetic Considerations for Liver Transplantation in a Patient with Mitochondrial Neurogastrointestinal Encephalopathy Syndrome. Cureus 2019; 11:e5038. [PMID: 31501730 PMCID: PMC6721878 DOI: 10.7759/cureus.5038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial neurogastrointestinal encephalopathy (MNGIE) is a rare, complex mitochondrial disorder with variable phenotypes caused by a defect in the TYMP gene that codes for the thymidine phosphorylase enzyme. Orthotopic liver transplantation (OLT) has been proposed as a curative option for patients by using the liver as a source to restore thymidine phosphorylase levels in the body. Anesthetic considerations for this syndrome have not been clearly outlined in the past. We describe the clinical presentation of a young woman with MNGIE, her perioperative assessment, and intraoperative management during liver transplantation.
Collapse
Affiliation(s)
- Jai Madhok
- Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, USA
| | - Jason Leong
- Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, USA
| | - Jed Cohn
- Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, USA
| |
Collapse
|
18
|
Oh T, El Kouni MH. Kinetics mechanism and regulation of native human hepatic thymidine phosphorylase. Int J Biochem Cell Biol 2019; 110:122-129. [PMID: 30849523 DOI: 10.1016/j.biocel.2019.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 12/27/2022]
Abstract
Thymidine phosphorylase (TP; EC 2.4.2.4) catalyzes the reversible phosphorolysis of thymidine, deoxyuridine, and their analogues to their respective nucleobases and 2-deoxy-α-d-ribose-1-phosphate (dRib-1-P). TP is a key enzyme in the pyrimidine salvage pathways. Activity of the enzyme is crucial in angiogenesis, cancer chemotherapy, radiotherapy, and tumor imaging, Nevertheless, a complete set of kinetic parameters has never been reported for any human TP. This study describes the kinetic mechanism and regulation of native human hepatic TP. The liver is a main site of pyrimidine metabolism and contains high levels of TP. Initial velocity and product inhibition studies demonstrated that the basic mechanism of this enzyme is a sequential random bi-bi mechanism. Initial velocity studies showed an intersecting pattern, consistent with substrate-enzyme-co-substrate complex formation, and a binding pattern indicating that the binding of the substrate interferes with the binding of the co-substrate and vice versa. Estimated kinetic parameters were KThymidine = 284 ± 55, KPi = 5.8 ± 1.9, KThymine = 244 ± 69, and KdRib-1-P = 90 ± 33 μM. Thymine was a product activator, but becomes a substrate inhibitor at concentrations eight times higher than its Km. dRib-1-P was a non-competitive product inhibitor of the forward reaction. It bounded better to the Enzyme●Pi complex than the free enzyme, but had better affinity to the free enzyme than the Enzyme●Thymidine complex. In the reverse reaction, dRib-1-P enhanced the binding of thymine. The enhancement of the thymine binding along with the fact that dRib-1-P was a non-competitive product inhibitor suggests the presence of another binding site for dRib-1-P on the enzyme.
Collapse
Affiliation(s)
- Taesung Oh
- Department of Pharmacology and Toxicology, Comprehensive Cancer Center, Center for AIDS Research, General Clinical Research Center, The University of Alabama at Birmingham, Birmingham, AL, 35294, United States
| | - Mahmoud H El Kouni
- Department of Pharmacology and Toxicology, Comprehensive Cancer Center, Center for AIDS Research, General Clinical Research Center, The University of Alabama at Birmingham, Birmingham, AL, 35294, United States.
| |
Collapse
|
19
|
Bax BE. Mitochondrial neurogastrointestinal encephalomyopathy: approaches to diagnosis and treatment. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2019; 4:1-16. [PMID: 32914088 PMCID: PMC7116056 DOI: 10.20517/jtgg.2020.08] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an ultra-rare disease caused by mutations in TYMP, the gene encoding for the enzyme thymidine phosphorylase. The resulting enzyme deficiency leads to a systemic accumulation of thymidine and 2’-deoxyuridine and ultimately mitochondrial failure due to a progressive acquisition of secondary mitochondrial DNA (mtDNA) mutations and mtDNA depletion. MNGIE is characterised by gastrointestinal dysmotility, cachexia, peripheral neuropathy, ophthalmoplegia, ptosis and leukoencephalopathy. The disease is progressively degenerative and leads to death at an average age of 37.6 years. Patients invariably encounter misdiagnoses, diagnostic delays, and non-specific clinical management. Despite its rarity, MNGIE has invoked much interest in the development of therapeutic strategies, mainly because it is one of the few mitochondrial disorders where the molecular abnormality is metabolically and physically accessible to manipulation. This review provides a resume of the current diagnosis and treatment approaches and aims to increase the clinical awareness of MNGIE and thereby facilitate early diagnosis and timely access to treatments, before the development of untreatable and irreversible organ damage.
Collapse
Affiliation(s)
- Bridget E Bax
- Institute of Molecular and Clinical Sciences, St. George's University of London, London, SW17 ORE, UK
| |
Collapse
|
20
|
Pacitti D, Levene M, Garone C, Nirmalananthan N, Bax BE. Mitochondrial Neurogastrointestinal Encephalomyopathy: Into the Fourth Decade, What We Have Learned So Far. Front Genet 2018; 9:669. [PMID: 30627136 PMCID: PMC6309918 DOI: 10.3389/fgene.2018.00669] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/04/2018] [Indexed: 02/05/2023] Open
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an ultra-rare metabolic autosomal recessive disease, caused by mutations in the nuclear gene TYMP which encodes the enzyme thymidine phosphorylase. The resulting enzyme deficiency leads to a systemic accumulation of the deoxyribonucleosides thymidine and deoxyuridine, and ultimately mitochondrial failure due to a progressive acquisition of secondary mitochondrial DNA (mtDNA) mutations and mtDNA depletion. Clinically, MNGIE is characterized by gastrointestinal and neurological manifestations, including cachexia, gastrointestinal dysmotility, peripheral neuropathy, leukoencephalopathy, ophthalmoplegia and ptosis. The disease is progressively degenerative and leads to death at an average age of 37.6 years. As with the vast majority of rare diseases, patients with MNGIE face a number of unmet needs related to diagnostic delays, a lack of approved therapies, and non-specific clinical management. We provide here a comprehensive collation of the available knowledge of MNGIE since the disease was first described 42 years ago. This review includes symptomatology, diagnostic procedures and hurdles, in vitro and in vivo disease models that have enhanced our understanding of the disease pathology, and finally experimental therapeutic approaches under development. The ultimate aim of this review is to increase clinical awareness of MNGIE, thereby reducing diagnostic delay and improving patient access to putative treatments under investigation.
Collapse
Affiliation(s)
- Dario Pacitti
- Molecular and Clinical Sciences Research Institute, St George's, University of London, London, United Kingdom
| | - Michelle Levene
- Molecular and Clinical Sciences Research Institute, St George's, University of London, London, United Kingdom
| | - Caterina Garone
- MRC Mitochondrial Biology Unit, Cambridge Biomedical, Cambridge, United Kingdom
| | | | - Bridget E. Bax
- Molecular and Clinical Sciences Research Institute, St George's, University of London, London, United Kingdom
| |
Collapse
|
21
|
Oh T, el Kouni MH. Distinct substrate specificity and physicochemical characterization of native human hepatic thymidine phosphorylase. PLoS One 2018; 13:e0202826. [PMID: 30138393 PMCID: PMC6107277 DOI: 10.1371/journal.pone.0202826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 08/09/2018] [Indexed: 12/27/2022] Open
Abstract
Thymidine phosphorylase (TP; EC 2.4.2.4) is involved regulation of intra- or extracellular thymidine concentration, angiogenesis, cancer chemotherapy, radiotherapy, as well as tumor imaging. Although the liver is main site of pyrimidine metabolism and contains high levels of TP, nonetheless, purification and characterization of human hepatic TP has not been accomplished. We here report the purification and characterization of native human hepatic TP. The enzyme was purified to apparent homogeneity by a procedure shorter and more efficient than previously reported methods. Human hepatic TP has an apparent Kthymidine of 285 ± 55 μM. Like the enzyme from other tissues, it is highly specific to 2'-deoxyribosides. However, in contrast to TP from other normal tissues, the hepatic enzyme is active in the phosphorolysis of 5'-deoxy-5-fluorouridine, and the riboside 5-fluorouridine. Furthermore, native hepatic TP exists in different aggregates of 50 kDa subunits, with unknown aggregation factor(s) while TP from extra tissues exists as a homodimer. Isoelectric point was determined as 4.3. A total of 65 residues in the N-terminal were sequenced. The sequence of these 65 amino acids in hepatic TP has 100% sequence and location homology to the deduced amino acid sequence of the platelet derived-endothelial cell growth factor (PD-ECGF) cDNA. However, and contrary to PD-ECGF, the N-terminal of hepatic TP is blocked. The block was neither N-formyl nor pyrrolidone carboxylic acid moieties. The differences in substrate specificities, existence in multimers, and weak interaction with hydroxyapatite resin strongly suggest that hepatic TP is distinct from the enzyme in normal extrahepatic tissues. These results may have important clinical implications when TP is involved in activation or deactivation of chemotherapeutic agents in different tissues.
Collapse
Affiliation(s)
- Taesung Oh
- Department of Pharmacology and Toxicology, Comprehensive Cancer Center, Center for AIDS Research, General Clinical Research Center, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Mahmoud H. el Kouni
- Department of Pharmacology and Toxicology, Comprehensive Cancer Center, Center for AIDS Research, General Clinical Research Center, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| |
Collapse
|
22
|
Torres-Torronteras J, Cabrera-Pérez R, Vila-Julià F, Viscomi C, Cámara Y, Hirano M, Zeviani M, Martí R. Long-Term Sustained Effect of Liver-Targeted Adeno-Associated Virus Gene Therapy for Mitochondrial Neurogastrointestinal Encephalomyopathy. Hum Gene Ther 2018; 29:708-718. [PMID: 29284302 DOI: 10.1089/hum.2017.133] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is caused by mutations in TYMP, the gene encoding the enzyme thymidine phosphorylase (TP). TP dysfunction results in systemic accumulation of the noxious TP substrates thymidine and deoxyuridine. Gene therapy using either a lentiviral vector or adeno-associated vector (AAV) has proven to be a feasible strategy, as both vectors restore biochemical homeostasis in a murine model of the disease. This study shows that the effect of an AAV containing the TYMP coding sequence transcriptionally targeted to the liver persists long term in mice. Although the vector copy number was diluted and AAV-mediated liver TP activity eventually reduced or lost after 21 months at the lowest vector doses, the effect was sustained (with a negligible decrease in TP activity) and fully effective on nucleoside homeostasis for at least 21 months at a dose of 2 × 1012 vg/kg. Macroscopic visual inspection of the animals' organs at completion of the study showed no adverse effects associated with the treatment. These results further support the feasibility of gene therapy for MNGIE.
Collapse
Affiliation(s)
- Javier Torres-Torronteras
- 1 Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona , Barcelona, Spain .,2 Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III , Madrid, Spain
| | - Raquel Cabrera-Pérez
- 1 Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona , Barcelona, Spain .,2 Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III , Madrid, Spain
| | - Ferran Vila-Julià
- 1 Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona , Barcelona, Spain .,2 Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III , Madrid, Spain
| | - Carlo Viscomi
- 3 MRC-Mitochondrial Biology Unit, MRC MBU, Wellcome Trust/MRC Building, Hills Road, Cambridge, United Kingdom
| | - Yolanda Cámara
- 1 Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona , Barcelona, Spain .,2 Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III , Madrid, Spain
| | - Michio Hirano
- 4 H. Houston Merritt Center, Department of Neurology, Columbia University Medical Center , New York, New York
| | - Massimo Zeviani
- 3 MRC-Mitochondrial Biology Unit, MRC MBU, Wellcome Trust/MRC Building, Hills Road, Cambridge, United Kingdom
| | - Ramon Martí
- 1 Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona , Barcelona, Spain .,2 Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III , Madrid, Spain
| |
Collapse
|
23
|
Lehmann D, McFarland R. Overview of Approaches to Mitochondrial Disease Therapy. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2018. [DOI: 10.1177/2326409817752960] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Diana Lehmann
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Neurology, University of Halle-Wittenberg, Halle/Saale, Germany
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
24
|
Li W, Yue H. Thymidine phosphorylase: A potential new target for treating cardiovascular disease. Trends Cardiovasc Med 2017; 28:157-171. [PMID: 29108898 DOI: 10.1016/j.tcm.2017.10.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/03/2017] [Accepted: 10/17/2017] [Indexed: 12/21/2022]
Abstract
We recently found that thymidine phosphorylase (TYMP), also known as platelet-derived endothelial cell growth factor, plays an important role in platelet activation in vitro and thrombosis in vivo by participating in multiple signaling pathways. Platelets are a major source of TYMP. Since platelet-mediated clot formation is a key event in several fatal diseases, such as myocardial infarction, stroke and pulmonary embolism, understanding TYMP in depth may lead to uncovering novel mechanisms in the development of cardiovascular diseases. Targeting TYMP may become a novel therapeutic for cardiovascular disorders. In this review article, we summarize the discovery of TYMP and the potential molecular mechanisms of TYMP involved in the development of various diseases, especially cardiovascular diseases. We also offer insights regarding future studies exploring the role of TYMP in the development of cardiovascular disease as well as in therapy.
Collapse
Affiliation(s)
- Wei Li
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall, University, Huntington, WV; Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV.
| | - Hong Yue
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall, University, Huntington, WV
| |
Collapse
|
25
|
Asimakopoulou A, Fülöp A, Borkham-Kamphorst E, de Leur EV, Gassler N, Berger T, Beine B, Meyer HE, Mak TW, Hopf C, Henkel C, Weiskirchen R. Altered mitochondrial and peroxisomal integrity in lipocalin-2-deficient mice with hepatic steatosis. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2093-2110. [PMID: 28396286 DOI: 10.1016/j.bbadis.2017.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 03/04/2017] [Accepted: 04/06/2017] [Indexed: 01/10/2023]
Abstract
Lipocalin-2 (LCN2) is a secreted adipokine that transports small hydrophobic molecules such as fatty acids and steroids. LCN2 limits bacterial growth by sequestering iron-containing siderophores and in mammalian liver protects against inflammation, infection, injury and other stressors. Because LCN2 modulates hepatic fat metabolism and homeostasis, we performed a comparative profiling of proteins and lipids of wild type (WT) and Lcn2-deficient mice fed either standard chow or a methionine- and choline-deficient (MCD) diet. Label-free proteomics and 2D-DIGE protein expression profiling revealed differential expression of BRIT1/MCPH1, FABP5, HMGB1, HBB2, and L-FABP, results confirmed by Western blotting. Gene ontology enrichment analysis identified enrichment for genes associated with mitochondrial membrane permeabilization and metabolic processes involving carboxylic acid. Measurements of mitochondrial membrane potential, mitochondrial chelatable iron pool, intracellular lipid peroxidation, and peroxisome numbers in primary hepatocytes confirmed that LCN2 regulates mitochondrial and peroxisomal integrity. Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight (MALDI-TOF) mass spectrometry imaging identified significant changes to sphingomyelins, triglycerides, and glycerophospholipids in livers of mice fed an MCD diet regardless of LCN2 status. However, two arachidonic acid-containing glycerophospholipids were increased in Lcn2-deficient livers. Thus, LCN2 influences peroxisomal and mitochondrial biology in the liver to maintain triglyceride balance, handle oxidative stress, and control apoptosis.
Collapse
Affiliation(s)
- Anastasia Asimakopoulou
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| | - Annabelle Fülöp
- Applied Research Center in Biomedical Mass Spectrometry (ABIMAS), Instrumental Analysis and Bioanalysis, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Erawan Borkham-Kamphorst
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| | - Eddy Van de Leur
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| | | | - Thorsten Berger
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, ON, Canada
| | - Birte Beine
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany; Medizinisches Proteom-Center, Ruhr-University, Bochum, Germany
| | - Helmut E Meyer
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Tak W Mak
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, ON, Canada; Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Carsten Hopf
- Applied Research Center in Biomedical Mass Spectrometry (ABIMAS), Instrumental Analysis and Bioanalysis, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Corinna Henkel
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany; Medizinisches Proteom-Center, Ruhr-University, Bochum, Germany; Bruker Daltonik GmbH, Bremen
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany.
| |
Collapse
|
26
|
Mc Kiernan PJ. Recent advances in liver transplantation for metabolic disease. J Inherit Metab Dis 2017; 40:491-495. [PMID: 28168361 DOI: 10.1007/s10545-017-0020-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/18/2017] [Accepted: 01/23/2017] [Indexed: 02/07/2023]
Abstract
The indications and outcomes of liver transplantation for metabolic disease have been reviewed recently and this short review concentrates on recent developments and advances. Recently recognized metabolic causes of acute liver failure are reviewed and their implications for transplantation discussed. Newly described indications for liver transplantation in systemic metabolic diseases are described and an update is given on the role of auxiliary and domino liver transplantation.
Collapse
MESH Headings
- Amino Acid Metabolism, Inborn Errors/genetics
- Amino Acid Metabolism, Inborn Errors/surgery
- Animals
- Brain Diseases, Metabolic, Inborn/genetics
- Brain Diseases, Metabolic, Inborn/surgery
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/surgery
- Enzyme Replacement Therapy
- Epiphyses/abnormalities
- Epiphyses/surgery
- Glycine N-Methyltransferase/deficiency
- Glycine N-Methyltransferase/genetics
- Humans
- Intestinal Pseudo-Obstruction/genetics
- Intestinal Pseudo-Obstruction/surgery
- Liver Failure, Acute/surgery
- Liver Neoplasms/surgery
- Liver Transplantation/trends
- Metabolic Diseases/surgery
- Mitochondrial Encephalomyopathies/genetics
- Mitochondrial Encephalomyopathies/surgery
- Muscular Dystrophy, Oculopharyngeal
- Neoplasm Proteins/genetics
- Ophthalmoplegia/congenital
- Osteochondrodysplasias/genetics
- Osteochondrodysplasias/surgery
- Purpura/genetics
- Purpura/surgery
- Refsum Disease, Infantile/genetics
- Refsum Disease, Infantile/surgery
Collapse
Affiliation(s)
- P J Mc Kiernan
- Division of Gastroenterology/Hepatology/Nutrition Children's Hospital of Pittsburgh of UPMC, Pittsburgh Liver Research Centre, University of Pitttsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA.
| |
Collapse
|
27
|
Liver transplant reverses biochemical imbalance in mitochondrial neurogastrointestinal encephalomyopathy. Mitochondrion 2017; 34:101-102. [PMID: 28263873 DOI: 10.1016/j.mito.2017.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/03/2017] [Accepted: 02/28/2017] [Indexed: 12/25/2022]
|
28
|
Yadak R, Sillevis Smitt P, van Gisbergen MW, van Til NP, de Coo IFM. Mitochondrial Neurogastrointestinal Encephalomyopathy Caused by Thymidine Phosphorylase Enzyme Deficiency: From Pathogenesis to Emerging Therapeutic Options. Front Cell Neurosci 2017; 11:31. [PMID: 28261062 PMCID: PMC5309216 DOI: 10.3389/fncel.2017.00031] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/01/2017] [Indexed: 01/05/2023] Open
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a progressive metabolic disorder caused by thymidine phosphorylase (TP) enzyme deficiency. The lack of TP results in systemic accumulation of deoxyribonucleosides thymidine (dThd) and deoxyuridine (dUrd). In these patients, clinical features include mental regression, ophthalmoplegia, and fatal gastrointestinal complications. The accumulation of nucleosides also causes imbalances in mitochondrial DNA (mtDNA) deoxyribonucleoside triphosphates (dNTPs), which may play a direct or indirect role in the mtDNA depletion/deletion abnormalities, although the exact underlying mechanism remains unknown. The available therapeutic approaches include dialysis and enzyme replacement therapy, both can only transiently reverse the biochemical imbalance. Allogeneic hematopoietic stem cell transplantation is shown to be able to restore normal enzyme activity and improve clinical manifestations in MNGIE patients. However, transplant related complications and disease progression result in a high mortality rate. New therapeutic approaches, such as adeno-associated viral vector and hematopoietic stem cell gene therapy have been tested in Tymp-/-Upp1-/- mice, a murine model for MNGIE. This review provides background information on disease manifestations of MNGIE with a focus on current management and treatment options. It also outlines the pre-clinical approaches toward future treatment of the disease.
Collapse
Affiliation(s)
- Rana Yadak
- Department of Neurology, Erasmus University Medical Center Rotterdam, Netherlands
| | - Peter Sillevis Smitt
- Department of Neurology, Erasmus University Medical Center Rotterdam, Netherlands
| | - Marike W van Gisbergen
- Department of Radiation Oncology (MaastRO-Lab), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre Maastricht, Netherlands
| | - Niek P van Til
- Laboratory of Translational Immunology, University Medical Center Utrecht Utrecht, Netherlands
| | - Irenaeus F M de Coo
- Department of Neurology, Erasmus University Medical Center Rotterdam, Netherlands
| |
Collapse
|
29
|
De Giorgio R, Pironi L, Rinaldi R, Boschetti E, Caporali L, Capristo M, Casali C, Cenacchi G, Contin M, D'Angelo R, D'Errico A, Gramegna LL, Lodi R, Maresca A, Mohamed S, Morelli MC, Papa V, Tonon C, Tugnoli V, Carelli V, D'Alessandro R, Pinna AD. Liver transplantation for mitochondrial neurogastrointestinal encephalomyopathy. Ann Neurol 2016; 80:448-455. [DOI: 10.1002/ana.24724] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Roberto De Giorgio
- Department of Surgical and Medical SciencesUniversity of BolognaBologna Italy
| | - Loris Pironi
- Department of Surgical and Medical SciencesUniversity of BolognaBologna Italy
| | - Rita Rinaldi
- Neurology UnitSt. Orsola‐Malpighi HospitalBologna Italy
| | - Elisa Boschetti
- Department of Surgical and Medical SciencesUniversity of BolognaBologna Italy
| | | | | | - Carlo Casali
- Department of Medico‐Surgical Sciences and BiotechnologiesUniversity ‘La Sapienza’Rome Italy
| | - Giovanna Cenacchi
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBologna Italy
| | - Manuela Contin
- IRCCS Institute of Neurological Sciences of BolognaBologna Italy
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBologna Italy
| | - Roberto D'Angelo
- Department of Surgical and Medical SciencesUniversity of BolognaBologna Italy
- Neurology UnitSt. Orsola‐Malpighi HospitalBologna Italy
| | | | | | - Raffaele Lodi
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBologna Italy
| | | | - Susan Mohamed
- IRCCS Institute of Neurological Sciences of BolognaBologna Italy
| | | | - Valentina Papa
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBologna Italy
| | - Caterina Tonon
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBologna Italy
| | - Vitaliano Tugnoli
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBologna Italy
| | - Valerio Carelli
- IRCCS Institute of Neurological Sciences of BolognaBologna Italy
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBologna Italy
| | | | | |
Collapse
|
30
|
Di Meo I, Lamperti C, Tiranti V. Mitochondrial diseases caused by toxic compound accumulation: from etiopathology to therapeutic approaches. EMBO Mol Med 2016. [PMID: 26194912 PMCID: PMC4604682 DOI: 10.15252/emmm.201505040] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial disorders are a group of highly invalidating human conditions for which effective treatment is currently unavailable and characterized by faulty energy supply due to defective oxidative phosphorylation (OXPHOS). Given the complexity of mitochondrial genetics and biochemistry, mitochondrial inherited diseases may present with a vast range of symptoms, organ involvement, severity, age of onset, and outcome. Despite the wide spectrum of clinical signs and biochemical underpinnings of this group of dis-orders, some common traits can be identified, based on both pathogenic mechanisms and potential therapeutic approaches. Here, we will review two peculiar mitochondrial disorders, ethylmalonic encephalopathy (EE) and mitochondrial neurogastrointestinal encephalomyopathy (MNGIE), caused by mutations in the ETHE1 and TYMP nuclear genes, respectively. ETHE1 encodes for a mitochondrial enzyme involved in sulfide detoxification and TYMP for a cytosolic enzyme involved in the thymidine/deoxyuridine catabolic pathway. We will discuss these two clinical entities as a paradigm of mitochondrial diseases caused by the accumulation of compounds normally present in traces, which exerts a toxic and inhibitory effect on the OXPHOS system.
Collapse
Affiliation(s)
- Ivano Di Meo
- Unit of Molecular Neurogenetics, Foundation IRCCS Neurological Institute C. Besta, Milan, Italy
| | - Costanza Lamperti
- Unit of Molecular Neurogenetics, Foundation IRCCS Neurological Institute C. Besta, Milan, Italy
| | - Valeria Tiranti
- Unit of Molecular Neurogenetics, Foundation IRCCS Neurological Institute C. Besta, Milan, Italy
| |
Collapse
|
31
|
Leuzzi V, Rossi L, Gabucci C, Nardecchia F, Magnani M. Erythrocyte-mediated delivery of recombinant enzymes. J Inherit Metab Dis 2016; 39:519-30. [PMID: 27026098 DOI: 10.1007/s10545-016-9926-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/29/2016] [Accepted: 03/03/2016] [Indexed: 10/22/2022]
Abstract
The possibility to clone, express and purify recombinant enzymes have originated the opportunity to dispose of a virtually infinite array of proteins that could be used in the clinics to treat several inherited and acquired pathological conditions. However, the direct administration of these recombinant proteins faces some intrinsic difficulties, such as degradation by circulating proteases and/or inactivation by the patient immune system. The use of drug delivery systems may overcome these limitations. Concerning recombinant enzyme therapy, the present review will mainly focus on the exploitation of erythrocytes as a carrier system for enzymes removing potentially noxious metabolites from the circulation, either as limiting treatment strategy for auxotrophic tumours or as a detoxing approach for some intoxication type inherited metabolic disorders. Moreover, the possibility of using RBCs as a potential delivering system addressing the enzymes to the monocyte-macrophages of reticular endothelial system for the treatment of diseases associated with this cell lineage, e.g. lysosome storage diseases, will be briefly discussed.
Collapse
Affiliation(s)
- Vincenzo Leuzzi
- Department of Child and Adolescent Neuropsychiatry, SAPIENZA University of Rome, Via deiSabelli 108, 00185, Rome, Italy.
| | - Luigia Rossi
- Department of Biomolecular Science, University of Urbino, Via Saffi 2, 61029, Urbino, PU, Italy
| | - Claudia Gabucci
- Department of Biomolecular Science, University of Urbino, Via Saffi 2, 61029, Urbino, PU, Italy
| | - Francesca Nardecchia
- Department of Child and Adolescent Neuropsychiatry, SAPIENZA University of Rome, Via deiSabelli 108, 00185, Rome, Italy
- Department of Physiology and Pharmacology, SAPIENZA University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Mauro Magnani
- Department of Biomolecular Science, University of Urbino, Via Saffi 2, 61029, Urbino, PU, Italy
| |
Collapse
|
32
|
Nightingale H, Pfeffer G, Bargiela D, Horvath R, Chinnery PF. Emerging therapies for mitochondrial disorders. Brain 2016; 139:1633-48. [PMID: 27190030 PMCID: PMC4892756 DOI: 10.1093/brain/aww081] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/26/2016] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial disorders are a diverse group of debilitating conditions resulting from nuclear and mitochondrial DNA mutations that affect multiple organs, often including the central and peripheral nervous system. Despite major advances in our understanding of the molecular mechanisms, effective treatments have not been forthcoming. For over five decades patients have been treated with different vitamins, co-factors and nutritional supplements, but with no proven benefit. There is therefore a clear need for a new approach. Several new strategies have been proposed acting at the molecular or cellular level. Whilst many show promise in vitro, the clinical potential of some is questionable. Here we critically appraise the most promising preclinical developments, placing the greatest emphasis on diseases caused by mitochondrial DNA mutations. With new animal and cellular models, longitudinal deep phenotyping in large patient cohorts, and growing interest from the pharmaceutical industry, the field is poised to make a breakthrough.
Collapse
Affiliation(s)
- Helen Nightingale
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Gerald Pfeffer
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK Department of Clinical Neurosciences, University of Calgary, Calgary, Canada Hotchkiss Brain Institute, at the University of Calgary, Calgary, Canada
| | - David Bargiela
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Rita Horvath
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Patrick F Chinnery
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK MRC-Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0QQ, UK
| |
Collapse
|
33
|
ITA-MNGIE: an Italian regional and national survey for mitochondrial neuro-gastro-intestinal encephalomyopathy. Neurol Sci 2016; 37:1149-51. [PMID: 27007276 DOI: 10.1007/s10072-016-2552-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/12/2016] [Indexed: 10/22/2022]
Abstract
Mitochondrial neuro-gastro-intestinal encephalomyopathy (MNGIE) is a rare and unavoidably fatal disease due to mutations in thymidine phosphorylase (TP). Clinically it is characterized by gastrointestinal dysfunction, malnutrition/cachexia and neurological manifestations. MNGIE diagnosis remains a challenge mainly because of the complexity and rarity of the disease. Thus, our purposes were to promote a better knowledge of the disease in Emilia-Romagna region (ERR) by creating an accurate and dedicated network; to establish the minimal prevalence of MNGIE in Italy starting from ERR. Blood TP activity level was used as screening test to direct candidates to complete diagnostic work-up. During the study period of 1 year, only 10/71 units of ERR recruited 14 candidates. Their screening did not show TP activity changes. An Italian patient not resident in ERR was actually proved to have MNGIE. At the end of study in Italy there were nine cases of MNGIE; thus, the Italian prevalence of the disease is ~0.15/1,000,000 as a gross estimation. Our study confirms that MNGIE diagnosis is a difficult process which reflects the rarity of the disease and, as a result, a low level of awareness among specialists and physicians. Having available novel therapeutic options (e.g., allogenic hematopoietic stem cell transplantation and, more recently, liver transplantation) and an easy screening test, an early diagnosis should be sought before tissue damage occurs irreversibly.
Collapse
|
34
|
Dionisi-Vici C, Diodato D, Torre G, Picca S, Pariante R, Giuseppe Picardo S, Di Meo I, Rizzo C, Tiranti V, Zeviani M, De Ville De Goyet J. Liver transplant in ethylmalonic encephalopathy: a new treatment for an otherwise fatal disease. Brain 2016; 139:1045-51. [PMID: 26917598 DOI: 10.1093/brain/aww013] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/16/2015] [Indexed: 12/30/2022] Open
Abstract
Ethylmalonic encephalopathy is a fatal, rapidly progressive mitochondrial disorder caused by ETHE1 mutations, whose peculiar clinical and biochemical features are due to the toxic accumulation of hydrogen sulphide and of its metabolites, including thiosulphate. In mice with ethylmalonic encephalopathy, liver-targeted adeno-associated virus-mediated ETHE1 gene transfer dramatically improved both clinical course and metabolic abnormalities. Reasoning that the same achievement could be accomplished by liver transplantation, we performed living donor-liver transplantation in an infant with ethylmalonic encephalopathy. Unlike the invariably progressive deterioration of the disease, 8 months after liver transplantation, we observed striking neurological improvement with remarkable achievements in psychomotor development, along with dramatic reversion of biochemical abnormalities. These results clearly indicate that liver transplantation is a viable therapeutic option for ETHE1 disease.
Collapse
Affiliation(s)
- Carlo Dionisi-Vici
- Division of Metabolism, Department of Paediatric Medicine, Bambino Gesù Children's Research Hospital IRCCS, Rome, Italy
| | - Daria Diodato
- Division of Metabolism, Department of Paediatric Medicine, Bambino Gesù Children's Research Hospital IRCCS, Rome, Italy Neuromuscular and Neurodegenerative Diseases Unit, Bambino Gesù Children's Research Hospital IRCCS, Rome, Italy
| | - Giuliano Torre
- Division of Hepatology and Gastroenterology, Bambino Gesù Children's Research Hospital IRCCS, Rome, Italy
| | - Stefano Picca
- Division of Nephrology and Dialysis, Bambino Gesù Children's Research Hospital IRCCS, Rome, Italy
| | - Rosanna Pariante
- Division of Intensive Care and Anaesthesia, Bambino Gesù Children's Research Hospital IRCCS, Rome, Italy
| | - Sergio Giuseppe Picardo
- Division of Intensive Care and Anaesthesia, Bambino Gesù Children's Research Hospital IRCCS, Rome, Italy
| | - Ivano Di Meo
- Unit of Molecular Neurogenetics-Pierfranco and Luisa Mariani Centre for the Study of Mitochondrial Disorders in Children, Foundation IRCCS Neurological Institute Carlo Besta, Milan, Italy
| | - Cristiano Rizzo
- Division of Metabolism, Department of Paediatric Medicine, Bambino Gesù Children's Research Hospital IRCCS, Rome, Italy
| | - Valeria Tiranti
- Unit of Molecular Neurogenetics-Pierfranco and Luisa Mariani Centre for the Study of Mitochondrial Disorders in Children, Foundation IRCCS Neurological Institute Carlo Besta, Milan, Italy
| | | | - Jean De Ville De Goyet
- Department of Surgery and Transplantation, Bambino Gesù Children's Research Hospital IRCCS, Rome, Italy
| |
Collapse
|
35
|
Cabrera-Pérez R, Torres-Torronteras J, Vila-Julià F, Ortega FJ, Cámara Y, Barquinero J, Martí R. Prospective therapeutic approaches in mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2015.1090307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
36
|
Ahmed N, Ronchi D, Comi GP. Genes and Pathways Involved in Adult Onset Disorders Featuring Muscle Mitochondrial DNA Instability. Int J Mol Sci 2015; 16:18054-76. [PMID: 26251896 PMCID: PMC4581235 DOI: 10.3390/ijms160818054] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/27/2015] [Accepted: 07/28/2015] [Indexed: 12/31/2022] Open
Abstract
Replication and maintenance of mtDNA entirely relies on a set of proteins encoded by the nuclear genome, which include members of the core replicative machinery, proteins involved in the homeostasis of mitochondrial dNTPs pools or deputed to the control of mitochondrial dynamics and morphology. Mutations in their coding genes have been observed in familial and sporadic forms of pediatric and adult-onset clinical phenotypes featuring mtDNA instability. The list of defects involved in these disorders has recently expanded, including mutations in the exo-/endo-nuclease flap-processing proteins MGME1 and DNA2, supporting the notion that an enzymatic DNA repair system actively takes place in mitochondria. The results obtained in the last few years acknowledge the contribution of next-generation sequencing methods in the identification of new disease loci in small groups of patients and even single probands. Although heterogeneous, these genes can be conveniently classified according to the pathway to which they belong. The definition of the molecular and biochemical features of these pathways might be helpful for fundamental knowledge of these disorders, to accelerate genetic diagnosis of patients and the development of rational therapies. In this review, we discuss the molecular findings disclosed in adult patients with muscle pathology hallmarked by mtDNA instability.
Collapse
Affiliation(s)
- Naghia Ahmed
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Centre, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, via Francesco Sforza 35, Milan 20122, Italy.
| | - Dario Ronchi
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Centre, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, via Francesco Sforza 35, Milan 20122, Italy.
| | - Giacomo Pietro Comi
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Centre, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, via Francesco Sforza 35, Milan 20122, Italy.
| |
Collapse
|
37
|
Zhao S, Li H, Nishijima KI, Zhao Y, Akizawa H, Shimizu Y, Ohkura K, Tamaki N, Kuge Y. Relationship between biodistribution of a novel thymidine phosphorylase (TP) imaging probe and TP expression levels in normal mice. Ann Nucl Med 2015; 29:582-7. [DOI: 10.1007/s12149-015-0981-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 05/03/2015] [Indexed: 10/23/2022]
|
38
|
Lauro A, De Giorgio R, Pinna AD. Advancement in the clinical management of intestinal pseudo-obstruction. Expert Rev Gastroenterol Hepatol 2015; 9:197-208. [PMID: 25020006 DOI: 10.1586/17474124.2014.940317] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intestinal pseudo-obstruction is more commonly known in its chronic form (CIPO), a cluster of rare diseases characterized by gastrointestinal muscle and nerve impairment, so severe to result in a markedly compromised peristalsis mimicking an intestinal occlusion. The management of CIPO requires the cooperation of a group of specialists: the disease has to be confirmed by a number of tests to avoid mistakes in the differential diagnosis. The treatment should be aimed at relieving symptoms arising from gut dysmotility (ideally using prokinetic agents), controlling abdominal pain (possibly with non-opioid antinociceptive drugs) and optimizing nutritional support. Furthermore, a thorough diagnostic work-up is mandatory to avoid unnecessary (potentially harmful) surgery and to select patients with clear indication to intestinal or multivisceral transplantation.
Collapse
Affiliation(s)
- Augusto Lauro
- General Surgery and Transplant Unit, St. Orsola-Malpighi University Hospital, University of Bologna, Bologna, Italy
| | | | | |
Collapse
|