1
|
Manning T, Thilagaraj AV, Mouradov D, Piola R, Grandison C, Gordon M, Shimeta J, Mouradov A. Diversity of dinoflagellate assemblages in coastal temperate and offshore tropical waters of Australia. BMC Ecol Evol 2021; 21:27. [PMID: 33588746 PMCID: PMC7885227 DOI: 10.1186/s12862-021-01745-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dinoflagellates are a ubiquitous and ecologically important component of marine phytoplankton communities, with particularly notable species including those associated with harmful algal blooms (HABs) and those that bioluminesce. High-throughput sequencing offers a novel approach compared to traditional microscopy for determining species assemblages and distributions of dinoflagellates, which are poorly known especially in Australian waters. RESULTS We assessed the composition of dinoflagellate assemblages in two Australian locations: coastal temperate Port Phillip Bay and offshore tropical waters of Davies Reef (Great Barrier Reef). These locations differ in certain environmental parameters reflecting latitude as well as possible anthropogenic influences. Molecular taxonomic assessment revealed more species than traditional microscopy, and it showed statistically significant differences in dinoflagellate assemblages between locations. Bioluminescent species and known associates of HABs were present at both sites. Dinoflagellates in both areas were mainly represented by the order Gymnodiniales (66%-82% of total sequence reads). In the warm waters of Davies Reef, Gymnodiniales were equally represented by the two superclades, Gymnodiniales sensu stricto (33%) and Gyrodinium (34%). In contrast, in cooler waters of Port Phillip Bay, Gymnodiniales was mainly represented by Gyrodinium (82%). In both locations, bioluminescent dinoflagellates represented up to 0.24% of the total sequence reads, with Protoperidinium the most abundant genus. HAB-related species, mainly represented by Gyrodinium, were more abundant in Port Phillip Bay (up to 47%) than at Davies Reef (28%), potentially reflecting anthropogenic influence from highly populated and industrial areas surrounding the bay. The entire assemblage of dinoflagellates, as well as the subsets of HAB and bioluminescent species, were strongly correlated with water quality parameters (R2 = 0.56-0.92). Significant predictors differed between the subsets: HAB assemblages were explained by salinity, temperature, dissolved oxygen, and total dissolved solids; whereas, bioluminescent assemblages were explained only by salinity and dissolved oxygen, and had greater variability. CONCLUSION High-throughput sequencing and genotyping revealed greater diversity of dinoflagellate assemblages than previously known in both subtropical and temperate Australian waters. Significant correlations of assemblage structure with environmental variables suggest the potential for explaining the distribution and composition of both HAB species and bioluminescent species.
Collapse
Affiliation(s)
- Tahnee Manning
- School of Science, RMIT University, Melbourne, VIC, Australia.
| | | | - Dmitri Mouradov
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Richard Piola
- Maritime Division, Defence Science & Technology Group, Fishermans Bend, Canberra, VIC, Australia
| | - Clare Grandison
- Maritime Division, Defence Science & Technology Group, Fishermans Bend, Canberra, VIC, Australia
| | - Matthew Gordon
- Maritime Division, Defence Science & Technology Group, Fishermans Bend, Canberra, VIC, Australia
| | - Jeff Shimeta
- School of Science, RMIT University, Melbourne, VIC, Australia
| | - Aidyn Mouradov
- School of Science, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Chatragadda R. Terrestrial and marine bioluminescent organisms from the Indian subcontinent: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:747. [PMID: 33150454 DOI: 10.1007/s10661-020-08685-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
The inception of bioluminescence by Harvey (1952) has led to a Nobel Prize to Osamu Shimomura (Chemistry, 2008) in biological research. Consequently, in recent years, bioluminescence-based assays to monitor toxic pollutants as a real-time marker, to study various diseases and their propagation in plants and animals, are developed in many countries. The emission ability of bioluminescence is improved by gene modification, and also, search for novel bioluminescent systems is underway. Over 100 species of organisms belonging to different taxa are known to be luminous in India. However, the diversity and distribution of luminous organisms and their applications are studied scarcely in the Indian scenario. In this context, the present review provides an overview of the current understanding of various bioluminescent organisms, functions, and applications. A detailed checklist of known bioluminescent organisms from India's marine, terrestrial, and freshwater ecosystems is detailed. This review infers that Indian scientists are needed to extend their research on various aspects of luminescent organisms such as biodiversity, genomics, and chemical mechanisms for conservation, ecological, and biomedical applications.
Collapse
Affiliation(s)
- Ramesh Chatragadda
- Biological Oceanography Division (BOD), CSIR-National Institute of Oceanography (CSIR-NIO), Dona Paula, Goa, 403004, India.
| |
Collapse
|
3
|
Cusick KD, Widder EA. Bioluminescence and toxicity as driving factors in harmful algal blooms: Ecological functions and genetic variability. HARMFUL ALGAE 2020; 98:101850. [PMID: 33129462 DOI: 10.1016/j.hal.2020.101850] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Dinoflagellates are an ecologically important group of marine microbial eukaryotes with a remarkable array of adaptive strategies. It is ironic that two of the traits for which dinoflagellates are best known, toxin production and bioluminescence, are rarely linked when considering the ecological significance of either. Although dinoflagellate species that form some of the most widespread and frequent harmful algal blooms (HABs) are bioluminescent, the molecular and eco-evolutionary associations between these two traits has received little attention. Here, the major themes of biochemistry and genetics, ecological functions, signaling mechanisms, and evolution are addressed, with parallels and connections drawn between the two. Of the 17 major classes of dinoflagellate toxins, only two are produced by bioluminescent species: saxitoxin (STX) and yessotoxin. Of these, STX has been extensively studied, including the identification of the STX biosynthetic genes. While numerous theories have been put forward as to the eco-evolutionary roles of both bioluminescence and toxicity, a general consensus is that both function as grazing deterrents. Thus, both bioluminescence and toxicity may aid in HAB initiation as they alleviate grazing pressure on the HAB species. A large gap in our understanding is the genetic variability among natural bloom populations, as both toxic and non-toxic strains have been isolated from the same geographic location. The same applies to bioluminescence, as there exist both bioluminescent and non-bioluminescent strains of the same species. Recent evidence demonstrating that blooms are not monoclonal events necessitates a greater level of understanding as to the genetic variability of these traits among sub-populations as well as the mechanisms by which cells acquire or lose the trait, as sequence analysis of STX+ and STX- species indicate the key gene required for toxicity is lost rather than gained. While the extent of genetic variability for both bioluminescence and toxicity among natural HAB sub-populations remains unknown, it is an area that needs to be explored in order to gain greater insights into the molecular mechanisms and environmental parameters driving HAB evolution.
Collapse
Affiliation(s)
- Kathleen D Cusick
- University of Maryland Baltimore County, Department of Biological Sciences, 1000 Hilltop Circle, Baltimore, MD 21250, United States.
| | - Edith A Widder
- Ocean Research and Conservation Association, 1420 Seaway Dr, Fort Pierce, FL 34949, United States.
| |
Collapse
|
4
|
|
5
|
Valiadi M, de Rond T, Amorim A, Gittins JR, Gubili C, Moore BS, Iglesias-Rodriguez MD, Latz MI. Molecular and biochemical basis for the loss of bioluminescence in the dinoflagellate Noctiluca scintillans along the west coast of the USA. LIMNOLOGY AND OCEANOGRAPHY 2019; 64:2709-2724. [PMID: 32655189 PMCID: PMC7351363 DOI: 10.1002/lno.11309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 07/16/2019] [Indexed: 06/11/2023]
Abstract
The globally distributed heterotrophic dinoflagellate Noctiluca scintillans (Macartney) Kofoid & Swezy is well known for its dense blooms and prominent displays of bioluminescence. Intriguingly, along the west coast of the USA its blooms are not bioluminescent. We investigated the basis for the regional loss of bioluminescence using molecular, cellular and biochemical analyses of isolates from different geographic regions. Prominent differences of the non-bioluminescent strains were: (1) the fused luciferase and luciferin binding protein gene (lcf/lbp) was present but its transcripts were undetectable; (2) lcf/lbp contained multiple potentially deleterious mutations; (3) the substrate luciferin was absent, based on the lack of luciferin blue autofluorescence and the absence of luciferin derived metabolites; (4) although the cells possessed scintillons, the vesicles that contain the luminescent chemistry, electron microscopy revealed additional scintillon-like vesicles with an atypical internal structure; (5) cells isolated from the California coast were 43% smaller in size than bioluminescent cells from the Gulf of Mexico. Phylogenetic analyses based on the large subunit of rDNA did not show divergence of the non-bioluminescent population in relation to other bioluminescent N. scintillans from the Pacific Ocean and Arabian Sea. Our study demonstrates that gene silencing and the lack of the luciferin substrate have resulted in the loss of a significant dinoflagellate functional trait over large spatial scales in the ocean. As the bioluminescence system of dinoflagellates is well characterized, non-bioluminescent N. scintillans is an ideal model to explore the evolutionary and ecological mechanisms that lead to intraspecific functional divergence in natural dinoflagellate populations.
Collapse
Affiliation(s)
- Martha Valiadi
- University of Southampton, Ocean and Earth Science, National Oceanography Centre, Southampton SO14 3ZH, UK
- Present address: University of Exeter, Living Systems Institute, Biosciences, UK
| | - Tristan de Rond
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Ana Amorim
- Universidade de Lisboa, Faculdade de Ciências, Marine and Environmental Sciences Centre, 1749-016 Lisbon, Portugal
| | - John R Gittins
- University of Southampton, Ocean and Earth Science, National Oceanography Centre, Southampton SO14 3ZH, UK
| | - Chrysoula Gubili
- Hellenic Agricultural Organization, Fisheries Research Institute, Nea Peramos, Kavala, 64007, Macedonia, Greece
| | - Bradley S Moore
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - M Debora Iglesias-Rodriguez
- University of Southampton, Ocean and Earth Science, National Oceanography Centre, Southampton SO14 3ZH, UK
- Present address: University of California Santa Barbara, Department for Ecology, Evolution and Marine Biology, Santa Barbara, California, USA
| | - Michael I Latz
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
6
|
Loukas CM, Mowlem MC, Tsaloglou MN, Green NG. A novel portable filtration system for sampling and concentration of microorganisms: Demonstration on marine microalgae with subsequent quantification using IC-NASBA. HARMFUL ALGAE 2018; 75:94-104. [PMID: 29778229 DOI: 10.1016/j.hal.2018.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 03/19/2018] [Accepted: 03/24/2018] [Indexed: 06/08/2023]
Abstract
This paper presents a novel portable sample filtration/concentration system, designed for use on samples of microorganisms with very low cell concentrations and large volumes, such as water-borne parasites, pathogens associated with faecal matter, or toxic phytoplankton. The example application used for demonstration was the in-field collection and concentration of microalgae from seawater samples. This type of organism is responsible for Harmful Algal Blooms (HABs), an example of which is commonly referred to as "red tides", which are typically the result of rapid proliferation and high biomass accumulation of harmful microalgal species in the water column or at the sea surface. For instance, Karenia brevis red tides are the cause of aquatic organism mortality and persistent blooms may cause widespread die-offs of populations of other organisms including vertebrates. In order to respond to, and adequately manage HABs, monitoring of toxic microalgae is required and large-volume sample concentrators would be a useful tool for in situ monitoring of HABs. The filtering system presented in this work enables consistent sample collection and concentration from 1 L to 1 mL in five minutes, allowing for subsequent benchtop sample extraction and analysis using molecular methods such as NASBA and IC-NASBA. The microalga Tetraselmis suecica was successfully detected at concentrations ranging from 2 × 105 cells/L to 20 cells/L. Karenia brevis was also detected and quantified at concentrations between 10 cells/L and 106 cells/L. Further analysis showed that the filter system, which concentrates cells from very large volumes with consequently more reliable sampling, produced samples that were more consistent than the independent non-filtered samples (benchtop controls), with a logarithmic dependency on increasing cell numbers. This filtering system provides simple, rapid, and consistent sample collection and concentration for further analysis, and could be applied to a wide range of different samples and target organisms in situations lacking laboratories.
Collapse
Affiliation(s)
- Christos-Moritz Loukas
- National Oceanography Centre (NOC), University of Southampton Waterfront Campus, European Way, Southampton, SO14 3ZH, United Kingdom; Department of Ocean and Earth Science, University of Southampton Waterfront Campus, European Way, Southampton, SO14 3ZH, United Kingdom.
| | - Matthew C Mowlem
- National Oceanography Centre (NOC), University of Southampton Waterfront Campus, European Way, Southampton, SO14 3ZH, United Kingdom.
| | - Maria-Nefeli Tsaloglou
- National Oceanography Centre (NOC), University of Southampton Waterfront Campus, European Way, Southampton, SO14 3ZH, United Kingdom; Department of Ocean and Earth Science, University of Southampton Waterfront Campus, European Way, Southampton, SO14 3ZH, United Kingdom; Institute for Life Sciences, University of Southampton Highfield Campus, Highfield, Southampton, SO17 1BJ, United Kingdom.
| | - Nicolas G Green
- Institute for Life Sciences, University of Southampton Highfield Campus, Highfield, Southampton, SO17 1BJ, United Kingdom; School of Electronics and Computer Science (ECS), University of Southampton Highfield Campus, Highfield, Southampton, SO17 1BJ, United Kingdom.
| |
Collapse
|
7
|
Martini S, Haddock SHD. Quantification of bioluminescence from the surface to the deep sea demonstrates its predominance as an ecological trait. Sci Rep 2017; 7:45750. [PMID: 28374789 PMCID: PMC5379559 DOI: 10.1038/srep45750] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/03/2017] [Indexed: 11/09/2022] Open
Abstract
The capability of animals to emit light, called bioluminescence, is considered to be a major factor in ecological interactions. Because it occurs across diverse taxa, measurements of bioluminescence can be powerful to detect and quantify organisms in the ocean. In this study, 17 years of video observations were recorded by remotely operated vehicles during surveys off the California Coast, from the surface down to 3,900 m depth. More than 350,000 observations are classified for their bioluminescence capability based on literature descriptions. The organisms represented 553 phylogenetic concepts (species, genera or families, at the most precise taxonomic level defined from the images), distributed within 13 broader taxonomic categories. The importance of bioluminescent marine taxa is highlighted in the water column, as we showed that 76% of the observed individuals have bioluminescence capability. More than 97% of Cnidarians were bioluminescent, and 9 of the 13 taxonomic categories were found to be bioluminescent dominant. The percentage of bioluminescent animals is remarkably uniform over depth. Moreover, the proportion of bioluminescent and non-bioluminescent animals within taxonomic groups changes with depth for Ctenophora, Scyphozoa, Chaetognatha, and Crustacea. Given these results, bioluminescence has to be considered an important ecological trait from the surface to the deep-sea.
Collapse
Affiliation(s)
- Séverine Martini
- Monterey Bay Aquarium Research Institute (MBARI), 7700 Sandholdt Road, Moss Landing, 95039, CA, USA
| | - Steven H D Haddock
- Monterey Bay Aquarium Research Institute (MBARI), 7700 Sandholdt Road, Moss Landing, 95039, CA, USA
| |
Collapse
|