1
|
Buglyó G, Magyar Z, Görbe ÉR, Bánusz R, Csóka M, Micsik T, Mezei M, Yani JAS, Varga P, Sápi Z, Nagy B. miRNA Profiling of Hungarian Regressive Wilms' Tumor Formalin-Fixed Paraffin-Embedded (FFPE) Samples by Quantitative Real-Time Polymerase Chain Reaction (RT-PCR). Med Sci Monit 2021; 27:e932731. [PMID: 34608109 PMCID: PMC8501895 DOI: 10.12659/msm.932731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Wilms' tumor is a common renal malignancy of early childhood with a generally favorable prognosis depending upon histological subtype. It is becoming increasingly clear that differences in miRNA (microRNA) expression signature represent important clues helping us predict a tumor's response to chemotherapy. In our study, we aimed to reveal miRNAs deregulated in regressive Wilms' tumors from FFPE (formalin-fixed, paraffin-embedded) samples, also showing whether such samples are reliable miRNA sources in Wilms' tumor. MATERIAL AND METHODS Samples from 8 Hungarian patients (3 males, 5 females, aged 1 to 7 years) were analyzed by qRT-PCR (quantitative real-time PCR). A PCR array was used in a pilot experiment, and selected miRNAs (miR-128-3p, miR-184, miR-194-5p, miR-203a) were studied in the rest of the samples using individual primers. RESULTS miR-194-5p was underexpressed in all tumor samples. miR-184 and miR-203a were underexpressed in 7 cases, the exception being a case with a high ratio of necrotic blastemal tissue. Results obtained with miR-128-3p are difficult to interpret due to varying directions of expression changes. CONCLUSIONS We conclude that a downregulation of miR-184, miR-194-5p, and miR-203a expression is observed in both regressive and blastemal tumors, but larger-scale studies are needed to confirm whether the degree of their underexpression correlates with the number of blastemal elements in a sample. In most of our FFPE samples aged up to 9 years, RNA extraction provided miRNA with quantity and quality sufficient for qRT-PCR-based analysis, emphasizing the relevance of pathological archives as miRNA sources in future studies.
Collapse
Affiliation(s)
- Gergely Buglyó
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsófia Magyar
- Department of Obstetrics and Gynaecology, Baross Street Division, Semmelweis University, Budapest, Hungary
| | - Éva Romicsné Görbe
- Department of Obstetrics and Gynaecology, Baross Street Division, Semmelweis University, Budapest, Hungary
| | - Rita Bánusz
- 2 Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Monika Csóka
- 2 Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Tamás Micsik
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Márta Mezei
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Jaxi Ayman Shawky Yani
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter Varga
- Department of Obstetrics and Gynaecology, Baross Street Division, Semmelweis University, Budapest, Hungary
| | - Zoltán Sápi
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Bálint Nagy
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
2
|
Naeli P, Yousefi F, Ghasemi Y, Savardashtaki A, Mirzaei H. The Role of MicroRNAs in Lung Cancer: Implications for Diagnosis and Therapy. Curr Mol Med 2021; 20:90-101. [PMID: 31573883 DOI: 10.2174/1566524019666191001113511] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 12/15/2022]
Abstract
Lung cancer is the first cause of cancer death in the world due to its high prevalence, aggressiveness, late diagnosis, lack of effective treatment and poor prognosis. It also shows high rate of recurrence, metastasis and drug resistance. All these problems highlight the urgent needs for developing new strategies using noninvasive biomarkers for early detection, metastasis and recurrence of disease. MicroRNAs (miRNAs) are a class of small noncoding RNAs that regulate gene expression post-transcriptionally. These molecules found to be abnormally expressed in increasing number of human disease conditions including cancer. miRNAs could be detected in body fluids such as blood, serum, urine and sputum, which leads us towards the idea of using them as non-invasive biomarker for cancer detection and monitoring cancer treatment and recurrence. miRNAs are found to be deregulated in lung cancer initiation and progression and could regulate lung cancer cell proliferation and invasion. In this review, we summarized recent progress and discoveries in microRNAs regulatory role in lung cancer initiation and progression. In addition, the role of microRNAs in EGFR signaling pathway regulation is discussed briefly.
Collapse
Affiliation(s)
- Parisa Naeli
- Department of Biological Sciences, Faculty of Genetics, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Yousefi
- Department of Biological Sciences, Faculty of Genetics, Tarbiat Modares University, Tehran, Iran
| | - Younes Ghasemi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
3
|
Mehboob R, Kurdi M, Ahmad M, Gilani SA, Khalid S, Nasief H, Mirdad A, Malibary H, Hakamy S, Hassan A, Alaifan M, Bamaga A, Shahzad SA. Comprehensive Analysis of Genes Associated With Sudden Infant Death Syndrome. Front Pediatr 2021; 9:742225. [PMID: 34722422 PMCID: PMC8555024 DOI: 10.3389/fped.2021.742225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Sudden infant death syndrome (SIDS) is a tragic incident which remains a mystery even after post-mortem investigation and thorough researches. Methods: This comprehensive review is based on the genes reported in the molecular autopsy studies conducted on SIDS so far. A total of 20 original studies and 7 case reports were identified and included in this analysis. The genes identified in children or adults were not included. Most of the genes reported in these studies belonged to cardiac channel and cardiomyopathy. Cardiac channel genes in SIDS were scrutinized for further analysis. Results: After screening and removing the duplicates, 42 unique genes were extracted. When the location of these genes was assessed, it was observed that most of these belonged to Chromosomes 11, 1 and 3 in sequential manner. The pathway analysis shows that these genes are involved in the regulation of heart rate, action potential, cardiac muscle cell contraction and heart contraction. The protein-protein interaction network was also very big and highly interactive. SCN5A, CAV3, ALG10B, AKAP9 and many more were mainly found in these cases and were regulated by many transcription factors such as MYOG C2C1 and CBX3 HCT11. Micro RNA, "hsa-miR-133a-3p" was found to be prevalent in the targeted genes. Conclusions: Molecular and computational approaches are a step forward toward exploration of these sad demises. It is so far a new arena but seems promising to dig out the genetic cause of SIDS in the years to come.
Collapse
Affiliation(s)
- Riffat Mehboob
- Research Unit, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan.,Lahore Medical Research Center, LLP, Lahore, Pakistan
| | - Maher Kurdi
- Department of Pathology, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mursleen Ahmad
- Department of Medicine, Sahiwal Medical College, Sahiwal, Pakistan
| | - Syed Amir Gilani
- Research Unit, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Sidra Khalid
- Lahore Medical Research Center, LLP, Lahore, Pakistan
| | - Hisham Nasief
- Department of Obstetric and Gynecology, Faculty of Medicine, King Abdulaziz University and Hospital, Jeddah, Saudi Arabia
| | - Abeer Mirdad
- Pediatric Department, East Jeddah Hospital, Jeddah, Saudi Arabia
| | - Husam Malibary
- Department of Internal Medicine, Faculty of Medicine, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Sahar Hakamy
- Center of Excellence in Genomic Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amber Hassan
- Research Unit, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Meshari Alaifan
- Department of Paediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Bamaga
- Paediatric Department, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia.,Neurology and Pediatric Department, Faculty of Medicine, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Syed Adnan Shahzad
- Faculty of Medicine and University Hospital of Cologne, Institute of Virology, University of Cologne, Cologne, Germany
| |
Collapse
|
4
|
Serum microRNA expression profiling revealing potential diagnostic biomarkers for lung adenocarcinoma. Chin Med J (Engl) 2020; 133:2532-2542. [PMID: 32947363 PMCID: PMC7722592 DOI: 10.1097/cm9.0000000000001100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background Recent studies have demonstrated that microRNAs (miRNAs) in the blood circulation can serve as promising diagnostic markers for cancers. This four-stage study aimed at finding serum miRNAs as potential biomarkers for lung adenocarcinoma (LA) diagnosis. Methods The study was carried out between 2016 and 2017. The Exiqon miRNA qPCR panel (3 LA vs. 1 normal control [NC] pooled serum samples) was used for initial screening to acquire miRNA profiles. Thirty-five dysregulated miRNAs were further evaluated in the training (24 LA vs. 24 NCs) and testing stages (110 LA vs. 110 NCs) using quantitative real-time polymerase chain reaction assays. Results Four serum miRNAs (miR-133a-3p, miR-584-5p, miR-10b-5p, and miR-221-3p) were significantly overexpressed in LA patients compared with NCs. The diagnostic value of the four-miRNA panel was validated by an external cohort (36 LA vs. 36 NCs). The areas under the receiver operating characteristic curve of the four-miRNA panel in the training, testing, and external validation stages were 0.734, 0.803, and 0.894 respectively. Meanwhile, the expression level of miR-221-3p was much higher in LA tumor samples than that in the adjacent normal tissues (19 LA vs. 19 NCs). The expression level of miR-10b-5p was also elevated in the serum-derived exosomes samples (18 LA vs. 18 NCs). The expression of miR-133a-3p, miR-584-5p, and miR-10b-5p was significantly elevated in LA patients with epidermal growth factor receptor mutation compared with NCs. Conclusion The study established a four-miRNA signature in serum that could improve the diagnostic capability of LA.
Collapse
|
5
|
Xu L, Xu Y, Yang M, Li J, Xu F, Chen BL. LncRNA SNHG14 regulates the DDP-resistance of non-small cell lung cancer cell through miR-133a/HOXB13 pathway. BMC Pulm Med 2020; 20:266. [PMID: 33059643 PMCID: PMC7559791 DOI: 10.1186/s12890-020-01276-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Background Recently, long non-coding RNAs (lncRNAs) have been reported to be involved in regulating chemo-resistance of NSCLC, however, the role of lncRNA SNHG14 in the DDP-resistance of NSCLC remains unexplored. Methods Relative expression of SNHG14, HOXB13 and miR-133a in DDP-resistant A549 (A549/DDP) cell and its parental cell A549 were measured using qRT-PCR. Cell proliferation viability of indicated A549/DDP cell was estimated via CCK-8 and colony formation experiments. Cell cycle and apoptosis were analyzed through flow cytometry. Expression of apoptosis-related protein and HOXB13 were detected via western blot. The interaction among SNHG14, HOXB13 and miR-133a was predicted by bioinformatics and validated by dual-luciferase reporter assay. Results LncRNA SNHG14 and HOXB13 were upregulated while miR-133a was downregulated in A549/DDP cell line compared to A549 cell line. SNHG14 knockdown or miR-133a overexpression was demonstrated to increase the DDP-sensitivity of A549/DDP cells. SNHG14 was revealed to compete with HOXB13 for miR-133a binding in A549/DDP cells. Inhibition of miR-133a in A549 cells could reverse the promotive effects of SNHG14 knockdown on DDP-sensitivity, as well as the inhibitory effects on HOXB13 expression. HOXB13 overexpression was revealed to abolish the enhanced effects of miR-133a on the sensitivity of A549/DDP cell to DDP. Conclusion Our findings demonstrated that SNHG14 was involved in the development of DDP-resistance of A549/DDP cells through miR-133a/HOXB13 axis, which may present a path to novel therapeutic stratagems for DDP resistance of NSCLC.
Collapse
Affiliation(s)
- Li Xu
- Thoracic Medicine Department 2, The Affiliated Cancer Hospital of Xiangya School of Medicine and Hunan Cancer Hospital, Central South University, No. 283, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, PR China
| | - Yan Xu
- Thoracic Medicine Department 2, The Affiliated Cancer Hospital of Xiangya School of Medicine and Hunan Cancer Hospital, Central South University, No. 283, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, PR China
| | - Min Yang
- Respiratory Medicine Department 2, Hunan Children's Hospital, Changsha, 410007, Hunan Province, PR China
| | - Jia Li
- Thoracic Medicine Department 2, The Affiliated Cancer Hospital of Xiangya School of Medicine and Hunan Cancer Hospital, Central South University, No. 283, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, PR China
| | - Fang Xu
- Thoracic Medicine Department 2, The Affiliated Cancer Hospital of Xiangya School of Medicine and Hunan Cancer Hospital, Central South University, No. 283, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, PR China
| | - Bo-Lin Chen
- Thoracic Medicine Department 2, The Affiliated Cancer Hospital of Xiangya School of Medicine and Hunan Cancer Hospital, Central South University, No. 283, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, PR China.
| |
Collapse
|
6
|
Hojati Z, Ganjalikhani-Hakemi M, Ameri M, Alimohammadi-Jelodar SF, Dehbashi M, Mohammad Ganji M, Homayouni V, Khanahmad H. Evaluation of Silencing Effect of miR-133a-5p Mimic on TIM-3 Expression in AML (HL-60) Cell Line. Indian J Clin Biochem 2020; 35:359-366. [PMID: 32647415 PMCID: PMC7326904 DOI: 10.1007/s12291-019-00834-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/13/2019] [Indexed: 02/05/2023]
Abstract
Acute myelogenous leukemia (AML) is a complex blood malignancy leading to immature leukemic stem cells (LSCs) proliferation. T cell immunoglobulin mucin-3 (TIM-3) is known as a biomarker of AML LSCs. Several microRNAs (miRNAs) can affect gene expression in AML. In this study, the silencing effect of miR-133a-5p on TIM-3 expression in AML cell lineage (HL-60) was investigated. It's been hypothesized that miR-133a-5p may suppress the TIM-3 expression in AML cell line. Initially, miRNA-TIM-3 prediction, enrichment, and network analysis were done. Then, miR-133a-5p mimic was transfected into HL-60 cells. The TIM-3 protein and gene expression were measured by flow cytometry analysis and real-time PCR, respectively. MTT assay was also carried out. Based on the Bioinformatics predictions, miR-133a-5p was able to silence TIM-3 expression. Also, significant pathways pertained to miR-133a-5p were obtained using enrichment analysis. According to this, miR-133a-5p was mainly engaged in the MAPK signaling pathway and Nicotine addiction pathway using the KEGG database. The TIM-3 protein expression of the transfected cells was measured as 17.15 ± 8.87% (p = 0.001). A 52.48% significant gene silencing in mRNA level was obtained in comparison to the negative control. Despite of down regulation of TIM-3, HL-60 cell viability has not been significantly changed. It has been finally confirmed that miR-133a-5p could strongly suppress TIM-3 expression in AML cell line. Presumably, down regulation of TIM-3 could affect MAPK and Nicotine addiction signaling pathways.
Collapse
Affiliation(s)
- Zohreh Hojati
- Division of Genetics, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, 81746-73441 Iran
| | | | - Mahnaz Ameri
- Division of Genetics, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, 81746-73441 Iran
| | | | - Moein Dehbashi
- Division of Genetics, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, 81746-73441 Iran
| | - Maryam Mohammad Ganji
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vida Homayouni
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Khanahmad
- Department of Genetic and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
7
|
Darwiche N. Epigenetic mechanisms and the hallmarks of cancer: an intimate affair. Am J Cancer Res 2020; 10:1954-1978. [PMID: 32774995 PMCID: PMC7407342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023] Open
Abstract
Epigenetic mechanisms comprising DNA methylation, histone modifications, and noncoding RNAs affect chromatin structure and regulate gene expression. These mechanisms control normal embryonic development and adult life and their deregulation contributes to several diseases including cancer. The process of tumorigenesis is complex and results from the evolution of different "hallmarks of cancer". Hanahan and Weinberg presented in 2000 and 2011 seminal contributions in the cancer field, first the six hallmarks of cancer and a decade later two additional hallmarks and two enabling characteristics were added. Here, we surmise that epigenetic mechanisms regulate and contribute to every single hallmark in cancer, and thus represent the hallmark of hallmarks in tumorigenesis. Focusing on epigenetics as a major hallmark in cancer formation has profound preventive, therapeutic, and clinical implications.
Collapse
Affiliation(s)
- Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, American University of Beirut Beirut, Lebanon
| |
Collapse
|
8
|
Hui Q, Zhang Q, Li X, Wang K, Zhang J, Zhou Z. Down-regulation of miR-133a-3p protects lung tissue against sepsis-induced acute respiratory distress syndrome by up-regulating SIRT1. Arch Med Sci 2020; 20:289-301. [PMID: 38414466 PMCID: PMC10895959 DOI: 10.5114/aoms.2020.94410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/09/2019] [Indexed: 02/29/2024] Open
Abstract
Introduction MicroRNA-133a-3p (miR-133a-3p) is a potential gene regulator having an important role in the process of inflammation and lung injury. The present work studied the role of miR-133a-3p in sepsis-mediated acute respiratory distress syndrome (ARDS) and the mechanism involved. Material and methods C57BL/6 mice were selected for the study. Protein expression of Bcl-2, cleaved caspase-3 and Bax was assessed by western blot analysis. Expression of mRNA was assessed by RT-PCR. Effects of inflammation were studied by myeloperoxidase (MPO) activity. Quantification of albumin was done by measuring the albumin conjugated with Evan's blue. The alveolar macrophages were separated from the lungs of mice by the bronchoalveolar lavage procedure and were submitted to sepsis challenge in vitro; the macrophages were treated with lipopolysaccharide (LPS). Results Treatment of LPS resulted in upregulation of miR-133a-3p in alveolar macrophages. Suppression of miR-133a-3p halted the over-expression of inflammatory cytokines in macrophages and caused remission of histopathologic changes. The ARDS lungs showed a decrease in levels of proinflammatory cytokines and an increase in levels of apoptotic protein, establishing the protective role for miR-133a-3p. The results suggested sirtuin 1 (SIRT1) as a potential target of miR-133a-3p in the macrophages, also showing that expression of SIRT1 was inversely associated with expression of miR-133a-3p. The protective effect of miR-133a-3p down-regulation in LPS-mediated alveolar macrophages and sepsis-induced ARDS could be corrected by a SIRT1 inhibitor. Conclusions Down-regulation of miR-133a-3p may exert a protective effect on lung tissue against sepsis-mediated ARDS by up-regulating the levels of SIRT1 via suppressing the inflammatory response and inhibiting the cellular apoptosis in lung tissues.
Collapse
Affiliation(s)
- Qin Hui
- Department of Pediatrics, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qi Zhang
- Department of Pediatrics, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Xuan Li
- Department of Pediatrics, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Kundi Wang
- Department of Pediatrics, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Jing Zhang
- Department of Pediatrics, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Zhongshu Zhou
- Department of Pediatrics, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
9
|
MiRNAs and LncRNAs: Dual Roles in TGF-β Signaling-Regulated Metastasis in Lung Cancer. Int J Mol Sci 2020; 21:ijms21041193. [PMID: 32054031 PMCID: PMC7072809 DOI: 10.3390/ijms21041193] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/26/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is one of the most malignant cancers around the world, with high morbidity and mortality. Metastasis is the leading cause of lung cancer deaths and treatment failure. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs), two groups of small non-coding RNAs (nc-RNAs), are confirmed to be lung cancer oncogenes or suppressors. Transforming growth factor-β (TGF-β) critically regulates lung cancer metastasis. In this review, we summarize the dual roles of miRNAs and lncRNAs in TGF-β signaling-regulated lung cancer epithelial-mesenchymal transition (EMT), invasion, migration, stemness, and metastasis. In addition, lncRNAs, competing endogenous RNAs (ceRNAs), and circular RNAs (circRNAs) can act as miRNA sponges to suppress miRNAs, thereby mediating TGF-β signaling-regulated lung cancer invasion, migration, and metastasis. Through this review, we hope to cast light on the regulatory mechanisms of miRNAs and lncRNAs in TGF-β signaling-regulated lung cancer metastasis and provide new insights for lung cancer treatment.
Collapse
|
10
|
Gupta MK, Rajeswari J, Reddy PR, Kumar KS, Chamundeswaramma KV, Vadde R. Genetic Marker Identification for the Detection of Early-Onset Gastric Cancer Through Genome-Wide Association Studies. RECENT ADVANCEMENTS IN BIOMARKERS AND EARLY DETECTION OF GASTROINTESTINAL CANCERS 2020:191-211. [DOI: https:/doi.org/10.1007/978-981-15-4431-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
|
11
|
Gupta MK, Rajeswari J, Reddy PR, Kumar KS, Chamundeswaramma KV, Vadde R. Genetic Marker Identification for the Detection of Early-Onset Gastric Cancer Through Genome-Wide Association Studies. RECENT ADVANCEMENTS IN BIOMARKERS AND EARLY DETECTION OF GASTROINTESTINAL CANCERS 2020:191-211. [DOI: 10.1007/978-981-15-4431-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
|
12
|
Chen B, Li Q, Zhou Y, Wang X, Zhang Q, Wang Y, Zhuang H, Jiang X, Xiong W. The long coding RNA AFAP1-AS1 promotes tumor cell growth and invasion in pancreatic cancer through upregulating the IGF1R oncogene via sequestration of miR-133a. Cell Cycle 2019; 17:1949-1966. [PMID: 30300116 DOI: 10.1080/15384101.2018.1496741] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been shown to play a significant role in the progression of many cancers, including pancreatic cancer (PC). However, the biological function and regulatory mechanisms of lncRNAs in PC remains largely unclear. The aim of this study was to identify and evaluate the potential functions of lncRNAs in PC and reveal the underlying mechanisms of their effects. Screening of published microarray data (GEO accession Nos. GSE16515 and GSE32688), revealed lncRNA AFAP1-AS1 to be one of the most upregulated lncRNAs in PC tissues. High expression of AFAP1-AS1 was correlated with advanced stages, tumor size and lymph node metastasis, as well as with poorer overall survival in patients with PC. Functionally, knockdown of AFAP1-AS1 by transfection with siRNA inhibited the proliferative and invasive capacities of PaCa-2 and SW1990 PC cells, promoted apoptosis of PC cells in vitro, and impaired in-vivo tumorigenicity. In particular, it was hypothesized that AFAP1-AS1 may act as a competitive endogenous RNA (ceRNA), effectively becoming a sink for miR-133a whose expression was found to be downregulated in PC tissues and cell lines, and which was negatively correlated with the expression of AFAP1-AS1. We also found that the IGF1R oncogene which is an important regulator of MEK/ERK signaling pathway, was positively regulated by AFAP1-AS1 through ameliorating miR-133a-mediated IGF1R repression in PC tissues. Moreover, we demonstrated that knockdown of IGF1R by transfection with si-IGF1R suppressed cell proliferation, invasion and migration of PaCa-2 and SW1990 PC cells, suggesting that IGF1R may function as an oncogene in PC cells. Further investigations revealed that miR-133a reversed the biological effects of AFAP1-AS1 on PC cells. Collectively, the findings provide new evidence that AFAP1-AS1 could regulate the progression of pancreatic cancer by acting as a ceRNA, and suggest it has potential for use as both a biomarker for the early detection PC and for the development of individualized therapies for PC.
Collapse
Affiliation(s)
- Bo Chen
- a Department of Hepatopancreatobiliary Surgery , Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| | - Qinhua Li
- b Department of Hepatology , Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| | - Yongping Zhou
- c Department of Hepatobiliary Surgery , Wuxi Second Hospital, Nanjing Medical University , Wuxi , Jiangsu , China
| | - Xujing Wang
- a Department of Hepatopancreatobiliary Surgery , Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| | - Qiqi Zhang
- a Department of Hepatopancreatobiliary Surgery , Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| | - Yongkun Wang
- a Department of Hepatopancreatobiliary Surgery , Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| | - Huiren Zhuang
- a Department of Hepatopancreatobiliary Surgery , Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| | - Xiaohua Jiang
- d Department of Gastroenterological Surgery , Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| | - Wujun Xiong
- b Department of Hepatology , Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| |
Collapse
|
13
|
Kuligina ES, Sokolenko AP, Bizin IV, Romanko AA, Zagorodnev KA, Anisimova MO, Krylova DD, Anisimova EI, Mantseva MA, Varma AK, Hasan SK, Ni VI, Koloskov AV, Suspitsin EN, Venina AR, Aleksakhina SN, Sokolova TN, Milanović AM, Schürmann P, Prokofyeva DS, Bermisheva MA, Khusnutdinova EK, Bogdanova N, Dörk T, Imyanitov EN. Exome sequencing study of Russian breast cancer patients suggests a predisposing role for USP39. Breast Cancer Res Treat 2019; 179:731-742. [DOI: 10.1007/s10549-019-05492-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/07/2019] [Indexed: 12/11/2022]
|
14
|
Zhang XL, An BF, Zhang GC. MiR-27 alleviates myocardial cell damage induced by hypoxia/reoxygenation via targeting TGFBR1 and inhibiting NF-κB pathway. Kaohsiung J Med Sci 2019; 35:607-614. [PMID: 31169351 DOI: 10.1002/kjm2.12092] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/07/2019] [Indexed: 12/13/2022] Open
Abstract
MiR-27 prevents atherosclerosis by inhibiting inflammatory responses induced by lipoprotein lipase. Overexpression of miR-27b attenuates angiotensin-induced atrial fibrosis. Nevertheless, studies have rarely investigated on the effect of miR-27 in cardiomyocyte injury. H9c2 cells were transfected with miR-27 mimic/inhibitor. Then the cell proliferation was tested by MTT assay and the cell apoptosis was detected by flow cytometry. The luciferase activity assay was utilized to analyze the relationship between miR-27 and TGFBR1. Quantificational real-time polymerase chain reaction and western blot were utilized to detect the cardiomyocyte differentiation marker and nuclear factor kappa B (NF-κB) pathway. Our outcomes demonstrated that miR-27 expression was downregulated cardiomyocyte injury subjected to hypoxia/reoxygenation (H/R). Additionally, overexpression of miR-27 could significantly alleviate cardiomyocyte injury by regulating cell activity and apoptosis. The luciferase activity assay confirmed that transforming growth factor ß receptor 1 (TGFBR1) is a direct hallmark of miR-27. Besides, overexpression of miR-27 promoted the expression of TGFBR1 in H/R model. After transfection with miR-27 mimic/inhibitor, the expression of NF-κB pathway-related proteins was decreased/increased. Taken together, our data manifested that miR-27 repressed cardiomyocyte injury induced by H/R via mediating TGFBR1 and inhibiting NF-κB signaling pathway. Furthermore, miR-27/ TGFBR1 might be utilized as hopeful biomarkers for myocardial ischemia diagnosis and treatment.
Collapse
Affiliation(s)
- Xue-Lian Zhang
- Department of Internal Medicine-Cardiovascular, Jilin People's Hospital, Changchun, Jilin, People's Republic of China
| | - Bai-Fu An
- Department of Internal Medicine-Cardiovascular, Jilin People's Hospital, Changchun, Jilin, People's Republic of China
| | - Guang-Cheng Zhang
- Department of Internal Medicine-Cardiovascular, Jilin People's Hospital, Changchun, Jilin, People's Republic of China
| |
Collapse
|
15
|
Liu Z, He F, OuYang S, Li Y, Ma F, Chang H, Cao D, Wu J. miR-140-5p could suppress tumor proliferation and progression by targeting TGFBRI/SMAD2/3 and IGF-1R/AKT signaling pathways in Wilms' tumor. BMC Cancer 2019; 19:405. [PMID: 31035970 PMCID: PMC6489324 DOI: 10.1186/s12885-019-5609-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 04/12/2019] [Indexed: 12/14/2022] Open
Abstract
Background Wilms’ tumor is also called nephroblastoma and is the most common pediatric renal cancer. Several genetic and epigenetic factors have been found to account for the development of Wilms’ tumor. MiRNAs play important roles in this tumorigenic process. In the present study, we aimed to investigate the role of miR-140-5p in nephroblastoma by identifying its targets, as well as its underlying molecular mechanism of action. Methods The miRNA expression profile of nephroblastoma samples was investigated and the targets of miR-140-5p were predicted and validated using the miRNA luciferase reporter method. Moreover, the roles of miR-140-5p in regulating nephroblastoma cell proliferation, migration and cell cycle were analyzed by the CCK8, migration and flow cytometry assays, respectively. The downstream protein of the direct target of miR-140-5p was also identified. Results miR-140-5p was downregulated in Wilms’ tumor tissues, whereas in the nephroblastoma cell lines G401 and WT-CLS1 that exhibited high levels of miRNA-140-5p, inhibition of cellular proliferation and metastasis were noted as well as cell cycle arrest at the G1/S phase. TGFBRI and IGF1R were identified as direct target genes for miRNA-140-5p. In addition, SMAD2/3 and p-AKT were regulated by TGFBRI and IGF1R separately and participated in the miRNA-140-5p regulatory network. Ectopic expression of TGFBR1 and IGF-1R could abrogate the inhibitory effect of miR-140-5p. Conclusion We demonstrated that miRNA-140-5p participates in the progression of Wilms’ tumor by targeting the TGFBRI/SMAD2/3 and the IGF-1R/AKT signaling pathways.
Collapse
Affiliation(s)
- Zhuo Liu
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, NO. 2, Yabao Road, Chaoyang District, Beijing, 100020, China.,Graduate School of Peking Union Medical College, NO. 9, Dongdansantiao, Dongcheng District, Beijing, 100730, China
| | - Feng He
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, NO. 2, Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Shengrong OuYang
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, NO. 2, Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Yuanyuan Li
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, NO. 2, Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Feifei Ma
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, NO. 2, Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Huibo Chang
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, NO. 2, Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Dingding Cao
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, NO. 2, Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Jianxin Wu
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, NO. 2, Yabao Road, Chaoyang District, Beijing, 100020, China.
| |
Collapse
|
16
|
The Impact of MicroRNA-133a on Prognosis and Clinicopathological Parameters for Digestive System Cancers: a Comprehensive Study Based on Meta-Analysis and TCGA Database. Pathol Oncol Res 2019; 26:771-781. [PMID: 30810894 DOI: 10.1007/s12253-019-00619-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 02/18/2019] [Indexed: 01/11/2023]
Abstract
We conducted a meta-analysis on the impact of microRNA-133a (miR-133a) on digestive system cancers, and verified the results through The Cancer Genome Atlas (TCGA). Relevant studies were searched in English and Chinese database and meta-analysis was performed using Stata 12.0. The corresponding information of miR-133a and digestive system cancers were obtained from TCGA database and analysis was performed using SPSS. Increased miR-133a expression was linked with favorable overall survival (OS) in digestive system cancers (HR = 0.539, 95% CI: 0.416-0.698, P < 0.001), digestive tract cancers (HR =0.558, 95% CI: 0.406-0.767, P < 0.001), esophageal squamous cell carcinoma (ESCC) (HR = 0.427, 95% CI: 0.265-0.690, P = 0.001) and gastric cancer (HR = 0.541, 95% CI: 0.385-0.761, P < 0.001). The expression of miR-133a was significantly lower in cancer tissue compared with adjacent tissue for ESCC (P < 0.001), gastric cancer (P < 0.001), colorectal cancer (P < 0.001) and hepatocellular carcinoma (P = 0.002). Meanwhile, the area under the ROC curve (AUC) value for miR-133a was 0.836, 0.888, and 0.99 in ESCC, gastric cancer and colorectal cancer. MiR-133a is a tumor suppressor with prognostic and diagnostic values for digestive system cancers. High miR-133a expression was associated with better prognosis and less adverse clinicopathological parameters. More research should be performed to test these findings.
Collapse
|
17
|
Leonetti A, Assaraf YG, Veltsista PD, El Hassouni B, Tiseo M, Giovannetti E. MicroRNAs as a drug resistance mechanism to targeted therapies in EGFR-mutated NSCLC: Current implications and future directions. Drug Resist Updat 2019; 42:1-11. [PMID: 30544036 DOI: 10.1016/j.drup.2018.11.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/23/2018] [Accepted: 11/24/2018] [Indexed: 12/20/2022]
Abstract
The introduction of EGFR-tyrosine kinase inhibitors (TKIs) has revolutionized the treatment and prognosis of non-small cell lung cancer (NSCLC) patients harboring epidermal growth factor receptor (EGFR) mutations. However, these patients display disease progression driven by the onset of acquired mechanisms of drug resistance that limit the efficacy of EGFR-TKI to no longer than one year. Moreover, a small fraction of EGFR-mutated NSCLC patients does not benefit from this targeted treatment due to primary (i.e. intrinsic) mechanisms of resistance that preexist prior to TKI drug treatment. Research efforts are focusing on deciphering the distinct molecular mechanisms underlying drug resistance, which should prompt the development of novel antitumor agents that surmount such chemoresistance modalities. The capability of microRNAs (miRNAs) to regulate the expression of many oncogenic pathways and their central role in lung cancer progression, provided new directions for research on prognostic biomarkers, as well as innovative tools for predicting patients' response to systemic therapies. Recent evidence suggests that modulation of key miRNAs may also reverse oncogenic signaling pathways, and potentiate the cytotoxic effect of anti-cancer therapies. In this review, we focus on the putative emerging role of miRNAs in modulating drug resistance to EGFR-TKI treatment in EGFR-mutated NSCLC. Moreover, we discuss the current implications of miRNAs analyses in the clinical setting, using both tissue and liquid biopsies, as well as the future potential use of miRNA-based therapies in overcoming resistance to targeted agents like TKIs.
Collapse
Affiliation(s)
- Alessandro Leonetti
- Medical Oncology Unit, University Hospital of Parma, 43126, Parma, Italy; Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200000, Israel
| | - Paraskevi D Veltsista
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands
| | - Btissame El Hassouni
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands
| | - Marcello Tiseo
- Medical Oncology Unit, University Hospital of Parma, 43126, Parma, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands; Cancer Pharmacology Lab, AIRC Start-Up Unit, University of Pisa and Fondazione Pisana per la Scienza, 56100 Pisa, Italy.
| |
Collapse
|
18
|
Liu W, Cui Z, Zan X. Identifying cancer‐related microRNAs based on subpathways. IET Syst Biol 2018; 12:273-278. [DOI: 10.1049/iet-syb.2018.5025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Wenbin Liu
- Institute of Computational Science and Technology, Guangzhou UniversityGuangzhouPeople's Republic of China
| | - Zhendong Cui
- Institute of Computational Science and Technology, Guangzhou UniversityGuangzhouPeople's Republic of China
| | - Xiangzhen Zan
- Department of Information EngineeringWenzhou Vocational College of Science and TechnologyWenzhouPeople's Republic of China
| |
Collapse
|
19
|
Wu N, Gu T, Lu L, Cao Z, Song Q, Wang Z, Zhang Y, Chang G, Xu Q, Chen G. Roles of miRNA‐1 and miRNA‐133 in the proliferation and differentiation of myoblasts in duck skeletal muscle. J Cell Physiol 2018; 234:3490-3499. [DOI: 10.1002/jcp.26857] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/23/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Ningzhao Wu
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province Yangzhou University Yangzhou China
| | - Tiantian Gu
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province Yangzhou University Yangzhou China
| | - Lu Lu
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province Yangzhou University Yangzhou China
| | - Zhengfeng Cao
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province Yangzhou University Yangzhou China
| | - Qianqian Song
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province Yangzhou University Yangzhou China
| | - Zhixiu Wang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province Yangzhou University Yangzhou China
| | - Yang Zhang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province Yangzhou University Yangzhou China
| | - Guobin Chang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province Yangzhou University Yangzhou China
| | - Qi Xu
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province Yangzhou University Yangzhou China
| | - Guohong Chen
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province Yangzhou University Yangzhou China
| |
Collapse
|
20
|
Yang ZQ, Wu CA, Cheng YX. Prognostic Value of microRNA-133a Expression and Its Clinicopathologic Significance in Non-Small Cell Lung Cancer: A Comprehensive Study Based on Meta-Analysis and the TCGA Database. Oncol Res Treat 2018; 41:762-768. [DOI: 10.1159/000492343] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/23/2018] [Indexed: 12/17/2022]
|
21
|
Musavi Shenas MH, Eghbal-Fard S, Mehrisofiani V, Abd Yazdani N, Rahbar Farzam O, Marofi F, Yousefi M. MicroRNAs and signaling networks involved in epithelial-mesenchymal transition. J Cell Physiol 2018; 234:5775-5785. [PMID: 30417364 DOI: 10.1002/jcp.27489] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 09/06/2018] [Indexed: 12/17/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a phenomenon in which epithelial cells lose their cell-to-cell connection and are detached from the base membrane. EMT is fundamental for many biological processes such as embryonic development and neurogenesis. It also plays a significant role in cancer progression and metastasis. EMT regulation occurs through a sophisticated network of transcription regulations that include many signaling pathways. The exact mechanism of cancer gene regulation has not been understood yet. However, it is interesting to study the role of microRNAs and epigenetics mechanism in the cancer development. In this review, the transcription regulation of EMT and the analysis of possible overlap between microRNAs and their targets which are involved in the cancer development are scrutinized.
Collapse
Affiliation(s)
| | - Shadi Eghbal-Fard
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Mehrisofiani
- Aging Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Abd Yazdani
- Aging Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Omid Rahbar Farzam
- Aging Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faroogh Marofi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Aging Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
22
|
Lim JH, Kim SG, Choi JM, Yang HJ, Kim JS, Jung HC. Helicobacter pylori Is Associated with miR-133a Expression through Promoter Methylation in Gastric Carcinogenesis. Gut Liver 2018; 12:58-66. [PMID: 28950691 PMCID: PMC5753685 DOI: 10.5009/gnl17263] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/04/2017] [Accepted: 09/14/2017] [Indexed: 12/24/2022] Open
Abstract
Background/Aims To investigate whether Helicobacter pylori eradication can reverse epigenetic silencing of microRNAs (miRNAs) which are associated with H. pylori-induced gastric carcinogenesis. Methods We examined expression and promoter methylation of miR-34b/c, miR-133a, let-7a, and let-7i in gastric cancer cell line, before/after demethylation. Among them, epigenetically controlled miRNAs were identified. Their expression and promoter methylation was examined in human tissues of H. pylori-positive gastric cancer (T), H. pylori-positive gastritis (H), and H. pylori-negative controls (C). We also compared changes of miRNA expression and promoter methylation in H. pylori-positive patients who were endoscopically treated for early gastric cancer, between baseline and 1 year later according to eradication status. Results In gastric cancer cell line, miR-34b/c and miR-133a showed epigenetic silencing. In human tissues, miR-34b/c and miR-133a showed serial increase of promoter methylation in order of C, H, and T (all, p<0.01), and the miR-133a expression showed serial decrease (C vs H, p=0.02; H vs T, p=0.01; C vs T, p<0.01) while miR-34b and miR-34c expressions did not. H. pylori eradication induced decrease of methylation (p<0.01) and increase of miR-133a expression (p=0.03), compared with noneradication group. Conclusions This result suggests H. pylori eradication could reverse methylation-silencing of miR-133a which is involved in H. pylori-induced gastric carcinogenesis.
Collapse
Affiliation(s)
- Joo Hyun Lim
- Department of Internal Medicine and Healthcare Research Institute, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Sang Gyun Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Min Choi
- Department of Internal Medicine and Healthcare Research Institute, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, Korea
| | - Hyo-Joon Yang
- Division of Gastroenterology, Department of Internal Medicine and Gastrointestinal Cancer Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Joo Sung Kim
- Department of Internal Medicine and Healthcare Research Institute, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Chae Jung
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
23
|
Zhou B, Guo W, Sun C, Zhang B, Zheng F. Linc00462 promotes pancreatic cancer invasiveness through the miR-665/TGFBR1-TGFBR2/SMAD2/3 pathway. Cell Death Dis 2018; 9:706. [PMID: 29899418 PMCID: PMC5999603 DOI: 10.1038/s41419-018-0724-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 05/16/2018] [Accepted: 05/21/2018] [Indexed: 12/31/2022]
Abstract
Emerging evidence has identified that long non-coding RNAs (lncRNAs) may play an important role in the pathogenesis of many cancers, pancreatic cancer (PC) included. However, the role of linc00462 in PC remains unclear. The aim of our present study was to investigate the potential functions of linc00462 in PC and to identify the underlying mechanisms of action. CCK8 assay, transwell assay, cell cycle assay, cell apoptosis assay, EdU assay, western blot assay, cell adhesion assay, HE staining, IF staining, ELISA assay, vivo growth and metastasis assay, and colony formation assay were performed. We demonstrated that OSM mediated up-regulation of linc00462 promoted cell proliferation by accelerating cell cycle process and inhibiting cell apoptosis and adhesion in vitro, enhanced cell migration and invasion by accelerating EMT process, promoted tumor growth and matastasis in vivo and was associated with large tumor size, poor tumor differentiation, TNM stage and distant metastasis in patients of PC. In addition, we demonstrated that linc00462 was a target of miR-665. Linc00462 overexpression enhanced the expression levels of TGFBR1 and TGFBR2, and thus activated the SMAD2/3 pathway in PC cells. In conclusion, linc00462/miR-665/TGFBR1/2 regulatory network may shed light on tumorigenesis in PC.
Collapse
Affiliation(s)
- Bin Zhou
- Department of Hepatopacreatobiliary, Affiliated Hospital of Qingdao University, 266003, Qingdao, China
| | - Weidong Guo
- Department of Hepatopacreatobiliary, Affiliated Hospital of Qingdao University, 266003, Qingdao, China
| | - Chuandong Sun
- Department of Hepatopacreatobiliary, Affiliated Hospital of Qingdao University, 266003, Qingdao, China
| | - Bingyuan Zhang
- Department of Hepatopacreatobiliary, Affiliated Hospital of Qingdao University, 266003, Qingdao, China
| | - Fang Zheng
- School of Integrative Medicine, Tianjin Traditional Medical University, 300193, Tianjin, China.
| |
Collapse
|
24
|
Epidermal growth factor receptor (EGFR): A rising star in the era of precision medicine of lung cancer. Oncotarget 2018; 8:50209-50220. [PMID: 28430586 PMCID: PMC5564844 DOI: 10.18632/oncotarget.16854] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/24/2017] [Indexed: 12/30/2022] Open
Abstract
Lung cancer is a leading cause of cancer mortality worldwide. In tumors, the important role of noncoding RNA regulatory networks has been more and more reveal. EGFR has been identified as an oncogenic driver of NSCLC, especially activating mutations EGFR and its inhibition with specific TKIs can generate dramatic tumor responses. Studies have shown that EGFR plays significant roles in the progression of NSCLC. Subset analysis of the small proportion of patients with EGFR-mutant lung cancer showed a disease-free survival benefit, but was underpowered to detect a survival advantage. Herein, we highlight the progression of EGFR, noncoding RNA, and their roles in carcinogenesis. We also focus on anti-lung cancer drug development and EGFR-related drug resistance.
Collapse
|
25
|
Dong X, Su H, Jiang F, Li H, Shi G, Fan L. miR-133a, directly targeted USP39, suppresses cell proliferation and predicts prognosis of gastric cancer. Oncol Lett 2018; 15:8311-8318. [PMID: 29805563 PMCID: PMC5950022 DOI: 10.3892/ol.2018.8421] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 03/02/2018] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer has high incidence and mortality, and the mortality ranks second only to lung cancer. Downregulation of miR-133a has been observed in certain types of tumors, and it is involved in gastric cancer. The aim of the present study was to explore the molecular mechanisms of miR-133a and ubiquitin-specific protease 39 (USP39) in gastric cancer. Western blot analysis and RT-PCR were employed to measure miR-133a and USP39 expression. To confirm whether miR-133a targeted USP39, we conducted a luciferase reporter assay. We utilized 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay to detect the effects of miR-133a on gastric cell proliferation. miR-133a was significantly downregulated in cancer tissues and cell lines (HGC-27 and MGC-803), while the expression level of USP39 was higher in tumor tissues than in paracancerous tissues. Upregulated expression of miR-133a and/or USP39 downregulation could inhibit cell proliferation in gastric cancer cells. Furthermore, USP39 was identified as a direct target of miR-133a and the inverse relationship between them was also observed. USP39 was a firsthand target of miR-133a and there was a negative correlation between them. In addition, a low expression of miR-133a or overexpression of USP39 predicted poor prognosis. In conclusion, miR-133a may be a novel therapeutic target of microRNA-mediated suppression of cell proliferation in CC, but the role of the miR-133a/USP39 axis in CC progression needs further study.
Collapse
Affiliation(s)
- Xiang Dong
- Digestive System Department, Jining First People's Hospital, Jining, Shandong 272011, P.R. China
| | - Hailong Su
- Department of General Surgery, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Feng Jiang
- Department of Imaging, The People's Hospital of Zhangqiu Area, Jinan, Shandong 250200, P.R. China
| | - Haiyan Li
- Department of Anesthesiology, The People's Hospital of Zhangqiu Area, Jinan, Shandong 250200, P.R. China
| | - Guangwen Shi
- Department of Obstetrics, The People's Hospital of Zhangqiu Area, Jinan, Shandong 250200, P.R. China
| | - Lijuan Fan
- Digestive System Department, Jining First People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
26
|
Zhang X, Yin J, Zhang X. A Semi-Supervised Learning Algorithm for Predicting Four Types MiRNA-Disease Associations by Mutual Information in a Heterogeneous Network. Genes (Basel) 2018; 9:genes9030139. [PMID: 29498680 PMCID: PMC5867860 DOI: 10.3390/genes9030139] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/20/2018] [Accepted: 02/22/2018] [Indexed: 01/05/2023] Open
Abstract
Increasing evidence suggests that dysregulation of microRNAs (miRNAs) may lead to a variety of diseases. Therefore, identifying disease-related miRNAs is a crucial problem. Currently, many computational approaches have been proposed to predict binary miRNA-disease associations. In this study, in order to predict underlying miRNA-disease association types, a semi-supervised model called the network-based label propagation algorithm is proposed to infer multiple types of miRNA-disease associations (NLPMMDA) by mutual information derived from the heterogeneous network. The NLPMMDA method integrates disease semantic similarity, miRNA functional similarity, and Gaussian interaction profile kernel similarity information of miRNAs and diseases to construct a heterogeneous network. NLPMMDA is a semi-supervised model which does not require verified negative samples. Leave-one-out cross validation (LOOCV) was implemented for four known types of miRNA-disease associations and demonstrated the reliable performance of our method. Moreover, case studies of lung cancer and breast cancer confirmed effective performance of NLPMMDA to predict novel miRNA-disease associations and their association types.
Collapse
Affiliation(s)
- Xiaotian Zhang
- School of Mechanical, Electrical and Information Engineering, Shandong University, Weihai 264209, China.
| | - Jian Yin
- School of Mechanical, Electrical and Information Engineering, Shandong University, Weihai 264209, China.
| | - Xu Zhang
- School of Mechanical, Electrical and Information Engineering, Shandong University, Weihai 264209, China.
| |
Collapse
|
27
|
Liang HW, Yang X, Wen DY, Gao L, Zhang XY, Ye ZH, Luo J, Li ZY, He Y, Pang YY, Chen G. Utility of miR‑133a‑3p as a diagnostic indicator for hepatocellular carcinoma: An investigation combined with GEO, TCGA, meta‑analysis and bioinformatics. Mol Med Rep 2018; 17:1469-1484. [PMID: 29138825 PMCID: PMC5780086 DOI: 10.3892/mmr.2017.8040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 06/27/2017] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence has demonstrated that microRNA (miR)‑133a‑3p is an important regulator of hepatocellular carcinoma (HCC). In the present study, the diagnostic role of miR‑133a‑3p in HCC, and the potential functional pathways, were both explored based on publicly available data. Eligible microarray datasets were collected from NCBI Gene Expression Omnibus (GEO) database and ArrayExpress database. The data related to HCC and matched adjacent normal tissues were also downloaded from The Cancer Genome Atlas (TCGA). Published studies reporting the association between miR‑133a‑3p expression and HCC were reviewed from multiple databases. By combining the data derived from three sources (GEO, TCGA and published studies), the authors analyzed the comprehensive relationship between miR‑133a‑3p expression and clinicopathological features of HCC. Eventually, putative targets of miR‑133a‑3p in HCC were selected for further bioinformatics prediction. A total of eight published microarray datasets were gathered, and the pooled results demonstrated that the expression of miR‑133a‑3p in the tumor group was lower than that in normal groups [standardized mean difference (SMD)=‑0.54; 95% confidence interval (CI), ‑0.74 to ‑0.35; P<0.001]. Consistently, the level of miR‑133a‑1 in HCC was reduced markedly compared to normal tissues (P<0.001) based on TCGA data, and the AUC value of low miR‑133a‑1 expression for HCC diagnosis was 0.670 (P<0.001). Furthermore, the combined SMD of all datasets (GEO, TCGA and literature) suggested that significant difference was observed between the HCC group and the normal control group, and lower miR‑133a‑3p expression in HCC group was noted (SMD=‑0.69; 95% CI, ‑1.10 to ‑0.29; P=0.001). In addition, the authors discovered five key genes of the calcium signaling pathway (NOS1, ADRA1A, ADRA1B, ADRA1D and TBXA2R) that may probably be targeted by miR‑133a‑3p in HCC. The study reveals that miR‑133a‑3p may function as a tumor suppressor in HCC. The prospective novel pathways and key genes of miR‑133a‑3p could offer potential biomarkers for HCC; however, the predictions require further confirmation.
Collapse
Affiliation(s)
- Hai-Wei Liang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xia Yang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Dong-Yue Wen
- Department of Medical Ultrasonics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Li Gao
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiang-Yu Zhang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Zhi-Hua Ye
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jie Luo
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Zu-Yun Li
- Department of Medical Ultrasonics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yun He
- Department of Medical Ultrasonics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yu-Yan Pang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
28
|
Yang Z, He J, Gao P, Niu Y, Zhang J, Wang L, Liu M, Wei X, Liu C, Zhang C, Wang W, Du J, Li H, Hu W, Sun G. miR-769-5p suppressed cell proliferation, migration and invasion by targeting TGFBR1 in non-small cell lung carcinoma. Oncotarget 2017; 8:113558-113570. [PMID: 29371929 PMCID: PMC5768346 DOI: 10.18632/oncotarget.23060] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/14/2017] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs (miRNAs) are key regulators of multiple cancers, including non-small cell lung carcinoma (NSCLC). The aim of this study was to determine the expression pattern of miR-769-5p in NSCLC and to investigate its biological role during tumorigenesis. We showed that miR-769-5p was significantly downregulated and predicted poor prognosis in NSCLC compared with corresponding normal tissues. We then investigated its function and found that miR-769-5p significantly inhibited cell proliferation, migration and invasion in vitro and reduced tumor growth and metastasis in vivo. Furthermore, we explored the molecular mechanisms by which miR-769-5p contributes to NSCLC suppression and identified TGFBR1 as a direct target gene of miR-769-5p. Finally, we showed that TGFBR1 had opposite effects to those of miR-769-5p on lung cancer cells, suggesting that miR-769-5p might inhibit lung tumorigenesis by silencing TGFBR1. Taken together, our results demonstrated that miR-769-5p plays a pivotal role in NSCLC by inhibiting cell proliferation, migration and invasion by targeting TGFBR1.
Collapse
Affiliation(s)
- Zhao Yang
- 1 Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, China
| | - Jin He
- 2 Department of Hepatobiliary Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Cencer, Tianjin, China
| | - Peng Gao
- 1 Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, China
| | - Yi Niu
- 1 Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, China
| | - Jie Zhang
- 3 Department of Pathology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, China
| | - Lei Wang
- 3 Department of Pathology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, China
| | - Meiyue Liu
- 1 Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, China
| | - Xiaomei Wei
- 1 Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, China
| | - Chunling Liu
- 3 Department of Pathology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, China
| | - Chao Zhang
- 1 Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, China
| | - Wei Wang
- 1 Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, China
| | - Jiayi Du
- 3 Department of Pathology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, China
| | - Hongmin Li
- 3 Department of Pathology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, China
| | - Wanning Hu
- 1 Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, China
| | - Guogui Sun
- 1 Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, China
| |
Collapse
|
29
|
Wang K, Chen M, Wu W. Analysis of microRNA (miRNA) expression profiles reveals 11 key biomarkers associated with non-small cell lung cancer. World J Surg Oncol 2017; 15:175. [PMID: 28927412 PMCID: PMC5606074 DOI: 10.1186/s12957-017-1244-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 09/03/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) accounts for more than 85% of lung cancer cases which cause most of cancer-related deaths globally. However, the results vary largely in different studies due to different platforms and sample sizes. Here, we aim to identify the key miRNAs in the carcinogenesis of NSCLC that might be potential biomarkers for this cancer. METHODS Meta-analysis was performed on miRNA profile using seven datasets of NSCLC studies. Furthermore, we predicted and investigated the functions of genes regulated by key miRNAs. RESULTS Eleven key miRNAs were identified, including 2 significantly upregulated ones (hsa-miR-21-5p and hsa-miR-233-3p) and 9 downregulated ones (hsa-miR-126-3p, hsa-miR-133a-3p, hsa-miR-140-5p, hsa-miR-143-5p, hsa-miR-145-5p, hsa-miR-30a-5p, hsa-miR-30d-3p, hsa-miR-328-3pn, and hsa-miR-451). The functional enrichment analysis revealed that both up- and downregulated miRNAs were proportionally associated with regulation of transcription from RNA polymerase II promoter. According to transcription factor analysis, there were 65 (43.9%) transcription factors influenced by both up- and downregulated miRNAs. CONCLUSIONS In this study, 11 meta-signature miRNAs, as well as their target genes and transcription factors, were found to play significant role in carcinogenesis of NSCLC. These target genes identified in our study may be profitable to diagnosis and prognostic prediction of NSCLC as biomarkers.
Collapse
Affiliation(s)
- Ke Wang
- Department of Clinical Medicine, Xi'an Medical University, Shaanxi Research Center of Respiratory Diseases Prevention and Diagnosis and Treatment, Xi'an City, Shaanxi Province, 710021, China
| | - Mingwei Chen
- Department of Clinical Medicine, Xi'an Medical University, Shaanxi Research Center of Respiratory Diseases Prevention and Diagnosis and Treatment, Xi'an City, Shaanxi Province, 710021, China.
| | - Wei Wu
- Department of Respiratory, First Affiliated Hospital of Xi'an Medical University, Shaanxi Research Center of Respiratory Diseases Prevention & Diagnosis and Treatment, Xi'an City, Shaanxi Province, China
| |
Collapse
|
30
|
Di Domenico A, Wiedmer T, Marinoni I, Perren A. Genetic and epigenetic drivers of neuroendocrine tumours (NET). Endocr Relat Cancer 2017; 24:R315-R334. [PMID: 28710117 DOI: 10.1530/erc-17-0012] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 07/14/2017] [Indexed: 12/13/2022]
Abstract
Neuroendocrine tumours (NET) of the gastrointestinal tract and the lung are a rare and heterogeneous group of tumours. The molecular characterization and the clinical classification of these tumours have been evolving slowly and show differences according to organs of origin. Novel technologies such as next-generation sequencing revealed new molecular aspects of NET over the last years. Notably, whole-exome/genome sequencing (WES/WGS) approaches underlined the very low mutation rate of well-differentiated NET of all organs compared to other malignancies, while the engagement of epigenetic changes in driving NET evolution is emerging. Indeed, mutations in genes encoding for proteins directly involved in chromatin remodelling, such as DAXX and ATRX are a frequent event in NET. Epigenetic changes are reversible and targetable; therefore, an attractive target for treatment. The discovery of the mechanisms underlying the epigenetic changes and the implication on gene and miRNA expression in the different subgroups of NET may represent a crucial change in the diagnosis of this disease, reveal new therapy targets and identify predictive markers. Molecular profiles derived from omics data including DNA mutation, methylation, gene and miRNA expression have already shown promising results in distinguishing clinically and molecularly different subtypes of NET. In this review, we recapitulate the major genetic and epigenetic characteristics of pancreatic, lung and small intestinal NET and the affected pathways. We also discuss potential epigenetic mechanisms leading to NET development.
Collapse
Affiliation(s)
- Annunziata Di Domenico
- Institute of PathologyUniversity of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical SciencesUniversity of Bern, Bern, Switzerland
| | - Tabea Wiedmer
- Institute of PathologyUniversity of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical SciencesUniversity of Bern, Bern, Switzerland
| | | | - Aurel Perren
- Institute of PathologyUniversity of Bern, Bern, Switzerland
| |
Collapse
|
31
|
Li YL, Liu XM, Zhang CY, Zhou JB, Shao Y, Liang C, Wang HM, Hua ZY, Lu SD, Ma ZL. MicroRNA-34a/EGFR axis plays pivotal roles in lung tumorigenesis. Oncogenesis 2017; 6:e372. [PMID: 28825720 PMCID: PMC5608916 DOI: 10.1038/oncsis.2017.50] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 04/29/2017] [Accepted: 05/09/2017] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are vital in the regulation of tumor progression and invasion. Dysregulation of miRNAs has been linked to the development of various types of human cancers, including non-small-cell lung cancer (NSCLC). However, the effect of miRNA-34a (miR-34a), a key regulator of tumor suppression, on the tumorigenesis of NSCLC has not been fully elaborated. Herein, we reveal that miR-34a is significantly downregulated in NSCLC tissues and cell lines, suggesting that miR-34a might function as a tumor suppressor in lung cancer. We also confirmed that epidermal growth factor receptor (EGFR) is a direct target of miR-34a, and our data reveal that siRNA knockdown of EGFR can inhibit cell proliferation, promote apoptosis and arrest cell-cycle progression. In addition, EGFR can reverse the suppressive function of miR-34a overexpression on proliferation and cell apoptosis. Furthermore, in vivo experiments demonstrated that miR-34a suppress tumor growth, both in the A549 xenograft model, as well as in the metastatic tumors in nude mice. Taken together, our findings suggest that miR-34a inhibits NSCLC tumor growth and metastasis through targeting EGFR.
Collapse
Affiliation(s)
- Y-L Li
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - X-M Liu
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - C-Y Zhang
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - J-B Zhou
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - Y Shao
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - C Liang
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - H-M Wang
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - Z-Y Hua
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
- Experimental Center for Life Science, Shanghai University, Shanghai, China
| | - S-D Lu
- Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Z-L Ma
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
32
|
Li C, Li X, Gao S, Li C, Ma L. MicroRNA-133a Inhibits Proliferation of Gastric Cancer Cells by Downregulating ERBB2 Expression. Oncol Res 2017; 25:1169-1176. [PMID: 28109082 PMCID: PMC7840978 DOI: 10.3727/096504017x14847395834985] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Gastric cancer is the fourth most common type of cancer and the second highest leading cause of cancer-related deaths worldwide. It has already been established that miR-133a is involved in gastric cancer. In this study, we investigated the molecular mechanisms by which miR-133a inhibits the proliferation of gastric cancer cells. We analyzed the proliferative capacity of human gastric cancer cells SNU-1 using an MTT assay. Cell apoptosis was determined using flow cytometry. The expression levels of ERBB2, p-ERK1/2, and p-AKT in SNU-1 cells were determined using Western blot analysis. To confirm that ERBB2 is a direct target of miR-133a, a luciferase reporter assay was performed. Results showed that miR-133a overexpression inhibited SNU-1 cell proliferation and increased apoptosis. ERBB2 was a direct target of miR-133a, and it was negatively regulated by miR-133a. Interestingly, ERBB2 silencing has a similar impact to miR-133a overexpression, in that it significantly induced apoptosis and inhibited ERK and AKT activation. Our study showed that miR-133a inhibits the proliferation of gastric cancer cells by downregulating the expression of ERBB2 and its downstream signaling molecules p-ERK1/2 and p-AKT. Therefore, miR-133a might be used as a therapeutic target for treating gastric cancer.
Collapse
Affiliation(s)
- Chang Li
- *Department of Gastrointestinal Internal Medicine, China–Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Xiaoping Li
- †Department of Pediatrics, The First Hospital of Jilin University, Changchun, P.R. China
| | - Shuohui Gao
- *Department of Gastrointestinal Internal Medicine, China–Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Chang Li
- ‡Department of Cadre’s Ward, China–Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Lianjun Ma
- §Endoscopy Center, China–Japan Union Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
33
|
Upregulation of microRNA-137 expression by Slug promotes tumor invasion and metastasis of non-small cell lung cancer cells through suppression of TFAP2C. Cancer Lett 2017; 402:190-202. [PMID: 28610956 DOI: 10.1016/j.canlet.2017.06.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 04/29/2017] [Accepted: 06/03/2017] [Indexed: 12/31/2022]
Abstract
The epithelial-mesenchymal transition (EMT) regulator, Slug, plays multifaceted roles in controlling lung cancer progression, but its downstream targets and mechanisms in promoting lung cancer progression have not been well defined. In particular, the miRNAs downstream of Slug in non-small cell lung cancer (NSCLC) remain undetermined. Here, we report that miR-137 is downstream of the EMT regulator, Slug, in lung cancer cells. Slug binds directly to the E-box of the miR-137 promoter and up-regulates its expression in lung cancer cells. Knockdown of miR-137 abolished Slug-induced cancer invasion and migration, whereas upregulation of miR-137 was found to trigger lung cancer cell invasion and progression by direct suppressing TFAP2C (transcription factor AP-2 gamma). Clinical data showed that lung adenocarcinoma patients with low-level expression of Slug and miR-137 but high-level expression of TFAP2C experienced significantly better survival. miR-137 is a Slug-induced miRNA that relays the pro-metastatic effects of Slug by targeting TFAP2C. Our findings add new components to the Slug-mediated regulatory network in lung cancer, and suggest that Slug, miR-137, and TFAP2C may be useful prognostic markers in lung adenocarcinoma.
Collapse
|
34
|
Yang QS, Jiang LP, He CY, Tong YN, Liu YY. Up-Regulation of MicroRNA-133a Inhibits the MEK/ERK Signaling Pathway to Promote Cell Apoptosis and Enhance Radio-Sensitivity by Targeting EGFR in Esophageal Cancer In Vivo and In Vitro. J Cell Biochem 2017; 118:2625-2634. [PMID: 27933650 DOI: 10.1002/jcb.25829] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/06/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Qing-Shan Yang
- Department of Radiation Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, P.R. China
| | - Li-Peng Jiang
- Department of Radiation Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, P.R. China
| | - Chun-Yan He
- Department of Prosthodontics, Second Affiliated Hospital of Liaoning Medical University, Jinzhou 121000, P.R. China
| | - Yu-Na Tong
- Department of Radiation Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, P.R. China
| | - Yuan-Yuan Liu
- Department of Internal Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, P.R. China
| |
Collapse
|
35
|
Wang W, Zhang H, Tang M, Liu L, Zhou Z, Zhang S, Wang L. MicroRNA-592 targets IGF-1R to suppress cellular proliferation, migration and invasion in hepatocellular carcinoma. Oncol Lett 2017; 13:3522-3528. [PMID: 28529580 PMCID: PMC5431753 DOI: 10.3892/ol.2017.5902] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 12/20/2016] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRs) can function as tumor suppressors or oncogenes in different types of human malignancy, and may provide an effective therapy for cancer. The expression and functions of miR-592 have previously been studied in relation to cancer. However, the expression and potential functions of miR-592 in hepatocellular carcinoma (HCC) are still unknown. Using quantitative polymerase chain reaction, MTT assays, cellular migration and invasion assays, bioinformatics software, western blot analysis and dual-luciferase report assays, the present study explored the expression and roles of miR-592 in HCC. It was identified that miR-592 was significantly downregulated in HCC tissues and cell lines. The statistical analysis revealed that low expression of miR-592 was evidently associated with tumor node metastasis stage and lymph node metastasis. Additionally, the present study provided the first evidence that miR-592 was likely to directly target the insulin-like growth factor 1 receptor in vitro. The present results indicated that miR-592 could be investigated as an efficacious therapeutic target for HCC in the future.
Collapse
Affiliation(s)
- Wenyao Wang
- Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Hongfei Zhang
- Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Mao Tang
- Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Longlong Liu
- Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Zhengfang Zhou
- Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Shaojun Zhang
- Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Lichao Wang
- Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
36
|
Huang Y, Wu Y, Dong J, Han D, Yang S, Jiang L. MicroRNA-133a-3p exerts inhibitory effects on gallbladder carcinoma via targeting RBPJ. Am J Cancer Res 2016; 6:2448-2462. [PMID: 27904763 PMCID: PMC5126265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 10/05/2016] [Indexed: 06/06/2023] Open
Abstract
Gallbladder carcinoma (GBC) is the most common biliary tract malignancy with high mortality. The median survival time is 6 months, and the 5-year survival rate less than 5% for GBC patients. Thus, it is imperative to investigate the molecular mechanisms underlying the pathogenesis of GBC. miR-133a may exert anti-tumor effects on a variety of cancers. However, the role of miR-133a in the pathogenesis of GBC remains unclear. In this study, quantitative real-time polymerase chain reaction (qRT-PCR) showed the miR-133a-3p expression markedly decreased in GBC as compared to adjacent normal tissues. Transient over-expression of miR-133a-3p inhibited the proliferation, migration and invasion abilities of GBC cells. Luciferase activity assay indicated that miR-133a-3p negatively regulated the expression of recombination signal-binding protein Jκ (RBPJ) directly, which is a key downstream transcription factor in the Notch signaling pathway. Moreover, PBPJ expression was up-regulated and negatively related to miR-133a-3p expression in GBC, and silencing of RBPJ achieved the effects as after miR-133a-3p over-expression. RBPJ over-expression could markedly reverse the inhibitory effects of miR-133a-3p on the proliferation, migration and invasion of GBC cells. Our findings indicate that miR-133a-3p acts as a tumor suppressor through directly targeting RBPJ in GBC.
Collapse
Affiliation(s)
- Yuan Huang
- Center for Hepatobillary and Pancreatic Diseases, Beijing Tsinghua Changgung Hospital, Medical Center, Tsinghua UniversityBeijing, China
| | - Yaoshi Wu
- Department of Gastroenterology, Second Affiliated Hospital of Nanchang UniversityNanchang, China
| | - Jiahong Dong
- Center for Hepatobillary and Pancreatic Diseases, Beijing Tsinghua Changgung Hospital, Medical Center, Tsinghua UniversityBeijing, China
| | - Dongdong Han
- Center for Hepatobillary and Pancreatic Diseases, Beijing Tsinghua Changgung Hospital, Medical Center, Tsinghua UniversityBeijing, China
| | - Shiwei Yang
- Center for Hepatobillary and Pancreatic Diseases, Beijing Tsinghua Changgung Hospital, Medical Center, Tsinghua UniversityBeijing, China
| | - Lin Jiang
- Institute of Biliary Tract Disease, Xinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| |
Collapse
|
37
|
Bracken CP, Scott HS, Goodall GJ. A network-biology perspective of microRNA function and dysfunction in cancer. Nat Rev Genet 2016; 17:719-732. [DOI: 10.1038/nrg.2016.134] [Citation(s) in RCA: 529] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Gao X, Han D, Fan W. Down-regulation of RBP-J mediated by microRNA-133a suppresses dendritic cells and functions as a potential tumor suppressor in osteosarcoma. Exp Cell Res 2016; 349:264-272. [PMID: 27794430 DOI: 10.1016/j.yexcr.2016.10.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/14/2016] [Accepted: 10/20/2016] [Indexed: 01/21/2023]
Abstract
BACKGROUND AND OBJECTIVE In recent years, immunotherapy for the treatment of tumors have been established. Dendritic cells (DCs) are extremely efficient and professional antigen presenting cells (APCs), which are an important target for immune therapeutic interventions in cancer. In present study, we investigated whether RBP-J signaling regulated by miR-133a was involved in the DCs mediated tumor suppressor in osteosarcoma. METHODS DCs were isolated from 30 osteosarcoma patients and 30 healthy subjects. Mouse macrophage-like cell line RAW264.7 were cultured and osteosarcoma mouse model with injection of murine osteosarcoma cell line S180 were established. RESULTS In osteosarcoma patients, miR-133a expression level of DCs was increased, and RBP-J expression in mRNA and protein levels were decreased. MiR-133a inhibitor promoted maturation and activation of DCs in osteosarcoma patients. In osteosarcoma mouse model, miR-133a mimic suppressed the maturation and activation of spleen DCs, while miR-133a inhibitor promoted them. Overexpression of miR-133a decreased therapeutic effect of DCs on osteosarcoma mice. In RAW264.7 cells, miR-133a was observed to target RBP-J and regulate its expression. MiR-133a mimic inhibited the maturation of DCs in cells exposed to LPS, the effect of which was reversed by overexpression of RBP-J. CONCLUSION RBP-J mediated by miR-133a probably contributed to the regulation of DCs maturation and activation in osteosarcoma, which functioned as a therapeutic target for the immunotherapy in cancers.
Collapse
Affiliation(s)
- Xuren Gao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, PR China; Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Dong Han
- Central laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Weimin Fan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, PR China.
| |
Collapse
|
39
|
Wang M, Sun Z, Huang L. [Advanced Research on MicroRNAs and EGFR-TKIs Secondary Resistance]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2016; 18:758-63. [PMID: 26706953 PMCID: PMC6015185 DOI: 10.3779/j.issn.1009-3419.2015.12.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
肺癌是癌症致死率最高的疾病,关于这个疾病的发生机制已得到部分阐明,其中表皮生长因子受体(epidermal growth factor receptor, EGFR)信号通路研究最为深入,在肺癌的发生中起着至关重要的作用。而有效地抑制EGFR信号通路的药物已用于非小细胞肺癌(non-small cell lung cancer, NSCLC)的靶向治疗中,伴有EGFR基因突变的患者使用EGFR酪氨酸激酶抑制剂(EGFR-tyrosine kinase inhibitors, EGFR-TKIs)治疗后获得不错的临床收益,但大部分患者在使用该药治疗10个月后出现耐药现象。MiRNAs(microRNAs)是一种非编码蛋白的RNA,参与转录后水平基因的表达调控。越来越多的研究发现miRNAs与EGFR-TKIs继发性耐药有关,miRNAs可作为逆转EGFR-TKIs耐药及评估EGFR-TKIs有效性的生物指标。本文就NSCLC中miRNAs与EGFR-TKIs继发性耐药机制之间的相关性研究进展做简要的综述。
Collapse
Affiliation(s)
- Ming Wang
- Bengbu Medical College, Bengbu 233000, China;Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - Zhenyu Sun
- Bengbu Medical College, Bengbu 233000, China
| | - Linian Huang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| |
Collapse
|
40
|
Xiao J, Zou Y, Lu X, Xie B, Yu Q, He B, He B, Chen Q. Prognostic value of decreased microRNA-133a in solid cancers: a meta-analysis. Onco Targets Ther 2016; 9:5771-5779. [PMID: 27703375 PMCID: PMC5036562 DOI: 10.2147/ott.s112358] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Increasing evidence indicates that the decreased expression of microRNA-133a (miR-133a) may be correlated with poor survival for cancer patients. Thus, we performed this meta-analysis to evaluate the prognostic value of decreased miR-133a in solid cancers. METHODS Eligible studies were gathered by searching on PubMed, Web of Science, and Embase. Using the STATA 12.0 software, the pooled hazard ratios (HRs) and their corresponding 95% confidence intervals (CIs) for total and subgroup analyses were calculated to investigate the possible correlation between decreased miR-133a and overall survival (OS) of patients with cancer. RESULTS Ten studies were enrolled in this meta-analysis. The pooled result showed that decreased expression of miR-133a predicted poor OS in solid cancer patients (HR =1.62, 95% CI: 1.16-2.24, P=0.004). Compared with the total pooled HR, further analyses indicated that the subgroups of digestive system neoplasms (HR =1.73, 95% CI: 1.20-2.51, P=0.003), frozen tissue preservation (HR =1.89, 95% CI: 1.41-2.53, P<0.001), and multivariate analysis (HR =2.07, 95% CI: 1.42-3.02, P<0.001) exhibited stronger connection between decreased miR-133a expression and OS outcome. CONCLUSION This meta-analysis suggested that decreased miR-133a was associated with poor OS in patients with solid cancer. Because of the data in our study are limited, additional studies are required to verify the poor prognosis of decreased miR-133a in solid tumors.
Collapse
Affiliation(s)
- Jian Xiao
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Yong Zou
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Xiaoxiao Lu
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Bin Xie
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Qiao Yu
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Baimei He
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Bixiu He
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Qiong Chen
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, People's Republic of China
| |
Collapse
|
41
|
Ji Y, Han Z, Shao L, Zhao Y. Evaluation of in vivo antitumor effects of low-frequency ultrasound-mediated miRNA-133a microbubble delivery in breast cancer. Cancer Med 2016; 5:2534-43. [PMID: 27465833 PMCID: PMC5055178 DOI: 10.1002/cam4.840] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 07/03/2016] [Accepted: 07/04/2016] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs), as a novel class of small noncoding RNAs, have been identified as important transcriptional and posttranscriptional inhibitors of gene expression. Ultrasound‐targeted microbubble destruction (UTMD) is a noninvasive method for microRNA delivery. We aimed to investigate the effect of UTMD of miR‐133a on breast cancer treatment. It has been reported that miRNA‐133a is involved in various cancers. miR‐133a was lowly expressed in breast cancer tissues and breast cancer cell lines MCF‐7 and MDA‐MB‐231. The miR‐133a expression was significantly upregulated under exogenous miRNA‐133a treatment in MCF‐7 and MDA‐MB‐231 cells analyzed by qRT‐PCR. Exogenous miR‐133a promoted the cell proliferation as determined by diphenyl tetrazolium bromide (MTT) assay and 5‐ethynyl‐2′‐deoxyuridine (EdU) staining. Epidermal growth factor receptor (EGFR) expression and Akt phosphorylation were significantly suppressed after miR‐133a transfection by western blot detection. We prepared the miR‐133a‐microbubble and injected it into breast cancer xenografts. The miR‐133a‐microbubble injection prolonged miR‐133a circulatory time by detecting the amount of miRNA‐133a in the plasma. No significant toxicity was observed on alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels at liver and albumin, blood urea nitrogen, or creatine kinase levels at kidney after miR‐133a‐microbubble injection. The tumor size of miR‐133a‐microbubble‐injected mice was smaller than that of the control group. Furthermore, the delivery efficiency of miR‐133a with low frequency was higher than that with common frequency. miR‐133a suppressed cell proliferation by suppressing the expression of EGFR and the phosphorylation of Akt. UTMD of miR‐133a inhibited the tumor growth and improved the survival rate in breast cancer mice. Our study provides new evidence that UTMD of miRNA is a promising platform for breast cancer therapy.
Collapse
Affiliation(s)
- Yanlei Ji
- Department of Special Diagnosis, Shandong Cancer Hospital affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, China
| | - Zhen Han
- Department of Internal Medicine, Jinan Second People's Hospital, Jinan, China
| | - Limei Shao
- Department of Special Diagnosis, Shandong Cancer Hospital affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, China.
| | - Yuehuan Zhao
- Department of Special Diagnosis, Shandong Cancer Hospital affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
42
|
Chen J, Zeng F, Forrester SJ, Eguchi S, Zhang MZ, Harris RC. Expression and Function of the Epidermal Growth Factor Receptor in Physiology and Disease. Physiol Rev 2016; 96:1025-1069. [DOI: 10.1152/physrev.00030.2015] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is the prototypical member of a family of membrane-associated intrinsic tyrosine kinase receptors, the ErbB family. EGFR is activated by multiple ligands, including EGF, transforming growth factor (TGF)-α, HB-EGF, betacellulin, amphiregulin, epiregulin, and epigen. EGFR is expressed in multiple organs and plays important roles in proliferation, survival, and differentiation in both development and normal physiology, as well as in pathophysiological conditions. In addition, EGFR transactivation underlies some important biologic consequences in response to many G protein-coupled receptor (GPCR) agonists. Aberrant EGFR activation is a significant factor in development and progression of multiple cancers, which has led to development of mechanism-based therapies with specific receptor antibodies and tyrosine kinase inhibitors. This review highlights the current knowledge about mechanisms and roles of EGFR in physiology and disease.
Collapse
Affiliation(s)
- Jianchun Chen
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Fenghua Zeng
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Steven J. Forrester
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Satoru Eguchi
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Ming-Zhi Zhang
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Raymond C. Harris
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
43
|
Qin Q, Wei F, Zhang J, Wang X, Li B. miR-134 inhibits non-small cell lung cancer growth by targeting the epidermal growth factor receptor. J Cell Mol Med 2016; 20:1974-83. [PMID: 27241841 PMCID: PMC4891324 DOI: 10.1111/jcmm.12889] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/28/2016] [Indexed: 12/26/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is frequently activated in a wide range of solid tumours and represents an important therapeutic target. MicroRNAs (miRNAs) have recently been recognized as a rational and potential modality for anti‐EGFR therapies. However, more EGFR‐targeting miRNAs need to be explored. In this study, we identified a novel EGFR‐targeting miRNA, miRNA‐134 (miR‐134), in non‐small‐cell lung cancer (NSCLC) cell lines. Luciferase assays confirmed that EGFR is a direct target of miR‐134. In addition, the overexpression of miR‐134 inhibited EGFR‐related signaling and suppressed NSCLC cells proliferation by inducing cell cycle arrest and/or apoptosis, suggesting that miR‐134 functions as a tumour suppressor in NSCLC. Further mechanistic investigation including RNAi and rescue experiments suggested that the down‐regulation of EGFR by miR‐134 partially contributes to the antiproliferative role of miR‐134. Last, in vivo experiments demonstrated that miR‐134 suppressed tumour growth of A549 xenograft in nude mice. Taken together, our findings suggest that miR‐134 inhibits non‐small cell lung cancer growth by targeting the EGFR.
Collapse
Affiliation(s)
- Qin Qin
- Department of Radiation Oncology (Chest Section), Shandong Cancer Hospital and Institute, Shandong University, Jinan, China.,Department of Radiation Oncology (Chest Section), Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, China
| | - Furong Wei
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China
| | - Jianbo Zhang
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong University, Jinan, China
| | - Xingwu Wang
- Basic Research Center, Shandong Cancer Hospital and Institute, Shandong University, Jinan, China
| | - Baosheng Li
- Department of Radiation Oncology (Chest Section), Shandong Cancer Hospital and Institute, Shandong University, Jinan, China. .,Department of Radiation Oncology (Chest Section), Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
44
|
Pastorkova Z, Skarda J, Andel J. The role of microRNA in metastatic processes of non-small cell lung carcinoma. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2016; 160:343-57. [PMID: 27108604 DOI: 10.5507/bp.2016.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 04/08/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND MicroRNAs are small non-coding one-stranded RNA molecules that play an important role in the post-transcriptional regulation of genes. Bioinformatic predictions indicate that each miRNA can regulate hundreds of target genes. MicroRNA expression can be associated with various cellular processes leading to the metastasis of malignant tumours including non-small cell lung carcinoma. This review summarizes current knowledge on the role of microRNAs in NSCLC metastasis to the brain and lymph nodes. METHODS A search of the NCBI/PubMed database for publications on expression levels and the mechanisms of microRNA action in NSCLC metastasis. RESULTS AND CONCLUSION Dysregulation of microRNAs in NSCLC can be associated with brain and lymph node metastasis. There are differences in microRNA expression profiling between NSCLC with and without metastases but it is currently not possible to reliably predict the site of metastasis in NSCLC. Based on data from RNAmicroarrays, bioinformatics analysis is able to predict the target genes of highlighted microRNAs, providing us with complex information about cancer cell features such as enhanced proliferation, migration and invasion. Such microRNAs may then be knocked-down using siRNAs or substituted with miRNA mimics. RNA microarray profiling may thus be a useful tool to select up- or down-regulated microRNAs. A number of authors suggest that microRNAs could serve as biomarkers and therapeutic targets in the treatment of NSCLC metastasis.
Collapse
Affiliation(s)
- Zuzana Pastorkova
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | - Jozef Skarda
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | - Jozef Andel
- Department of Oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| |
Collapse
|
45
|
Wang Y, Han R, Chen Z, Fu M, Kang J, Li K, Li L, Chen H, He Y. A transcriptional miRNA-gene network associated with lung adenocarcinoma metastasis based on the TCGA database. Oncol Rep 2016; 35:2257-69. [PMID: 26781266 DOI: 10.3892/or.2016.4560] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 11/20/2015] [Indexed: 11/05/2022] Open
Abstract
Lung adenocarcinoma is the most common subtype of non-small cell lung cancer (NSCLC), leading to the largest number of cancer-related deaths worldwide. The high mortality rate may be attributed to the delay of detection. Therefore, it is of great importance to explore the mechanism of lung adenocarcinoma metastasis and the strategy to block metastasis of the disease. We searched and downloaded mRNA and miRNA expression data and clinical data from The Cancer Genome Atlas (TCGA) database to identify differences in mRNA and miRNA expression of primary tumor tissues from lung adenocarcinoma that did and did not metastasize. In addition, combined with bioinformatic prediction, we constructed an miRNA-target gene regulatory network. Finally, we employed RT-qPCR to validate the bioinformatic approach by determining the expression of 10 significantly differentially expressed genes which were also putative targets of several dysregulated miRNAs. RT-qPCR results indicated that the bioinformatic approach in our study was acceptable. Our data suggested that some of the genes including PKM2, STRAP and FLT3, may participate in the pathology of lung adenocarcinoma metastasis and could be applied as potential markers or therapeutic targets for lung adenocarcinoma.
Collapse
Affiliation(s)
- Yubo Wang
- Department of Respiratory Medicine, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Rui Han
- Department of Respiratory Medicine, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Zhaojun Chen
- Department of Respiratory Medicine, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Ming Fu
- Department of Respiratory Medicine, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Jun Kang
- Department of Respiratory Medicine, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Kunlin Li
- Department of Respiratory Medicine, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Li Li
- Department of Respiratory Medicine, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Hengyi Chen
- Department of Respiratory Medicine, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Yong He
- Department of Respiratory Medicine, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| |
Collapse
|
46
|
The Role of Dysregulated MicroRNA Expression in Lung Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 911:1-8. [DOI: 10.1007/5584_2016_219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
47
|
Zhang W, Liu K, Liu S, Ji B, Wang Y, Liu Y. MicroRNA-133a functions as a tumor suppressor by targeting IGF-1R in hepatocellular carcinoma. Tumour Biol 2015; 36:9779-9788. [PMID: 26156803 DOI: 10.1007/s13277-015-3749-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/02/2015] [Indexed: 02/08/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs and have critical roles in tumorigenesis and metastasis. A growing body of evidence showed that microRNA-133a (miR-133a) was downregulated and played tumor suppressor roles in gastric, colorectal, bladder, and lung cancer. However, the role and underlying molecular mechanism of miR-133a in hepatocellular carcinoma (HCC) remain unclear. In this study, we analyzed the expression of miR-133a in HCC tissues and HCC cell lines. We find that miR-133a was downregulated in HCC tissues and cell lines and that miR-133a expression negatively correlated with tumor differentiation (P < 0.01), TNM stage (P < 0.01), and lymph node metastasis (P < 0.01). Then, functional studies demonstrate that restoration of miR-133a in HepG2 cells significantly suppressed proliferation, colony formation, migration, and invasion, induced cell cycle arrest at G0/G1 stage and cell apoptosis in vitro, and decreased tumor size and weight in a nude mouse HepG2 xenograft model. Using bioinformatics method and dual luciferase assays identified insulin-like growth factor 1 receptor (IGF-1R) as a direct target of miR-133a in HCC cells. Furthermore, overexpression of miR-133a inhibited activation AKT and ERK signal pathway, which contributed to suppression of HCC cell growth. These findings suggest that miR-133a may act as a tumor suppressor and inhibited survival of HCC cells by targeting IGF-1R.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Hospital of Jilin University, Changchun, 130021, Jilin Province, China.
| | - Kai Liu
- Department of Hepatobiliary and Pancreatic Surgery, the First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Songyang Liu
- Department of Hepatobiliary and Pancreatic Surgery, the First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Bai Ji
- Department of Hepatobiliary and Pancreatic Surgery, the First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Yingchao Wang
- Department of Hepatobiliary and Pancreatic Surgery, the First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Yahui Liu
- Department of Hepatobiliary and Pancreatic Surgery, the First Hospital of Jilin University, Changchun, 130021, Jilin Province, China.
| |
Collapse
|
48
|
RBMMMDA: predicting multiple types of disease-microRNA associations. Sci Rep 2015; 5:13877. [PMID: 26347258 PMCID: PMC4561957 DOI: 10.1038/srep13877] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/07/2015] [Indexed: 12/20/2022] Open
Abstract
Accumulating evidences have shown that plenty of miRNAs play fundamental and important roles in various biological processes and the deregulations of miRNAs are associated with a broad range of human diseases. However, the mechanisms underlying the dysregulations of miRNAs still have not been fully understood yet. All the previous computational approaches can only predict binary associations between diseases and miRNAs. Predicting multiple types of disease-miRNA associations can further broaden our understanding about the molecular basis of diseases in the level of miRNAs. In this study, the model of Restricted Boltzmann machine for multiple types of miRNA-disease association prediction (RBMMMDA) was developed to predict four different types of miRNA-disease associations. Based on this model, we could obtain not only new miRNA-disease associations, but also corresponding association types. To our knowledge, RBMMMDA is the first model which could computationally infer association types of miRNA-disease pairs. Leave-one-out cross validation was implemented for RBMMMDA and the AUC of 0.8606 demonstrated the reliable and effective performance of RBMMMDA. In the case studies about lung cancer, breast cancer, and global prediction for all the diseases simultaneously, 50, 42, and 45 out of top 100 predicted miRNA-disease association types were confirmed by recent biological experimental literatures, respectively.
Collapse
|
49
|
Mitchelson KR, Qin WY. Roles of the canonical myomiRs miR-1, -133 and -206 in cell development and disease. World J Biol Chem 2015; 6:162-208. [PMID: 26322174 PMCID: PMC4549760 DOI: 10.4331/wjbc.v6.i3.162] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 03/13/2015] [Accepted: 05/28/2015] [Indexed: 02/05/2023] Open
Abstract
MicroRNAs are small non-coding RNAs that participate in different biological processes, providing subtle combinational regulation of cellular pathways, often by regulating components of signalling pathways. Aberrant expression of miRNAs is an important factor in the development and progression of disease. The canonical myomiRs (miR-1, -133 and -206) are central to the development and health of mammalian skeletal and cardiac muscles, but new findings show they have regulatory roles in the development of other mammalian non-muscle tissues, including nerve, brain structures, adipose and some specialised immunological cells. Moreover, the deregulation of myomiR expression is associated with a variety of different cancers, where typically they have tumor suppressor functions, although examples of an oncogenic role illustrate their diverse function in different cell environments. This review examines the involvement of the related myomiRs at the crossroads between cell development/tissue regeneration/tissue inflammation responses, and cancer development.
Collapse
|
50
|
MicroRNAs and Growth Factors: An Alliance Propelling Tumor Progression. J Clin Med 2015; 4:1578-99. [PMID: 26287249 PMCID: PMC4555078 DOI: 10.3390/jcm4081578] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 02/06/2023] Open
Abstract
Tumor progression requires cancer cell proliferation, migration, invasion, and attraction of blood and lymph vessels. These processes are tightly regulated by growth factors and their intracellular signaling pathways, which culminate in transcriptional programs. Hence, oncogenic mutations often capture growth factor signaling, and drugs able to intercept the underlying biochemical routes might retard cancer spread. Along with messenger RNAs, microRNAs play regulatory roles in growth factor signaling and in tumor progression. Because growth factors regulate abundance of certain microRNAs and the latter modulate the abundance of proteins necessary for growth factor signaling, the two classes of molecules form a dense web of interactions, which are dominated by a few recurring modules. We review specific examples of the alliance formed by growth factors and microRNAs and refer primarily to the epidermal growth factor (EGF) pathway. Clinical applications of the crosstalk between microRNAs and growth factors are described, including relevance to cancer therapy and to emergence of resistance to specific drugs.
Collapse
|