1
|
Kobzeva KA, Gurtovoy DE, Polonikov AV, Pokrovsky VM, Patrakhanov EA, Bushueva OY. Polymorphism in Genes Encoding HSP40 Family Proteins is Associated with Ischemic Stroke Risk and Brain Infarct Size: A Pilot Study. J Integr Neurosci 2024; 23:211. [PMID: 39735968 DOI: 10.31083/j.jin2312211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 12/31/2024] Open
Abstract
BACKGROUND Heat shock proteins (HSPs) play a critical role in the molecular mechanisms of ischemic stroke (IS). A possible role for HSP40 family proteins in atherosclerosis progression has already been revealed; however, to date, molecular genetic studies on the involvement of genes encoding proteins of the HSP40 family in IS have not yet been carried out. AIM We sought to determine whether nine single nucleotide polymorphisms (SNPs) in genes encoding HSP40 family proteins (DNAJB1, DNAJB2, DNAJA1, DNAJA2, DNAJA3 and DNAJC7) are associated with the risk and clinical features of IS. METHODS Using TaqMan-based polymerase chain reaction (PCR) and the MassArray-4 system, DNA samples of 2551 Russians - 1306 IS patients and 1245 healthy individuals - were genotyped. RESULTS SNP rs2034598 DNAJA2 decreased the risk of IS exclusively in male patients (odds ratio = 0.81, 95% confidence interval 0.78-0.98, p = 0.028); rs7189628 DNAJA2 increased the brain infarct size (p = 0.04); and rs6500605 DNAJA3 lowered the age of onset of IS (p = 0.03). SNPs rs10448231 DNAJA1, rs7189628 DNAJA2, rs4926222 DNAJB1 and rs2034598 DNAJA2 were involved in the strongest epistatic interactions linked to IS; SNP rs10448231 DNAJA1 is characterised by the most essential mono-effect (2.96% of IS entropy); all of the top SNP-SNP interaction models included the pairwise combination rs7189628 DNAJA2×rs4926222 DNAJB1, which was found to be a key factor determining susceptibility to IS. In interactions with the studied SNPs, smoking was found to have multidirectional effects (synergism, antagonism or additive effect) and the strongest mono-effect (3.47% of IS entropy), exceeding the mono-effects of rs6500605 DNAJA3, rs10448231 DNAJA1, rs2034598 DNAJA2, rs7189628 DNAJA2 and rs4926222 DNAJB1, involved in the best G×E models and determining 0.03%-0.73% of IS entropy. CONCLUSIONS We are the first to discover polymorphisms in genes encoding HSP40 family proteins as a major risk factor for IS and its clinical manifestations. The comprehensive bioinformatics analysis revealed molecular mechanisms, underscoring their significance in the pathogenesis of IS, primarily reflecting the regulation of heat stress, proteostasis and cellular signalling.
Collapse
Affiliation(s)
- Ksenia A Kobzeva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
| | - Denis E Gurtovoy
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
| | - Alexey V Polonikov
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 305041 Kursk, Russia
| | - Vladimir M Pokrovsky
- Laboratory of Genetic Technologies and Gene Editing for Biomedicine and Veterinary Medicine, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Evgeny A Patrakhanov
- Laboratory of Genetic Technologies and Gene Editing for Biomedicine and Veterinary Medicine, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Olga Y Bushueva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 305041 Kursk, Russia
| |
Collapse
|
2
|
Shilenok I, Kobzeva K, Soldatov V, Deykin A, Bushueva O. C11orf58 (Hero20) Gene Polymorphism: Contribution to Ischemic Stroke Risk and Interactions with Other Heat-Resistant Obscure Chaperones. Biomedicines 2024; 12:2603. [PMID: 39595169 PMCID: PMC11592265 DOI: 10.3390/biomedicines12112603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Recently identified Hero proteins, which possess chaperone-like functions, are promising candidates for research into atherosclerosis-related diseases, including ischemic stroke (IS). Methods: 2204 Russian subjects (917 IS patients and 1287 controls) were genotyped for fifteen common SNPs in Hero20 gene C11orf58 using probe-based PCR and the MassArray-4 system. Results: Six C11orf58 SNPs were significantly associated with an increased risk of IS in the overall group (OG) and significantly modified by smoking (SMK) and low fruit/vegetable intake (LFVI): rs10766342 (effect allele (EA) A; P(OG = 0.02; SMK = 0.009; LFVI = 0.04)), rs11024032 (EA T; P(OG = 0.01; SMK = 0.01; LFVI = 0.036)), rs11826990 (EA G; P(OG = 0.007; SMK = 0.004; LFVI = 0.03)), rs3203295 (EA C; P(OG = 0.016; SMK = 0.01; LFVI = 0.04)), rs10832676 (EA G; P(OG = 0.006; SMK = 0.002; LFVI = 0.01)), rs4757429 (EA T; P(OG = 0.02; SMK = 0.04; LFVI = 0.04)). The top ten intergenic interactions of Hero genes (two-, three-, and four-locus models) involved exclusively polymorphic loci of C11orf58 and C19orf53 and were characterized by synergic and additive (independent) effects between SNPs. Conclusions: Thus, C11orf58 gene polymorphism represents a major risk factor for IS. Bioinformatic analysis showed the involvement of C11orf58 SNPs in molecular mechanisms of IS mediated by their role in the regulation of redox homeostasis, inflammation, vascular remodeling, apoptosis, vasculogenesis, neurogenesis, lipid metabolism, proteostasis, hypoxia, cell signaling, and stress response. In terms of intergenic interactions, C11orf58 interacts most closely with C19orf53.
Collapse
Affiliation(s)
- Irina Shilenok
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
- Division of Neurology, Kursk Emergency Hospital, 305035 Kursk, Russia
| | - Ksenia Kobzeva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
| | - Vladislav Soldatov
- Laboratory of Genome Editing for Biomedicine and Animal Health, Belgorod State National Research University, 308015 Belgorod, Russia
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Alexey Deykin
- Laboratory of Genome Editing for Biomedicine and Animal Health, Belgorod State National Research University, 308015 Belgorod, Russia
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Olga Bushueva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 305041 Kursk, Russia
| |
Collapse
|
3
|
Onkar A, Sheshadri D, Rai A, Gupta AK, Gupta N, Ganesh S. Increase in brain glycogen levels ameliorates Huntington's disease phenotype and rescues neurodegeneration in Drosophila. Dis Model Mech 2023; 16:dmm050238. [PMID: 37681238 PMCID: PMC10602008 DOI: 10.1242/dmm.050238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023] Open
Abstract
Under normal physiological conditions, the mammalian brain contains very little glycogen, most of which is stored in astrocytes. However, the aging brain and the subareas of the brain in patients with neurodegenerative disorders tend to accumulate glycogen, the cause and significance of which remain largely unexplored. Using cellular models, we have recently demonstrated a neuroprotective role for neuronal glycogen and glycogen synthase in the context of Huntington's disease. To gain insight into the role of brain glycogen in regulating proteotoxicity, we utilized a Drosophila model of Huntington's disease, in which glycogen synthase is either knocked down or expressed ectopically. Enhancing glycogen synthesis in the brains of flies with Huntington's disease decreased mutant Huntingtin aggregation and reduced oxidative stress by activating auto-lysosomal functions. Further, overexpression of glycogen synthase in the brain rescues photoreceptor degeneration, improves locomotor deficits and increases fitness traits in this Huntington's disease model. We, thus, provide in vivo evidence for the neuroprotective functions of glycogen synthase and glycogen in neurodegenerative conditions, and their role in the neuronal autophagy process.
Collapse
Affiliation(s)
- Akanksha Onkar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology (IIT), Kanpur 208016, India
| | - Deepashree Sheshadri
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology (IIT), Kanpur 208016, India
- Centre of Excellence in Neuroscience, Neurotechnology, and Mental Health, Gangwal School of Medical Sciences and Technology, IIT, Kanpur 208016, India
| | - Anupama Rai
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology (IIT), Kanpur 208016, India
| | - Arjit Kant Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology (IIT), Kanpur 208016, India
| | - Nitin Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology (IIT), Kanpur 208016, India
- Centre of Excellence in Neuroscience, Neurotechnology, and Mental Health, Gangwal School of Medical Sciences and Technology, IIT, Kanpur 208016, India
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology, Kanpur 208016, India
| | - Subramaniam Ganesh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology (IIT), Kanpur 208016, India
- Centre of Excellence in Neuroscience, Neurotechnology, and Mental Health, Gangwal School of Medical Sciences and Technology, IIT, Kanpur 208016, India
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology, Kanpur 208016, India
| |
Collapse
|
4
|
Guo H, Li Y, Hou W, Cai Y. Brain Glycogen: An Angel or a Devil for Ischemic Stroke? Neurosci Bull 2023; 39:690-694. [PMID: 36562984 PMCID: PMC10073389 DOI: 10.1007/s12264-022-01006-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/18/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Haiyun Guo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yumeng Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Wugang Hou
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Yanhui Cai
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
5
|
Goraltchouk A, Mankovskaya S, Kuznetsova T, Hladkova Z, Hollander JM, Luppino F, Seregin A. Comparative evaluation of rhFGF18 and rhGDF11 treatment in a transient ischemia stroke model. Restor Neurol Neurosci 2023; 41:257-270. [PMID: 38363623 DOI: 10.3233/rnn-231347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Background Pharmacological treatments for ischemic stroke remain limited to thrombolysis, which is associated with increased risk of potentially fatal hemorrhage. Treatments with Recombinant Human Fibroblast Growth Factor 18 (rhFGF18) and Growth and Differentiation Factor 11 (rhGDF11) appear promising based on different preclinical models. The goal of this study was to compare the effects of rhFGF18 and rhGDF11 directly on survival, behavioral deficits, and histological fingerprint of cerebral ischemia in the Wistar rat middle cerebral artery occlusion (MCAO) model of stroke. Methods Ischemia-reperfusion injury was induced using a 2-hour transient MCAO. Animals were administered rhFGF18 (infusion), rhGDF11 (multi-injection), or Phosphate Buffered Saline (PBS) vehicle control and followed for 42 days. Motor-Cognitive deficits were evaluated using the Morris Water Maze at Days 0 (pre-MCAO), 7, 21, and 42. Histopathological assessments were performed on Days 21 and 42. Results Day 7 post-ischemia water maze performance times increased 38.3%, 2.1%, and 23.1% for PBS, rhFGF18, and rhGDF11-treated groups, respectively. Fraction of neurons with abnormal morphology (chromatolysis, pyknotic nuclei, somal degeneration) decreased in all groups toward Day 42 and was lowest for rhFGF18. AChE-positive fiber density and activity increased over time in the rhFGF18 group, remained unchanged in the rhGDF11 treatment arm, and declined in the PBS control. Metabolic increases were greatest in rhGDF11 treated animals, with both rhFGF18 and rhGDF11 achieving improvements over PBS, as evidenced by increased succinate dehydrogenase and lactate dehydrogenase activity. Finally, rhFGF18 treatment exhibited a trend for reduced mortality relative to PBS (5.6%, 95% CI [27.3%, 0.1% ] vs. 22.2%, 95% CI [47.6%, 6.4% ]). Conclusions rhFGF18 treatment appears promising in improving survival and promoting motor-cognitive recovery following cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
| | | | | | - Zhanna Hladkova
- Institute of Physiology, National Academy of Sciences, Minsk, Belarus
| | - Judith M Hollander
- Remedium Bio, Inc., Needham, MA, USA
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | | | | |
Collapse
|
6
|
Newton J, Pushie M, Sylvain N, Hou H, Weese Maley S, Kelly M. Sex differences in the mouse photothrombotic stroke model investigated with X-ray fluorescence microscopy and Fourier transform infrared spectroscopic imaging. IBRO Neurosci Rep 2022; 13:127-135. [PMID: 35989697 PMCID: PMC9386104 DOI: 10.1016/j.ibneur.2022.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/30/2022] [Indexed: 11/16/2022] Open
Abstract
Stroke is a leading cause of death and disability around the world. To date, the majority of pre-clinical research has been performed using male lab animals and results are commonly generalized to both sexes. In clinical stoke cases females have a higher incidence of ischemic stroke and poorer outcomes, compared to males. Best practices for improving translatability of findings for stroke, encourage the use of both sexes in studies. Since estrogen and progesterone have recognized neuroprotective effects, it is important to compare the size, severity and biochemical composition of the brain tissue following stroke in female and male animal models. In this study a photothrombotic focal stroke was induced in male and female mice. Vaginal secretions were collected twice daily to track the stage of estrous. Mice were euthanized at 24 h post-stroke. Histological staining, Fourier transform infrared imaging and X-ray fluorescence imaging were performed to better define the size and metabolic markers in the infarct core and surrounding penumbra. Our results show while the female mice had a significantly lower body mass than males, the cross-sectional area of the brain and the size of infarct and penumbra were not significantly different between the groups. In addition to the general expected sex-linked differences of altered NADH levels between males and females, estrus females had significantly elevated glycogen in the penumbra compared with males and total phosphorus levels were noted to be higher in the penumbra of estrus females. Elevated glycogen reserves in the tissue bordering the infarct core in females may present alternatives for improved functional recovery in females in the early post-stroke phase.
Collapse
Affiliation(s)
- J.M. Newton
- Department of Surgery, College of Medicine, University of Saskatchewan, SK S7N 5E5, Canada
| | - M.J. Pushie
- Department of Surgery, College of Medicine, University of Saskatchewan, SK S7N 5E5, Canada
| | - N.J. Sylvain
- Department of Surgery, College of Medicine, University of Saskatchewan, SK S7N 5E5, Canada
- Clinical Trial Support Unit, College of Medicine, University of Saskatchewan, SK S7N 0W8, Canada
| | - H. Hou
- Department of Surgery, College of Medicine, University of Saskatchewan, SK S7N 5E5, Canada
| | - S. Weese Maley
- Clinical Trial Support Unit, College of Medicine, University of Saskatchewan, SK S7N 0W8, Canada
| | - M.E. Kelly
- Department of Surgery, College of Medicine, University of Saskatchewan, SK S7N 5E5, Canada
- Corresponding author.
| |
Collapse
|
7
|
Chen M, Zhang H, Chu YH, Tang Y, Pang XW, Qin C, Tian DS. Microglial autophagy in cerebrovascular diseases. Front Aging Neurosci 2022; 14:1023679. [PMID: 36275005 PMCID: PMC9582432 DOI: 10.3389/fnagi.2022.1023679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
Microglia are considered core regulators for monitoring homeostasis in the brain and primary responders to central nervous system (CNS) injuries. Autophagy affects the innate immune functions of microglia. Recently some evidence suggests that microglial autophagy is closely associated with brain function in both ischemic stroke and hemorrhagic stroke. Herein, we will discuss the interaction between autophagy and other biological processes in microglia under physiological and pathological conditions and highlight the interaction between microglial metabolism and autophagy. In the end, we focus on the effect of microglial autophagy in cerebrovascular diseases.
Collapse
|
8
|
Huang Y, Li S, Wang Y, Yan Z, Guo Y, Zhang L. A Novel 5-Chloro-N-phenyl-1H-indole-2-carboxamide Derivative as Brain-Type Glycogen Phosphorylase Inhibitor: Potential Therapeutic Effect on Cerebral Ischemia. Molecules 2022; 27:molecules27196333. [PMID: 36234871 PMCID: PMC9572471 DOI: 10.3390/molecules27196333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Brain-type glycogen phosphorylase inhibitors are potential new drugs for treating ischemic brain injury. In our previous study, we reported compound 1 as a novel brain-type glycogen phosphorylase inhibitor with cardioprotective properties. We also found that compound 1 has high blood–brain barrier permeability through the ADMET prediction website. In this study, we deeply analyzed the protective effect of compound 1 on hypoxic-ischemic brain injury, finding that compound 1 could alleviate the hypoxia/reoxygenation (H/R) injury of astrocytes by improving cell viability and reducing LDH leakage rate, intracellular glucose content, and post-ischemic ROS level. At the same time, compound 1 could reduce the level of ATP in brain cells after ischemia, improve cellular energy metabolism, downregulate the degree of extracellular acidification, and improve metabolic acidosis. It could also increase the level of mitochondrial aerobic energy metabolism during brain cell reperfusion, reduce anaerobic glycolysis, and inhibit apoptosis and the expression of apoptosis-related proteins. The above results indicated that compound 1 is involved in the regulation of glucose metabolism, can control cell apoptosis, and has protective and potential therapeutic effects on cerebral ischemia-reperfusion injury, which provides a new reference and possibility for the development of novel drugs for the treatment of ischemic brain injury.
Collapse
Affiliation(s)
- Yatao Huang
- Laboratory of Traditional Chinese Medicine Research and Development of Hebei Province, Institute of Traditional Chinese Medicine, Chengde Medical University, Chengde 067000, China
| | - Shuai Li
- Laboratory of Traditional Chinese Medicine Research and Development of Hebei Province, Institute of Traditional Chinese Medicine, Chengde Medical University, Chengde 067000, China
| | - Youde Wang
- Laboratory of Traditional Chinese Medicine Research and Development of Hebei Province, Institute of Traditional Chinese Medicine, Chengde Medical University, Chengde 067000, China
| | - Zhiwei Yan
- Laboratory of Traditional Chinese Medicine Research and Development of Hebei Province, Institute of Traditional Chinese Medicine, Chengde Medical University, Chengde 067000, China
| | - Yachun Guo
- Department of Pathogen Biology, Chengde Medical University, Chengde 067000, China
- Correspondence: (Y.G.); (L.Z.); Tel.: +86-0314-229-1000 (L.Z.)
| | - Liying Zhang
- Laboratory of Traditional Chinese Medicine Research and Development of Hebei Province, Institute of Traditional Chinese Medicine, Chengde Medical University, Chengde 067000, China
- Correspondence: (Y.G.); (L.Z.); Tel.: +86-0314-229-1000 (L.Z.)
| |
Collapse
|
9
|
Xu B, Huang X, Yan Y, Zhao Z, Yang J, Zhu L, Yang Y, Liang B, Gu L, Su L. Analysis of expression profiles and bioinformatics suggests that plasma exosomal circular RNAs may be involved in ischemic stroke in the Chinese Han population. Metab Brain Dis 2022; 37:665-676. [PMID: 35067794 DOI: 10.1007/s11011-021-00894-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/07/2021] [Indexed: 10/19/2022]
Abstract
Circular RNAs (circRNAs) have been confirmed to be associated with ischemic stroke(IS), but the involvement of exosomal circRNAs in plasma still needs to be extensively discussed. Therefore, we aimed to investigate the expression profile of exosomal circRNAs in plasma and the potential roles and mechanisms of exosomal circRNAs in the pathogenesis of ischemic stroke in the Chinese Han population. In this study, the plasma exosomal circRNA expression profiles of three IS patients and three healthy controls were analyzed using circRNA sequencing. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and circRNA-miRNA-mRNA regulatory network analysis were performed for the aberrantly expressed genes. Protein-protein interaction (PPI) networks and molecular complex detection algorithms (MCODEs) were analyzed by STRING and Cystoscope for functional annotation and construction, respectively. RNA-Seq analysis revealed that a total of 3540 circRNAs were aberrantly expressed in exosomes, 1177 circRNAs were significantly upregulated, and 2363 circRNAs were downregulated in IS patients compared to healthy controls. Bioinformatics analysis revealed that the parental genes of differentially expressed circRNAs as well as the mRNAs predicted in the circRNA-miRNA-mRNA regulatory network are enriched for signaling pathways associated with IS pathology, such as the MAPK signaling pathway, lipid and atherosclerosis, neurotrophic factor signaling pathways, mTOR signaling pathway, the p53 signaling pathway etc. Then, 10 hub genes were identified from the PPI and module networks, including FBXW11, FBXW7, UBE2V2, ANAPC7, CDC27, UBC, CDC5L, POLR2H, POLR2F and RBX1. Overall, the present study provides evidence of an altered plasma exosomal circRNA expression profile and its potential function in IS. Our findings may contribute to the study of the pathogenesis of circRNAs in IS and provide ideas for studying potential diagnostic biomarkers and therapeutic targets for IS.
Collapse
Affiliation(s)
- Bingyi Xu
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Xianli Huang
- First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Yan Yan
- First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Zhi Zhao
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Jialei Yang
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Lulu Zhu
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Yibing Yang
- First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Baoyun Liang
- First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Lian Gu
- First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China.
| | - Li Su
- School of Public Health, Guangxi Medical University, Nanning, China.
| |
Collapse
|
10
|
Guo H, Fan Z, Wang S, Ma L, Wang J, Yu D, Zhang Z, Wu L, Peng Z, Liu W, Hou W, Cai Y. Astrocytic A1/A2 paradigm participates in glycogen mobilization mediated neuroprotection on reperfusion injury after ischemic stroke. J Neuroinflammation 2021; 18:230. [PMID: 34645472 PMCID: PMC8513339 DOI: 10.1186/s12974-021-02284-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 09/27/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Astrocytic glycogen works as an essential energy reserve for surrounding neurons and is reported to accumulate excessively during cerebral ischemia/reperfusion (I/R) injury. Our previous study found that accumulated glycogen mobilization exhibits a neuroprotective effect against I/R damage. In addition, ischemia could transform astrocytes into A1-like (toxic) and A2-like (protective) subtypes. However, the underlying mechanism behind accumulated glycogen mobilization-mediated neuroprotection in cerebral reperfusion injury and its relationship with the astrocytic A1/A2 paradigm is unknown. METHODS Astrocytic glycogen phosphorylase, the rate-limiting enzyme in glycogen mobilization, was specifically overexpressed and knocked down in mice and in cultured astrocytes. The I/R injury was imitated using a middle cerebral artery occlusion/reperfusion model in mice and an oxygen-glucose deprivation/reoxygenation model in cultured cells. Alterations in A1-like and A2-like astrocytes and the expression of phosphorylated nuclear transcription factor-κB (NF-κB) and phosphorylated signal transducer and activator of transcription 3 (STAT3) were determined by RNA sequencing, immunofluorescence and immunoblotting. Metabolites, including glycogen, NADPH, glutathione and reactive oxygen species (ROS), were analyzed by biochemical analysis. RESULTS Here, we observed that astrocytic glycogen mobilization inhibited A1-like astrocytes and enhanced A2-like astrocytes after reperfusion in an experimental ischemic stroke model in vivo and in vitro. In addition, glycogen mobilization could enhance the production of NADPH and glutathione by the pentose phosphate pathway (PPP) and reduce ROS levels during reperfusion. NF-κB inhibition and STAT3 activation caused by a decrease in ROS levels were responsible for glycogen mobilization-induced A1-like and A2-like astrocyte transformation after I/R. The astrocytic A1/A2 paradigm is closely correlated with glycogen mobilization-mediated neuroprotection in cerebral reperfusion injury. CONCLUSIONS Our data suggest that ROS-mediated NF-κB inhibition and STAT3 activation are the key pathways for glycogen mobilization-induced neuroprotection and provide a promising metabolic target for brain reperfusion injury in ischemic stroke.
Collapse
Affiliation(s)
- Haiyun Guo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ze Fan
- Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shiquan Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lina Ma
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jin Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Doutong Yu
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhen Zhang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lin Wu
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhengwu Peng
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wenming Liu
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wugang Hou
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Yanhui Cai
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
11
|
Dynamic Variations in Brain Glycogen are Involved in Modulating Isoflurane Anesthesia in Mice. Neurosci Bull 2020; 36:1513-1523. [PMID: 33048310 PMCID: PMC7719152 DOI: 10.1007/s12264-020-00587-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
General anesthesia severely affects the metabolites in the brain. Glycogen, principally stored in astrocytes and providing the short-term delivery of substrates to neurons, has been implicated as an affected molecule. However, whether glycogen plays a pivotal role in modulating anesthesia–arousal remains unclear. Here, we demonstrated that isoflurane-anesthetized mice exhibited dynamic changes in the glycogen levels in various brain regions. Glycogen synthase (GS) and glycogen phosphorylase (GP), key enzymes of glycogen metabolism, showed increased activity after isoflurane exposure. Upon blocking glycogenolysis with 1,4-dideoxy-1,4-imino-D-arabinitol (DAB), a GP antagonist, we found a prolonged time of emergence from anesthesia and an enhanced δ frequency in the EEG (electroencephalogram). In addition, augmented expression of glycogenolysis genes in glycogen phosphorylase, brain (Pygb) knock-in (PygbH11/H11) mice resulted in delayed induction of anesthesia, a shortened emergence time, and a lower ratio of EEG-δ. Our findings revealed a role of brain glycogen in regulating anesthesia–arousal, providing a potential target for modulating anesthesia.
Collapse
|
12
|
Expression profile and bioinformatics analysis of circular RNAs in acute ischemic stroke in a South Chinese Han population. Sci Rep 2020; 10:10138. [PMID: 32576868 PMCID: PMC7311391 DOI: 10.1038/s41598-020-66990-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/06/2020] [Indexed: 12/16/2022] Open
Abstract
Recent studies have found that circular RNAs (circRNAs) play crucial roles not only in the normal growth and the development of different tissues and organs but also in the pathogenesis and progression of various disorders. However, the expression patterns and the function of circRNAs in acute ischemic stroke (AIS) in the South Chinese Han population are unclear. In the present study, RNA sequencing (RNA-seq) data was generated from 3 AIS patients and 3 healthy controls. The circRNAs were detected and identified by CIRI2 and Find_circ software. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analyses were used to detect the expression of circRNAs. Meanwhile, the potential diagnostic value of the selected circRNAs for AIS was assessed by generating receiver operating characteristic (ROC) curve with area under curve (AUC). The bioinformatic analysis of the host genes of differentially expressed (DE) circRNAs was performed by gene ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, KOBAS for pathway analysis and regulatory network analysis. miRNA-circRNA and miRNA-mRNA interactions were predicted by using TargetScan, miRanda and starBase. CircRNA-miRNA-mRNA interaction networks were created with Cytoscape. Our result showed that there were 2270 DE circRNAs between AIS patients and healthy controls. Among them, 659 were found upregulated and 1611 were downregulated. Bioinformatic analysis showed that the DE circRNAs were related to the following biological processes: endocytosis, energy metabolism, apoptosis, FoxO signaling pathway, platelet activation, neurotrophin signaling pathway and VEGF signaling pathway, which may be associated with the pathological of AIS. Three randomly selected circRNAs were successfully validated by qRT-PCR. The results show that hsa_circ_0005548 was significantly upregulated, while hsa_circ_0000607 and hsa_circ_0002465 were significantly downregulated in AIS. Furthermore, the AUC values for hsa_circ_005548, hsa_circ_0000607 and hsa_circ_0002465 were 0.51, 0.75 and 0.69, respectively, suggesting that hsa_circ_0000607 and hsa_circ_0002465 could be potential biomarkers for AIS. In addition, Bcl2 was predicted to be a direct target of miR-337-3p, and hsa_circRNA_0000607 was predicted to act as a sponge for miR-337-3p. Thus, hsa_circ_0000607 may be involved in AIS by regulating the miR-337-3p/Bcl2 axis. Collectively, our findings indicate that numerous dysregulated circRNAs may play pivotal functional roles in AIS and hsa_circ_0000607 may play a crucial role in the pathogenesis and progression of AIS by regulating the miR-337-3p/Bcl2 axis.
Collapse
|
13
|
Cai Y, Guo H, Fan Z, Zhang X, Wu D, Tang W, Gu T, Wang S, Yin A, Tao L, Ji X, Dong H, Li Y, Xiong L. Glycogenolysis Is Crucial for Astrocytic Glycogen Accumulation and Brain Damage after Reperfusion in Ischemic Stroke. iScience 2020; 23:101136. [PMID: 32446205 PMCID: PMC7240195 DOI: 10.1016/j.isci.2020.101136] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/27/2020] [Accepted: 04/30/2020] [Indexed: 12/23/2022] Open
Abstract
Astrocytic glycogen is an important energy reserve in the brain and is believed to supply fuel during energy crisis. However, the pattern of glycogen metabolism in ischemic stroke and its potential therapeutic impact on neurological outcomes are still unknown. Here, we found extensive brain glycogen accumulation after reperfusion in ischemic stroke patients and primates. Glycogenolytic dysfunction in astrocytes is responsible for glycogen accumulation, caused by inactivation of the protein kinase A (PKA)-glycogen phosphorylase kinase (PhK)-glycogen phosphorylase (GP) cascade accompanied by the activation of glycogen synthase kinase-3β (GSK3β). Genetic or pharmacological augmentation of astrocytic GP could promote astrocyte and neuron survival and improve neurological behaviors. In addition, we found that insulin exerted a neuroprotective effect, at least in part by rescuing the PKA-PhK-GP cascade to maintain homeostasis of glycogen metabolism during reperfusion. Together, our findings suggest a promising intervention for undesirable outcomes in ischemic stroke.
Collapse
Affiliation(s)
- Yanhui Cai
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Haiyun Guo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ze Fan
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xinlei Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Di Wu
- China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Wenhong Tang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Tingting Gu
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Shiquan Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Anqi Yin
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Liang Tao
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xunming Ji
- China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Hailong Dong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yan Li
- Center for Brain Science & Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Lize Xiong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
- Translational Research Institute of Brain and Brain-Like Intelligence & Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200081, China
| |
Collapse
|
14
|
Ghosh MK, Chakraborty D, Sarkar S, Bhowmik A, Basu M. The interrelationship between cerebral ischemic stroke and glioma: a comprehensive study of recent reports. Signal Transduct Target Ther 2019; 4:42. [PMID: 31637020 PMCID: PMC6799849 DOI: 10.1038/s41392-019-0075-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/26/2019] [Accepted: 08/29/2019] [Indexed: 12/16/2022] Open
Abstract
Glioma and cerebral ischemic stroke are two major events that lead to patient death worldwide. Although these conditions have different physiological incidences, ~10% of ischemic stroke patients develop cerebral cancer, especially glioma, in the postischemic stages. Additionally, the high proliferation, venous thrombosis and hypercoagulability of the glioma mass increase the significant risk of thromboembolism, including ischemic stroke. Surprisingly, these events share several common pathways, viz. hypoxia, cerebral inflammation, angiogenesis, etc., but the proper mechanism behind this co-occurrence has yet to be discovered. The hypercoagulability and presence of the D-dimer level in stroke are different in cancer patients than in the noncancerous population. Other factors such as atherosclerosis and coagulopathy involved in the pathogenesis of stroke are partially responsible for cancer, and the reverse is also partially true. Based on clinical and neurosurgical experience, the neuronal structures and functions in the brain and spine are observed to change after a progressive attack of ischemia that leads to hypoxia and atrophy. The major population of cancer cells cannot survive in an adverse ischemic environment that excludes cancer stem cells (CSCs). Cancer cells in stroke patients have already metastasized, but early-stage cancer patients also suffer stroke for multiple reasons. Therefore, stroke is an early manifestation of cancer. Stroke and cancer share many factors that result in an increased risk of stroke in cancer patients, and vice-versa. The intricate mechanisms for stroke with and without cancer are different. This review summarizes the current clinical reports, pathophysiology, probable causes of co-occurrence, prognoses, and treatment possibilities.
Collapse
Affiliation(s)
- Mrinal K. Ghosh
- Signal Transduction in Cancer and Stem Cells Laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S.C. Mullick Road, Kolkata 700032 and CN-06, Sector-V, Salt Lake, Kolkata, 700091 India
| | - Dipankar Chakraborty
- Signal Transduction in Cancer and Stem Cells Laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S.C. Mullick Road, Kolkata 700032 and CN-06, Sector-V, Salt Lake, Kolkata, 700091 India
| | - Sibani Sarkar
- Signal Transduction in Cancer and Stem Cells Laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S.C. Mullick Road, Kolkata 700032 and CN-06, Sector-V, Salt Lake, Kolkata, 700091 India
| | - Arijit Bhowmik
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata, 700 026 India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24, Paraganas, 743372 India
| |
Collapse
|
15
|
Sevoflurane Preconditioning plus Postconditioning Decreases Inflammatory Response with Hemodynamic Recovery in Experimental Liver Ischemia Reperfusion. Gastroenterol Res Pract 2019; 2019:5758984. [PMID: 31093276 PMCID: PMC6476030 DOI: 10.1155/2019/5758984] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/13/2018] [Accepted: 11/28/2018] [Indexed: 12/22/2022] Open
Abstract
Objective The inhalation anesthetic sevoflurane has presented numerous biological activities, including anti-inflammatory properties and protective effects against tissue ischemic injury. This study investigated the metabolic, hemodynamic, and inflammatory effects of sevoflurane pre- and postconditioning for short periods in the rescue of liver ischemia-reperfusion (IR) injury using a rat model. Materials and Methods Twenty Wistar rats were divided into four groups: sham group, control ischemia group (partial warm liver ischemia for 45 min followed by 4 h of reperfusion), SPC group (administration of sevoflurane 2.5% for 15 min with 5 min of washout before liver IR), and SPPoC group (administration of sevoflurane 2.5% for 15 min before ischemia and 20 min during reperfusion). Results All animals showed a decrease in the mean arterial pressure (MAP) and portal vein blood flow during ischemia. After 4 h of reperfusion, only the SPPoC group had MAP recovery. In both the SPC and SPPoC groups, there was a decrease in the ALT level and an increase in the bicarbonate and potassium serum levels. Only the SPPoC group showed an increase in the arterial blood ionized calcium level and a decrease in the IL-6 level after liver reperfusion. Therefore, this study demonstrated that sevoflurane preconditioning reduces hepatocellular injury and acid-base imbalance in liver ischemia. Furthermore, sevoflurane postconditioning promoted systemic hemodynamic recovery with a decrease in inflammatory response.
Collapse
|
16
|
The Structure and the Regulation of Glycogen Phosphorylases in Brain. ADVANCES IN NEUROBIOLOGY 2019; 23:125-145. [DOI: 10.1007/978-3-030-27480-1_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
17
|
Choi SH, Kim HJ, Cho HJ, Park SD, Lee NE, Hwang SH, Cho IH, Hwang H, Rhim H, Kim HC, Nah SY. Gintonin, a Ginseng-Derived Exogenous Lysophosphatidic Acid Receptor Ligand, Protects Astrocytes from Hypoxic and Re-oxygenation Stresses Through Stimulation of Astrocytic Glycogenolysis. Mol Neurobiol 2018; 56:3280-3294. [PMID: 30117105 DOI: 10.1007/s12035-018-1308-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 08/08/2018] [Indexed: 11/25/2022]
Abstract
Astrocytes are a unique brain cell-storing glycogen and express lysophosphatidic acid (LPA) receptors. Gintonin is a ginseng-derived exogenous G protein-coupled LPA receptor ligand. Accumulating evidence shows that astrocytes serve as an energy supplier to neurons through astrocytic glycogenolysis under physiological and pathophysiological conditions. However, little is known about the relationships between LPA receptors and astrocytic glycogenolysis or about the roles of LPA receptors in hypoxia and re-oxygenation stresses. In the present study, we examined the functions of gintonin-mediated astrocytic glycogenolysis in adenosine triphosphate (ATP) production, glutamate uptake, and cell viability under normoxic, hypoxic, and re-oxygenation conditions. The application of gintonin or LPA to astrocytes induced glycogenolysis in concentration- and time-dependent manners. The stimulation of gintonin-mediated astrocytic glycogenolysis was achieved through the LPA receptor-Gαq/11 protein-phospholipase C-inositol 1,4,5-trisphosphate receptor-intracellular calcium ([Ca2+]i) transient pathway. Gintonin treatment to astrocytes increased the phosphorylation of brain phosphorylase kinase, with sensitive manner to K252a, an inhibitor of phosphorylase kinase. Gintonin-mediated astrocytic glycogenolysis was blocked by isofagomine, a glycogen phosphorylase inhibitor. Gintonin additionally increased astrocytic glycogenolysis under hypoxic and re-oxygenation conditions. Moreover, gintonin increased ATP production, glutamate uptake, and cell viability under the hypoxic and re-oxygenation conditions. Collectively, we found that the gintonin-mediated [Ca2+]i transients regulated by LPA receptors were coupled to astrocytic glycogenolysis and that stimulation of gintonin-mediated astrocytic glycogenolysis was coupled to ATP production and glutamate uptake under hypoxic and re-oxygenation conditions, ultimately protecting astrocytes. Hence, the gintonin-mediated astrocytic energy that is modulated via LPA receptors helps to protect astrocytes under hypoxia and re-oxygenation stresses.
Collapse
Affiliation(s)
- Sun-Hye Choi
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, 05029, South Korea
| | - Hyeon-Joong Kim
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, 05029, South Korea
| | - Hee-Jung Cho
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, 05029, South Korea
| | - Sang-Deuk Park
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, 05029, South Korea
| | - Na-Eun Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, 05029, South Korea
| | - Sung-Hee Hwang
- Department of Pharmaceutical Engineering, College of Health Sciences, Sangji University, Wonju, 26339, South Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hongik Hwang
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology program, College of Pharmacy, Kangwon National University, Chunchon, 24341, South Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, 05029, South Korea.
| |
Collapse
|
18
|
Al-Sarraf H, Malatiali S, Al-Awadi M, Redzic Z. Effects of erythropoietin on astrocytes and brain endothelial cells in primary culture during anoxia depend on simultaneous signaling by other cytokines and on duration of anoxia. Neurochem Int 2017; 113:34-45. [PMID: 29180303 DOI: 10.1016/j.neuint.2017.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/08/2017] [Accepted: 11/22/2017] [Indexed: 12/13/2022]
Abstract
Studies on animals revealed neuroprotective effects of exogenously applied erythropoietin (EPO) during cerebral ischemia/hypoxia. Yet, application of exogenous EPO in stroke patients often lead to haemorrhagic transformation. To clarify potential mechanism of this adverse effect we explored effects of EPO on viabilities of astrocytes and brain endothelial cells (BECs) in primary culture during anoxia of various durations, in the presence or absence of vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang1), which are cytokines that are also released from the neurovascular unit during hypoxia. Anoxia (2-48 h) exerted marginal effects on BECs' viability and significant reductions in viability of astrocytes. Astrocyte-conditioned medium did not exert effects and exerted detrimental effects on BECs during 2 h and 24 h anoxia, respectively. This was partially reversed by inhibition of Janus kinase (Jak)2/signal transducer and activator of transcription (STAT)5 activation. Addition of rat recombinant EPO (rrEPO) during 2 h-6h anoxia was protective for astrocytes, but had no effect on BECs. Addition of rrEPO significantly reduced viability of BECs and astrocytes after 48 h anoxia and after 24 h-48 h anoxia, respectively, which was attenuated by inhibition of Jak2/STAT5 activation. Simultaneous addition of rrEPO and VEGFA (1-165) caused marginal effects on BECs, but a highly significant protective effects on astrocytes during 24-48 h anoxia, which were attenuated by inhibition of Jak2/STAT5 activation. Simultaneous addition of EPO, VEGFA 1-165 and Ang1 exerted protective effects on BECs during 24 h-48 h anoxia, which were attenuated by addition of soluble Tie2 receptor. These data revealed that EPO could exert protective, but also injurious effects on BECs and astrocytes during anoxia, which depended on the duration of anoxia and on simultaneous signaling by VEGF and Ang1. If these injurious effects occur in stroke patients, they could enhance vascular damage and haemorrhagic transformation.
Collapse
Affiliation(s)
- Hameed Al-Sarraf
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait
| | - Slava Malatiali
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait
| | - Mariam Al-Awadi
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait
| | - Zoran Redzic
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait.
| |
Collapse
|
19
|
Macrophage migration inhibitory factor: A multifaceted cytokine implicated in multiple neurological diseases. Exp Neurol 2017; 301:83-91. [PMID: 28679106 DOI: 10.1016/j.expneurol.2017.06.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/06/2017] [Accepted: 06/21/2017] [Indexed: 12/12/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is a conserved cytokine found as a homotrimer protein. It is found in a wide spectrum of cell types in the body including neuronal and non-neuronal cells. MIF is implicated in several biological processes; chemo-attraction, cytokine activity, and receptor binding, among other functions. More recently, a chaperone-like activity has been added to its repertoire. In this review, we focus on the implication of MIF in the central nervous system and peripheries, its role in neurological disorders, and the mechanisms by which MIF is regulated. Numerous studies have associated MIF with various disease settings. MIF plays an important role in advocating tumorigenic processes, Alzheimer's disease, and is also upregulated in autism-spectrum disorders and spinal cord injury where it contributes to the severity of the injured area. The protective effect of MIF has been reported in amyotrophic lateral sclerosis by its reduction of aggregated misfolded SOD1, subsequently reducing the severity of this disease. Interestingly, a protective as well as pathological role for MIF has been implicated in stroke and cerebral ischemia, as well as depression. Thus, the role of MIF in neurological disorders appears to be diverse with both beneficial and adversary effects. Furthermore, its modulation is rather complex and it is regulated by different proteins, either on a molecular or protein level. This complexity might be dependent on the pathophysiological context and/or cellular microenvironment. Hence, further clarification of its diverse roles in neurological pathologies is warranted to provide new mechanistic insights which may lead in the future to the development of therapeutic strategies based on MIF, to fight some of these neurological disorders.
Collapse
|
20
|
Mathieu C, Duval R, Cocaign A, Petit E, Bui LC, Haddad I, Vinh J, Etchebest C, Dupret JM, Rodrigues-Lima F. An Isozyme-specific Redox Switch in Human Brain Glycogen Phosphorylase Modulates Its Allosteric Activation by AMP. J Biol Chem 2016; 291:23842-23853. [PMID: 27660393 DOI: 10.1074/jbc.m116.757062] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 09/21/2016] [Indexed: 12/22/2022] Open
Abstract
Brain glycogen and its metabolism are increasingly recognized as major players in brain functions. Moreover, alteration of glycogen metabolism in the brain contributes to neurodegenerative processes. In the brain, both muscle and brain glycogen phosphorylase isozymes regulate glycogen mobilization. However, given their distinct regulatory features, these two isozymes could confer distinct metabolic functions of glycogen in brain. Interestingly, recent proteomics studies have identified isozyme-specific reactive cysteine residues in brain glycogen phosphorylase (bGP). In this study, we show that the activity of human bGP is redox-regulated through the formation of a disulfide bond involving a highly reactive cysteine unique to the bGP isozyme. We found that this disulfide bond acts as a redox switch that precludes the allosteric activation of the enzyme by AMP without affecting its activation by phosphorylation. This unique regulatory feature of bGP sheds new light on the isoform-specific regulation of glycogen phosphorylase and glycogen metabolism.
Collapse
Affiliation(s)
- Cécile Mathieu
- From the Université Paris Diderot, Sorbonne Paris Cité, Unité BFA, CNRS UMR 8251, 75013 Paris
| | - Romain Duval
- From the Université Paris Diderot, Sorbonne Paris Cité, Unité BFA, CNRS UMR 8251, 75013 Paris
| | - Angélique Cocaign
- From the Université Paris Diderot, Sorbonne Paris Cité, Unité BFA, CNRS UMR 8251, 75013 Paris
| | - Emile Petit
- From the Université Paris Diderot, Sorbonne Paris Cité, Unité BFA, CNRS UMR 8251, 75013 Paris
| | - Linh-Chi Bui
- From the Université Paris Diderot, Sorbonne Paris Cité, Unité BFA, CNRS UMR 8251, 75013 Paris
| | - Iman Haddad
- ESPCI Paris, PSL Research University, Spectrométrie de Masse Biologique et Protéomique (SMPB), CNRS USR 3149, 10 rue Vauquelin, F75231 Paris cedex 05, France
| | - Joelle Vinh
- ESPCI Paris, PSL Research University, Spectrométrie de Masse Biologique et Protéomique (SMPB), CNRS USR 3149, 10 rue Vauquelin, F75231 Paris cedex 05, France
| | - Catherine Etchebest
- INSERM, UMR S1134, Université Paris Diderot, F-75015 Paris.,Université Paris Diderot, Sorbonne Paris Cité, F-75013 Paris.,Institut National de la Transfusion Sanguine (INTS), 75015 Paris.,GR-Ex, Laboratoire d'excellence, 75015 Paris, and.,UFR Sciences du Vivant, Université Paris Diderot, 75013 Paris, France
| | - Jean-Marie Dupret
- From the Université Paris Diderot, Sorbonne Paris Cité, Unité BFA, CNRS UMR 8251, 75013 Paris.,UFR Sciences du Vivant, Université Paris Diderot, 75013 Paris, France
| | - Fernando Rodrigues-Lima
- From the Université Paris Diderot, Sorbonne Paris Cité, Unité BFA, CNRS UMR 8251, 75013 Paris, .,UFR Sciences du Vivant, Université Paris Diderot, 75013 Paris, France
| |
Collapse
|
21
|
Mathieu C, Li de la Sierra-Gallay I, Duval R, Xu X, Cocaign A, Léger T, Woffendin G, Camadro JM, Etchebest C, Haouz A, Dupret JM, Rodrigues-Lima F. Insights into Brain Glycogen Metabolism: THE STRUCTURE OF HUMAN BRAIN GLYCOGEN PHOSPHORYLASE. J Biol Chem 2016; 291:18072-83. [PMID: 27402852 DOI: 10.1074/jbc.m116.738898] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Indexed: 11/06/2022] Open
Abstract
Brain glycogen metabolism plays a critical role in major brain functions such as learning or memory consolidation. However, alteration of glycogen metabolism and glycogen accumulation in the brain contributes to neurodegeneration as observed in Lafora disease. Glycogen phosphorylase (GP), a key enzyme in glycogen metabolism, catalyzes the rate-limiting step of glycogen mobilization. Moreover, the allosteric regulation of the three GP isozymes (muscle, liver, and brain) by metabolites and phosphorylation, in response to hormonal signaling, fine-tunes glycogenolysis to fulfill energetic and metabolic requirements. Whereas the structures of muscle and liver GPs have been known for decades, the structure of brain GP (bGP) has remained elusive despite its critical role in brain glycogen metabolism. Here, we report the crystal structure of human bGP in complex with PEG 400 (2.5 Å) and in complex with its allosteric activator AMP (3.4 Å). These structures demonstrate that bGP has a closer structural relationship with muscle GP, which is also activated by AMP, contrary to liver GP, which is not. Importantly, despite the structural similarities between human bGP and the two other mammalian isozymes, the bGP structures reveal molecular features unique to the brain isozyme that provide a deeper understanding of the differences in the activation properties of these allosteric enzymes by the allosteric effector AMP. Overall, our study further supports that the distinct structural and regulatory properties of GP isozymes contribute to the different functions of muscle, liver, and brain glycogen.
Collapse
Affiliation(s)
- Cécile Mathieu
- From the Université Paris Diderot, Sorbonne Paris Cité, Unité BFA, CNRS UMR 8251, 75013 Paris, France
| | - Ines Li de la Sierra-Gallay
- the Fonction et Architecture des Assemblages Macromoléculaires, Institut de Biologie Intégrative de la Cellule, Université Paris Sud, UMR 9198 Orsay, 91405 France
| | - Romain Duval
- From the Université Paris Diderot, Sorbonne Paris Cité, Unité BFA, CNRS UMR 8251, 75013 Paris, France
| | - Ximing Xu
- From the Université Paris Diderot, Sorbonne Paris Cité, Unité BFA, CNRS UMR 8251, 75013 Paris, France
| | - Angélique Cocaign
- From the Université Paris Diderot, Sorbonne Paris Cité, Unité BFA, CNRS UMR 8251, 75013 Paris, France
| | - Thibaut Léger
- the Université Paris Diderot, Sorbonne Paris Cité, Institut Jacques Monod, CNRS UMR 7592, 75013 Paris, France
| | - Gary Woffendin
- Thermo Fisher Scientific, Hemel Hempstead HP2 7GE, United Kingdom
| | - Jean-Michel Camadro
- the Université Paris Diderot, Sorbonne Paris Cité, Institut Jacques Monod, CNRS UMR 7592, 75013 Paris, France
| | - Catherine Etchebest
- INSERM, UMR S1134, Université Paris Diderot, 75015 Paris, France, Université Paris Diderot, Sorbonne Paris Cité, 75004 Paris, France, Institut National de la Transfusion Sanguine, 75015 Paris, France, Laboratoire d'Excellence GR-Ex, 75015 Paris, France, UFR Sciences du Vivant, Université Paris Diderot, 75013 Paris, France, and
| | - Ahmed Haouz
- the Institut Pasteur, Plateforme de Cristallographie, CNRS UMR 3528, 75015 Paris, France
| | - Jean-Marie Dupret
- From the Université Paris Diderot, Sorbonne Paris Cité, Unité BFA, CNRS UMR 8251, 75013 Paris, France, UFR Sciences du Vivant, Université Paris Diderot, 75013 Paris, France, and
| | - Fernando Rodrigues-Lima
- From the Université Paris Diderot, Sorbonne Paris Cité, Unité BFA, CNRS UMR 8251, 75013 Paris, France, UFR Sciences du Vivant, Université Paris Diderot, 75013 Paris, France, and
| |
Collapse
|
22
|
Abeysinghe HCS, Phillips EL, Chin-Cheng H, Beart PM, Roulston CL. Modulating Astrocyte Transition after Stroke to Promote Brain Rescue and Functional Recovery: Emerging Targets Include Rho Kinase. Int J Mol Sci 2016; 17:288. [PMID: 26927079 PMCID: PMC4813152 DOI: 10.3390/ijms17030288] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/26/2016] [Accepted: 02/05/2016] [Indexed: 01/13/2023] Open
Abstract
Stroke is a common and serious condition, with few therapies. Whilst previous focus has been directed towards biochemical events within neurons, none have successfully prevented the progression of injury that occurs in the acute phase. New targeted treatments that promote recovery after stroke might be a better strategy and are desperately needed for the majority of stroke survivors. Cells comprising the neurovascular unit, including blood vessels and astrocytes, present an alternative target for supporting brain rescue and recovery in the late phase of stroke, since alteration in the unit also occurs in regions outside of the lesion. One of the major changes in the unit involves extensive morphological transition of astrocytes resulting in altered energy metabolism, decreased glutamate reuptake and recycling, and retraction of astrocyte end feed from both blood vessels and neurons. Whilst globally inhibiting transitional change in astrocytes after stroke is reported to result in further damage and functional loss, we discuss the available evidence to suggest that the transitional activation of astrocytes after stroke can be modulated for improved outcomes. In particular, we review the role of Rho-kinase (ROCK) in reactive gliosis and show that inhibiting ROCK after stroke results in reduced scar formation and improved functional recovery.
Collapse
Affiliation(s)
- Hima Charika S Abeysinghe
- Neurotrauma Research, Department of Medicine, St Vincent's Campus, University of Melbourne, Parkville, VIC 3065, Australia.
- Department of Surgery, St Vincent's Campus, University of Melbourne, Parkville, VIC 3065, Australia.
| | - Ellie L Phillips
- Department of Biochemistry and Molecular Biology, Bio21 Insitute, University of Melbourne, Parkville, VIC 3010, Australia.
| | - Heung Chin-Cheng
- Department of Biochemistry and Molecular Biology, Bio21 Insitute, University of Melbourne, Parkville, VIC 3010, Australia.
| | - Philip M Beart
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Parkville, VIC 3010, Australia.
| | - Carli L Roulston
- Neurotrauma Research, Department of Medicine, St Vincent's Campus, University of Melbourne, Parkville, VIC 3065, Australia.
| |
Collapse
|
23
|
Altered Plasticity of Glycogen Phosphorylase in Forebrain Gliosomes Obtained from Insulinoma Patients. J Mol Neurosci 2015; 57:21-7. [PMID: 25946981 DOI: 10.1007/s12031-015-0573-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 04/24/2015] [Indexed: 10/23/2022]
Abstract
We investigated a control model of hypoglycemia-exposed brain tissues from a small series of patients with insulinoma, immediately dissect them, and perform a differential cold centrifugation to obtain gliosomes and examine alterations of glycogenolytic mechanisms. The BB as well as MM isoforms of glycogen phosphorylase enzymatic protein expression remained unaltered between insulinoma and control subjects within the gliosomes. However, the glycogen phosphorylase remained in a form that was potentially activated several folds on placing the gliosomes in a glucose-free medium. This was examined by its increased interaction with protein kinase A. Inhibitors of glycogen phosphorylase was used as controls. Furthermore, we demonstrated that glucose-depleted medium enhanced production of both ATP and lactate by the gliosomes. It is possible that a portion of glucose obtained from glycogen breakdown was circuited through glycolytic pathways to generate ATP. It has been reported earlier that ATP within gliosomes plays a major role in glutamate uptake, thus potentially preventing seizure during active bouts of hypoglycemia. Lactate shuttle from astrocytes is a potential mechanism to balance neuronal bioenergetics during events of hypoglycemia. Newer approaches to pharmacologically modulate glycogen phosphorylase may prove to be rational approach for neuroprotective therapy in this common clinical syndrome of hypoglycemia.
Collapse
|
24
|
Loss of protein targeting to glycogen sensitizes human hepatocellular carcinoma cells towards glucose deprivation mediated oxidative stress and cell death. Biosci Rep 2015; 35:BSR20150090. [PMID: 26182369 PMCID: PMC4613675 DOI: 10.1042/bsr20150090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 05/01/2015] [Indexed: 01/01/2023] Open
Abstract
PTG is a protein that is critical for glycogen accumulation in various tissues such as the liver. Our present study shows that its loss sensitizes liver cancer cells towards metabolic and oxidative stress. Protein targeting to glycogen (PTG) is a ubiquitously expressed scaffolding protein that critically regulates glycogen levels in many tissues, including the liver, muscle and brain. However, its importance in transformed cells has yet to be explored in detail. Since recent studies have demonstrated an important role for glycogen metabolism in cancer cells, we decided to assess the effect of PTG levels on the ability of human hepatocellular carcinoma (HepG2) cells to respond to metabolic stress. Although PTG expression did not significantly affect the proliferation of HepG2 cells under normal culture conditions, we determined that PTG plays an important role during glucose deprivation. Overexpression of PTG protected cells from cell death in the absence of glucose, whereas knocking down PTG further promoted cytotoxicity, as measured by the release of lactate dehydrogenase (LDH) into the media. Additionally, we demonstrated that PTG attenuates glucose deprivation induced haeme oxygenase-1 (HO-1) expression, suggesting that PTG protects against glucose deprivation-induced oxidative stress. Indeed, treating cells with the antioxidant N-acetyl cysteine (NAC) rescued cells from cytotoxicity caused by glucose deprivation. Finally, we showed that loss of PTG resulted in enhanced autophagy. In control cells, glucose deprivation suppressed autophagy as determined by the increase in the levels of p62, an autophagy substrate. However, in knockdown cells, this suppression was relieved. Blockade of autophagy also attenuated cytotoxicity from glucose deprivation in PTG knockdown cells. Taken together, our findings identify a novel role for PTG in protecting hepatocellular carcinoma cells from metabolic stress, in part by regulating oxidative stress and autophagy.
Collapse
|