1
|
Lzaod S, Sharma S, Das S, Dutta T. Harnessing recombinant Bacillus licheniformis CotA laccase for electrochemical detection of catechol. J Biotechnol 2025; 403:30-39. [PMID: 40147784 DOI: 10.1016/j.jbiotec.2025.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Laccases, known for their ability to oxidize a broad range of substrates and catalyze multiple reactions, offer tremendous potential for varied applications. Despite their widespread presence in nature, research has primarily focused on fungal laccases. However, fungal laccases are susceptible to extreme conditions and inhibitors, hindering their widespread industrial use. Under such circumstances, a burgeoning interest has surrounded extremophilic and cost-effective bacterial laccases. Consequently, we explored the potential of recombinant Bacillus licheniformis laccase (CotA) in the fabrication of an electrochemical biosensor for the detection of catechol, an environmental pollutant. The biosensor was constructed by modifying a screen-printed electrode with CotA encapsulated in a conducting polymer (PEDOT:PSS)/chitosan film. CotA can oxidize catechol, and this step enabled the detection of catechol through amperometric measurements. The biosensor demonstrated competitive analytical features to fungal laccases with a low detection limit (1.4μM), high sensitivity (42.637 μAmM-1) and excellent storage stability retaining 90 % of its initial activity after 40 days of storage at 4 °C. Furthermore, it successfully detected catechol in spiked tap and river water samples making it an effective and efficient solution for monitoring catechol in real environmental samples.
Collapse
Affiliation(s)
- Stanzin Lzaod
- Enzyme Technology Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sumit Sharma
- Centre for Applied Research in Electronics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Samaresh Das
- Centre for Applied Research in Electronics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Tanmay Dutta
- Enzyme Technology Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
2
|
Jeyabalan J, Veluchamy A, Narayanasamy S. Production optimization, characterization, and application of a novel thermo- and pH-stable laccase from Bacillus drentensis 2E for bioremediation of industrial dyes. Int J Biol Macromol 2025; 308:142557. [PMID: 40158574 DOI: 10.1016/j.ijbiomac.2025.142557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
Environmental pollution driven by rapid industrialization and urbanization, has become serious concern due to adverse health effects. Among various bioremediation strategies, laccase, an oxidoreductase enzyme with wide substrate range and high redox-potential (0.4-0.8 V) has garnered significant attention due to its ability to oxidize various organic pollutants into non-toxic products. However, its practical application is often limited due to susceptibility to extreme pH and inhibitory compounds present in wastewater. To overcome this challenge, bacterial laccase, also known as versatile laccases, offer superior stability under harsh environmental conditions making them ideal for bioremediation. Furthermore, isolating native bacterium from contaminated sites enhances their potential, as these organisms are naturally adapted to pollutant-rich environments with intrinsic degradation ability. In this study, Bacillus drentensis 2E was isolated from dye-effluent release site. Laccase production was systematically optimized by One-Factor-at-a-Time, Plackett-Burman Design, and Central Composite Design, yielding a 2.45-fold increase in activity compared to unoptimized condition. Optimized media composition is as follows (g/L): KNO3-5.034,Glucose-3, KH2PO4-0.3,MgSO4-0.3, NaCl-0.55, CaCl2-0.55, CuSO4-0.178 mM, inoculum volume-3.54 %. The enzyme was further characterized for kinetic properties against ABTS, guaiacol and syringaldazine. It demonstrated exceptional stability across a wide temperature (20 ± 1 °C-70 ± 1 °C) and pH range (3.0 ± 0.01-8.0 ± 0.01) with heavy metal tolerance to Ca2+, Mn2+, Mg2+,Zn2+,Cu2+,Co2+,Ni2+. Also, BDLaccase effectively degraded Acid Red-27 (99.76 ± 2.27 %) and Direct Blue-6 (67.43 ± 2.31 %) within 5 h, as confirmed using UV-Vis spectroscopy, FT-IR, and LC-MS. These findings suggests that, BDLaccase is a robust biocatalyst for bioremediation especially in treatment of dyes due to its broad stability and efficiency.
Collapse
Affiliation(s)
- Jothika Jeyabalan
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Ajithkumar Veluchamy
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Selvaraju Narayanasamy
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| |
Collapse
|
3
|
Pant R, Kumar R, Sharma S, Karuppasamy R, Veerappapillai S. Exploring the potential of Halalkalibacterium halodurans laccase for endosulfan and chlorophacinone degradation: insights from molecular docking and molecular dynamics simulations. J Biomol Struct Dyn 2025; 43:742-756. [PMID: 37990551 DOI: 10.1080/07391102.2023.2283165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 11/06/2023] [Indexed: 11/23/2023]
Abstract
Pesticides are widely used in agriculture but at the same time, a majority of them are known to cause serious harm to health and the environment. In the recent past, laccases have been reported as key enzymes having the ability to degrade pollutants by converting them into less toxic forms. In this investigation, laccase from polyextremophilic bacterium Halalkalibacterium halodurans C-125 was analyzed for its structural, physicochemical, and functional characterization using in silico approaches. The 3D model of the said enzyme is unknown; therefore, the model was generated by template-independent modeling using ROBETTA, I-TASSER, and Alphafold server. The best-generated model from Alphafold with a confidence of 0.95 was validated from ERRAT and Verify 3D scores of 89.95 and 91.80%, respectively. The Ramachandran plot generated using the PROCHECK server further predicted the accuracy of the model with 93.7% and 5.9% of residues present in most favored and additional allowed regions of the plot respectively. The active sites, ion binding sites, and subcellular localization of laccase were also predicted. The generated model was docked with 121 pollutants (pesticides, insecticides, herbicides, fungicides, and rodenticides) for its degradation potential towards these pollutants. Two ligands chlorophacinone (based on the highest binding energy) and endosulfan (based on agricultural uses) were selected for molecular dynamic simulation studies. Endosulfan as a pesticide is banned but in some countries governments allow its use for special purposes which need serious consideration on developing bioremediation approaches for endosulfan degradation. MD simulation studies revealed that both chlorophacinone and endosulfan form hydrogen bonds and hydrophobic bonds with the active site of laccase and chlorophacinone-laccase complex were more stable in comparison to endosulfan. The present investigation provides insight into the structural features of laccase and its potential for the degradation of pesticides which can be further validated by experimental data.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rajat Pant
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, India
| | - Ravi Kumar
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, India
- Department of Biological Sciences and Engineering, Netaji Subhas Institute of Technology (University of Delhi), New Delhi, India
| | - Shilpa Sharma
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, India
| | - Ramanathan Karuppasamy
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Shanthi Veerappapillai
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
4
|
Maati J, Polak J, Janczarek M, Grąz M, Smaali I, Jarosz-Wilkołazka A. Biochemical characterization of a recombinant laccase from Halalkalibacterium halodurans C-125 and its application in the biotransformation of organic compounds. Biotechnol Lett 2024; 46:1199-1218. [PMID: 39466517 PMCID: PMC11550293 DOI: 10.1007/s10529-024-03532-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/20/2024] [Accepted: 09/16/2024] [Indexed: 10/30/2024]
Abstract
OBJECTIVES This study aimed to produce an engineered recombinant laccase from extremophilic Halalkalibacterium halodurans C-125 (Lac-HhC-125) with higher protein yield, into a more active conformation and with properties that meet the fundamental needs of biotechnological application. RESULTS The rLac-HhC125 was partially purified by size exclusion chromatography and concentrated by ultrafiltration (10 kDa) with a yield of 57.6%. Oxidation reactions showed that adding 2 mM CuSO4 to the assay solution led to activating the laccase. To increase its initial activity, the rLac-HhC125 was treated at 50 °C for 20 min before the assays, improving its performance by fourfold using the syringaldazine as a substrate. When treated with EDTA, methanol, ethanol, and DMSO, the rLac-HhC125 maintained more than 80% of its original activity. Interestingly, the acetonitrile induced a twofold activity of the rLac-HhC125. The putative rLac-HhC125 demonstrated a capability of efficient transformation of different organic compounds at pH 6, known as dye precursors, into coloured molecules. CONCLUSION The rLac-HhC125 was active at high temperatures and alkaline pH, exhibited tolerance to organic solvents, and efficiently transformed different hydroxy derivatives into coloured compounds, which indicates that it can be used in various biotechnological processes.
Collapse
Affiliation(s)
- Jihene Maati
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB-LR11ES24), National Institute of Applied Sciences and Technology INSAT-BP 676, University of Carthage, 1080, Tunis Cedex, Tunisia
| | - Jolanta Polak
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Monika Janczarek
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Marcin Grąz
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Issam Smaali
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB-LR11ES24), National Institute of Applied Sciences and Technology INSAT-BP 676, University of Carthage, 1080, Tunis Cedex, Tunisia
| | - Anna Jarosz-Wilkołazka
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| |
Collapse
|
5
|
Guo E, Zhao L, Li Z, Chen L, Li J, Lu F, Wang F, Lu K, Liu Y. Biodegradation of bisphenol A by a Pichia pastoris whole-cell biocatalyst with overexpression of laccase from Bacillus pumilus and investigation of its potential degradation pathways. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134779. [PMID: 38850935 DOI: 10.1016/j.jhazmat.2024.134779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024]
Abstract
Bisphenol A (BPA), an endocrine disrupter with estrogen activity, can infiltrate animal and human bodies through the food chain. Enzymatic degradation of BPA holds promise as an environmentally friendly approach while it is limited due to lower stability and recycling challenges. In this study, laccase from Bacillus pumilus TCCC 11568 was expressed in Pichia pastoris (fLAC). The optimal catalytic conditions for fLAC were at pH 6.0 and 80 °C, with a half-life T1/2 of 120 min at 70 °C. fLAC achieved a 46 % degradation rate of BPA, and possible degradation pathways were proposed based on identified products and reported intermediates of BPA degradation. To improve its stability and degradation capacity, a whole-cell biocatalyst (WCB) was developed by displaying LAC (dLAC) on the surface of P. pastoris GS115. The functionally displayed LAC demonstrated enhanced thermostability and pH stability along with an improved BPA degradation ability, achieving a 91 % degradation rate. Additionally, dLAC maintained a degradation rate of over 50 % after the fourth successive cycles. This work provides a powerful catalyst for degrading BPA, which might decontaminate endocrine disruptor-contaminated water through nine possible pathways.
Collapse
Affiliation(s)
- Enping Guo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Lei Zhao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Ziyuan Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Lei Chen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jingwen Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Fenghua Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Kui Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
6
|
Mwabulili F, Xie Y, Sun S, Ma W, Li Q, Yang Y, Jia H, Li X. Thermo-Alkali-Tolerant Recombinant Laccase from Bacillus swezeyi and Its Degradation Potential against Zearalenone and Aflatoxin B 1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13371-13381. [PMID: 38809574 DOI: 10.1021/acs.jafc.4c01304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The enzymatic biodegradation of mycotoxins in food and feed has attracted the most interest in recent years. In this paper, the laccase gene from Bacillus swezeyi was cloned and expressed in Escherichia coli BL 21(D3). The sequence analysis indicated that the gene consisted of 1533 bp. The purified B. swezeyi laccase was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis -12% with an estimated molecular weight of 56.7 kDa. The enzyme is thermo-alkali-tolerant, displaying the optimal degradation of zearalenone (ZEN) and aflatoxin B1 (AFB1) at pH 8 and 9, with incubation temperatures of 55 and 50 °C, respectively, within 24 h. The degradation potentials of the 50 μg of the enzyme against ZEN (5.0 μg/mL) and AFB1 (2.5 μg/mL) were 99.60 and 96.73%, respectively, within 24 h. To the best of our knowledge, this is the first study revealing the recombinant production of laccase from B. swezeyi, its biochemical properties, and potential use in ZEN and AFB1 degradation in vitro and in vivo.
Collapse
Affiliation(s)
- Fred Mwabulili
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan 450001, China
- Department of Food Science and Technology, College of Agricultural Sciences and Technology, Mbeya University of Science and Technology, P.O. Box 131, Mbeya 53119, Tanzania
| | - Yanli Xie
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Shumin Sun
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Weibin Ma
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Qian Li
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Yuhui Yang
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Hang Jia
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Xiao Li
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan 450001, China
| |
Collapse
|
7
|
Xu Y, Anker Y, Talawar MP. Degradation of tetracycline, oxytetracycline & ampicillin by purified multiple copper oxidase like laccase from Stentrophomonas sp. YBX1. Braz J Microbiol 2024; 55:1529-1543. [PMID: 38340257 PMCID: PMC11153415 DOI: 10.1007/s42770-024-01247-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 01/02/2024] [Indexed: 02/12/2024] Open
Abstract
Multiple copper oxidase (MCO) like laccase is widely distributed in higher plant, fungi and bacteria. This study identified MCO like laccase producing bacterium isolated from a wastewater treatment plant based on 16S rRNA sequence analysis, and they were further confirmed by phylogenetic reconstruction. Biochemical and gene characterization of MCO like laccase from Stenotrophomonas sp. YBX1 is presented. Purification of MCO like laccase was carried out by ion exchange HQ Trap column and followed by gel filtration spheracryl S-100 column. The purified MCO like laccase from Stenotrophomonas sp. YBX1 shows a total activity of 1252 units and specific activity 391.2 U/mg and protein concentration 0.32 mg/mL. In SDS PAGE, the approximate molecular mass was found at 66 kDa and further confirmed from an MS spectrum of MALDI-TOF. The purified MCO like laccase is capable of degradation of antibiotics such as tetracycline completely, whereas oxytetracycline (78%) and ampicillin (62%) degraded within 96 min without any redox mediators at pH 5 and 30 ºC. Its degradation pathway was based on identification of metabolites by LC-MS spectrum. The enzymatic degradation may be used in advanced treatment of antibiotics containing wastewater.
Collapse
Affiliation(s)
- Yanbin Xu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yaakov Anker
- Department of Chemical Engineering, Ariel University, 40700, Ariel, Israel
| | - Manjunatha P Talawar
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
- Department of Chemical Engineering, Ariel University, 40700, Ariel, Israel.
- Department of Life Science, Garden City University, Bangalore, 580049, India.
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510 006, China.
| |
Collapse
|
8
|
Abdi Dezfouli R, Esmaeilidezfouli E. Optimizing laccase selection for enhanced outcomes: a comprehensive review. 3 Biotech 2024; 14:165. [PMID: 38817737 PMCID: PMC11133268 DOI: 10.1007/s13205-024-04015-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024] Open
Abstract
Despite their widespread applications in sectors such as pulp and paper, textile, food and beverage, pharmaceuticals, and biofuel production, laccases encounter challenges related to their activity and stability under varying reaction conditions. This review accumulates data on the complex interplay between laccase characteristics and reaction conditions for maximizing their efficacy in diverse biotechnological processes. Benefits of organic media such as improved substrate selectivity and reaction control, and their risks such as enzyme denaturation and reduced activity are reported. Additionally, the effect of reaction conditions such as pH and temperature on laccase activity and stability are gathered and reported. Sources like Bacillus pumilus, Alcaligenes faecalis, Bacillus clausii, and Bacillus tequilensis SN4 are producing laccases that are both thermo-active and alkali-active. Additionally, changes induced by the presence of various substances within reaction media such as metals, inhibitors, and organic solvents are also reported. Bacillus pumilus and Bacillus licheniformis LS04 produce the most resistant laccases in this case. Finally, the remarkable laccases have been highlighted and the proper laccase source for each industrial application is suggested. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04015-5.
Collapse
Affiliation(s)
- Ramin Abdi Dezfouli
- Pharmaceutical Biotechnology Department, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, 1411413137, Iran
| | - Ensieh Esmaeilidezfouli
- Microbial Biotechnology Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
9
|
Muhammad MA, Balogun EO, Sallau AB, Chia MA, Shuaibu MN. Identification of novel laccase from cyanobacterium Microcystis flos-aquae and enhanced azo dye bioremediation potential. BIORESOURCE TECHNOLOGY 2024; 399:130587. [PMID: 38490464 DOI: 10.1016/j.biortech.2024.130587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Textile industries discharge up to 280,000 tons of dye waste annually, resulting in global pollution and health risks. In Nigeria and other African countries, persistent dyes threaten aquatic life and human health. This study introduces a cost-effective, enzyme-mediated bioremediation alternative using a novel laccase from the cyanobacteriumMicrocystis flos-aquae. This purified enzyme yielded 0.55 % (w/w)with significant activity at 40 °C and pH 4.00. Kinetic studies showed the dependence of M. flos-aquae laccase on Cu2+and its inhibition by EDTA and Fe2+. The efficacy of the enzyme was demonstrated through rapid decolorization of the azo dye Cibacron Brilliant Blue over a wide temperature and pH range. As this enzyme effectively decolorizes dyes across a broad temperature and pH range, it offers a promising solution for bioremediation of textile effluents.
Collapse
Affiliation(s)
| | - Emmanuel Oluwadareus Balogun
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria; Africa Centre of Excellence on New Pedagogies in Engineering Education (ACENPEE), Nigeria.
| | | | - Mathias Ahii Chia
- Department of Botany, Ahmadu Bello University, Zaria, Nigeria; Department of Ecology, University of Brasilia, Brazil.
| | | |
Collapse
|
10
|
Pandey S, Gupta S. Exploring laccase: a sustainable enzymatic solution for the paper recycling domain. Arch Microbiol 2024; 206:211. [PMID: 38602547 DOI: 10.1007/s00203-024-03927-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 04/12/2024]
Abstract
The global advocacy of resource conservation and waste management emphasizes the significance of sustainable practices, particularly in sectors such as paper manufacturing and recycling. Currently, conventional chemical methods are predominant for paper production, necessitating the use of substantial amount of toxic chemicals. This chemical-intensive approach compromises the recycled fiber quality, generates hazardous effluent causing serious ecological threats which triggers regulatory complexities for the mills. To address these challenges modern research suggests adopting sustainable eco-friendly practices such as employing enzymes. This review aims to explore the applicability of 'laccase' enzyme for paper recycling, investigating its properties and contribution to improved recycling practices. By delving into the potential application of laccase integration into the papermaking process, this article sheds light on the limitations inherent in traditional methods surmounted within both research and translational landscapes. Culture and process optimization studies, supporting the technological improvements and the future prospects have been documented.
Collapse
Affiliation(s)
- Sheetal Pandey
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Newai, Rajasthan, 304022, India
| | - Sarika Gupta
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Newai, Rajasthan, 304022, India.
| |
Collapse
|
11
|
Rahman MU, Ullah MW, Shah JA, Sethupathy S, Bilal H, Abdikakharovich SA, Khan AU, Khan KA, Elboughdiri N, Zhu D. Harnessing the power of bacterial laccases for xenobiotic degradation in water: A 10-year overview. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170498. [PMID: 38307266 DOI: 10.1016/j.scitotenv.2024.170498] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/10/2023] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
Industrialization and population growth are leading to the production of significant amounts of sewage containing hazardous xenobiotic compounds. These compounds pose a threat to human and animal health, as well as the overall ecosystem. To combat this issue, chemical, physical, and biological techniques have been used to remove these contaminants from water bodies affected by human activity. Biotechnological methods have proven effective in utilizing microorganisms and enzymes, particularly laccases, to address this problem. Laccases possess versatile enzymatic characteristics and have shown promise in degrading different xenobiotic compounds found in municipal, industrial, and medical wastewater. Both free enzymes and crude enzyme extracts have demonstrated success in the biotransformation of these compounds. Despite these advancements, the widespread use of laccases for bioremediation and wastewater treatment faces challenges due to the complex composition, high salt concentration, and extreme pH often present in contaminated media. These factors negatively impact protein stability, recovery, and recycling processes, hindering their large-scale application. These issues can be addressed by focusing on large-scale production, resolving operation problems, and utilizing cutting-edge genetic and protein engineering techniques. Additionally, finding novel sources of laccases, understanding their biochemical properties, enhancing their catalytic activity and thermostability, and improving their production processes are crucial steps towards overcoming these limitations. By doing so, enzyme-based biological degradation processes can be improved, resulting in more efficient removal of xenobiotics from water systems. This review summarizes the latest research on bacterial laccases over the past decade. It covers the advancements in identifying their structures, characterizing their biochemical properties, exploring their modes of action, and discovering their potential applications in the biotransformation and bioremediation of xenobiotic pollutants commonly present in water sources.
Collapse
Affiliation(s)
- Mujeeb Ur Rahman
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Junaid Ali Shah
- College of Life Sciences, Jilin University, Changchun 130012, PR China; Fergana Medical Institute of Public Health Uzbekistan, Fergana 150110, Uzbekistan
| | - Sivasamy Sethupathy
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Hazart Bilal
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, PR China
| | | | - Afaq Ullah Khan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Khalid Ali Khan
- Applied College, Mahala Campus and the Unit of Bee Research and Honey Production/Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
| | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha'il, Ha'il 81441, Saudi Arabia; Chemical Engineering Process Department, National School of Engineers Gabes, University of Gabes, Gabes 6029, Tunisia
| | - Daochen Zhu
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
12
|
Panwar V, Lzaod S, Dutta T. Thermostable Bacterial Laccase: Catalytic Properties and Its Application in Biotransformation of Emerging Pollutants. ACS OMEGA 2023; 8:34710-34719. [PMID: 37779991 PMCID: PMC10536042 DOI: 10.1021/acsomega.3c03627] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023]
Abstract
Laccases have been predominantly reported in fungi, and primarily, fungal laccases are currently exploited in industrial applications. However, extremophilic bacterial laccases possess immense potential, as they can withstand extreme temperatures, pH, and salt concentrations. In addition, unlike fungal laccases, the production of bacterial laccases is cost-effective. Therefore, bacterial laccases are gaining significant attention for their large-scale applications. Previously, we reported a novel thermostable laccase (LacT) from Brevibacillus agri. Herein, we have confirmed that LacT shares a high sequence similarity with CotA laccase from Bacillus amyloliquefaciens. Peptide mass fingerprinting of LacT was conducted via matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF/MS-MS). Inductively coupled plasma-optical emission spectroscopic (ICP-OES) analysis revealed the presence of ∼3.95 copper ions per protein molecule. Moreover, the secondary and tertiary structure of LacT was studied using circular dichroism (CD) and fluorescence spectroscopy. The absence of notable shifts in CD and fluorescence spectra with an increase in temperature established that LacT remains intact even at elevated temperatures. Analysis of the thermal denaturation profile of LacT by thermogravimetric analysis (TGA) also confirmed its temperature stability. Thereafter, we exploited LacT in its application for the bioremediation of phenolic endocrine disruptors, namely, triclosan, 4,4'-dihydroxybiphenyl, and dienestrol. LacT oxidizes 4,4'-dihydroxybiphenyl and triclosan but no LacT activity was detected with dienestrol. The rate of biotransformation of 4,4'-dihydroxybiphenyl and triclosan increased in the presence of CuSO4 and a redox mediator, ABTS. Transformation of dienestrol was observed only with LacT in the presence of ABTS. This study establishes the application of LacT for the bioremediation of phenolic compounds.
Collapse
Affiliation(s)
- Varsha Panwar
- Enzyme
Technology Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Stanzin Lzaod
- Enzyme
Technology Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Tanmay Dutta
- Enzyme
Technology Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
13
|
Ali NS, Huang F, Qin W, Yang TC. A high throughput screening process and quick isolation of novel lignin-degrading microbes from large number of natural biomasses. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2023; 39:e00809. [PMID: 37583477 PMCID: PMC10423689 DOI: 10.1016/j.btre.2023.e00809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/14/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023]
Abstract
High throughput screening approaches can significantly speed up the identification of novel enzymes from natural microbial consortiums. A two-step high throughput screening process was proposed and explored to screen lignin-degrading microorganisms. By employing this modified culture enrichment method and screening based on enzyme activity, a total of 82 bacterial and 46 fungal strains were isolated from fifty decayed wood samples (100 liquid cultures) collected from the banks of the Ottawa River in Canada. Among them, ten bacterial and five fungal strains were selected and identified based on their high laccase activities by 16S rDNA and ITS gene sequencing, respectively. The study identified bacterial strains from various genera including Serratia, Enterobacter, Raoultella, and Bacillus, along with fungal counterparts including Mucor, Trametes, Conifera and Aspergillus. Moreover, Aspergillus sydowii (AORF21), Mucor sp. (AORF43), Trametes versicolor (AORF3) and Enterobacter sp. (AORB55) exhibited xylanase and β- glucanase activities in addition to laccase production. The proposed approach allowed for the quick identification of promising consortia and enhanced the chance of isolating desired strains based on desired enzyme activities. This method is not limited to lignocellulose and lignin-degrading microorganisms but can be applied to identify novel microbial strains and enzymes from different natural samples.
Collapse
Affiliation(s)
- Nadia Sufdar Ali
- Department of Biology, Lakehead University, Thunder Bay, ON, Canada
- Aquatic and Crop Resource Development Research Centre, National Research Council, Ottawa, ON, Canada
| | - Fang Huang
- Aquatic and Crop Resource Development Research Centre, National Research Council, Ottawa, ON, Canada
| | - Wensheng Qin
- Department of Biology, Lakehead University, Thunder Bay, ON, Canada
| | - Trent Chunzhong Yang
- Aquatic and Crop Resource Development Research Centre, National Research Council, Ottawa, ON, Canada
| |
Collapse
|
14
|
Wang X, Chen P, Liu Z, Liu Z, Chen L, Li H, Qu J. Purification and characterization of an alkali-organic solvent-stable laccase with dye decolorization capacity from newly isolated Lysinibacillus fusiformis W11. Braz J Microbiol 2023; 54:1935-1942. [PMID: 37581711 PMCID: PMC10484895 DOI: 10.1007/s42770-023-01091-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/28/2023] [Indexed: 08/16/2023] Open
Abstract
A new Lysinibacillus fusiformis strain with abundant laccase activity was isolated from soil under forest rotted leaf and identified as L. fusiformis W11 based on its 16S rRNA gene sequence and physiological characteristics. The laccase LfuLac was purified and characterized. The optimum temperature and pH of LfuLac on guaiacol were 45 °C and pH 9, respectively. LfuLac kept 78%, 88%, 92%, 74%, and 47% of activity at pH 7-11, respectively, suggesting the alkali resistance of the enzyme. The effects of various metal ions on LfuLac showed that Cu2+, Mg2+, and Na+ were beneficial to laccase activity and 10 mM Cu2+ increased the activity of LfuLac to 216%. LfuLac showed about 90% activity at 5% organic solvents and more than 60% activity at 20%, indicating its resistance to organic solvents. In addition, LfuLac decolorized different kinds of dyes. This study enriched our knowledge about laccase from L. fusiformis W11 and its potential industrial applications.
Collapse
Affiliation(s)
- Xifeng Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China.
| | - Pengxiao Chen
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou, 450001, China
| | - Zhi Liu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Zhihua Liu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Liping Chen
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Haifeng Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Jianhang Qu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| |
Collapse
|
15
|
Adigüzel AO, Könen-Adigüzel S, Cilmeli S, Mazmancı B, Yabalak E, Üstün-Odabaşı S, Kaya NG, Mazmancı MA. Heterologous expression, purification, and characterization of thermo- and alkali-tolerant laccase-like multicopper oxidase from Bacillus mojavensis TH309 and determination of its antibiotic removal potential. Arch Microbiol 2023; 205:287. [PMID: 37454356 DOI: 10.1007/s00203-023-03626-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Laccases or laccase-like multicopper oxidases have great potential in bioremediation to oxidase phenolic or non-phenolic substrates. However, their inability to maintain stability in harsh environmental conditions and against non-substrate compounds is one of the main reasons for their limited use. The gene (mco) encoding multicopper oxidase from Bacillus mojavensis TH309 were cloned into pET14b( +), expressed in Escherichia coli, and purified as histidine tagged enzyme (BmLMCO). The molecular weight of the enzyme was about 60 kDa. The enzyme exhibited laccase-like activity toward 2,6-dimethoxyphenol (2,6-DMP), syringaldazine (SGZ), and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS). The highest enzyme activity was recorded at 80 °C and pH 8. BmLMCO showed a half-life of ~ 305, 99, 50, 46, 36, and 20 min at 40, 50, 60, 70, 80, and 90 °C, respectively. It retained more than 60% of its activity after pre-incubation in the range of pH 5-12 for 60 min. The enzyme activity significantly increased in the presence of 1 mM of Cu2+. Moreover, BmLMCO tolerated various chemicals and showed excellent compatibility with organic solvents. The Michaelis constant (Km) and the maximum velocity (Vmax) values of BmLMCO were 0.98 mM and 93.45 µmol/min, respectively, with 2,6-DMP as the substrate. BmLMCO reduced the antibacterial activity of cefprozil, gentamycin, and erythromycin by 72.3 ± 1.5%, 79.6 ± 6.4%, and 19.7 ± 4.1%, respectively. This is the first revealing shows the recombinant production of laccase-like multicopper oxidase from any B. mojavensis strains, its biochemical properties, and potential for use in bioremediation.
Collapse
Affiliation(s)
- Ali Osman Adigüzel
- Department of Molecular Biology and Genetics, Faculty of Science, Ondokuz Mayıs University, Samsun, Turkey.
| | | | - Sümeyye Cilmeli
- Department of Molecular Biology and Genetics, Faculty of Science, Ondokuz Mayıs University, Samsun, Turkey
| | - Birgül Mazmancı
- Department of Biology, Faculty of Science, Mersin University, Mersin, Turkey
| | - Erdal Yabalak
- Department of Chemistry Technology, Vocational School of Technical Sciences, Mersin University, Mersin, Turkey
| | - Sevde Üstün-Odabaşı
- Department of Environmental Engineering, Ondokuz Mayıs University, Samsun, Turkey
| | - Nisa Gül Kaya
- Department of Molecular Biology and Genetics, Faculty of Science, Ondokuz Mayıs University, Samsun, Turkey
| | | |
Collapse
|
16
|
Cortés-Antiquera R, Márquez SL, Espina G, Sánchez-SanMartín J, Blamey JM. Recombinant expression and characterization of a new laccase, bioinformatically identified, from the Antarctic thermophilic bacterium Geobacillus sp. ID17. Extremophiles 2023; 27:18. [PMID: 37428266 DOI: 10.1007/s00792-023-01299-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 05/23/2023] [Indexed: 07/11/2023]
Abstract
Geobacillus sp. ID17 is a gram-positive thermophilic bacterium isolated from Deception Island, Antarctica, which has shown to exhibit remarkable laccase activity in crude extract at high temperatures. A bioinformatic search using local databases led to the identification of three putative multicopper oxidase sequences in the genome of this microorganism. Sequence analysis revealed that one of those sequences contains the four-essential copper-binding sites present in other well characterized laccases. The gene encoding this sequence was cloned and overexpressed in Escherichia coli, partially purified and preliminary biochemically characterized. The resulting recombinant enzyme was recovered in active and soluble form, exhibiting optimum copper-dependent laccase activity at 55 °C, pH 6.5 with syringaldazine substrate, retaining over 60% of its activity after 1 h at 55 and 60 °C. In addition, this thermophilic enzyme is not affected by common inhibitors SDS, NaCl and L-cysteine. Furthermore, biodecolorization assays revealed that this laccase is capable of degrading 60% of malachite green, 54% of Congo red, and 52% of Remazol Brilliant Blue R, after 6 h at 55 °C with aid of ABTS as redox mediator. The observed properties of this enzyme and the relatively straightforward overexpression and partial purification of it could be of great interest for future biotechnology applications.
Collapse
Affiliation(s)
- Rodrigo Cortés-Antiquera
- Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda, 3363, Estación Central, Santiago, Chile
- Fundación Biociencia, José Domingo Cañas, 2280, Ñuñoa, Santiago, Chile
| | | | - Giannina Espina
- Fundación Biociencia, José Domingo Cañas, 2280, Ñuñoa, Santiago, Chile
| | | | - Jenny M Blamey
- Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda, 3363, Estación Central, Santiago, Chile.
- Fundación Biociencia, José Domingo Cañas, 2280, Ñuñoa, Santiago, Chile.
| |
Collapse
|
17
|
Ayodeji FD, Shava B, Iqbal HMN, Ashraf SS, Cui J, Franco M, Bilal M. Biocatalytic Versatilities and Biotechnological Prospects of Laccase for a Sustainable Industry. Catal Letters 2023; 153:1932-1956. [DOI: 10.1007/s10562-022-04134-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/31/2022] [Indexed: 11/02/2022]
|
18
|
Lou H, Yang C, Gong Y, Li Y, Li Y, Tian S, Zhao Y, Zhao R. Edible fungi efficiently degrade aflatoxin B 1 in cereals and improve their nutritional composition by solid-state fermentation. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131139. [PMID: 36921416 DOI: 10.1016/j.jhazmat.2023.131139] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/14/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Aflatoxin B1 (AFB1) is extremely harmful to human and livestock. Laccase, a green catalyst, has been shown to effectively degrade AFB1 and can be obtained from edible fungi. The objective of this study was to screen edible fungi with high laccase activity and determine their effects on the degradation of AFB1 in cereals and the nutritional composition of the cereals through solid-state fermentation. Results from plate assays confirmed that 51 of the 55 tested edible fungi could secrete laccase. Submerged fermentation results showed that 17 of the 51 edible fungi had maximum laccase activity exceeding 100 U/L. The growth of different edible fungi varied significantly in corn, rice and wheat. More importantly, 6 edible fungi with high laccase activity and good growth could efficiently degrade AFB1 in cereals. We found for the first time that Ganoderma sinense could not only secrete highly active laccase and efficiently degrade AFB1 in corn by 92.91%, but also improve the nutritional quality of corn. These findings reveal that solid-state fermentation of cereals with edible fungi is an environmentally friendly and efficient approach for degrading AFB1 in cereals and improving the nutritional composition of cereals.
Collapse
Affiliation(s)
- Haiwei Lou
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; Department of Grain Science and Industry, Kansas State University, Manhattan 66506, USA
| | - Chuangming Yang
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Ying Gong
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yang Li
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan 66506, USA
| | - Shuangqi Tian
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yu Zhao
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Renyong Zhao
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
19
|
Kumar D, Bhardwaj R, Jassal S, Goyal T, Khullar A, Gupta N. Application of enzymes for an eco-friendly approach to textile processing. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:71838-71848. [PMID: 34651264 DOI: 10.1007/s11356-021-16764-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Textile industry is one of the oldest industries existing from several centuries. Major concern of the industry is to design, produce, and distribute yarn, cloth, and clothing. Diverse physical and chemical operations are required in order to achieve this. Environmental concerns related to textile industry have attained attention all around the world as it is generating large amounts of effluents having various toxic agents and chemicals. Enzymes have been suggested as the best possible alternative to replace or reduce these hazardous and toxic chemicals. Enzymes like amylase, cellulase, catalase, protease, pectinase, laccase, and lipase have widely been used in textile manufacturing processes. Use of enzymatic approach is very promising as they are eco-friendly, produce high-quality products, and lead to the reduction of energy, water, and time. This review highlights the significance of different enzymes employed in the textile industry at various stages along with the conventional textile processing.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Microbiology, DAV University, Jalandhar, Punjab, India.
| | - Raveena Bhardwaj
- Department of Microbiology, DAV University, Jalandhar, Punjab, India
| | - Sunena Jassal
- Department of Microbiology, Panjab University, BMS Block I, Sector 25, South Campus Panjab University, Chandigarh, India
| | - Tanya Goyal
- Department of Microbiology, Panjab University, BMS Block I, Sector 25, South Campus Panjab University, Chandigarh, India
| | - Aastha Khullar
- Department of Microbiology, Panjab University, BMS Block I, Sector 25, South Campus Panjab University, Chandigarh, India
| | - Naveen Gupta
- Department of Microbiology, Panjab University, BMS Block I, Sector 25, South Campus Panjab University, Chandigarh, India.
| |
Collapse
|
20
|
Välimets S, Pedetti P, Virginia LJ, Hoang MN, Sauer M, Peterbauer C. Secretory expression of recombinant small laccase genes in Gram-positive bacteria. Microb Cell Fact 2023; 22:72. [PMID: 37062846 PMCID: PMC10108450 DOI: 10.1186/s12934-023-02075-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/28/2023] [Indexed: 04/18/2023] Open
Abstract
BACKGROUND Laccases are multicopper enzymes that oxidize a wide range of aromatic and non-aromatic compounds in the presence of oxygen. The majority of industrially relevant laccases are derived from fungi and are produced in eukaryotic expression systems such as Pichia pastoris and Saccharomyces cerevisiae. Bacterial laccases for research purposes are mostly produced intracellularly in Escherichia coli, but secretory expression systems are needed for future applications. Bacterial laccases from Streptomyces spp. are of interest for potential industrial applications because of their lignin degrading activities. RESULTS In this study, we expressed small laccases genes from Streptomyces coelicolor, Streptomyces viridosporus and Amycolatopsis 75iv2 with their native signal sequences in Gram-positive Bacillus subtilis and Streptomyces lividans host organisms. The extracellular activities of ScLac, SvLac and AmLac expressed in S. lividans reached 1950 ± 99 U/l, 812 ± 57 U/l and 12 ± 1 U/l in the presence of copper supplementation. The secretion of the small laccases was irrespective of the copper supplementation; however, activities upon reconstitution with copper after expression were significantly lower, indicating the importance of copper during laccase production. The production of small laccases in B. subtilis resulted in extracellular activity that was significantly lower than in S. lividans. Unexpectedly, AmLac and ScLac were secreted without their native signal sequences in B. subtilis, indicating that B. subtilis secretes some heterologous proteins via an unknown pathway. CONCLUSIONS Small laccases from S. coelicolor, S. viridosporus and Amycolatopsis 75iv2 were secreted in both Gram-positive expression hosts B. subtilis and S. lividans, but the extracellular activities were significantly higher in the latter.
Collapse
Affiliation(s)
- Silja Välimets
- Department of Food Sciences and Technology, University of Natural Resources and Life Sciences, Institute of Food Technology, Muthgasse 18, Vienna, Vienna, 1190, Austria
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, Vienna, 1190, Austria
| | - Patricia Pedetti
- Food Microbiology, Wageningen University and Research, Droevendaalsesteeg 4, Wageningen, 6708 PB, The Netherlands
| | - Ludovika Jessica Virginia
- Department of Food Sciences and Technology, University of Natural Resources and Life Sciences, Institute of Food Technology, Muthgasse 18, Vienna, Vienna, 1190, Austria
| | - Mai Ngoc Hoang
- Department of Food Sciences and Technology, University of Natural Resources and Life Sciences, Institute of Food Technology, Muthgasse 18, Vienna, Vienna, 1190, Austria
- Department of Human Medicine, Institute of Immunology, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129, Oldenburg, Germany
| | - Michael Sauer
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, Vienna, 1190, Austria
| | - Clemens Peterbauer
- Department of Food Sciences and Technology, University of Natural Resources and Life Sciences, Institute of Food Technology, Muthgasse 18, Vienna, Vienna, 1190, Austria.
| |
Collapse
|
21
|
Maghraby Y, El-Shabasy RM, Ibrahim AH, Azzazy HMES. Enzyme Immobilization Technologies and Industrial Applications. ACS OMEGA 2023; 8:5184-5196. [PMID: 36816672 PMCID: PMC9933091 DOI: 10.1021/acsomega.2c07560] [Citation(s) in RCA: 171] [Impact Index Per Article: 85.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/11/2023] [Indexed: 05/27/2023]
Abstract
Enzymes play vital roles in diverse industrial sectors and are essential components of many industrial products. Immobilized enzymes possess higher resistance to environmental changes and can be recovered/recycled easily when compared to the free forms. The primary benefit of immobilization is protecting the enzymes from the harsh environmental conditions (e.g., elevated temperatures, extreme pH values, etc.). The immobilized enzymes can be utilized in various large-scale industries, e.g., medical, food, detergent, textile, and pharmaceutical industries, besides being used in water treatment plants. According to the required application, a suitable enzyme immobilization technique and suitable carrier materials are chosen. Enzyme immobilization techniques involve covalent binding, encapsulation, entrapment, adsorption, etc. This review mainly covers enzyme immobilization by various techniques and their usage in different industrial applications starting from 1992 until 2022. It also focuses on the multiscale operation of immobilized enzymes to maximize yields of certain products. Lastly, the severe consequence of the COVID-19 pandemic on global enzyme production is briefly discussed.
Collapse
Affiliation(s)
- Yasmin
R. Maghraby
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
| | - Rehan M. El-Shabasy
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
- Chemistry
Department, Faculty of Science, Menoufia
University, Shebin El-Kom 32512, Egypt
| | - Ahmed H. Ibrahim
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
- Center
for Materials Science, Zewail City of Science
and Technology, 6th of October 12578, Giza, Egypt
| | - Hassan Mohamed El-Said Azzazy
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
- Department
of Nanobiophotonics, Leibniz Institute for
Photonic Technology, Albert Einstein Str. 9, Jena 07745, Germany
| |
Collapse
|
22
|
Edoamodu CE, Nwodo UU. Decolourization of synthetic dyes by laccase produced from Bacillus sp. NU2. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2053341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Chiedu Epiphany Edoamodu
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Uchechukwu Uchechukwu Nwodo
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| |
Collapse
|
23
|
Zhang A, Hou Y, Wang Q, Wang Y. Characteristics and polyethylene biodegradation function of a novel cold-adapted bacterial laccase from Antarctic sea ice psychrophile Psychrobacter sp. NJ228. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129656. [PMID: 36104922 DOI: 10.1016/j.jhazmat.2022.129656] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Biotreatment of polyethylene (PE) waste is an emerging topic in environmental remediation; in particular, the degrading enzymes requires further exploration. This study described a novel cold-adapted laccase (PsLAC) from an Antarctic psychrophile and characterized its PE-degradation ability. Homology modeling revealed that PsLAC possessed a typical bacterial laccase catalytic structure and unique cold adaptation structural characteristics such as few hydrogen bonds. Recombinant PsLAC (rPsLAC) retained 54.3% residual activity at 0 ℃ and presented increased Km values at low temperatures and a relatively high kcat value (42.65 s-1). Collectively, these factors help resist cold stress. rPsLAC possessed substantial salt tolerance at 1.5 M NaCl, with 119.80% activity, and Cu2+ enhanced its activity to 127.10%. PE-degradation experiments indicated that 13.2% weight was lost, and the water contact angle was decreased to 74.6°. Polar functional groups such as carbonyl and carboxyl groups on PE surface were detected in Fourier transform infrared spectroscopy; X-ray diffraction exhibited that crystallinity reduced by 25%. Enormous damage to PE surface and interior was observed via scanning electron microscopy. Overall, PsLAC, with its unique cold-adapted catalytic structure and biochemical characteristics, could supplement the diversity of sources and properties of bacterial laccases and ensure PE-degradation with a novel cold-adapted enzyme resource.
Collapse
Affiliation(s)
- Ailin Zhang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yanhua Hou
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China.
| | - Quanfu Wang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China.
| | - Yatong Wang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
24
|
Recent Advancements in Biotechnological Applications of Laccase as a Multifunctional Enzyme. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.3.72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biotechnological and industrial processes involve applications of various microorganisms and enzymes, and laccase, as a multifunctional enzyme, is admired for its role in degrading a variety of substances. Laccase is a copper-containing oxidase enzyme that is usually found in insects, plants, and microorganisms including fungi and archaea. Several phenolic substrates are oxidized by laccases, which results in crosslinking. Various research work and industrial solutions have identified the true potential of laccases to degrade various aromatic polymers, and their plausible application in bioremediation and other industries is entirely conceivable. This review focuses on laccases as a multifunctional enzyme and provides an overview of its natural origin, catalytic mechanism, and various methods of production. Further, we discuss the various applications of laccase in the biotechnological arena. We observed that laccase can degrade and detoxify various synthetic compounds. The broad substrate specificity of the same makes it worthy for different fields of industrial applications such as food and bioremediation technology, textile and paper technology, biosensors and nanobiotechnology, biofuel, and various other applications, which are described in this paper. These recent developments in the application of laccase show the multifunctional role of laccase in industrial biotechnology and provide an outlook of laccase as a multifunctional enzyme at the forefront of biotechnology.
Collapse
|
25
|
Kumar A, Singh AK, Bilal M, Chandra R. Extremophilic Ligninolytic Enzymes: Versatile Biocatalytic Tools with Impressive Biotechnological Potential. Catal Letters 2022. [DOI: 10.1007/s10562-021-03800-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Chemical modification of laccase using phthalic and 2-octenyl succinic anhydrides: Enzyme characterization, stability, and its potential for clarification of cashew apple juice. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Purification and biochemical characterization of a new thermostable laccase from Enterococcus faecium A2 by a three-phase partitioning method and investigation of its decolorization potential. Arch Microbiol 2022; 204:533. [PMID: 35906438 DOI: 10.1007/s00203-022-03054-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/02/2022]
Abstract
Three-phase partitioning (TPP) is a simple, fast, cost-effective, and highly efficient process that can be used in the purification of laccases. In this study, microorganisms with laccase activity were isolated from water samples collected from the Agri-Diyadin hot spring. The isolate with the highest laccase activity was found to be the A2 strain. As a result of molecular (16S rRNA sequence) and conventional (morphological, biochemical, and physiological) analyses, it was determined that the A2 isolate was 99% similar to Enterococcus faecium (Genbank number: MH424896). The laccase was purified to 4.9-fold with 110% recovery using the TPP. The molecular mass of the enzyme was found by SDS-PAGE to be 50.11 kDa. Optimum pH 6.0 and optimum temperature for laccase were determined as 80 °C. The laccase exhibited pH stability over a wide range (pH 3.0-9.0) and a high thermostability, retaining over 90% of its activity after 1 h of incubation at 20-90 °C. The laccase exhibited high thermostability, with a heat inactivation half-life of approximately 24 h at 80 °C. The enzyme remained highly stable in the presence of surfactants and increased its activity in the presence of organic solvents, Cr2+, Cu2+, and Ag+ metal ions. The Km, Vmax, kcat, and kcat/Km values of laccase for 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) substrate were 0.68 mM, 5.29 μmol mL-1 min-1, 110.2 s-1, and 162.1 s-1 mM-1, respectively.
Collapse
|
28
|
Valizadeh S, Rezaei S, Mohamadnia S, Rahimi E, Tavakoli O, Faramarzi MA. Elimination and detoxification of phenanthrene assisted by a laccase from halophile Alkalibacillus almallahensis. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2022; 20:227-239. [PMID: 35669835 PMCID: PMC9163237 DOI: 10.1007/s40201-021-00771-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 12/18/2021] [Indexed: 05/06/2023]
Abstract
Phenanthrene (Phe), a tricyclic Polycyclic Aromatic Hydrocarbon (PAH), is found in high concentrations as a pollutant in various environments. In this study, the removal or (oxidizing) ability of Phe by a laccase from Alkalibacillus almallahensis was investigated. The laccase (12 U mL-1) was able to remove 63% of Phe (50 mg L-1) under optimal conditions of 40 °C, pH 8, 1.5 M NaCl and in the presence of 1 mM HBT as a laccase mediator after a 72 h incubation period. The results for the effect of different solvents, ionic and non-ionic surfactants on the activity of the halophilic laccase towards Phe showed that the addition of these compounds increase removal efficiency and complete enzymatic removal of Phe will achieve in a solution of 5% (v/v) acetone and 1.5% tween 80. The kinetic parameters K m and V max of laccase-catalyzed removal of the substrate were determined as 0.544 mM and 0.882 µmol h-1 mg-1, respectively. A microtoxicity study with respect to the inhibition of algal growth showed a decrease in toxicity of the laccase-treated Phe solution.
Collapse
Affiliation(s)
- Shiler Valizadeh
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, 14176 Iran
| | - Shahla Rezaei
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155–6451, 1417614411 Tehran, Iran
| | - Sonia Mohamadnia
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, 14176 Iran
| | - Elaheh Rahimi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, 14176 Iran
| | - Omid Tavakoli
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, 14176 Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155–6451, 1417614411 Tehran, Iran
| |
Collapse
|
29
|
Biochemical and Structural Properties of a High-Temperature-Active Laccase from Bacillus pumilus and Its Application in the Decolorization of Food Dyes. Foods 2022; 11:foods11101387. [PMID: 35626959 PMCID: PMC9141572 DOI: 10.3390/foods11101387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/01/2022] [Accepted: 05/09/2022] [Indexed: 02/01/2023] Open
Abstract
A novel laccase gene isolated from Bacillus pumilus TCCC 11568 was expressed, and the recombinant laccase (rLAC) displayed maximal activity at 80 °C and at pH 6.0 against ABTS. rLAC maintained its structural integrity at a high temperature (355 K) compared to its tertiary structure at a low temperature (325 K), except for some minor adjustments of certain loops. However, those adjustments were presumed to be responsible for the formation of a more open access aisle that facilitated the binding of ABTS in the active site, resulting in a shorter distance between the catalytic residue and the elevated binding energy. Additionally, rLAC showed good thermostability (≤70 °C) and pH stability over a wide range (3.0–10.0), and displayed high efficiency in decolorizing azo dyes that are applicable to the food industry. This work will improve our knowledge on the relationship of structure–function for thermophilic laccase, and provide a candidate for dye effluent treatment in the food industry.
Collapse
|
30
|
Tavares MP, Dutra TR, Morgan T, Ventorim RZ, de Souza Ladeira Ázar RI, Varela EM, Ferreira RC, de Oliveira Mendes TA, de Rezende ST, Guimarães VM. Multicopper oxidase enzymes from Chrysoporthe cubensis improve the saccharification yield of sugarcane bagasse. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Zhang Z, Shah AM, Mohamed H, Zhang Y, Sadaqat B, Tsiklauri N, Sadunishvili T, Song Y. Improved laccase production in Pleurotus djamor RP by atmospheric and room temperature plasma (ARTP) mutagenesis. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2022.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
32
|
Structural Properties, Genomic Distribution of Laccases from Streptomyces and Their Potential Applications. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Chopra NK, Sondhi S. Cloning, expression and characterization of laccase from Bacillus licheniformis NS2324 in E. coli application in dye decolorization. Int J Biol Macromol 2022; 206:1003-1011. [PMID: 35337908 DOI: 10.1016/j.ijbiomac.2022.03.104] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 11/26/2022]
Abstract
Laccase gene from Bacillus licheniformis NS2324 was cloned and expressed in E. coli by using pUC 18 as cloning vector and pet 15b as expression vector. The purified recombinant laccase (rLacNS2324) showed a molecular mass of 66 KDa. The optimum pH and temperature for rLacNS2324 was found to be pH 8 and 40 °C respectively. The half life of rLacNS2324 at pH 7, 8 and 9 is 24 h. The half life of laccase at 45 °C is 8 h. Laccase activity was increased in the presence of Cu2+ (135.3%), Mn2+ (283.76%), and Co2+ (199.96%) at 5 mM of concentration, but inhibited to 17.01% in the presence of 5 mM Zn2+ ions. rLacNS2324 was found tolerant to NaCl and NaI. Among the inhibitors, it was found to be tolerant to EDTA, however, its activity was inhibited in the presence of sodium azide, dithiothreitol and β-mercapethanol. rLacNS2324 was able to decolorize a bromophenol blue by 85% and phenol red by 75% in 1 h without any mediator. Methylene blue was almost completely degraded (99.28% decolorization) by 10 IUml-1 of laccase at 40 °C, pH 8.0 and in time 4 h. Overall rLacNS2324 showed ability to be used industrially to decolorize dyes in an eco-friendly and cost effective way.
Collapse
Affiliation(s)
- Navleen Kaur Chopra
- Department of Biotechnology, I.K. Gujral Punjab Technical University, Kapurthala 144603, Punjab, India
| | - Sonica Sondhi
- Department of Biotechnology, Chandigarh Group of Colleges, Landran, 140307 Mohali, Punjab, India.
| |
Collapse
|
34
|
Eminent Industrial and Biotechnological Applications of Laccases from Bacterial Source: a Current Overview. Appl Biochem Biotechnol 2022; 194:2336-2356. [DOI: 10.1007/s12010-021-03781-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 12/15/2022]
|
35
|
Wang C, Sun T, Zhang X, Yang X, Lu X, Xu H, Shi F, Zhang L, Ling Y. Design, Synthesis and Bioactivity of Novel Fluoropyrazole Hydrazides. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202112021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Baluyot JC, Santos HK, Batoctoy DCR, Torreno VPM, Ghimire LB, Joson SEA, Obusan MCM, Yu ET, Bela-ong DB, Gerona RR, Velarde MC. Diaporthe/Phomopsis longicolla degrades an array of bisphenol analogues with secreted laccase. Microbiol Res 2022; 257:126973. [DOI: 10.1016/j.micres.2022.126973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/28/2021] [Accepted: 01/14/2022] [Indexed: 12/07/2022]
|
37
|
Mao G, Wang K, Wang F, Li H, Zhang H, Xie H, Wang Z, Wang F, Song A. An Engineered Thermostable Laccase with Great Ability to Decolorize and Detoxify Malachite Green. Int J Mol Sci 2021; 22:11755. [PMID: 34769185 PMCID: PMC8583942 DOI: 10.3390/ijms222111755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 11/28/2022] Open
Abstract
Laccases can catalyze the remediation of hazardous synthetic dyes in an eco-friendly manner, and thermostable laccases are advantageous to treat high-temperature dyeing wastewater. A novel laccase from Geothermobacter hydrogeniphilus (Ghlac) was cloned and expressed in Escherichia coli. Ghlac containing 263 residues was characterized as a functional laccase of the DUF152 family. By structural and biochemical analyses, the conserved residues H78, C119, and H136 were identified to bind with one copper atom to fulfill the laccase activity. In order to make it more suitable for industrial use, Ghlac variant Mut2 with enhanced thermostability was designed. The half-lives of Mut2 at 50 °C and 60 °C were 80.6 h and 9.8 h, respectively. Mut2 was stable at pH values ranging from 4.0 to 8.0 and showed a high tolerance for organic solvents such as ethanol, acetone, and dimethyl sulfoxide. In addition, Mut2 decolorized approximately 100% of 100 mg/L of malachite green dye in 3 h at 70 °C. Furthermore, Mut2 eliminated the toxicity of malachite green to bacteria and Zea mays. In summary, the thermostable laccase Ghlac Mut2 could effectively decolorize and detoxify malachite green at high temperatures, showing great potential to remediate the dyeing wastewater.
Collapse
Affiliation(s)
- Guotao Mao
- Department of Microbiology, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China; (G.M.); (K.W.); (F.W.); (H.L.); (H.Z.); (H.X.); (F.W.)
- The Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, China
| | - Kai Wang
- Department of Microbiology, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China; (G.M.); (K.W.); (F.W.); (H.L.); (H.Z.); (H.X.); (F.W.)
| | - Fangyuan Wang
- Department of Microbiology, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China; (G.M.); (K.W.); (F.W.); (H.L.); (H.Z.); (H.X.); (F.W.)
| | - Hao Li
- Department of Microbiology, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China; (G.M.); (K.W.); (F.W.); (H.L.); (H.Z.); (H.X.); (F.W.)
| | - Hongsen Zhang
- Department of Microbiology, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China; (G.M.); (K.W.); (F.W.); (H.L.); (H.Z.); (H.X.); (F.W.)
- The Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, China
| | - Hui Xie
- Department of Microbiology, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China; (G.M.); (K.W.); (F.W.); (H.L.); (H.Z.); (H.X.); (F.W.)
- The Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhimin Wang
- Department of Applied Chemistry, College of Science, Henan Agricultural University, Zhengzhou 450002, China;
| | - Fengqin Wang
- Department of Microbiology, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China; (G.M.); (K.W.); (F.W.); (H.L.); (H.Z.); (H.X.); (F.W.)
- The Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, China
| | - Andong Song
- Department of Microbiology, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China; (G.M.); (K.W.); (F.W.); (H.L.); (H.Z.); (H.X.); (F.W.)
- The Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
38
|
Edoamodu CE, Nwodo UU. Marine sediment derived bacteria Enterobacter asburiae ES1 and Enterobacter sp. Kamsi produce laccase with high dephenolisation potentials. Prep Biochem Biotechnol 2021; 52:748-761. [PMID: 34689726 DOI: 10.1080/10826068.2021.1992781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Purified laccases from bacterial species isolated from marine sediment were applied to degrade Bisphenol A (BPA). The Bacterial species were isolated from marine water sediments sampled from Cove Rock and Bonza Bay beach of the Eastern Cape Province, South Africa was tested for laccase activity on varied phenolic plates. The two most promising strains, Enterobacter asburiae ES1 and Enterobacter sp. Kamsi was subjected to extracellular laccase production and were identified using molecular methods. Both extracted bacterial laccases showed an affinity for ABTS and PFC substrates and were purified to homogeneity by ammonium sulfate precipitation, anion exchange, and size exclusion chromatography. A specific laccase activity of 231.67 and 218.15 U/mg of protein and a molecular weight of 50 and 55 kDa was obtained from the purified ES1 and Kamsi laccases. Laccase activity was optimum at pH8 and 5 and at 80 °C and 60 °C for ES1 and Kamsi laccases, and they manifested 71.7% and 65.8% BPA decolorizing effects. The optimized treatment condition applied showed maximum BPA removal effects of 85% and 86% at pH7 and 6, while 78% and 79% was degraded at 70 °C and 80 °C while at 250 µL enzyme volume, BPA was actively degraded to 85%, and 75% removal effect showed by ES1 and Kamsi laccases. The molecular identification of the pure colonies using 16S rRNA showed the isolate belonged to the class of gammaproteobacterial. Their nucleotide sequence has been deposited in NCBI with the accession number MN686602 and MN686603. Conclusively, marine habitat serves as a reservoir for active bacterial laccase producers suitable for bioprocess application.
Collapse
Affiliation(s)
- Chiedu E Edoamodu
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Uchechukwu U Nwodo
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| |
Collapse
|
39
|
Sharma V, Pugazhenthi G, Vasanth D. Production and characterization of a novel thermostable laccase from Bacillus licheniformis VNQ and its application in synthesis of bioactive 1,4-naphthoquinones. J Biosci Bioeng 2021; 133:8-16. [PMID: 34629297 DOI: 10.1016/j.jbiosc.2021.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/30/2021] [Accepted: 09/11/2021] [Indexed: 10/20/2022]
Abstract
Bacterial laccases have proven to be a potential biocatalyst for various industrial applications due to their remarkable catalytic and stability properties. In this study, a novel thermostable laccase was produced from the bacterium Bacillus licheniformis VNQ by submerged fermentation. The specific activity of crude and purified laccase was found to be 13.17 U mg-1 and 83.47 U mg-1, respectively. The enzyme possessed a molecular mass of ∼48 kDa when characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The optimum temperature and pH for enzyme activity was determined to be 55°C and 5.0, respectively. The enzyme was considered to be thermo-tolerant as it possessed a half-life of 4 h at 70°C. The enzyme was utilized for the oxidative biotransformation of in situ synthesized p-quinones to biologically active compounds, 1,4-naphthoquinone and its derivative. The obtained products were characterized using nuclear magnetic resonance (NMR) spectroscopy and gas chromatography-mass spectrometry (GC-MS) analysis. A high yield of naphthoquinones (74.93 ± 1.2%) with 1,4-naphthoquinone (60.61 ± 1.0%), and its derivative 2-hydroxy-1,4-naphthoquinone (14.32 ± 0.2%) was obtained at the optimized reaction conditions.
Collapse
Affiliation(s)
- Vikas Sharma
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, Chhattisgarh 492010, India
| | - Gopal Pugazhenthi
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Dhakshinamoorthy Vasanth
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, Chhattisgarh 492010, India.
| |
Collapse
|
40
|
Isolation and Screening of Microorganisms for the Effective Pretreatment of Lignocellulosic Agricultural Wastes. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5514745. [PMID: 34604384 PMCID: PMC8481070 DOI: 10.1155/2021/5514745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/21/2021] [Accepted: 09/02/2021] [Indexed: 11/17/2022]
Abstract
Lignocellulosic waste is the most abundant biorenewable biomass on earth, and its hydrolysis releases highly valued reducing sugars. However, the presence of lignin in the biopolymeric structure makes it highly resistant to solubilization thereby hindering the hydrolysis of cellulose and hemicellulose. Microorganisms are known for their potential complex enzymes that play a dominant role in lignocellulose conversion. Therefore, the current study was designed to isolate and screen potential microorganisms for their selective delignification ability for the pretreatment of lignocellulosic biomass. An extensive isolation and screening procedure yielded 36 desired isolates (22 bacteria, 7 basidiomycete fungi, and 7 filamentous fungi). Submerged cultivation of these desired microorganisms revealed 4 bacteria and 10 fungi with potent lignocellulolytic enzyme activities. The potent isolates were identified as Pleurotus, Trichoderma, Talaromyces, Bacillus, and Chryseobacterium spp. confirmed by morphological and molecular identification. The efficiency of these strains was determined through enzyme activities, and the degraded substrates were analyzed through scanning electron microscopy (SEM) and X-ray diffraction (XRD). Among all isolated microbes, Pleurotus spp. were found to have high laccase activity. The cellulose-decomposing and selective delignification strains were subjected to solid-state fermentation (SSF). SSF of field waste corn stalks as a single-carbon source provides Pleurotus spp. better condition for the secretion of ligninolytic enzymes. These isolated ligninolytic enzymes producing microorganisms may be used for the effective pretreatment of lignocellulosic agricultural wastes for the production of high value-added natural products by fermentation.
Collapse
|
41
|
Motamedi E, Kavousi K, Sadeghian Motahar SF, Reza Ghaffari M, Sheykh Abdollahzadeh Mamaghani A, Hosseini Salekdeh G, Ariaeenejad S. Efficient removal of various textile dyes from wastewater by novel thermo-halotolerant laccase. BIORESOURCE TECHNOLOGY 2021; 337:125468. [PMID: 34320748 DOI: 10.1016/j.biortech.2021.125468] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/20/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
A novel thermostable/halotolerant metagenome-derived laccase (PersiLac2) from tannery wastewater was purified to remove textile dyes in this study. The enzyme was highly active over a wide temperature and pH range and maintained 73.35% of its initial activity after 30 days, at 50 °C. The effect of various metal and organic-solvent tolerance on PersiLac2 showed, retaining greater than 53% activity at 800 mM of metal ions, 52.12% activity at 6 M NaCl, and greater than 44.09% activity at 20% organic solvents. PersiLac2 manifested effective removal of eight different textile dyes from azo, anthraquinone, and triphenylmethane families. It decolorized 500 mg/L of Alizarin yellow, Carmine, Congo red and Bromothymol blue with 99.74-55.85% efficiency after 15 min, at 50 °C, without mediator. This enzyme could practically remove dyes from a real textile effluent and it displayed significant detoxification in rice seed germination tests. In conclusion, PersiLac2 could be useful in future for decolorization/detoxification of wastewater.
Collapse
Affiliation(s)
- Elaheh Motamedi
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Kaveh Kavousi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Seyedeh Fatemeh Sadeghian Motahar
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohammad Reza Ghaffari
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Atefeh Sheykh Abdollahzadeh Mamaghani
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Ghasem Hosseini Salekdeh
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran; Department of Molecular Sciences, Macquarie University, Sydney 2109, NSW Australia
| | - Shohreh Ariaeenejad
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
| |
Collapse
|
42
|
Song Y, Wang Y, Guo Y, Qiao Y, Ma Q, Ji C, Zhao L. Degradation of zearalenone and aflatoxin B1 by Lac2 from Pleurotus pulmonarius in the presence of mediators. Toxicon 2021; 201:1-8. [PMID: 34391788 DOI: 10.1016/j.toxicon.2021.08.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 11/27/2022]
Abstract
The contamination of foods and feeds with mycotoxins has been an issue of global significance. For mycotoxin detoxification, enzymatic biodegradation using laccase has received much attention. In this study, a laccase gene lac2 from the fungus Pleurotus pulmonarius was expressed in the Pichia pastoris X33 yeast strain to produce recombinant proteins. Enzymatic properties of recombinant Lac2 and its ability to degrade zearalenone (ZEN) and Aflatoxin B1 (AFB1) in the presence of four mediators (ABTS, TEMPO, AS and SA) were investigated. Result showed that the optimum pH and temperature of recombinant Lac2 were 3.5 and 55 °C, respectively. Lac2 was not sensitive to heat and stable under both acidic and alkaline conditions. Lac2-ABTS and Lac2-AS were efficient systems for ZEN degradation over a wide range of pH (4-8) and temperature (40-60 °C). Lac2-AS was the most efficient system for AFB1 degradation, reaching 99.82% of degradation at pH 7 and 37 °C after 1 h of incubation. Finally, the Lac2-mediator oxidation products were structurally characterized. This study lays a solid foundation for the application of Lac2 laccase combined with AS for degrading mycotoxin in food and feed.
Collapse
Affiliation(s)
- Yanyi Song
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China; College of Biological Sciences, China Agricultural University, Beijing, 100193, PR China
| | - Yanan Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Yongpeng Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Yingying Qiao
- Faculty of Biology and Technology, Sumy National Agrarian University, Sumy, Ukraine
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Cheng Ji
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Lihong Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
43
|
Yadav D, Ranjan B, Mchunu N, Le Roes-Hill M, Kudanga T. Enzymatic treatment of phenolic pollutants by a small laccase immobilized on APTES-functionalised magnetic nanoparticles. 3 Biotech 2021; 11:302. [PMID: 34194895 DOI: 10.1007/s13205-021-02854-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 05/19/2021] [Indexed: 11/25/2022] Open
Abstract
In this study, we have successfully synthesized magnetic nanoparticles (MNPs), functionalised them by silanization and used them for the covalent immobilization of a recombinant small laccase (rSLAC) from Streptomyces coelicolor. The immobilized recombinant laccase (MNP-rSLAC) was subsequently used for the treatment of phenol, 4-chlorophenol (4-CP) and 4-fluorophenol (4-FP). The enzyme completely degraded 80 µg/mL of the selected phenolic compounds within 2 h in the presence of a natural mediator, acetosyringone. The MNP-rSLAC retained > 73% of initial activity (2,6-dimethoxyphenol as substrate) after 10 catalytic cycles and could be easily recovered from the reaction mixture by the application of magnetic field. Furthermore, immobilised rSLAC exhibited better storage stability than its free counterpart. The Michaelis constant (Km) value for the immobilised rSLAC was higher than free rSLAC, however the maximum velocity (Vmax) of the immobilised SLAC was similar to that of the free rSLAC. Growth inhibition studies using Escherichia coli showed that rSLAC-mediated treatment of phenolic compounds reduced the toxicity of phenol, 4-CP and 4-FP by 90, 60 and 55%, respectively. Interestingly, the presence of selected metal ions (Co2+, Cu2+, Mn2+) greatly enhanced the catalytic activity of rSLAC and MNP-rSLAC. This study indicates that immobilized small laccase (MNP-rSLAC) has potential for treating wastewater contaminated with phenolic compounds. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02854-0.
Collapse
Affiliation(s)
- Deepti Yadav
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. BOX 1334, Durban, 4000 South Africa
| | - Bibhuti Ranjan
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. BOX 1334, Durban, 4000 South Africa
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Nokuthula Mchunu
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. BOX 1334, Durban, 4000 South Africa
- Agricultural Research Council, Biotechnology Platform, Private Bag X5, Onderstepoort, 0110 South Africa
| | - Marilize Le Roes-Hill
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville Campus, Symphony Way, PO Box 1906, Bellville, 7535 South Africa
| | - Tukayi Kudanga
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. BOX 1334, Durban, 4000 South Africa
| |
Collapse
|
44
|
Sharma J, Sharma D, Sharma A, Bansal S. Thermo stable tyrosinase purified from Pleurotus djamor grown in biomimetic calcium carbonate: A biological strategy to industrial waste remediation. ENVIRONMENTAL TECHNOLOGY & INNOVATION 2021; 21:101294. [DOI: 10.1016/j.eti.2020.101294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
|
45
|
Sondhi S, Kaur R, Madan J. Purification and characterization of a novel white highly thermo stable laccase from a novel Bacillus sp. MSK-01 having potential to be used as anticancer agent. Int J Biol Macromol 2020; 170:232-238. [PMID: 33340630 DOI: 10.1016/j.ijbiomac.2020.12.082] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 11/23/2020] [Accepted: 12/11/2020] [Indexed: 11/19/2022]
Abstract
Laccases are multicoopper oxidases catalyzing the oxidation of phenolic as well as non-phenolic compounds. Laccases show typical blue color due to the presence of covalent Type 1 Cu-Cys bond which absorbs at 600 nm. However, recently some white laccases have also been identified which lacks typical spectra of blue laccases and do not show peak at 600 nm. In the present study, a novel white laccase was isolated from Bacillus sp. MSK-01. MSK laccase was purified and characterized in detail and the purified laccase was referred to MSKLAC. It has a molecular weight of 32 KDa. UV-visible spectrum of purified MSKLAC do not show characteristic peak at 600 nm and bend at 330 nm. The enzyme was repressed by conventional inhibitors of laccase like sodium azide, cysteine, dithiothreitol and β-mercaptoethanol. The laccase was highly thermo-stable enzyme having optimum temperature of 75 °C and could treasure more than 50% activity even at 100 °C. The optimum pH for ABTS and guaiacol was 4.5 and 8.0 respectively. MSKLAC was stable in the presence of most of the metal ions and surfactants. The effect of MSKLAC on lung cancer cell line was also assessed. It was observed that MSKLAC is inhibitory to lung cell cancer line. Thus, MSKLAC has potential to be used as an anti-proliferative agent to cancer cells.
Collapse
Affiliation(s)
- Sonica Sondhi
- Chandigarh College of Technology, CGC Landran, Mohali 140307, India.
| | - Randhir Kaur
- Chandigarh College of Technology, CGC Landran, Mohali 140307, India
| | - Jitendra Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| |
Collapse
|
46
|
Chauhan AK, Choudhury B. Suitability of organic solvent and cholinium based ionic liquid activated novel lignolytic enzymes of H. aswanensis for enhanced Kalson lignin degradation. Int J Biol Macromol 2020; 165:107-117. [DOI: 10.1016/j.ijbiomac.2020.09.137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 11/25/2022]
|
47
|
Rathankumar AK, Saikia K, Ponnusamy SK, Del Rayo Sánchez-Carbente M, Vaidyanathan VK. Rhamnolipid-assisted mycoremediation of polycyclic aromatic hydrocarbons by Trametes hirsuta coupled with enhanced ligninolytic enzyme production. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2020; 70:1260-1267. [PMID: 32603633 DOI: 10.1080/10962247.2020.1790443] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 06/06/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
The present study deals with the development of a wood assisted fungal system (WAFS) from wood chips using Trametes hirsuta to remove polycyclic aromatic hydrocarbons (PAHs) in BRW. The WAFS exhibited a 1.4-fold higher ligninolytic enzyme production than free fungi in the effluent. Further, to understand PAHs bioremediation by T. hirsuta, biodegradation along with biosorption were studied in model PAHs, phenanthrene (Phe) and benzo (a) pyrene (BaP), in the presence of synthesized rhamnolipids. The WAFS mineralized up to an average of 91.26% Phe and 87.72 % BaP along with biosorption of 12.35% Phe and 18.36 % BaP within 12 days. Thus, the addition of rhamnolipids showed 1.2-fold enhanced biodegradation. However, rhamnolipid concentrations beyond 50 ppm reduced the degradation efficiency of WAFS. Moreover, the degradation capability of total aromatic hydrocarbon (TAH) in biorefinery wastewater by WAFS is 1.8-fold higher than that of free fungi, which confirms the effectiveness of the system. Implications: Simultaneous application of white-rot fungus along with surfactant into a pollutant environment affects the microenvironment of the fungus and reduces the production of their degradative enzymes. In addition, the requirement of periodical supplement of external nutrient in the real-time matrix for the growth of white rot fungi may trigger competitive growth of indigenous microorganisms. Considering this glitch, the current work utilizes the carpenter waste for the strategical develop a wood assisted fungal system to protect the microenvironment of the fungi in the presence of rhamnolipids and contribute to their survival in real time matrix, with enhanced PAHs degradation efficiency.
Collapse
Affiliation(s)
- Abiram Karanam Rathankumar
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology (SRMIST) , Kattankulathur, India
- Centre of Biotechnological Research (CEIB), Universidad Autónoma del Estado de Morelos , Cuernavaca, México
- Laboratoire de génie de l'environnement, Faculté de génie, Université de Sherbrooke , Sherbrooke, Québec, Canada
| | - Kongkona Saikia
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology (SRMIST) , Kattankulathur, India
- Laboratoire de génie de l'environnement, Faculté de génie, Université de Sherbrooke , Sherbrooke, Québec, Canada
| | | | | | - Vinoth Kumar Vaidyanathan
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology (SRMIST) , Kattankulathur, India
- Centre of Biotechnological Research (CEIB), Universidad Autónoma del Estado de Morelos , Cuernavaca, México
- Laboratoire de génie de l'environnement, Faculté de génie, Université de Sherbrooke , Sherbrooke, Québec, Canada
| |
Collapse
|
48
|
Abdelgalil SA, Attia AR, Reyed RM, Soliman NA. Partial purification and biochemical characterization of a new highly acidic NYSO laccase from Alcaligenes faecalis. J Genet Eng Biotechnol 2020; 18:79. [PMID: 33247311 PMCID: PMC7695795 DOI: 10.1186/s43141-020-00088-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/27/2020] [Indexed: 11/18/2022]
Abstract
Background Due to the multitude industrial applications of ligninolytic enzymes, their demands are increasing. Partial purification and intensive characterization of contemporary highly acidic laccase enzyme produced by an Egyptian local isolate designated Alcaligenes faecalis NYSO were studied in the present investigation. Results Alcaligenes faecalis NYSO laccase has been partially purified and intensively biochemically characterized. It was noticed that 40–60% ammonium sulfate saturation showed maximum activity. A protein band with an apparent molecular mass of ~ 50 kDa related to NYSO laccase was identified through SDS-PAGE and zymography. The partially purified enzyme exhibited maximum activity at 55 °C and pH suboptimal (2.5–5.0). Remarkable activation for enzyme activity was recognized after 10-min exposure to temperatures (T) 50, 60, and 70 °C; time elongation caused inactivation, where ~ 50% of activity was lost after a 7-h exposure to 60 °C. Some metal ions Cu2+, Zn2+, Co2+, Ni2+, Mn2+, Cd2+, Cr2+, and Mg2+ caused strong stimulation for enzyme activity, but Fe2+ and Hg2+ reduced the activity. One millimolar of chelating agents [ethylenediamine tetraacetic acid (EDTA), sodium citrate, and sodium oxalate] caused strong activation for enzyme activity. Sodium dodecyl sulfate (SDS), cysteine-HCl, dithiothreitol (DTT), β-mercaptoethanol, thioglycolic acid, and sodium azide caused strong inhibition for NYSO laccase activity even at low concentration. One millimolar of urea, imidazole, kojic acid, phenylmethylsulfonyl fluoride (PMSF), H2O2, and Triton X-100 caused activation. The partially purified NYSO laccase had decolorization activity towards different dyes such as congo red, crystal violet, methylene blue, fast green, basic fuchsin, bromophenol blue, malachite green, bromocresol purple eriochrome black T, and Coomassie Brilliant Blue R-250 with various degree of degradation. Also, it had a vast range of substrate specificity including lignin, but with high affinity towards p-anisidine. Conclusion The promising properties of the newly studied laccase enzyme from Alcaligenes faecalis NYSO strain would support several industries such as textile, food, and paper and open the possibility for commercial use in water treatment. It will also open the door to new applications due to its ligninolytic properties in the near future.
Collapse
Affiliation(s)
- Soad A Abdelgalil
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institure (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Burg El-Arab City, Alexandria, 21934, Egypt
| | - Ahmad R Attia
- Environmental Studies Department, Institute of Graduate Studies and Research, Alexandria, Egypt
| | - Reyed M Reyed
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institure (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Burg El-Arab City, Alexandria, 21934, Egypt
| | - Nadia A Soliman
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institure (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Burg El-Arab City, Alexandria, 21934, Egypt.
| |
Collapse
|
49
|
Enzymatic characterization, molecular dynamics simulation, and application of a novel Bacillus licheniformis laccase. Int J Biol Macromol 2020; 167:1393-1405. [PMID: 33202275 DOI: 10.1016/j.ijbiomac.2020.11.093] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/20/2020] [Accepted: 11/12/2020] [Indexed: 02/01/2023]
Abstract
A new laccase gene from newly isolated Bacillus licheniformis TCCC 111219 was actively expressed in Escherichia coli. This recombinant laccase (rLAC) exhibited a high stability towards a wide pH range and high temperatures. 170% of the initial activity was detected at pH 10.0 after 10-d incubation, and 60% of the initial activity was even kept after 2-h incubation at 70 °C. It indicated that only single type of extreme environment, such as strong alkaline environment (300 K, pH 12) or high temperature (370 K, pH 7), did not show obvious impact on the structural stability of rLAC during molecular dynamics simulation process. But the four loop regions of rLAC where the active site is situated were seriously destroyed when strong alkaline and high temperature environment existed simultaneously (370 K, pH 12) because of the damage of hydrogen bonds and salt bridges. Moreover, this thermo- and alkaline-stable enzyme could efficiently decolorize the structurally differing azo, triphenylmethane, and anthraquinone dyes with appropriate mediator at pH 3.0, 7.0, and 9.0 at 60 °C. These rare characteristics suggested its high potential in industrial applications to decolorize textile dyeing effluent.
Collapse
|
50
|
Wang J, Chang F, Tang X, Li W, Yin Q, Yang Y, Hu Y. Bacterial laccase of Anoxybacillus ayderensis SK3-4 from hot springs showing potential for industrial dye decolorization. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01593-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Introduction
Laccases are green biocatalysts that possess attractive for the treatment of resistant environmental pollutants and dye effluents.
Purpose
To exploit the laccase of Anoxybacillus ayderensis SK3-4 that possesses dye decolorization ability at room and higher temperature, we characterized the enzyme in considerable detail and investigated its ability to decolorize different dyes.
Results
A bacterial laccase gene designed as LacAn from Anoxybacillus ayderensis SK3-4 of hot springs was cloned and expressed in Escherichia coli. LacAn is a monomeric protein with a molecular weight of 29.8 kDa. The optimum pH and temperature for syringaldazine oxidation were 7.0 and 75 °C, respectively. LacAn was stable at pH values ranging from 6.5 to 8.5 above 65 °C. The enzyme activity was significantly enhanced by Cu2+ and Mg2+ but inhibited by Zn2+ and Fe2+. Furthermore, LacAn showed high decolorization capability toward five dyes (direct blue 6, acid black 1, direct green 6, direct black 19, and acid blue 93) in the absence of redox mediators. It also demonstrated a wide temperature range, and it can retain its high decolorization ability even at high temperatures.
Conclusions
These properties including better enzymatic properties and efficiency to decolorize dyes demonstrate that the bacterial laccase LacAn has potentials for further industrial applications.
Collapse
|