1
|
Maes E, Sadovskaya I, Yamakawa N, Goulet A, Le Marrec C, Chapot-Chartier MP. Isolation and structure elucidation of cell surface polysaccharides from Oenococcus oeni. Carbohydr Res 2025; 552:109456. [PMID: 40112568 DOI: 10.1016/j.carres.2025.109456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/17/2025] [Accepted: 03/06/2025] [Indexed: 03/22/2025]
Abstract
The Gram-positive bacterium Oenococcus oeni is a major player in wine malolactic fermentation. In O. oeni, cell wall polysaccharides are considered putative receptors for bacteriophages, virus predators that lead to fermentation failures. In this study, we have developed an efficient stepwise extraction protocol to extract polysaccharides from the cell wall of O. oeni IOEBS277, which were analyzed by methylation, 1D, 2D-NMR spectroscopy, and MALDI-QIT-TOF mass spectrometry. The chemical structures of the two major purified polysaccharides were elucidated. The first one is a heteropolysaccharide with repeating units consisting of a branched hexasaccharide and one glycerol residue, linked by phosphodiester bonds. The second one consists of a →6)-β-Galf-(1→ galactofuranan chain partially substituted on the C-2 hydroxyl with β-Glcp. HR-MAS NMR analysis of intact O. oeni cells indicated that both polysaccharides are exposed to the bacterial surface.
Collapse
Affiliation(s)
- Emmanuel Maes
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, Lille, France.
| | - Irina Sadovskaya
- Univ. Littoral Côte d'Opale, UMR 1158 BioEcoAgro, Institut Charles Viollette, USC ANSES, INRAE, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Junia, F-62200, Boulogne-sur-Mer, France
| | - Nao Yamakawa
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, Lille, France
| | - Adeline Goulet
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies et Biotechnologie (IM2B), CNRS and Aix-Marseille Université UMR7255, Marseille, France
| | - Claire Le Marrec
- University of Bordeaux, UMR 1366 INRAE, ISVV, Villenave d'Ornon, France
| | | |
Collapse
|
2
|
Modesto M, Scarafile D, Vásquez A, Pukall R, Neumann-Schaal M, Pascarelli S, Sgorbati B, Ancora M, Cammà C, Mattarelli P, Olofsson TC. Phylogenetic characterization of Bifidobacterium kimbladii sp. nov., a novel species from the honey stomach of the honeybee Apis mellifera. Syst Appl Microbiol 2025; 48:126579. [PMID: 39764984 DOI: 10.1016/j.syapm.2025.126579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 01/02/2025] [Accepted: 01/02/2025] [Indexed: 01/14/2025]
Abstract
Six novel Bifidobacterium strains H1HS16NT, Bin2N, Hma3N, H6bp22N, H1HS10N, and H6bp9N, were isolated from the honey stomach of Apis mellifera. Cells are Gram-positive, non-motile, non-sporulating, facultatively anaerobic, and fructose 6-phosphate phosphoketolase-positive. Optimal growth conditions occur at 37 °C in anaerobiosis in MRS medium added with 2 % fructose and 0.1 % L-cysteine. The 16S rRNA gene sequences analysis revealed clustering with Bifidobacterium species found in honeybees. Strains Hma3N, H6bp22N, and H1HS16NT showed significant similarity to Bifidobacterium polysaccharolyticum JCM 34588T, with an average similarity of 99.63 %. In contrast, strains Bin2N, H1HS10N, and H6bp9N were closely related to Bifidobacterium apousia JCM 34587T, with an average similarity of 99.22 %. Moreover, strains Hma3N and H6bp22N exhibited ANI values of 96.65 % and 96.53 % when compared to Bifidobacterium polysaccharolyticum JCM 34588T, while strains H1HS16NT, Bin2N, H6bp9N, and H1HS10N revealed ANI values of 94.18 %, 94.33 %, 94.22 %, and 95.50 % respectively when compared to B. apousia JCM 34587T. dDDH analysis confirmed that strains Hma3N and H6bp22N belong to B. polysaccharolyticum, whereas strains H1HS16NT, Bin2N, H6bp9N, and H1HS10N represent a novel species. The peptidoglycan of the novel species is of the A4α type (L-Lys-D-Asp). The main cellular fatty acids of the type strain H1HS16NT are C16:0, C14:0, C19:0 cyclo ω9c, and C18:1 ω9c. The DNA G + C content of the type strain is 60.8 mol%. Genome analyses of the strains were also conducted to determine their biosynthesis-related gene clusters, probiotic features, and ecological distribution patterns. Phenotypic and genotypic characterization show that strain H1HS16NT is distinct from the type strains of other recognized Bifidobacterium species. Thus, Bifidobacterium kimbladii sp. nov. (H1HS16NT = DSM 115187T = CCUG 76695T) is proposed as a novel Bifidobacterium species.
Collapse
Affiliation(s)
- M Modesto
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 42, 40127 Bologna, Italy
| | - D Scarafile
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 42, 40127 Bologna, Italy
| | - A Vásquez
- Department of Laboratory Medicine, Medical Microbiology, Lund University, Medicon Village, SE-223 81 Lund, Sweden.; ConCellae AB, Bårslövsvägen 3, 25373 Helsingborg, Sweden
| | - R Pukall
- Department of Microorganisms and Chemical Analytics and Metabolomics, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - M Neumann-Schaal
- Department of Microorganisms and Chemical Analytics and Metabolomics, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - S Pascarelli
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland; Department of Biology, Institute of Molecular Systems Biology, ETH, Zurich, Zurich, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - B Sgorbati
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 42, 40127 Bologna, Italy
| | - M Ancora
- National Reference Center for Whole Genome Sequencing of microbial pathogens: database and bioinformatic analysis, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Campo Boario, 64100 Teramo, Italy
| | - C Cammà
- National Reference Center for Whole Genome Sequencing of microbial pathogens: database and bioinformatic analysis, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Campo Boario, 64100 Teramo, Italy
| | - P Mattarelli
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 42, 40127 Bologna, Italy.
| | - T C Olofsson
- Department of Laboratory Medicine, Medical Microbiology, Lund University, Medicon Village, SE-223 81 Lund, Sweden.; ConCellae AB, Bårslövsvägen 3, 25373 Helsingborg, Sweden
| |
Collapse
|
3
|
Paul S, Parvez SS, Goswami A, Banik A. Exopolysaccharides from agriculturally important microorganisms: Conferring soil nutrient status and plant health. Int J Biol Macromol 2024; 262:129954. [PMID: 38336329 DOI: 10.1016/j.ijbiomac.2024.129954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/10/2023] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
A wide variety of microorganisms secretes extracellular polymeric substances or commonly known as exopolysaccharides (EPS), which have been studied to influence plant growth via various mechanisms. EPS-producing microorganisms have been found to have positive effects on plant health such as by facilitating nutrient entrapment in the soil, or by improving soil quality, especially by helping in mitigating various abiotic stress conditions. The various types of microbial polysaccharides allow for the compartmentalization of the microbial community enabling them to endure undressing stress conditions. With the growing population, there is a constant need for developing sustainable agriculture where we could use various PGPR to help the plant cope with various stress conditions and simultaneously enhance the crop yield. These polysaccharides have also found application in various sectors, especially in the biomedical fields, manifesting their potential to act as antitumor drugs, play a significant role in immune evasion, and reveal various therapeutic potentials. These constitute high levels of bioactive polysaccharides which possess a wide range of implementation starting from industrial applications to novel food applications. In this current review, we aim at presenting a comprehensive study of how these microbial extracellular polymeric substances influence agricultural productivity along with their other commercial applications.
Collapse
Affiliation(s)
- Sushreeta Paul
- Laboratory of Microbial Interaction, Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India
| | - Sk Soyal Parvez
- Laboratory of Microbial Interaction, Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India
| | - Anusree Goswami
- Laboratory of Microbial Interaction, Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India
| | - Avishek Banik
- Laboratory of Microbial Interaction, Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India.
| |
Collapse
|
4
|
Tan J, Xu W, Zhai X, Yan B, Luan T, Yang L. Time-course adaption strategy of Tetraselmis-based consortia in response to 17α-ethinylestradiol. JOURNAL OF HAZARDOUS MATERIALS 2023; 463:132854. [PMID: 39491996 DOI: 10.1016/j.jhazmat.2023.132854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/07/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024]
Abstract
Estuarine ecosystem constitutes a microenvironment where the abundant green microalga Tetraselmis sp. co-exists with 17α-ethinylestradiol (EE2) pollution. However, the adaption mechanisms of this microalga-based consortia under EE2 shock are rarely recognized. Using extracellular polymeric substance (EPS) characterization, flow cytometry and transcriptomic, this study reveals the time-course response of Tetraselmis-based consortia under EE2 stress. Compared to the insignificant effect of 0.5 mg/L, a high dose of 2.5 mg/L EE2 induces persistent production of reactive oxygen species (ROS) and transiently physiological damages (membrane, chloroplast, organelle morphogenesis, and DNA replication), resulting in cell cycle alteration and division inhibition. These damages could be recovered through active DNA repair and persistently detoxifying processes of enhanced metabolism and ROS quenching. The enhanced EPS production is observed and in line with the significant up-regulation of most key enzymes involved in precursor synthesis and polysaccharides assembling. However, the up-regulation of glycoside hydrolases and most glycosyltransferases, down-regulation of flippases and changed expression of ABC family members indicate the changed EPS composition and synthesis strategy. The resulting increased colloidal polysaccharide is further consumed by associated bacteria whereas protein remains in the co-cultures. These results provide deeper insights into the adverse effects of chemical compounds to microalgae-bacteria and their coadaptation ability.
Collapse
Affiliation(s)
- Jiefeng Tan
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Weihao Xu
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Eco-Environmental Monitoring and Research Center, Pearl River Valley and South China Sea Ecology and Environment Administration, Ministry of Ecology and Environment, Guangzhou 510611, China
| | - Xue Zhai
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Binhua Yan
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Tiangang Luan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lihua Yang
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China.
| |
Collapse
|
5
|
Rubio-Ribeaux D, da Costa RAM, Montero-Rodríguez D, do Amaral Marques NSA, Puerta-Díaz M, de Souza Mendonça R, Franco PM, Dos Santos JC, da Silva SS. Sustainable production of bioemulsifiers, a critical overview from microorganisms to promising applications. World J Microbiol Biotechnol 2023; 39:195. [PMID: 37171665 DOI: 10.1007/s11274-023-03611-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/06/2023] [Indexed: 05/13/2023]
Abstract
Microbial bioemulsifiers are molecules of amphiphilic nature and high molecular weight that are efficient in emulsifying two immiscible phases such as water and oil. These molecules are less effective in reducing surface tension and are synthesized by bacteria, yeast and filamentous fungi. Unlike synthetic emulsifiers, microbial bioemulsifiers have unique advantages such as biocompatibility, non-toxicity, biodegradability, efficiency at low concentrations and high selectivity under different conditions of pH, temperature and salinity. The adoption of microbial bioemulsifiers as alternatives to their synthetic counterparts has been growing in ongoing research. This article analyzes the production of microbial-based emulsifiers, the raw materials and fermentation processes used, as well as the scale-up and commercial applications of some of these biomolecules. The current trend of incorporating natural compounds into industrial formulations indicates that the search for new bioemulsifiers will continue to increase, with emphasis on performance improvement and economically viable processes.
Collapse
Affiliation(s)
- Daylin Rubio-Ribeaux
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, São Paulo, 12.602-810, Brazil.
- Faculty of Philosophy and Sciences, Campus Marília, São Paulo State University, São Paulo, 17.525-900, Brazil.
| | - Rogger Alessandro Mata da Costa
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, São Paulo, 12.602-810, Brazil
- Faculty of Philosophy and Sciences, Campus Marília, São Paulo State University, São Paulo, 17.525-900, Brazil
| | - Dayana Montero-Rodríguez
- Nucleus of Research in Environmental Sciences and Biotechnology, Catholic University of Pernambuco, Recife, Pernambuco, 50050-590, Brazil
- Faculty of Philosophy and Sciences, Campus Marília, São Paulo State University, São Paulo, 17.525-900, Brazil
| | - Nathália Sá Alencar do Amaral Marques
- Nucleus of Research in Environmental Sciences and Biotechnology, Catholic University of Pernambuco, Recife, Pernambuco, 50050-590, Brazil
- Faculty of Philosophy and Sciences, Campus Marília, São Paulo State University, São Paulo, 17.525-900, Brazil
| | - Mirelys Puerta-Díaz
- Pernambuco Institute of Agronomy, Recife, Pernambuco, 50761-000, Brazil
- Faculty of Philosophy and Sciences, Campus Marília, São Paulo State University, São Paulo, 17.525-900, Brazil
| | - Rafael de Souza Mendonça
- Nucleus of Research in Environmental Sciences and Biotechnology, Catholic University of Pernambuco, Recife, Pernambuco, 50050-590, Brazil
- Faculty of Philosophy and Sciences, Campus Marília, São Paulo State University, São Paulo, 17.525-900, Brazil
| | - Paulo Marcelino Franco
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, São Paulo, 12.602-810, Brazil
- Faculty of Philosophy and Sciences, Campus Marília, São Paulo State University, São Paulo, 17.525-900, Brazil
| | - Júlio César Dos Santos
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, São Paulo, 12.602-810, Brazil
- Faculty of Philosophy and Sciences, Campus Marília, São Paulo State University, São Paulo, 17.525-900, Brazil
| | - Silvio Silvério da Silva
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, São Paulo, 12.602-810, Brazil
- Faculty of Philosophy and Sciences, Campus Marília, São Paulo State University, São Paulo, 17.525-900, Brazil
| |
Collapse
|
6
|
Zhao X, Liang Q, Song X, Zhang Y. Whole genome sequence of Lactiplantibacillus plantarum MC5 and comparative analysis of eps gene clusters. Front Microbiol 2023; 14:1146566. [PMID: 37200914 PMCID: PMC10185785 DOI: 10.3389/fmicb.2023.1146566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/17/2023] [Indexed: 05/20/2023] Open
Abstract
Introduction Probiotic Lactiplantibacillus plantarum MC5 produces large amounts of exopolysaccharides (EPS), and its use as a compound fermentor can greatly improve the quality of fermented milk. Methods To gain insight into the genomic characteristics of probiotic MC5 and reveal the relationship between its EPS biosynthetic phenotype and genotype, we analyzed the carbohydrate metabolic capacity, nucleotide sugar formation pathways, and EPS biosynthesis-related gene clusters of strain MC5 based on its whole genome sequence. Finally, we performed validation tests on the monosaccharides and disaccharides that strain MC5 may metabolize. Results Genomic analysis showed that MC5 has seven nucleotide sugar biosynthesis pathways and 11 sugar-specific phosphate transport systems, suggesting that the strain can metabolize mannose, fructose, sucrose, cellobiose, glucose, lactose, and galactose. Validation results showed that strain MC5 can metabolize these seven sugars and produce significant amounts of EPS (> 250 mg/L). In addition, strain MC5 possesses two typical eps biosynthesis gene clusters, which include the conserved genes epsABCDE, wzx, and wzy, six key genes for polysaccharide biosynthesis, and one MC5-specific epsG gene. Discussion These insights into the mechanism of EPS-MC5 biosynthesis can be used to promote the production of EPS through genetic engineering.
Collapse
|
7
|
Assessment of chitosan antimicrobial effect on wine microbes. Int J Food Microbiol 2022; 381:109907. [DOI: 10.1016/j.ijfoodmicro.2022.109907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022]
|
8
|
Liu L, Peng S, Song W, Zhao H, Li H, Wang H. Genomic Analysis of an Excellent Wine-Making Strain Oenococcus oeni SD-2a. Pol J Microbiol 2022; 71:279-292. [PMID: 35716166 PMCID: PMC9252139 DOI: 10.33073/pjm-2022-026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/14/2022] [Indexed: 12/27/2022] Open
Abstract
Oenococcus oeni is an important microorganism in wine-making-related engineering, and it improves wine quality and stability through malolactic fermentation. Although the genomes of more than 200 O. oeni strains have been sequenced, only a few include completed genome maps. Here, the genome sequence of O. oeni SD-2a, isolated from Shandong, China, has been determined. It is a fully assembled genome sequence of this strain. The complete genome is 1,989,703 bp with a G+C content of 37.8% without a plasmid. The genome includes almost all the essential genes involved in central metabolic pathways and the stress genes reported in other O. oeni strains. Some natural competence-related genes, like comEA, comEC, comFA, comG operon, and comFC, suggest that O. oeni SD-2a may have natural transformation potential. A comparative genomics analysis revealed 730 gene clusters in O. oeni SD-2a homologous to those in four other lactic acid bacteria species (O. oeni PSU-1, O. oeni CRBO-11381, Lactiplantibacillus plantarum UNQLp11, and Pediococcus pentosaceus KCCM40703). A collinearity analysis showed poor collinearity between O. oeni SD-2a and O. oeni PSU-1, indicating great differences in their evolutionary histories. The results provide general knowledge of O. oeni SD-2a and lay the foundation for specific gene function analyses. ![]()
Collapse
Affiliation(s)
- Longxiang Liu
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Binzhou University, Binzhou, China
| | - Shuai Peng
- College of food science and engineering, Gansu Agricultural University, Lanzhou, China
| | - Weiyu Song
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Binzhou University, Binzhou, China
| | - Hongyu Zhao
- College of Enology, Northwest A&F University, Yangling, China.,Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China
| | - Hua Li
- College of Enology, Northwest A&F University, Yangling, China.,Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China
| | - Hua Wang
- College of Enology, Northwest A&F University, Yangling, China.,Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China
| |
Collapse
|
9
|
Dimopoulou M, Dols-Lafargue M. Exopolysaccharides Producing Lactic Acid Bacteria in Wine and Other Fermented Beverages: For Better or for Worse? Foods 2021; 10:2204. [PMID: 34574312 PMCID: PMC8466591 DOI: 10.3390/foods10092204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 11/21/2022] Open
Abstract
Lactic acid bacteria (LAB) from fermented beverages such as wine, cider and beer produce a wide range of exopolysaccharides (EPS) through multiple biosynthetic pathways. These extracellular polysaccharides constitute key elements for bacterial species adaptation to such anthropic processes. In the food industry, LAB polysaccharides have been widely studied for their rheological, functional and nutritional properties; however, these have been poorly studied in wine, beer and cider until recently. In this review, we have gathered the information available on these specific polysaccharide structure and, biosynthetic pathways, as well as the physiology of their production. The genes associated with EPS synthesis are also presented and compared. Finally, the possible role of EPS for bacterial survival and spread, as well as the risks or possible benefits for the winemaker and the wine lover, are discussed.
Collapse
Affiliation(s)
- Maria Dimopoulou
- Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, Ag. Spyridonos str, Egaleo, 12243 Athens, Greece;
| | - Marguerite Dols-Lafargue
- Unité de Recherche Œnologie EA 4577, University of Bordeaux, ISVV, USC 1366 INRA, Bordeaux INP, F-33140 Villenave d’Ornon, France
| |
Collapse
|
10
|
Molina M, Cioci G, Moulis C, Séverac E, Remaud-Siméon M. Bacterial α-Glucan and Branching Sucrases from GH70 Family: Discovery, Structure-Function Relationship Studies and Engineering. Microorganisms 2021; 9:microorganisms9081607. [PMID: 34442685 PMCID: PMC8398850 DOI: 10.3390/microorganisms9081607] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 01/12/2023] Open
Abstract
Glucansucrases and branching sucrases are classified in the family 70 of glycoside hydrolases. They are produced by lactic acid bacteria occupying very diverse ecological niches (soil, buccal cavity, sourdough, intestine, dairy products, etc.). Usually secreted by their producer organisms, they are involved in the synthesis of α-glucans from sucrose substrate. They contribute to cell protection while promoting adhesion and colonization of different biotopes. Dextran, an α-1,6 linked linear α-glucan, was the first microbial polysaccharide commercialized for medical applications. Advances in the discovery and characterization of these enzymes have remarkably enriched the available diversity with new catalysts. Research into their molecular mechanisms has highlighted important features governing their peculiarities thus opening up many opportunities for engineering these catalysts to provide new routes for the transformation of sucrose into value-added molecules. This article reviews these different aspects with the ambition to show how they constitute the basis for promising future developments.
Collapse
|
11
|
Prete R, Alam MK, Perpetuini G, Perla C, Pittia P, Corsetti A. Lactic Acid Bacteria Exopolysaccharides Producers: A Sustainable Tool for Functional Foods. Foods 2021; 10:1653. [PMID: 34359523 PMCID: PMC8305620 DOI: 10.3390/foods10071653] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 12/30/2022] Open
Abstract
Lactic acid bacteria (LAB) used in the food industry, mainly for the production of dairy products, are able to synthetize exopolysaccharides (EPS). EPS play a central role in the assessment of rheological and sensory characteristics of dairy products since they positively influence texture and organoleptic properties. Besides these, EPS have gained relevant interest for pharmacological and nutraceutical applications due to their biocompatibility, non-toxicity and biodegradability. These bioactive compounds may act as antioxidant, cholesterol-lowering, antimicrobial and prebiotic agents. This review provides an overview of exopolysaccharide-producing LAB, with an insight on the factors affecting EPS production, their dairy industrial applications and health benefits.
Collapse
Affiliation(s)
- Roberta Prete
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (R.P.); (M.K.A.); (P.P.); (A.C.)
| | - Mohammad Khairul Alam
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (R.P.); (M.K.A.); (P.P.); (A.C.)
| | - Giorgia Perpetuini
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (R.P.); (M.K.A.); (P.P.); (A.C.)
| | - Carlo Perla
- Dalton Biotecnologie srl, Spoltore, 65010 Pescara, Italy;
| | - Paola Pittia
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (R.P.); (M.K.A.); (P.P.); (A.C.)
| | - Aldo Corsetti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (R.P.); (M.K.A.); (P.P.); (A.C.)
| |
Collapse
|
12
|
Claisse O, Chaïb A, Jaomanjaka F, Philippe C, Barchi Y, Lucas PM, Le Marrec C. Distribution of Prophages in the Oenococcus oeni Species. Microorganisms 2021; 9:856. [PMID: 33923461 PMCID: PMC8074189 DOI: 10.3390/microorganisms9040856] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/10/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022] Open
Abstract
Oenococcus oeni is the most exploited lactic acid bacterium in the wine industry and drives the malolactic fermentation of wines. Although prophage-like sequences have been identified in the species, many are not characterized, and a global view of their integration and distribution amongst strains is currently lacking. In this work, we analyzed the complete genomes of 231 strains for the occurrence of prophages, and analyzed their size and positions of insertion. Our data show the limited variation in the number of prophages in O. oeni genomes, and that six sites of insertion within the bacterial genome are being used for site-specific recombination. Prophage diversity patterns varied significantly for different host lineages, and environmental niches. Overall, the findings highlight the pervasive presence of prophages in the O. oeni species, their role as a major source of within-species bacterial diversity and drivers of horizontal gene transfer. Our data also have implications for enhanced understanding of the prophage recombination events which occurred during evolution of O. oeni, as well as the potential of prophages in influencing the fitness of these bacteria in their distinct niches.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Claire Le Marrec
- Unité de Recherche Œnologie, Bordeaux INP, University of Bordeaux, INRAE, ISVV, F-33882 Bordeaux, France; (O.C.); (A.C.); (F.J.); (C.P.); (Y.B.); (P.M.L.)
| |
Collapse
|
13
|
Bueno RS, Ressutte JB, Hata NN, Henrique-Bana FC, Guergoletto KB, de Oliveira AG, Spinosa WA. Quality and shelf life assessment of a new beverage produced from water kefir grains and red pitaya. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110770] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Philippe C, Chaïb A, Jaomanjaka F, Cluzet S, Lagarde A, Ballestra P, Decendit A, Petrel M, Claisse O, Goulet A, Cambillau C, Le Marrec C. Wine Phenolic Compounds Differently Affect the Host-Killing Activity of Two Lytic Bacteriophages Infecting the Lactic Acid Bacterium Oenococcus oeni. Viruses 2020; 12:E1316. [PMID: 33213034 PMCID: PMC7698478 DOI: 10.3390/v12111316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 12/15/2022] Open
Abstract
To provide insights into phage-host interactions during winemaking, we assessed whether phenolic compounds modulate the phage predation of Oenococcus oeni. Centrifugal partition chromatography was used to fractionate the phenolic compounds of a model red wine. The ability of lytic oenophage OE33PA to kill its host was reduced in the presence of two collected fractions in which we identified five compounds. Three, namely, quercetin, myricetin and p-coumaric acid, significantly reduced the phage predation of O. oeni when provided as individual pure molecules, as also did other structurally related compounds such as cinnamic acid. Their presence was correlated with a reduced adsorption rate of phage OE33PA on its host. Strikingly, none of the identified compounds affected the killing activity of the distantly related lytic phage Vinitor162. OE33PA and Vinitor162 were shown to exhibit different entry mechanisms to penetrate into bacterial cells. We propose that ligand-receptor interactions that mediate phage adsorption to the cell surface are diverse in O. oeni and are subject to differential interference by phenolic compounds. Their presence did not induce any modifications in the cell surface as visualized by TEM. Interestingly, docking analyses suggest that quercetin and cinnamic acid may interact with the tail of OE33PA and compete with host recognition.
Collapse
Affiliation(s)
- Cécile Philippe
- EA4577-USC1366 INRAE, Unité de Recherche OEnologie, Université de Bordeaux, Institut des Sciences de la Vigne et du Vin (ISVV), F-33140 Villenave d’Ornon, France; (C.P.); (A.C.); (F.J.); (S.C.); (A.L.); (P.B.); (A.D.); (O.C.)
| | - Amel Chaïb
- EA4577-USC1366 INRAE, Unité de Recherche OEnologie, Université de Bordeaux, Institut des Sciences de la Vigne et du Vin (ISVV), F-33140 Villenave d’Ornon, France; (C.P.); (A.C.); (F.J.); (S.C.); (A.L.); (P.B.); (A.D.); (O.C.)
| | - Fety Jaomanjaka
- EA4577-USC1366 INRAE, Unité de Recherche OEnologie, Université de Bordeaux, Institut des Sciences de la Vigne et du Vin (ISVV), F-33140 Villenave d’Ornon, France; (C.P.); (A.C.); (F.J.); (S.C.); (A.L.); (P.B.); (A.D.); (O.C.)
| | - Stéphanie Cluzet
- EA4577-USC1366 INRAE, Unité de Recherche OEnologie, Université de Bordeaux, Institut des Sciences de la Vigne et du Vin (ISVV), F-33140 Villenave d’Ornon, France; (C.P.); (A.C.); (F.J.); (S.C.); (A.L.); (P.B.); (A.D.); (O.C.)
| | - Aurélie Lagarde
- EA4577-USC1366 INRAE, Unité de Recherche OEnologie, Université de Bordeaux, Institut des Sciences de la Vigne et du Vin (ISVV), F-33140 Villenave d’Ornon, France; (C.P.); (A.C.); (F.J.); (S.C.); (A.L.); (P.B.); (A.D.); (O.C.)
| | - Patricia Ballestra
- EA4577-USC1366 INRAE, Unité de Recherche OEnologie, Université de Bordeaux, Institut des Sciences de la Vigne et du Vin (ISVV), F-33140 Villenave d’Ornon, France; (C.P.); (A.C.); (F.J.); (S.C.); (A.L.); (P.B.); (A.D.); (O.C.)
| | - Alain Decendit
- EA4577-USC1366 INRAE, Unité de Recherche OEnologie, Université de Bordeaux, Institut des Sciences de la Vigne et du Vin (ISVV), F-33140 Villenave d’Ornon, France; (C.P.); (A.C.); (F.J.); (S.C.); (A.L.); (P.B.); (A.D.); (O.C.)
| | - Mélina Petrel
- Bordeaux Imaging Center, UMS3420 CNRS-INSERM, University Bordeaux, F-33000 Bordeaux, France;
| | - Olivier Claisse
- EA4577-USC1366 INRAE, Unité de Recherche OEnologie, Université de Bordeaux, Institut des Sciences de la Vigne et du Vin (ISVV), F-33140 Villenave d’Ornon, France; (C.P.); (A.C.); (F.J.); (S.C.); (A.L.); (P.B.); (A.D.); (O.C.)
- INRAE, ISVV, USC 1366 Oenologie, F-33140 Villenave d’Ornon, France
| | - Adeline Goulet
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, F-13020 Marseille, France; (A.G.); (C.C.)
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS), Campus de Luminy, F-13020 Marseille, France
| | - Christian Cambillau
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, F-13020 Marseille, France; (A.G.); (C.C.)
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS), Campus de Luminy, F-13020 Marseille, France
| | - Claire Le Marrec
- EA4577-USC1366 INRAE, Unité de Recherche OEnologie, Université de Bordeaux, Institut des Sciences de la Vigne et du Vin (ISVV), F-33140 Villenave d’Ornon, France; (C.P.); (A.C.); (F.J.); (S.C.); (A.L.); (P.B.); (A.D.); (O.C.)
- Bordeaux INP, ISVV, EA4577 OEnologie, F-33140 Villenave d’Ornon, France
| |
Collapse
|
15
|
Genome Sequence of Oenococcus oeni OE37, an Autochthonous Strain Isolated from an Italian White Wine. Microbiol Resour Announc 2020; 9:9/39/e00582-20. [PMID: 32972928 PMCID: PMC7516139 DOI: 10.1128/mra.00582-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Oenococcus oeni OE37 is an autochthonous strain that was isolated from a Chardonnay wine from Piedmont (Italy) during spontaneous malolactic fermentation. Here, the OE37 genome sequence is presented, and a brief description of the main genes is reported. Oenococcus oeni OE37 is an autochthonous strain that was isolated from a Chardonnay wine from Piedmont (Italy) during spontaneous malolactic fermentation. Here, the OE37 genome sequence is presented, and a brief description of the main genes is reported.
Collapse
|
16
|
Padmanabhan A, Shah NP. Structural characterization of exopolysaccharide from Streptococcus thermophilus ASCC 1275. J Dairy Sci 2020; 103:6830-6842. [PMID: 32475665 DOI: 10.3168/jds.2019-17439] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 03/16/2020] [Indexed: 11/19/2022]
Abstract
In this study, we purified and characterized exopolysaccharide (EPS) produced by a high-EPS-producing dairy starter bacterium, Streptococcus thermophilus ASCC 1275. Crude EPS was extracted from S. thermophilus ASCC 1275 and partially purified using dialysis. Further purification and fractionation of exopolysaccharide was conducted using HPLC on a Superose 6 column (Cytiva/Global Life Sciences Solutions, Marlborough, MA). Glycosyl composition analysis, linkage analysis along with 1-dimensional and 2-dimensional nuclear magnetic resonance spectroscopy were performed to deduce the structure of EPS. Three fractions (F) obtained from gel permeation chromatography were termed F1 (2.6%), F2 (45.8%), and F3 (51.6%) with average molecular weights of approximately 511, 40, and 5 kDa, respectively. Monosaccharide composition analysis revealed the dominance of glucose, galactose, and mannose in all 3 fractions. Major linkages observed in F3 were terminal galactopyranosyl (t-Gal), 3-linked glucopyranosyl (3-Glc), 3-linked galactofuranosyl (3-Galf), and 3,6-linked glucopyranosyl (3,6-Glc) and major linkages present in F2 were 4-Glc (48 mol%), followed by terminal mannopyranosyl (t-Man), 2- + 3-linked mannopyranosyl (2-Man+3-Man), and 2,6-linked mannopyranosyl (2,6-Man; total ∼28 mol%). The 1-dimensional and 2-dimensional nuclear magnetic resonance spectroscopy revealed that F2 comprised mannans linked by (1→2) linkages and F3 consisted of linear chains of α-d-glucopyranosyl (α-d-Glcp), β-d-glucopyranosyl (β-d-Glcp), and β-d-galactofuranosyl (β-d-Galf) connected by (1→3) linkages; branching was through (1→6) linkage in F3. A possible structure of EPS in F2 and F3 was proposed.
Collapse
Affiliation(s)
- Aparna Padmanabhan
- Food and Nutritional Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Nagendra P Shah
- Food and Nutritional Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.
| |
Collapse
|
17
|
Collombel I, Melkonian C, Molenaar D, Campos FM, Hogg T. New Insights Into Cinnamoyl Esterase Activity of Oenococcus oeni. Front Microbiol 2019; 10:2597. [PMID: 31781078 PMCID: PMC6857119 DOI: 10.3389/fmicb.2019.02597] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/25/2019] [Indexed: 11/13/2022] Open
Abstract
Some strains of Oenococcus oeni possess cinnamoyl esterase activity that can be relevant in the malolactic stage of wine production liberating hydroxycinnamic acids that are precursors of volatile phenols responsible for sensory faults. The objective of this study was to better understand the basis of the differential activity between strains. After initial screening, five commercial strains of O. oeni were selected, three were found to exhibit cinnamoyl esterase activity (CE+) and two not (CE-). Although the use of functional annotation of genes revealed genotypic variations between the strains, no specific genes common only to the three CE+ strains could explain the different activities. Pasteurized wine was used as a natural source of tartrate esters in growth and metabolism experiments conducted in MRS medium, whilst commercial trans-caftaric acid was used as substrate for enzyme assays. Detoxification did not seem to be the main biological mechanism involved in the activity since unlike its phenolic cleavage products and their immediate metabolites (trans-caffeic acid and 4-ethylcatechol), trans-caftaric acid was not toxic toward O. oeni. In the case of the two CE+ strains OenosTM and CiNeTM, wine-exposed samples showed a more rapid degradation of trans-caftaric acid than the unexposed ones. The CE activity was present in all cell-free extracts of both wine-exposed and unexposed strains, except in the cell-free extracts of the CE- strain CH11TM. This activity may be constitutive rather than induced by exposure to tartrate esters. Trans-caftaric acid was totally cleaved to trans-caffeic acid by cell-free extracts of the three CE+ strains, whilst cell-free extracts of the CE- strain CH16TM showed significantly lower activity, although higher for the strains in experiments with no prior wine exposure. The EstB28 esterase gene, found in the genomes of the 5 strains, did not reveal any difference on the upstream regulation and transport functionality between the strains. This study highlights the complexity of the basis of this activity in wine related O. oeni population. Variable cinnamoyl esterases or/and membrane transport activities in the O. oeni strains analyzed and a possible implication of wine molecules could explain this phenomenon.
Collapse
Affiliation(s)
- Ingrid Collombel
- Escola Superior de Biotecnologia, Centro de Biotecnologia e Química Fina, Universidade Católica Portuguesa, Porto, Portugal
| | - Chrats Melkonian
- Systems Biology LAB, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Douwe Molenaar
- Systems Biology LAB, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Francisco M. Campos
- Escola Superior de Biotecnologia, Centro de Biotecnologia e Química Fina, Universidade Católica Portuguesa, Porto, Portugal
| | - Tim Hogg
- Escola Superior de Biotecnologia, Centro de Biotecnologia e Química Fina, Universidade Católica Portuguesa, Porto, Portugal
- Plataforma de Inovação da Vinha e do Vinho, Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal
| |
Collapse
|
18
|
Deo D, Davray D, Kulkarni R. A Diverse Repertoire of Exopolysaccharide Biosynthesis Gene Clusters in Lactobacillus Revealed by Comparative Analysis in 106 Sequenced Genomes. Microorganisms 2019; 7:E444. [PMID: 31614693 PMCID: PMC6843789 DOI: 10.3390/microorganisms7100444] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022] Open
Abstract
Production of exopolysaccharides (EPS) is one of the unique features of Lactobacillus genus. EPS not only have many physiological roles such as in stress tolerance, quorum sensing and biofilm formation, but also have numerous applications in the food and pharmaceutical industries. In this study, we identified and compared EPS biosynthesis gene clusters in 106 sequenced Lactobacillus genomes representing 27 species. Of the 146 identified clusters, only 41 showed the typical generic organization of genes as reported earlier. Hierarchical clustering showed highly varied nature of the clusters in terms of the gene composition; nonetheless, habitat-wise grouping was observed for the gene clusters from host-adapted and nomadic strains. Of the core genes required for EPS biosynthesis, epsA, B, C, D and E showed higher conservation, whereas gt, wzx and wzy showed high variability in terms of the number and composition of the protein families. Analysis of the distribution pattern of the protein families indicated a higher proportion of mutually exclusive families in clusters from host-adapted and nomadic strains, whereas those from the free-living group had very few unique families. Taken together, this analysis highlights high variability in the EPS gene clusters amongst Lactobacillus with some of their properties correlated to the habitats.
Collapse
Affiliation(s)
- Dipti Deo
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune 412 115, India.
| | - Dimple Davray
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune 412 115, India.
| | - Ram Kulkarni
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune 412 115, India.
| |
Collapse
|
19
|
Lysogeny in the Lactic Acid Bacterium Oenococcus oeni Is Responsible for Modified Colony Morphology on Red Grape Juice Agar. Appl Environ Microbiol 2019; 85:AEM.00997-19. [PMID: 31375489 DOI: 10.1128/aem.00997-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/24/2019] [Indexed: 11/20/2022] Open
Abstract
Oenococcus oeni is the lactic acid bacterium (LAB) that most commonly drives malolactic fermentation in wine. Although oenococcal prophages are highly prevalent, their implications on bacterial fitness have remained unexplored and more research is required in this field. An important step toward achieving this goal is the ability to produce isogenic pairs of strains that differ only by the lysogenic presence of a given prophage, allowing further comparisons of different phenotypic traits. A novel protocol for the rapid isolation of lysogens is presented. Bacteria were first picked from the center of turbid plaques produced by temperate oenophages on a sensitive nonlysogenic host. When streaked onto an agar medium containing red grape juice (RGJ), cells segregated into white and red colonies. PCR amplifications with phage-specific primers demonstrated that only lysogens underwent white-red morphotypic switching. The method proved successful for various oenophages irrespective of their genomic content and attachment site used for site-specific recombination in the bacterial chromosome. The color switch was also observed when a sensitive nonlysogenic strain was infected with an exogenously provided lytic phage, suggesting that intracolonial lysis triggers the change. Last, lysogens also produced red colonies on white grape juice agar supplemented with polyphenolic compounds. We posit that spontaneous prophage excision produces cell lysis events in lysogenic colonies growing on RGJ agar, which, in turn, foster interactions between lysed materials and polyphenolic compounds to yield colonies easily distinguishable by their red color. Furthermore, the technique was used successfully with other species of LAB.IMPORTANCE The presence of white and red colonies on red grape juice (RGJ) agar during enumeration of Oenococcus oeni in wine samples is frequently observed by stakeholders in the wine industry. Our study brings an explanation for this intriguing phenomenon and establishes a link between the white-red color switch and the lysogenic state of O. oeni It also provides a simple and inexpensive method to distinguish between lysogenic and nonlysogenic derivatives in O. oeni with a minimum of expended time and effort. Noteworthy, the protocol could be adapted to two other species of LAB, namely, Leuconostoc citreum and Lactobacillus plantarum It could be an effective tool to provide genetic, ecological, and functional insights into lysogeny and aid in improving biotechnological processes involving members of the lactic acid bacterium (LAB) family.
Collapse
|
20
|
Lorentzen MPG, Lucas PM. Distribution of Oenococcus oeni populations in natural habitats. Appl Microbiol Biotechnol 2019; 103:2937-2945. [PMID: 30788540 PMCID: PMC6447504 DOI: 10.1007/s00253-019-09689-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 12/02/2022]
Abstract
Oenococcus oeni is the lactic acid bacteria species most commonly encountered in wine, where it develops after the alcoholic fermentation and achieves the malolactic fermentation that is needed to improve the quality of most wines. O. oeni is abundant in the oenological environment as well as in apple cider and kombucha, whereas it is a minor species in the natural environment. Numerous studies have shown that there is a great diversity of strains in each wine region and in each product or type of wine. Recently, genomic studies have shed new light on the species diversity, population structure, and environmental distribution. They revealed that O. oeni has unique genomic features that have contributed to its fast evolution and adaptation to the enological environment. They have also unveiled the phylogenetic diversity and genomic properties of strains that develop in different regions or different products. This review explores the distribution of O. oeni and the diversity of strains in natural habitats.
Collapse
Affiliation(s)
- Marc P. G. Lorentzen
- Unité de recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, F-33882 Villenave d’Ornon, France
| | - Patrick M. Lucas
- Unité de recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, F-33882 Villenave d’Ornon, France
| |
Collapse
|
21
|
Llamas-Arriba MG, Puertas AI, Prieto A, López P, Cobos M, Miranda JI, Marieta C, Ruas-Madiedo P, Dueñas MT. Characterization of dextrans produced by Lactobacillus mali CUPV271 and Leuconostoc carnosum CUPV411. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.10.053] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Yang K, Zhu Y, Qi Y, Zhang T, Liu M, Zhang J, Wei X, Fan M, Zhang G. Analysis of proteomic responses of freeze-dried Oenococcus oeni to access the molecular mechanism of acid acclimation on cell freeze-drying resistance. Food Chem 2019; 285:441-449. [PMID: 30797368 DOI: 10.1016/j.foodchem.2019.01.120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/24/2018] [Accepted: 01/17/2019] [Indexed: 10/27/2022]
Abstract
Malolactic fermentation (MLF), usually induced by Oenococcus oeni (O. oeni), is an important process to improve wine quality. Acid acclimation has been proven to be useful for enhancing the viability of lyophilized O. oeni. To explain the involved mechanisms, cell integrity, morphology and protein patterns of lyophilized O. oeni SD-2a were investigated with acid acclimation. After lyophilization, improvement of cell integrity and more extracellular polymeric substances (EPS) were observed in acid acclimated cells. Combined with GO and KEGG analysis, different abundant proteins were noticeably enriched in the carbohydrate metabolism process, especially amino sugar and nucleotide sugar metabolism. The most significant result was the over-expression of proteins participating in cell wall biosynthesis, EPS production, ATP binding and the bacterial secretion system. This result indicated the important role of acid acclimation on cell envelope properties. In addition, protein response to stress and arginine deiminase pathway were also proven to be over-expressed.
Collapse
Affiliation(s)
- Kun Yang
- College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu 241000, China; College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Yang Zhu
- School of Agriculture and Food Sciences, University of Queensland, QLD 4046, Australia
| | - Yiman Qi
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Tingjing Zhang
- College of Food Science and Technology, Henan University of Technology, Zhenzhou 450001, China
| | - Miaomiao Liu
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Jie Zhang
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Xinyuan Wei
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Mingtao Fan
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China.
| | - Guoqiang Zhang
- College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu 241000, China.
| |
Collapse
|
23
|
Dimopoulou M, Raffenne J, Claisse O, Miot-Sertier C, Iturmendi N, Moine V, Coulon J, Dols-Lafargue M. Oenococcus oeni Exopolysaccharide Biosynthesis, a Tool to Improve Malolactic Starter Performance. Front Microbiol 2018; 9:1276. [PMID: 29946314 PMCID: PMC6006919 DOI: 10.3389/fmicb.2018.01276] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/25/2018] [Indexed: 01/01/2023] Open
Abstract
Oenococcus oeni is the lactic acid bacterium that most commonly drives malolactic fermentation (MLF) in wine. Though the importance of MLF in terms of wine microbial stability and sensory improvement is well established, it remains a winemaking step not so easy to control. O. oeni displays many adaptation tools to resist the harsh wine conditions which explain its natural dominance at this stage of winemaking. Previous findings showed that capsular polysaccharides and endogenous produced dextran increased the survival rate and the conservation time of malolactic starters. In this paper, we showed that exopolysaccharides specific production rates were increased in the presence of single stressors relevant to wine (pH, ethanol). The transcription of the associated genes was investigated in distinct O. oeni strains. The conditions in which eps genes and EPS synthesis were most stimulated were then evaluated for the production of freeze dried malolactic starters, for acclimation procedures and for MLF efficiency. Sensory analysis tests on the resulting wines were finally performed.
Collapse
Affiliation(s)
- Maria Dimopoulou
- Université de Bordeaux, EA 4577 Œnologie, INRA, USC 1366, ISVV, Bordeaux INP, Villenave-d'Ornon, France
| | - Jerôme Raffenne
- Université de Bordeaux, EA 4577 Œnologie, INRA, USC 1366, ISVV, Bordeaux INP, Villenave-d'Ornon, France
| | - Olivier Claisse
- Université de Bordeaux, EA 4577 Œnologie, INRA, USC 1366, ISVV, Bordeaux INP, Villenave-d'Ornon, France
| | - Cécile Miot-Sertier
- Université de Bordeaux, EA 4577 Œnologie, INRA, USC 1366, ISVV, Bordeaux INP, Villenave-d'Ornon, France
| | | | | | | | - Marguerite Dols-Lafargue
- Université de Bordeaux, EA 4577 Œnologie, INRA, USC 1366, ISVV, Bordeaux INP, Villenave-d'Ornon, France
| |
Collapse
|
24
|
Bartowsky EJ. Oenococcus oeni and the genomic era. FEMS Microbiol Rev 2018; 41:S84-S94. [PMID: 28830095 DOI: 10.1093/femsre/fux034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 06/13/2017] [Indexed: 11/13/2022] Open
Abstract
Oenococcus oeni is the main lactic acid bacteria species associated with grapes and wine. It is a bacterium that has adapted itself to the harsh conditions of wine, and demonstrated its importance in the production of quality wines. It has a small genome (1.8 Mb); over 200 strains have had their genome sequenced. Genomic analyses have proposed that there are two major branches of O. oeni strains that might be linked to wine style (sparkling wine versus white and red) and metagenomic studies have suggested a possible influence of terroir. This review explores recent developments of O. oeni including genomic studies examining O. oeni diversity and how this might shape future regional-specific commercial O. oeni starter strains.
Collapse
Affiliation(s)
- Eveline J Bartowsky
- Lallemand Australia, PO Box 210, Edwardstown, Adelaide, SA 5039, Australia.,School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA 5064, Australia
| |
Collapse
|
25
|
Disclosing diversity of exopolysaccharide-producing lactobacilli from Spanish natural ciders. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.12.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Contreras A, Ribbeck M, Gutiérrez GD, Cañon PM, Mendoza SN, Agosin E. Mapping the Physiological Response of Oenococcus oeni to Ethanol Stress Using an Extended Genome-Scale Metabolic Model. Front Microbiol 2018; 9:291. [PMID: 29545779 PMCID: PMC5838312 DOI: 10.3389/fmicb.2018.00291] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 02/07/2018] [Indexed: 11/13/2022] Open
Abstract
The effect of ethanol on the metabolism of Oenococcus oeni, the bacterium responsible for the malolactic fermentation (MLF) of wine, is still scarcely understood. Here, we characterized the global metabolic response in O. oeni PSU-1 to increasing ethanol contents, ranging from 0 to 12% (v/v). We first optimized a wine-like, defined culture medium, MaxOeno, to allow sufficient bacterial growth to be able to quantitate different metabolites in batch cultures of O. oeni. Then, taking advantage of the recently reconstructed genome-scale metabolic model iSM454 for O. oeni PSU-1 and the resulting experimental data, we determined the redistribution of intracellular metabolic fluxes, under the different ethanol conditions. Four growth phases were clearly identified during the batch cultivation of O. oeni PSU-1 strain, according to the temporal consumption of malic and citric acids, sugar and amino acids uptake, and biosynthesis rates of metabolic products - biomass, erythritol, mannitol and acetic acid, among others. We showed that, under increasing ethanol conditions, O. oeni favors anabolic reactions related with cell maintenance, as the requirements of NAD(P)+ and ATP increased with ethanol content. Specifically, cultures containing 9 and 12% ethanol required 10 and 17 times more NGAM (non-growth associated maintenance ATP) during phase I, respectively, than cultures without ethanol. MLF and citric acid consumption are vital at high ethanol concentrations, as they are the main source for proton extrusion, allowing higher ATP production by F0F1-ATPase, the main route of ATP synthesis under these conditions. Mannitol and erythritol synthesis are the main sources of NAD(P)+, countervailing for 51-57% of its usage, as predicted by the model. Finally, cysteine shows the fastest specific consumption rate among the amino acids, confirming its key role for bacterial survival under ethanol stress. As a whole, this study provides a global insight into how ethanol content exerts a differential physiological response in O. oeni PSU-1 strain. It will help to design better strategies of nutrient addition to achieve a successful MLF of wine.
Collapse
Affiliation(s)
- Angela Contreras
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Magdalena Ribbeck
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Guillermo D Gutiérrez
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo M Cañon
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sebastián N Mendoza
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Santiago, Chile.,Center for Genome Regulation, Universidad de Chile, Santiago, Chile
| | - Eduardo Agosin
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
27
|
Vuillemin M, Grimaud F, Claverie M, Rolland-Sabaté A, Garnier C, Lucas P, Monsan P, Dols-Lafargue M, Remaud-Siméon M, Moulis C. A dextran with unique rheological properties produced by the dextransucrase from Oenococcus kitaharae DSM 17330. Carbohydr Polym 2017; 179:10-18. [PMID: 29111031 DOI: 10.1016/j.carbpol.2017.09.056] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/11/2017] [Accepted: 09/15/2017] [Indexed: 10/18/2022]
Abstract
A gene encoding a novel dextransucrase was identified in the genome of Oenococcus kitaharae DSM17330 and cloned into E. coli. With a kcat of 691s-1 and a half-life time of 111h at 30°C, the resulting recombinant enzyme -named DSR-OK- stands as one of the most efficient and stable dextransucrase characterized to date. From sucrose, this enzyme catalyzes the synthesis of a quasi linear dextran with a molar mass higher than 1×109g·mol-1 that presents uncommon rheological properties such as a higher viscosity than that of the most industrially used dextran from L. mesenteroides NRRL-B-512F, a yield stress that was never described before for any type of dextran, as well as a gel-like structure. All these properties open the way to a vast array of new applications in health, food/feed, bulk or fine chemicals fields.
Collapse
Affiliation(s)
- Marlène Vuillemin
- LISBP, Université de Toulouse, CNRS, INRA, INSA, F-31077 Toulouse, France
| | - Florent Grimaud
- LISBP, Université de Toulouse, CNRS, INRA, INSA, F-31077 Toulouse, France
| | - Marion Claverie
- LISBP, Université de Toulouse, CNRS, INRA, INSA, F-31077 Toulouse, France
| | - Agnès Rolland-Sabaté
- UR1268 Biopolymères Interactions Assemblages, INRA, F-44300 Nantes, France; UMR408 Sécurité et Qualité des Produits d'Origine Végétale, INRA, Université Avignon, F-84000 Avignon, France
| | - Catherine Garnier
- UR1268 Biopolymères Interactions Assemblages, INRA, F-44300 Nantes, France
| | - Patrick Lucas
- Université de Bordeaux, ISVV, EA 4577, Unité de recherche Oenologie, Institut polytechnique de Bordeaux, INRA USC 1366, F-33140 Villenave d'Ornon, France
| | - Pierre Monsan
- Toulouse White Biotechnology Center, Parc Technologique du Canal, F-31520 Ramonville Saint Agnes, France
| | - Marguerite Dols-Lafargue
- Université de Bordeaux, ISVV, EA 4577, Unité de recherche Oenologie, Institut polytechnique de Bordeaux, INRA USC 1366, F-33140 Villenave d'Ornon, France
| | | | - Claire Moulis
- LISBP, Université de Toulouse, CNRS, INRA, INSA, F-31077 Toulouse, France.
| |
Collapse
|
28
|
Sternes PR, Costello PJ, Chambers PJ, Bartowsky EJ, Borneman AR. Whole transcriptome RNAseq analysis of Oenococcus oeni reveals distinct intra-specific expression patterns during malolactic fermentation, including genes involved in diacetyl metabolism. Int J Food Microbiol 2017; 257:216-224. [DOI: 10.1016/j.ijfoodmicro.2017.06.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/06/2017] [Accepted: 06/25/2017] [Indexed: 12/23/2022]
|
29
|
Dimopoulou M, Claisse O, Dutilh L, Miot-Sertier C, Ballestra P, Lucas PM, Dols-Lafargue M. Molecular Cloning, Expression and Characterization of Oenococcus oeni Priming Glycosyltransferases. Mol Biotechnol 2017; 59:323-333. [PMID: 28667570 DOI: 10.1007/s12033-017-0021-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Oenococcus oeni is the main bacterial species that drives malolactic fermentation in wine. Most O. oeni strains produce capsular exopolysaccharides (EPS) that may contribute to protect them in the wine hostile environment. In O. oeni genome sequences, several genes are predicted to encode priming glycosyltransferases (pGTs). These enzymes are essential for EPS formation as they catalyze the first biosynthetic step through the formation of a phosphoanhydride bond between a hexose-1-phosphate and a lipid carrier undecaprenyl phosphate. In many microorganisms, mutations abolishing the pGT activity also abolish the EPS formation. We first made an in silico analysis of all the genes encoding putative pGT over 50 distinct O. oeni genome sequences. Two polyisoprenyl-phosphate-hexose-1-phosphate transferases, WoaA and WobA, and a glycosyltransferase (It3) were particularly examined for their topology and amino acid sequence. Several isoforms of these enzymes were then expressed in E. coli, and their substrate specificity was examined in vitro. The substrate specificity varied depending on the protein isoform examined, and several mutations were shown to abolish WobA activity but not EPS synthesis. Further analysis of woaA and wobA gene expression levels suggests that WoaA could replace the deficient WobA and maintain EPS formation.
Collapse
Affiliation(s)
- Maria Dimopoulou
- Univ. Bordeaux, ISVV, EA 4577 Œnologie, 33140, Villenave d'Ornon, France
| | - Olivier Claisse
- Univ. Bordeaux, ISVV, EA 4577 Œnologie, 33140, Villenave d'Ornon, France.,INRA, ISVV, USC 1366 Œnologie, 33140, Villenave d'Ornon, France
| | - Lucie Dutilh
- Univ. Bordeaux, ISVV, EA 4577 Œnologie, 33140, Villenave d'Ornon, France
| | - Cécile Miot-Sertier
- Univ. Bordeaux, ISVV, EA 4577 Œnologie, 33140, Villenave d'Ornon, France.,INRA, ISVV, USC 1366 Œnologie, 33140, Villenave d'Ornon, France
| | - Patricia Ballestra
- Univ. Bordeaux, ISVV, EA 4577 Œnologie, 33140, Villenave d'Ornon, France
| | - Patrick M Lucas
- Univ. Bordeaux, ISVV, EA 4577 Œnologie, 33140, Villenave d'Ornon, France
| | - Marguerite Dols-Lafargue
- Univ. Bordeaux, ISVV, EA 4577 Œnologie, 33140, Villenave d'Ornon, France. .,Bordeaux INP, ISVV, EA 4577 Œnologie, 33140, Villenave d'Ornon, France.
| |
Collapse
|
30
|
Zeidan AA, Poulsen VK, Janzen T, Buldo P, Derkx PMF, Øregaard G, Neves AR. Polysaccharide production by lactic acid bacteria: from genes to industrial applications. FEMS Microbiol Rev 2017; 41:S168-S200. [DOI: 10.1093/femsre/fux017] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/29/2017] [Indexed: 01/14/2023] Open
|
31
|
Mendoza SN, Cañón PM, Contreras Á, Ribbeck M, Agosín E. Genome-Scale Reconstruction of the Metabolic Network in Oenococcus oeni to Assess Wine Malolactic Fermentation. Front Microbiol 2017; 8:534. [PMID: 28424673 PMCID: PMC5372704 DOI: 10.3389/fmicb.2017.00534] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 03/14/2017] [Indexed: 11/21/2022] Open
Abstract
Oenococcus oeni is the main responsible agent for malolactic fermentation in wine, an unpredictable and erratic process in winemaking. To address this, we have constructed and exhaustively curated the first genome-scale metabolic model of Oenococcus oeni, comprising 660 reactions, 536 metabolites and 454 genes. In silico experiments revealed that nutritional requirements are predicted with an accuracy of 93%, while 14 amino acids were found to be essential for the growth of this bacterial species. When the model was applied to determine the non-growth associated maintenance, results showed that O. oeni grown at 12% ethanol concentration spent 30 times more ATP to stay alive than in the absence of ethanol. Most of this ATP is employed for extruding protons outside of the cell. A positive relationship was also found between specific consumption rates of fructose, amino acids, oxygen, and malic acid and the specific production rates of erythritol, lactate, and acetate, according to the ethanol content of the medium. The metabolic model reconstructed here represents a unique tool to predict the successful completion of wine malolactic fermentation carried out either by different strains of Oenococcus oeni, as well as at any particular physico-chemical composition of wine. It will also allow the development of consortium metabolic models that could be applied to winemaking to simulate and understand the interactions between O. oeni and other microorganisms that share this ecological niche.
Collapse
Affiliation(s)
- Sebastián N Mendoza
- Laboratory of Biotechnology, Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Pablo M Cañón
- Laboratory of Biotechnology, Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Ángela Contreras
- Laboratory of Biotechnology, Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Magdalena Ribbeck
- Laboratory of Biotechnology, Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Eduardo Agosín
- Laboratory of Biotechnology, Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de ChileSantiago, Chile
| |
Collapse
|
32
|
Biogeography of Oenococcus oeni Reveals Distinctive but Nonspecific Populations in Wine-Producing Regions. Appl Environ Microbiol 2017; 83:AEM.02322-16. [PMID: 27864168 DOI: 10.1128/aem.02322-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 11/10/2016] [Indexed: 01/19/2023] Open
Abstract
Understanding the mechanisms behind the typicity of regional wines inevitably brings attention to microorganisms associated with their production. Oenococcus oeni is the main bacterial species involved in wine and cider making. It develops after the yeast-driven alcoholic fermentation and performs the malolactic fermentation, which improves the taste and aromatic complexity of most wines. Here, we have evaluated the diversity and specificity of O. oeni strains in six regions. A total of 235 wines and ciders were collected during spontaneous malolactic fermentations and used to isolate 3,212 bacterial colonies. They were typed by multilocus variable analysis, which disclosed a total of 514 O. oeni strains. Their phylogenetic relationships were evaluated by a second typing method based on single nucleotide polymorphism (SNP) analysis. Taken together, the results indicate that each region holds a high diversity of strains that constitute a unique population. However, strains present in each region belong to diverse phylogenetic groups, and the same groups can be detected in different regions, indicating that strains are not genetically adapted to regions. In contrast, greater strain identity was seen for cider, white wine, or red wine of Burgundy, suggesting that genetic adaptation to these products occurred. IMPORTANCE This study reports the isolation, genotyping, and geographic distribution analysis of the largest collection of O. oeni strains performed to date. It reveals that there is very high diversity of strains in each region, the majority of them being detected in a single region. The study also reports the development of an SNP genotyping method that is useful for analyzing the distribution of O. oeni phylogroups. The results show that strains are not genetically adapted to regions but to specific types of wines. They reveal new phylogroups of strains, particularly two phylogroups associated with white wines and red wines of Burgundy. Taken together, the results shed light on the diversity and specificity of wild strains of O. oeni, which is crucial for understanding their real contribution to the unique properties of wines.
Collapse
|
33
|
Aburjaile FF, Rohmer M, Parrinello H, Maillard MB, Beaucher E, Henry G, Nicolas A, Madec MN, Thierry A, Parayre S, Deutsch SM, Cocaign-Bousquet M, Miyoshi A, Azevedo V, Le Loir Y, Falentin H. Adaptation of Propionibacterium freudenreichii to long-term survival under gradual nutritional shortage. BMC Genomics 2016; 17:1007. [PMID: 27931189 PMCID: PMC5146858 DOI: 10.1186/s12864-016-3367-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 12/02/2016] [Indexed: 11/23/2022] Open
Abstract
Background Propionibacterium freudenreichii is an Actinobacterium widely used in the dairy industry as a ripening culture for Swiss-type cheeses, for vitamin B12 production and some strains display probiotic properties. It is reportedly a hardy bacterium, able to survive the cheese-making process and digestive stresses. Results During this study, P. freudenreichii CIRM-BIA 138 (alias ITG P9), which has a generation time of five hours in Yeast Extract Lactate medium at 30 °C under microaerophilic conditions, was incubated for 11 days (9 days after entry into stationary phase) in a culture medium, without any adjunct during the incubation. The carbon and free amino acids sources available in the medium, and the organic acids produced by the strain, were monitored throughout growth and survival. Although lactate (the preferred carbon source for P. freudenreichii) was exhausted three days after inoculation, the strain sustained a high population level of 9.3 log10 CFU/mL. Its physiological adaptation was investigated by RNA-seq analysis and revealed a complete disruption of metabolism at the entry into stationary phase as compared to exponential phase. Conclusions P. freudenreichii adapts its metabolism during entry into stationary phase by down-regulating oxidative phosphorylation, glycolysis, and the Wood-Werkman cycle by exploiting new nitrogen (glutamate, glycine, alanine) sources, by down-regulating the transcription, translation and secretion of protein. Utilization of polyphosphates was suggested. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3367-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Flavia Figueira Aburjaile
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,INRA, UMR 1253, Science et Technologie du Lait et de l' Œuf, 35000, Rennes, France.,AGROCAMPUS OUEST, UMR1253, UMR Science et Technologie du Lait et de l'Œuf, 35000, Rennes, France
| | - Marine Rohmer
- UMS BioCampus- MGX Montpellier GenomiX, Institut de Génomique Fonctionelle, 141, rue de la Cardonnille, 34094, Montpellier Cedex 05, France
| | - Hugues Parrinello
- UMS BioCampus- MGX Montpellier GenomiX, Institut de Génomique Fonctionelle, 141, rue de la Cardonnille, 34094, Montpellier Cedex 05, France
| | - Marie-Bernadette Maillard
- INRA, UMR 1253, Science et Technologie du Lait et de l' Œuf, 35000, Rennes, France.,AGROCAMPUS OUEST, UMR1253, UMR Science et Technologie du Lait et de l'Œuf, 35000, Rennes, France
| | - Eric Beaucher
- INRA, UMR 1253, Science et Technologie du Lait et de l' Œuf, 35000, Rennes, France.,AGROCAMPUS OUEST, UMR1253, UMR Science et Technologie du Lait et de l'Œuf, 35000, Rennes, France
| | - Gwénaële Henry
- INRA, UMR 1253, Science et Technologie du Lait et de l' Œuf, 35000, Rennes, France.,AGROCAMPUS OUEST, UMR1253, UMR Science et Technologie du Lait et de l'Œuf, 35000, Rennes, France
| | - Aurélie Nicolas
- INRA, UMR 1253, Science et Technologie du Lait et de l' Œuf, 35000, Rennes, France.,AGROCAMPUS OUEST, UMR1253, UMR Science et Technologie du Lait et de l'Œuf, 35000, Rennes, France
| | - Marie-Noëlle Madec
- INRA, UMR 1253, Science et Technologie du Lait et de l' Œuf, 35000, Rennes, France.,AGROCAMPUS OUEST, UMR1253, UMR Science et Technologie du Lait et de l'Œuf, 35000, Rennes, France
| | - Anne Thierry
- INRA, UMR 1253, Science et Technologie du Lait et de l' Œuf, 35000, Rennes, France.,AGROCAMPUS OUEST, UMR1253, UMR Science et Technologie du Lait et de l'Œuf, 35000, Rennes, France
| | - Sandrine Parayre
- INRA, UMR 1253, Science et Technologie du Lait et de l' Œuf, 35000, Rennes, France.,AGROCAMPUS OUEST, UMR1253, UMR Science et Technologie du Lait et de l'Œuf, 35000, Rennes, France
| | - Stéphanie-Marie Deutsch
- INRA, UMR 1253, Science et Technologie du Lait et de l' Œuf, 35000, Rennes, France.,AGROCAMPUS OUEST, UMR1253, UMR Science et Technologie du Lait et de l'Œuf, 35000, Rennes, France
| | - Muriel Cocaign-Bousquet
- LISBP, Université de Toulouse, CNRS, INRA, INSA, 135 avenue de Rangueil, Toulouse, 31077, France
| | - Anderson Miyoshi
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vasco Azevedo
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Yves Le Loir
- INRA, UMR 1253, Science et Technologie du Lait et de l' Œuf, 35000, Rennes, France.,AGROCAMPUS OUEST, UMR1253, UMR Science et Technologie du Lait et de l'Œuf, 35000, Rennes, France
| | - Hélène Falentin
- INRA, UMR 1253, Science et Technologie du Lait et de l' Œuf, 35000, Rennes, France. .,AGROCAMPUS OUEST, UMR1253, UMR Science et Technologie du Lait et de l'Œuf, 35000, Rennes, France.
| |
Collapse
|
34
|
Cibrario A, Peanne C, Lailheugue M, Campbell-Sills H, Dols-Lafargue M. Carbohydrate metabolism in Oenococcus oeni: a genomic insight. BMC Genomics 2016; 17:984. [PMID: 27905883 PMCID: PMC5131533 DOI: 10.1186/s12864-016-3338-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 11/23/2016] [Indexed: 11/10/2022] Open
Abstract
Background Oenococcus oeni is the bacterial species that drives malolactic fermentation in most wines. Several studies have described a high intraspecific diversity regarding carbohydrate degradation abilities but the link between the phenotypes and the genes and metabolic pathways has been poorly described. Results A collection of 41 strains whose genomic sequences were available and representative of the species genomic diversity was analyzed for growth on 18 carbohydrates relevant in wine. The most frequently used substrates (more than 75% of the strains) were glucose, trehalose, ribose, cellobiose, mannose and melibiose. Fructose and L-arabinose were used by about half the strains studied, sucrose, maltose, xylose, galactose and raffinose were used by less than 25% of the strains and lactose, L-sorbose, L-rhamnose, sorbitol and mannitol were not used by any of the studied strains. To identify genes and pathways associated with carbohydrate catabolic abilities, gene-trait matching and a careful analysis of gene mutations and putative complementation phenomena were performed. Conclusions For most consumed sugars, we were able to propose putatively associated metabolic pathways. Most associated genes belong to the core genome. O. oeni appears as a highly specialized species, ideally suited to fermented fruit juice and more specifically to wine for a subgroup of strains. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3338-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alice Cibrario
- University of Bordeaux, ISVV, EA 4577, Oenologie, F-33140, Villenave d'Ornon, France
| | - Claire Peanne
- University of Bordeaux, ISVV, EA 4577, Oenologie, F-33140, Villenave d'Ornon, France
| | - Marine Lailheugue
- Bordeaux INP, ISVV, EA 4577, Oenologie, F-33140, Villenave d'Ornon, France
| | - Hugo Campbell-Sills
- University of Bordeaux, ISVV, EA 4577, Oenologie, F-33140, Villenave d'Ornon, France
| | - Marguerite Dols-Lafargue
- University of Bordeaux, ISVV, EA 4577, Oenologie, F-33140, Villenave d'Ornon, France. .,Bordeaux INP, ISVV, EA 4577, Oenologie, F-33140, Villenave d'Ornon, France.
| |
Collapse
|
35
|
Meng X, Gangoiti J, Bai Y, Pijning T, Van Leeuwen SS, Dijkhuizen L. Structure-function relationships of family GH70 glucansucrase and 4,6-α-glucanotransferase enzymes, and their evolutionary relationships with family GH13 enzymes. Cell Mol Life Sci 2016; 73:2681-706. [PMID: 27155661 PMCID: PMC4919382 DOI: 10.1007/s00018-016-2245-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 12/13/2022]
Abstract
Lactic acid bacteria (LAB) are known to produce large amounts of α-glucan exopolysaccharides. Family GH70 glucansucrase (GS) enzymes catalyze the synthesis of these α-glucans from sucrose. The elucidation of the crystal structures of representative GS enzymes has advanced our understanding of their reaction mechanism, especially structural features determining their linkage specificity. In addition, with the increase of genome sequencing, more and more GS enzymes are identified and characterized. Together, such knowledge may promote the synthesis of α-glucans with desired structures and properties from sucrose. In the meantime, two new GH70 subfamilies (GTFB- and GTFC-like) have been identified as 4,6-α-glucanotransferases (4,6-α-GTs) that represent novel evolutionary intermediates between the family GH13 and "classical GH70 enzymes". These enzymes are not active on sucrose; instead, they use (α1 → 4) glucans (i.e. malto-oligosaccharides and starch) as substrates to synthesize novel α-glucans by introducing linear chains of (α1 → 6) linkages. All these GH70 enzymes are very interesting biocatalysts and hold strong potential for applications in the food, medicine and cosmetic industries. In this review, we summarize the microbiological distribution and the structure-function relationships of family GH70 enzymes, introduce the two newly identified GH70 subfamilies, and discuss evolutionary relationships between family GH70 and GH13 enzymes.
Collapse
Affiliation(s)
- Xiangfeng Meng
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747, AG, Groningen, The Netherlands
| | - Joana Gangoiti
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747, AG, Groningen, The Netherlands
| | - Yuxiang Bai
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747, AG, Groningen, The Netherlands
| | - Tjaard Pijning
- Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747, AG, Groningen, The Netherlands
| | - Sander S Van Leeuwen
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747, AG, Groningen, The Netherlands
| | - Lubbert Dijkhuizen
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747, AG, Groningen, The Netherlands.
| |
Collapse
|
36
|
Sternes PR, Borneman AR. Consensus pan-genome assembly of the specialised wine bacterium Oenococcus oeni. BMC Genomics 2016; 17:308. [PMID: 27118061 PMCID: PMC4847254 DOI: 10.1186/s12864-016-2604-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/28/2016] [Indexed: 11/15/2022] Open
Abstract
Background Oenococcus oeni is a lactic acid bacterium that is specialised for growth in the ecological niche of wine, where it is noted for its ability to perform the secondary, malolactic fermentation that is often required for many types of wine. Expanding the understanding of strain-dependent genetic variations in its small and streamlined genome is important for realising its full potential in industrial fermentation processes. Results Whole genome comparison was performed on 191 strains of O. oeni; from this rich source of genomic information consensus pan-genome assemblies of the invariant (core) and variable (flexible) regions of this organism were established. Genetic variation in amino acid biosynthesis and sugar transport and utilisation was found to be common between strains. Furthermore, we characterised previously-unreported intra-specific genetic variations in the natural competence of this microbe. Conclusion By assembling a consensus pan-genome from a large number of strains, this study provides a tool for researchers to readily compare protein-coding genes across strains and infer functional relationships between genes in conserved syntenic regions. This establishes a foundation for further genetic, and thus phenotypic, research of this industrially-important species. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2604-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peter R Sternes
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, South Australia, 5064, Australia
| | - Anthony R Borneman
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, South Australia, 5064, Australia.
| |
Collapse
|
37
|
Caggianiello G, Kleerebezem M, Spano G. Exopolysaccharides produced by lactic acid bacteria: from health-promoting benefits to stress tolerance mechanisms. Appl Microbiol Biotechnol 2016; 100:3877-86. [PMID: 27020288 DOI: 10.1007/s00253-016-7471-2] [Citation(s) in RCA: 232] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/10/2016] [Accepted: 03/14/2016] [Indexed: 02/07/2023]
Abstract
A wide range of lactic acid bacteria (LAB) is able to produce capsular or extracellular polysaccharides, with various chemical compositions and properties. Polysaccharides produced by LAB alter the rheological properties of the matrix in which they are dispersed, leading to typically viscous and "ropy" products. Polysaccharides are involved in several mechanisms such as prebiosis and probiosis, tolerance to stress associated to food process, and technological properties of food. In this paper, we summarize the beneficial properties of exopolysaccharides (EPS) produced by LAB with particular attention to prebiotic properties and to the effect of exopolysaccharides on the LAB-host interaction mechanisms, such as bacterial tolerance to gastrointestinal tract conditions, ability of ESP-producing probiotics to adhere to intestinal epithelium, their immune-modulatory activity, and their role in biofilm formation. The pro-technological aspect of exopolysaccharides is discussed, focusing on advantageous applications of EPS in the food industry, i.e., yogurt and gluten-free bakery products, since it was found that these microbial biopolymers positively affect the texture of foods. Finally, the involvement of EPS in tolerance to stress conditions that are commonly encountered in fermented beverages such as wine is discussed.
Collapse
Affiliation(s)
- Graziano Caggianiello
- Department of Agricultural, Food and Environmental Sciences, University of Foggia, Via Napoli 25, 71122, Foggia, Italy
| | - Michiel Kleerebezem
- Host-Microbe Interactomics Group, Wageningen University, De Elst 1, 6708WD, Wageningen, The Netherlands
| | - Giuseppe Spano
- Department of Agricultural, Food and Environmental Sciences, University of Foggia, Via Napoli 25, 71122, Foggia, Italy.
| |
Collapse
|
38
|
Leroy F, De Vuyst L. Advances in production and simplified methods for recovery and quantification of exopolysaccharides for applications in food and health. J Dairy Sci 2016; 99:3229-3238. [PMID: 26874424 DOI: 10.3168/jds.2015-9936] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 10/26/2015] [Indexed: 01/20/2023]
Abstract
The capacity of strains to produce exopolysaccharides (EPS) is widespread among species of lactic acid bacteria and bifidobacteria, although the physiological role of these molecules is not yet clearly understood. When EPS are produced during food fermentation, they confer technological benefits on the fermented end products, such as improved texture and stability. In addition, some of these EPS may have beneficial effects on consumer health. These uses of EPS necessitate optimal and sufficient production of these molecules, both in situ and ex situ, not only to improve their yields but also to obtain a particular functionality. The present study reviews the commonly used methods of production, isolation, and quantification that have been used in recent studies dealing with EPS-producing lactic acid bacteria and bifidobacteria.
Collapse
Affiliation(s)
- Frédéric Leroy
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium.
| |
Collapse
|
39
|
Exopolysaccharides produced by Oenococcus oeni: From genomic and phenotypic analysis to technological valorization. Food Microbiol 2016; 53:10-7. [DOI: 10.1016/j.fm.2015.07.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/14/2014] [Accepted: 07/07/2015] [Indexed: 11/20/2022]
|
40
|
Production and partial characterization of exopolysaccharides produced by two Lactobacillus suebicus strains isolated from cider. Int J Food Microbiol 2015; 214:54-62. [DOI: 10.1016/j.ijfoodmicro.2015.07.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 06/19/2015] [Accepted: 07/09/2015] [Indexed: 11/23/2022]
|
41
|
Torino MI, Font de Valdez G, Mozzi F. Biopolymers from lactic acid bacteria. Novel applications in foods and beverages. Front Microbiol 2015; 6:834. [PMID: 26441845 PMCID: PMC4566036 DOI: 10.3389/fmicb.2015.00834] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/29/2015] [Indexed: 02/03/2023] Open
Abstract
Lactic acid bacteria (LAB) are microorganisms widely used in the fermented food industry worldwide. Certain LAB are able to produce exopolysaccharides (EPS) either attached to the cell wall (capsular EPS) or released to the extracellular environment (EPS). According to their composition, LAB may synthesize heteropolysaccharides or homopolysaccharides. A wide diversity of EPS are produced by LAB concerning their monomer composition, molecular mass, and structure. Although EPS-producing LAB strains have been traditionally applied in the manufacture of dairy products such as fermented milks and yogurts, their use in the elaboration of low-fat cheeses, diverse type of sourdough breads, and certain beverages are some of the novel applications of these polymers. This work aims to collect the most relevant issues of the former reviews concerning the monomer composition, structure, and yields and biosynthetic enzymes of EPS from LAB; to describe the recently characterized EPS and to present the application of both EPS-producing strains and their polymers in the fermented (specifically beverages and cereal-based) food industry.
Collapse
Affiliation(s)
- María I. Torino
- Technology Department, Centro de Referencia para Lactobacilos – Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de TucumánArgentina
| | | | - Fernanda Mozzi
- Technology Department, Centro de Referencia para Lactobacilos – Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de TucumánArgentina
| |
Collapse
|
42
|
Campbell-Sills H, El Khoury M, Favier M, Romano A, Biasioli F, Spano G, Sherman DJ, Bouchez O, Coton E, Coton M, Okada S, Tanaka N, Dols-Lafargue M, Lucas PM. Phylogenomic Analysis of Oenococcus oeni Reveals Specific Domestication of Strains to Cider and Wines. Genome Biol Evol 2015; 7:1506-18. [PMID: 25977455 PMCID: PMC4494047 DOI: 10.1093/gbe/evv084] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Oenococcus oeni is a lactic acid bacteria species encountered particularly in wine, where it achieves the malolactic fermentation. Molecular typing methods have previously revealed that the species is made of several genetic groups of strains, some being specific to certain types of wines, ciders or regions. Here, we describe 36 recently released O. oeni genomes and the phylogenomic analysis of these 36 plus 14 previously reported genomes. We also report three genome sequences of the sister species Oenococcus kitaharae that were used for phylogenomic reconstructions. Phylogenomic and population structure analyses performed revealed that the 50 O. oeni genomes delineate two major groups of 12 and 37 strains, respectively, named A and B, plus a putative group C, consisting of a single strain. A study on the orthologs and single nucleotide polymorphism contents of the genetic groups revealed that the domestication of some strains to products such as cider, wine, or champagne, is reflected at the genetic level. While group A strains proved to be predominant in wine and to form subgroups adapted to specific types of wine such as champagne, group B strains were found in wine and cider. The strain from putative group C was isolated from cider and genetically closer to group B strains. The results suggest that ancestral O. oeni strains were adapted to low-ethanol containing environments such as overripe fruits, and that they were domesticated to cider and wine, with group A strains being naturally selected in a process of further domestication to specific wines such as champagne.
Collapse
Affiliation(s)
- Hugo Campbell-Sills
- Univ. Bordeaux, ISVV, EA 4577 Œnologie, Villenave d'Ornon, France Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | | | - Marion Favier
- BioLaffort, Research Subsidiary of the Laffort group, Bordeaux, France
| | - Andrea Romano
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Franco Biasioli
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Giuseppe Spano
- Department of Agriculture, Food and Environment Sciences, University of Foggia, Foggia, Italy
| | - David J Sherman
- INRIA, Univ. Bordeaux, Project team MAGNOME, Talence, France CNRS, Univ. Bordeaux, UMR 5800 LaBRI, Talence, France
| | - Olivier Bouchez
- INRA, UMR444, laboratoire de Génétique Cellulaire, Castanet-Tolosan, France GeT-PlaGe, Genotoul, INRA Auzeville, Castanet-Tolosan, France
| | - Emmanuel Coton
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, ESIAB, Technopôle Brest-Iroise, Plouzané, France
| | - Monika Coton
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, ESIAB, Technopôle Brest-Iroise, Plouzané, France
| | - Sanae Okada
- NODAI Culture Collection Center, Tokyo University of Agriculture, Japan
| | - Naoto Tanaka
- NODAI Culture Collection Center, Tokyo University of Agriculture, Japan
| | - Marguerite Dols-Lafargue
- Univ. Bordeaux, ISVV, EA 4577 Œnologie, Villenave d'Ornon, France Bordeaux INP, ISVV, EA 4577 Œnologie, Villenave d'ornon, France
| | - Patrick M Lucas
- Univ. Bordeaux, ISVV, EA 4577 Œnologie, Villenave d'Ornon, France
| |
Collapse
|
43
|
Wang T, Li H, Wang H, Su J. Multilocus sequence typing and pulsed-field gel electrophoresis analysis of Oenococcus oeni from different wine-producing regions of China. Int J Food Microbiol 2015; 199:47-53. [PMID: 25625911 DOI: 10.1016/j.ijfoodmicro.2015.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 12/18/2014] [Accepted: 01/08/2015] [Indexed: 11/16/2022]
Abstract
The present study established a typing method with NotI-based pulsed-field gel electrophoresis (PFGE) and stress response gene schemed multilocus sequence typing (MLST) for 55 Oenococcus oeni strains isolated from six individual regions in China and two model strains PSU-1 (CP000411) and ATCC BAA-1163 (AAUV00000000). Seven stress response genes, cfa, clpL, clpP, ctsR, mleA, mleP and omrA, were selected for MLST testing, and positive selective pressure was detected for these genes. Furthermore, both methods separated the strains into two clusters. The PFGE clusters are correlated with the region, whereas the sequence types (STs) formed by the MLST confirm the two clusters identified by PFGE. In addition, the population structure was a mixture of evolutionary pathways, and the strains exhibited both clonal and panmictic characteristics.
Collapse
Affiliation(s)
- Tao Wang
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hua Li
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Hua Wang
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Su
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
44
|
Seviour T, Weerachanchai P, Hinks J, Roizman D, Rice SA, Bai L, Lee JM, Kjelleberg S. Solvent optimization for bacterial extracellular matrices: a solution for the insoluble. RSC Adv 2015. [DOI: 10.1039/c4ra10930a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ionic liquids enable solvent optimization for different biofilms through solubility parameter concept.
Collapse
Affiliation(s)
- Thomas Seviour
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE)
- Nanyang Technological University
- Singapore
| | - Piyarat Weerachanchai
- Nanyang Environment and Water Research Institute (NEWRI)
- Nanyang Technological University
- Singapore
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
| | - Jamie Hinks
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE)
- Nanyang Technological University
- Singapore
| | - Dan Roizman
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE)
- Nanyang Technological University
- Singapore
| | - Scott A. Rice
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE)
- Nanyang Technological University
- Singapore
- School of Biological Sciences (SBS)
- Nanyang Technological University
| | - Linlu Bai
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore
| | - Jong-Min Lee
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore
| | - Staffan Kjelleberg
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE)
- Nanyang Technological University
- Singapore
- Centre for Marine BioInnovation and School of Biotechnology and Biomolecular Sciences
- University of New South Wales
| |
Collapse
|
45
|
Genome Sequences of Five Oenococcus oeni Strains Isolated from Nero Di Troia Wine from the Same Terroir in Apulia, Southern Italy. GENOME ANNOUNCEMENTS 2014; 2:2/5/e01077-14. [PMID: 25342687 PMCID: PMC4208331 DOI: 10.1128/genomea.01077-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Oenococcus oeni is the principal lactic acid bacterium responsible for malolactic fermentation in wine. Here, we announce the genome sequences of five O. oeni strains isolated from Nero di Troia wine undergoing spontaneous malolactic fermentation, and we report, for the first time, several genome sequences of strains isolated from the same terroir.
Collapse
|