1
|
Saberiyan M, Seyedtaghia MR, Mojodi E, Nejatizadeh A. Investigation of a germline variant of uncertain significance (MRE11:c.1138C > T) identified by exome sequencing in a cancer-affected individual and co-segregation analysis in affected and unaffected family members. Mol Biol Rep 2025; 52:530. [PMID: 40448789 DOI: 10.1007/s11033-025-10645-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Accepted: 05/22/2025] [Indexed: 06/02/2025]
Abstract
BACKGROUND Cancer remains a significant global health concern, with familial cases often involving complex interactions between genetic predispositions and environmental factors. Variants of Uncertain Significance (VUS) pose challenges in genetic counseling and risk assessment, particularly in genes like MRE11, which plays a crucial role in DNA double-strand break repair and genomic stability. METHODS AND RESULTS This study aimed to investigate the effect of the MRE11 c.1138 C > T (p.Arg380Cys) variant in a family affected by familial cancer, focusing on its potential contribution to inherited cancer risk and the challenges it poses for genetic counseling in families with clustering of malignancies. Whole-exome sequencing was used to identify the variant, which was validated by Sanger sequencing. In silico protein modeling and bioinformatics analyses, including pathogenicity prediction tools like REVEL, SIFT, PolyPhen-2, and MutationTaster, were employed to assess the variant's functional effects. The MRE11 c.1138 C > T (p.Arg380Cys) variant was identified in a family with a history of breast, ovarian, and colorectal cancers. CONCLUSIONS Bioinformatics analyses suggested that this variant may destabilize the MRE11 nuclease domain, potentially impairing its function in DNA repair. Pathogenicity prediction tools consistently classified the variant as deleterious, although some family members with cancer did not carry the variant, indicating a complex interplay between genetic and environmental factors. The MRE11 p.Arg380Cys variant poses challenges in clinical interpretation due to its incomplete segregation within families. This pattern may reflect reduced penetrance, epistatic interactions with other genes (within MRN complex or others), or environmental influences.
Collapse
Affiliation(s)
- Mohammadreza Saberiyan
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Department of Medical Genetics, Faculty of Medicine, School of Medical Sciences, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mohammad Reza Seyedtaghia
- Department of Medical Genetics, Faculty of Medicine, School of Medical Sciences, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Elham Mojodi
- Depatment of Biology, Faculty of Science, Yazd University, Yazd, Iran
| | - Azim Nejatizadeh
- Department of Medical Genetics, Faculty of Medicine, School of Medical Sciences, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| |
Collapse
|
2
|
Jordan MR, Mendoza-Munoz PL, Pawelczak KS, Turchi JJ. Targeting DNA damage sensors for cancer therapy. DNA Repair (Amst) 2025; 149:103841. [PMID: 40339280 DOI: 10.1016/j.dnarep.2025.103841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/18/2025] [Accepted: 04/26/2025] [Indexed: 05/10/2025]
Abstract
DNA damage occurs from both endogenous and exogenous sources and DNA damaging agents are a mainstay in cancer therapeutics. DNA damage sensors (DDS) are proteins that recognize and bind to unique DNA structures that arise from direct DNA damage or replication stress and are the first step in the DNA damage response (DDR). DNA damage sensors are responsible for recruiting transducer proteins that signal downstream DNA repair pathways. As the initiating proteins, DDS are excellent candidates for anti-cancer drug targeting to limit DDR activation. Here, we review four major DDS: PARP1, RPA, Ku, and the MRN complex. We briefly describe the cellular DDS functions before analyzing the structural mechanisms of DNA damage sensing. Lastly, we examine the current state of the field towards inhibiting each DDS for anti-cancer therapeutics and broadly discuss the therapeutic potential for DDS targeting.
Collapse
Affiliation(s)
- Matthew R Jordan
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Pamela L Mendoza-Munoz
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | | | - John J Turchi
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States; NERx BioSciences, Indianapolis, IN, United States.
| |
Collapse
|
3
|
Tarapara B, Shah F. Role of MRE11 in DNA damage repair pathway dynamics and its diagnostic and prognostic significance in hereditary breast and ovarian cancer. BMC Cancer 2025; 25:650. [PMID: 40205351 PMCID: PMC11984277 DOI: 10.1186/s12885-025-14082-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 04/03/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND DNA damage repair pathway genes are key components for maintaining genomic stability and are mainly associated with hereditary breast and ovarian cancer. METHODS The present study aimed to investigate the gene expression profile of DNA damage repair pathway genes, including BRCA1, BRCA2, ATM, TP53, CHEK2, MRE11, RAD50, BARD1, PALB2, and NBN, in hereditary breast and ovarian cancer patients using quantitative real-time PCR. RESULTS The study showed significant upregulation of most DNA damage repair genes in HBOC patients compared to controls, except MRE11, which was downregulated. Receiver operating characteristic (ROC) curve analysis revealed that MRE11 (p < 0.001), BRCA1 (p < 0.001), BRCA2 (p < 0.001), and PALB2 (p < 0.001) can be used as potential diagnostic biomarkers for hereditary breast and ovarian cancer. Spearman correlation analysis showed that RAD50 was significantly associated with the BRCA1/2 mutation status (p = 0.05). Furthermore, bivariate analysis revealed a strong positive correlation between BARD1 gene expression and the expression of BRCA1, PALB2, and NBN genes. Kaplan-Meier survival analysis showed that reduces expression of the MRE11 gene was associated with better overall survival. CONCLUSIONS The study findings may lead to a better understanding of the molecular mechanisms underlying hereditary breast and ovarian cancer, suggesting its role as a potential diagnostic and prognostic marker.
Collapse
Affiliation(s)
- Bhoomi Tarapara
- Department of Life-Science, Gujarat University and Young Scientist (DHR-ICMR), Molecular Diagnostic & Research Lab-3, Department of Cancer Biology, The Gujarat Cancer & Research Institute, Ahmedabad, Gujarat, 380016, India
| | - Franky Shah
- Department of Cancer Biology, Molecular Diagnostic & Research Lab- 3, The Gujarat Cancer & Research Institute, Ahmedabad, Gujarat, 380016, India.
| |
Collapse
|
4
|
George TJ, Lee JH, DeRemer DL, Hosein PJ, Staal S, Markham MJ, Jones D, Daily KC, Chatzkel JA, Ramnaraign BH, Close JL, Ezenwajiaku N, Murphy MC, Allegra CJ, Rogers S, Zhang Z, Li D, Srinivasan G, Shaheen M, Hromas R. Phase II Trial of the PARP Inhibitor, Niraparib, in BAP1 and Other DNA Damage Response Pathway-Deficient Neoplasms. JCO Precis Oncol 2024; 8:e2400406. [PMID: 39626160 PMCID: PMC11616782 DOI: 10.1200/po-24-00406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/10/2024] [Accepted: 10/16/2024] [Indexed: 12/06/2024] Open
Abstract
PURPOSE BRCA1-associated protein 1 (BAP1) is a critical cell cycle and DNA damage response (DDR) regulator with mutations (mBAP1) causing a functional protein loss. PARP inhibitors (PARPis) demonstrate synthetic lethality in mBAP1 preclinical models, independent of underlying BRCA status. This study aimed to explore the clinical activity of niraparib in patients with advanced tumors likely to harbor mBAP1. METHODS This was a phase II multicenter trial in which refractory solid tumor patients were assigned to cohort A (histology-specific tumors likely to harbor mBAP1) or cohort B (histology-agnostic tumors with other known non-BRCA-confirmed DDR mutations). All patients received niraparib 300 mg orally once daily on a 28-day cycle. The primary end point was objective response rate, and secondary end points included progression-free survival (PFS) and overall survival. RESULTS From August 2018 through December 2021, 37 patients were enrolled with 31 evaluable for response (cohort A, n = 18; cohort B, n = 13). In cohort A, the best response was one partial response (PR; 6%), eight stable disease (SD; 44%), and nine progressive disease (PD; 50%). This cohort stopped at the first stage following the prespecified Simon's design. mBAP1 was confirmed in 7/9 patients (78%) with PR or SD but in only 3/9 (33%) in those with PD. The median PFS in patients with mBAP1 (n = 10) was 6.7 months (95% CI, 1.0 to 9.2) versus 1.8 months (95% CI, 0.9 to 4.5) for wild-type (n = 8; P = .020). In cohort B, the best response was six SD (46%) and seven PD (54%), with SD in those with ATM, CHEK2, PTEN, RAD50, and ARID1A mutations. CONCLUSION Niraparib failed to meet the prespecified efficacy end point for response. However, clinical benefit was suggested in a proportion of patients who had a confirmed mBAP1, supporting further investigation.
Collapse
Affiliation(s)
- Thomas J. George
- Division of Hematology Oncology, Department of Medicine, University of Florida, Gainesville, FL
- University of Florida Health Cancer Center, Gainesville, FL
| | - Ji-Hyun Lee
- University of Florida Health Cancer Center, Gainesville, FL
- Department of Biostatistics, University of Florida, Gainesville, FL
| | - David L. DeRemer
- University of Florida Health Cancer Center, Gainesville, FL
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL
| | - Peter J. Hosein
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL
| | - Steven Staal
- Division of Hematology Oncology, Department of Medicine, University of Florida, Gainesville, FL
- University of Florida Health Cancer Center, Gainesville, FL
| | - Merry Jennifer Markham
- Division of Hematology Oncology, Department of Medicine, University of Florida, Gainesville, FL
- University of Florida Health Cancer Center, Gainesville, FL
| | - Dennie Jones
- Division of Hematology Oncology, Department of Medicine, University of Florida, Gainesville, FL
- University of Florida Health Cancer Center, Gainesville, FL
| | - Karen C. Daily
- Division of Hematology Oncology, Department of Medicine, University of Florida, Gainesville, FL
- University of Florida Health Cancer Center, Gainesville, FL
| | - Jonathan A. Chatzkel
- Division of Hematology Oncology, Department of Medicine, University of Florida, Gainesville, FL
- University of Florida Health Cancer Center, Gainesville, FL
| | - Brian H. Ramnaraign
- Division of Hematology Oncology, Department of Medicine, University of Florida, Gainesville, FL
- University of Florida Health Cancer Center, Gainesville, FL
| | - Julia L. Close
- Division of Hematology Oncology, Department of Medicine, University of Florida, Gainesville, FL
- University of Florida Health Cancer Center, Gainesville, FL
| | - Nkiruka Ezenwajiaku
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL
| | - Martina C. Murphy
- Division of Hematology Oncology, Department of Medicine, University of Florida, Gainesville, FL
- University of Florida Health Cancer Center, Gainesville, FL
| | - Carmen J. Allegra
- Division of Hematology Oncology, Department of Medicine, University of Florida, Gainesville, FL
- University of Florida Health Cancer Center, Gainesville, FL
| | - Sherise Rogers
- Division of Hematology Oncology, Department of Medicine, University of Florida, Gainesville, FL
- University of Florida Health Cancer Center, Gainesville, FL
| | - Zhongyue Zhang
- University of Florida Health Cancer Center, Gainesville, FL
| | - Derek Li
- University of Florida Health Cancer Center, Gainesville, FL
- Department of Biostatistics, University of Florida, Gainesville, FL
| | | | - Montaser Shaheen
- Mays Cancer Center, University of Texas at San Antonio, San Antonio, TX
| | - Robert Hromas
- Mays Cancer Center, University of Texas at San Antonio, San Antonio, TX
- Department of Medicine, College of Medicine, University of Texas at San Antonio, San Antonio, TX
| |
Collapse
|
5
|
Toma MM, Skorski T. Star wars against leukemia: attacking the clones. Leukemia 2024; 38:2293-2302. [PMID: 39223295 PMCID: PMC11519008 DOI: 10.1038/s41375-024-02369-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Leukemia, although most likely starts as a monoclonal genetic/epigenetic anomaly, is a polyclonal disease at manifestation. This polyclonal nature results from ongoing evolutionary changes in the genome/epigenome of leukemia cells to promote their survival and proliferation advantages. We discuss here how genetic and/or epigenetic aberrations alter intracellular microenvironment in individual leukemia clones and how extracellular microenvironment selects the best fitted clones. This dynamic polyclonal composition of leukemia makes designing an effective therapy a challenging task especially because individual leukemia clones often display substantial differences in response to treatment. Here, we discuss novel therapeutic approach employing single cell multiomics to identify and eradicate all individual clones in a patient.
Collapse
Affiliation(s)
- Monika M Toma
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Tomasz Skorski
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Yu T, Lok BH. PARP inhibitor resistance mechanisms and PARP inhibitor derived imaging probes. Expert Rev Anticancer Ther 2024; 24:989-1008. [PMID: 39199000 DOI: 10.1080/14737140.2024.2398494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/01/2024]
Abstract
INTRODUCTION Poly(ADP-ribose) polymerase 1 (PARP1) inhibition has become a major target in anticancer therapy. While PARP inhibitors (PARPi) are approved for homologous recombination (HR) deficient cancers, therapeutic resistance is a challenge and PARPi are now being investigated in cancers lacking HR deficiencies. This creates a need to develop molecular and imaging biomarkers of PARPi response to improve patient selection and circumvent therapeutic resistance. AREAS COVERED PubMed and clinicaltrials.gov were queried for studies on PARPi resistance and imaging. This review summarizes established and emerging resistance mechanisms to PARPi, and the current state of imaging and theragnostic probes for PARPi, including fluorescently labeled and radiolabeled probes. EXPERT OPINION While progress has been made in understanding PARPi therapeutic resistance, clinical evidence remains lacking and relatively little is known regarding PARPi response outside of HR deficiencies. Continued research will clarify the importance of known biomarkers and resistance mechanisms in patient cohorts and the broader utility of PARPi. Progress has also been made in PARPi imaging, particularly with radiolabeled probes, and both imaging and theragnostic probes have now reached clinical validation. Reducing abdominal background signal from probe clearance will broaden their applicability, and improvements to molecular synthesis and radiation delivery will increase their utility.
Collapse
Affiliation(s)
- Tony Yu
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin H Lok
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Radiation Oncology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Huang Y, Chen S, Yao N, Lin S, Zhang J, Xu C, Wu C, Chen G, Zhou D. Molecular mechanism of PARP inhibitor resistance. Oncoscience 2024; 11:69-91. [PMID: 39318358 PMCID: PMC11420906 DOI: 10.18632/oncoscience.610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024] Open
Abstract
Poly (ADP-ribose) polymerases (PARP) inhibitors (PARPi) are the first-approved anticancer drug designed to exploit synthetic lethality. PARPi selectively kill cancer cells with homologous recombination repair deficiency (HRD), as a result, PARPi are widely employed to treated BRCA1/2-mutant ovarian, breast, pancreatic and prostate cancers. Currently, four PARPi including Olaparib, Rucaparib, Niraparib, and Talazoparib have been developed and greatly improved clinical outcomes in cancer patients. However, accumulating evidences suggest that required or de novo resistance emerged. In this review, we discuss the molecular mechanisms leading to PARPi resistances and review the potential strategies to overcome PARPi resistance.
Collapse
Affiliation(s)
- Yi Huang
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
- Equal contribution
| | - Simin Chen
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
- Equal contribution
| | - Nan Yao
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
- Equal contribution
| | - Shikai Lin
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Junyi Zhang
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Chengrui Xu
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Chenxuan Wu
- School of Public Health, Nanjing Medical University, Nanjing 210029, P.R. China
| | - Guo Chen
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Danyang Zhou
- Department of Respiratory, Nanjing First Hospital, China Pharmaceutical University, Nanjing 210012, Jiangsu, P.R. China
| |
Collapse
|
8
|
Qiu L, Li R, Wang Y, Lu Z, Tu Z, Liu H. PTEN inhibition enhances sensitivity of ovarian cancer cells to the poly (ADP-ribose) polymerase inhibitor by suppressing the MRE11-RAD50-NBN complex. Br J Cancer 2024; 131:577-588. [PMID: 38866962 PMCID: PMC11300449 DOI: 10.1038/s41416-024-02749-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Poly (ADP-ribose) polymerase inhibitors (PARPis) can effectively treat ovarian cancer patients with defective homologous recombination (HR). Loss or dysfunction of PTEN, a typical tumour suppressor, impairs double-strand break (DSB) repair. Hence, we explored the possibility of inhibiting PTEN to induce HR deficiency (HRD) for PARPi application. METHODS Functional studies using PTEN inhibitor VO-OHpic and PARPi olaparib were performed to explore the molecular mechanisms in vitro and in vivo. RESULTS In this study, the combination of VO-OHpic with olaparib exhibited synergistic inhibitory effects on ovarian cancer cells was demonstrated. Furthermore, VO-OHpic was shown to enhance DSBs by reducing nuclear expression of PTEN and inhibiting HR repair through the modulation of MRE11-RAD50-NBN (MRN) complex, critical for DSB repair. TCGA and GTEx analysis revealed a strong correlation between PTEN and MRN in ovarian cancer. Mechanistic studies indicated that VO-OHpic reduced expression of MRN, likely by decreasing PTEN/E2F1-mediated transcription. Moreover, PTEN-knockdown inhibited expression of MRN, increased sensitivities to olaparib, and induced DSBs. In vivo experiments showed that the combination of VO-OHpic with olaparib exhibited enhanced inhibitory effects on tumour growth. CONCLUSIONS Collectively, this study highlights the potential of PTEN inhibitors in combination therapy with PARPis to create HRD for HRD-negative ovarian cancers.
Collapse
Affiliation(s)
- Lipeng Qiu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Ruyan Li
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
- School of Health Medicine, Nantong Institute of Technology, Nantong, 226000, Jiangsu, China
| | - Yue Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Ziwen Lu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Zhigang Tu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Hanqing Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
9
|
Yang FF, Zhao TT, Milaneh S, Zhang C, Xiang DJ, Wang WL. Small molecule targeted therapies for endometrial cancer: progress, challenges, and opportunities. RSC Med Chem 2024; 15:1828-1848. [PMID: 38911148 PMCID: PMC11187550 DOI: 10.1039/d4md00089g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/10/2024] [Indexed: 06/25/2024] Open
Abstract
Endometrial cancer (EC) is a common malignancy among women worldwide, and its recurrence makes it a common cause of cancer-related death. Surgery and external radiation, chemotherapy, or a combination of strategies are the cornerstone of therapy for EC patients. However, adjuvant treatment strategies face certain drawbacks, such as resistance to chemotherapeutic drugs; therefore, it is imperative to explore innovative therapeutic strategies to improve the prognosis of EC. With the development of pathology and pathophysiology, several biological targets associated with EC have been identified, including PI3K/Akt/mTOR, PARP, GSK-3β, STAT-3, and VEGF. In this review, we summarize the progress of small molecule targeted therapies in terms of both basic research and clinical trials and provide cases of small molecules combined with fluorescence properties in the clinical applications of integrated diagnosis and treatment. We hope that this review will facilitate the further understanding of the regulatory mechanism governing the dysregulation of oncogenic signaling in EC and provide insights into the possible future directions of targeted therapeutic regimens for EC treatment by developing new agents with fluorescence properties for the clinical applications of integrated diagnosis and treatment.
Collapse
Affiliation(s)
- Fei-Fei Yang
- Yixing People's Hospital Yixing Jiangsu 214200 China
| | - Tian-Tian Zhao
- School of Life Sciences and Health Engineering, Jiangnan University Wuxi 214122 China
| | - Slieman Milaneh
- School of Life Sciences and Health Engineering, Jiangnan University Wuxi 214122 China
- Department of Pharmaceutical and Chemical Industries, Higher Institute of Applied Science and Technology Damascus Syria
| | - Chun Zhang
- School of Life Sciences and Health Engineering, Jiangnan University Wuxi 214122 China
| | - Da-Jun Xiang
- Xishan People's Hospital of Wuxi City Wuxi Jiangsu 214105 China
| | - Wen-Long Wang
- Yixing People's Hospital Yixing Jiangsu 214200 China
- School of Life Sciences and Health Engineering, Jiangnan University Wuxi 214122 China
| |
Collapse
|
10
|
Beneyton A, Nonfoux L, Gagné JP, Rodrigue A, Kothari C, Atalay N, Hendzel M, Poirier G, Masson JY. The dynamic process of covalent and non-covalent PARylation in the maintenance of genome integrity: a focus on PARP inhibitors. NAR Cancer 2023; 5:zcad043. [PMID: 37609662 PMCID: PMC10440794 DOI: 10.1093/narcan/zcad043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/24/2023] Open
Abstract
Poly(ADP-ribosylation) (PARylation) by poly(ADP-ribose) polymerases (PARPs) is a highly regulated process that consists of the covalent addition of polymers of ADP-ribose (PAR) through post-translational modifications of substrate proteins or non-covalent interactions with PAR via PAR binding domains and motifs, thereby reprogramming their functions. This modification is particularly known for its central role in the maintenance of genomic stability. However, how genomic integrity is controlled by an intricate interplay of covalent PARylation and non-covalent PAR binding remains largely unknown. Of importance, PARylation has caught recent attention for providing a mechanistic basis of synthetic lethality involving PARP inhibitors (PARPi), most notably in homologous recombination (HR)-deficient breast and ovarian tumors. The molecular mechanisms responsible for the anti-cancer effect of PARPi are thought to implicate both catalytic inhibition and trapping of PARP enzymes on DNA. However, the relative contribution of each on tumor-specific cytotoxicity is still unclear. It is paramount to understand these PAR-dependent mechanisms, given that resistance to PARPi is a challenge in the clinic. Deciphering the complex interplay between covalent PARylation and non-covalent PAR binding and defining how PARP trapping and non-trapping events contribute to PARPi anti-tumour activity is essential for developing improved therapeutic strategies. With this perspective, we review the current understanding of PARylation biology in the context of the DNA damage response (DDR) and the mechanisms underlying PARPi activity and resistance.
Collapse
Affiliation(s)
- Adèle Beneyton
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
| | - Louis Nonfoux
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Jean-Philippe Gagné
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Amélie Rodrigue
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
| | - Charu Kothari
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Nurgul Atalay
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Michael J Hendzel
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, 11560 University Avenue, Edmonton, AlbertaT6G 1Z2, Canada
| | - Guy G Poirier
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Jean-Yves Masson
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
| |
Collapse
|
11
|
Lovsund T, Mashayekhi F, Fitieh A, Stafford J, Ismail IH. Unravelling the Role of PARP1 in Homeostasis and Tumorigenesis: Implications for Anti-Cancer Therapies and Overcoming Resistance. Cells 2023; 12:1904. [PMID: 37508568 PMCID: PMC10378431 DOI: 10.3390/cells12141904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Detailing the connection between homeostatic functions of enzymatic families and eventual progression into tumorigenesis is crucial to our understanding of anti-cancer therapies. One key enzyme group involved in this process is the Poly (ADP-ribose) polymerase (PARP) family, responsible for an expansive number of cellular functions, featuring members well established as regulators of DNA repair, genomic stability and beyond. Several PARP inhibitors (PARPi) have been approved for clinical use in a range of cancers, with many more still in trials. Unfortunately, the occurrence of resistance to PARPi therapy is growing in prevalence and requires the introduction of novel counter-resistance mechanisms to maintain efficacy. In this review, we summarize the updated understanding of the vast homeostatic functions the PARP family mediates and pin the importance of PARPi therapies as anti-cancer agents while discussing resistance mechanisms and current up-and-coming counter-strategies for countering such resistance.
Collapse
Affiliation(s)
- Taylor Lovsund
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Fatemeh Mashayekhi
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Amira Fitieh
- Department of Biophysics, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - James Stafford
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Ismail Hassan Ismail
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
- Department of Biophysics, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
12
|
Petroni M, La Monica V, Fabretti F, Augusto M, Battaglini D, Polonara F, Di Giulio S, Giannini G. The Multiple Faces of the MRN Complex: Roles in Medulloblastoma and Beyond. Cancers (Basel) 2023; 15:3599. [PMID: 37509263 PMCID: PMC10377613 DOI: 10.3390/cancers15143599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Hypomorphic mutations in MRN complex genes are frequently found in cancer, supporting their role as oncosuppressors. However, unlike canonical oncosuppressors, MRN proteins are often overexpressed in tumor tissues, where they actively work to counteract DSBs induced by both oncogene-dependent RS and radio-chemotherapy. Moreover, at the same time, MRN genes are also essential genes, since the constitutive KO of each component leads to embryonic lethality. Therefore, even though it is paradoxical, MRN genes may work as oncosuppressive, oncopromoting, and essential genes. In this review, we discussed how alterations in the MRN complex impact the physiopathology of cancer, in light of our recent discoveries on the gene-dosage-dependent effect of NBS1 in Medulloblastoma. These updates aim to understand whether MRN complex can be realistically used as a prognostic/predictive marker and/or as a therapeutic target for the treatment of cancer patients in the future.
Collapse
Affiliation(s)
- Marialaura Petroni
- Department of Molecular Medicine, University La Sapienza, 00161 Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, 00161 Rome, Italy
| | - Veronica La Monica
- Department of Molecular Medicine, University La Sapienza, 00161 Rome, Italy
| | - Francesca Fabretti
- Department of Molecular Medicine, University La Sapienza, 00161 Rome, Italy
| | - Mariaconcetta Augusto
- Department of Molecular Medicine, University La Sapienza, 00161 Rome, Italy
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Damiana Battaglini
- Department of Molecular Medicine, University La Sapienza, 00161 Rome, Italy
| | - Francesca Polonara
- Department of Molecular Medicine, University La Sapienza, 00161 Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, 00161 Rome, Italy
| | - Stefano Di Giulio
- Department of Molecular Medicine, University La Sapienza, 00161 Rome, Italy
| | - Giuseppe Giannini
- Department of Molecular Medicine, University La Sapienza, 00161 Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, 00161 Rome, Italy
| |
Collapse
|
13
|
PARP Inhibitors and Proteins Interacting with SLX4. Cancers (Basel) 2023; 15:cancers15030997. [PMID: 36765954 PMCID: PMC9913592 DOI: 10.3390/cancers15030997] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
PARP inhibitors are small molecules currently used with success in the treatment of certain cancer patients. Their action was first shown to be specific to cells with DNA repair deficiencies, such as BRCA-mutant cancers. However, recent work has suggested clinical interest of these drugs beyond this group of patients. Preclinical data on relationships between the activity of PARP inhibitors and other proteins involved in DNA repair exist, and this review will only highlight findings on the SLX4 protein and its interacting protein partners. As suggested from these available data and depending on further validations, new treatment strategies could be developed in order to broaden the use for PARP inhibitors in cancer patients.
Collapse
|
14
|
Karabağ S, Şentürk M, Söğüt FC, Ergül ÖS, Ersoy T. Histopathological and molecular findings in 98 cases of endometrial carcinoma: MMR, p53 and next generation sequencing. Pathol Res Pract 2023; 241:154275. [PMID: 36528987 DOI: 10.1016/j.prp.2022.154275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Gynecological malignancies arise from hereditary and somatic mutations, transcriptional aberrations, and genomic alterations influenced by epigenetic factors. This study aims to identify the mutations and their frequency in endometrial carcinomas (EC), and furthermore, to determine the relationship of these mutations with histopathological and immunohistochemical (IHC) parameters. The study was carried out in a retrospective cohort of 98 patients who received treatment upon being diagnosed with EC at a tertiary university hospital in Turkey between 2016 and 2021. The NGS-DNA tumor panel containing 29 genes was used in the study. NGS data of the cases were obtained from state of the evidence Tier 1 and 2 mutations. The relationship of patients' next generation sequencing (NGS) DNA panel results with histopathological parameters and IHC results (MLH1, MSH2, PMS2, MSH6 and p53) were evaluated. In 59 of the 98 cases, mutations were detected in at least one gene investigated with the NGS DNA panel. The most common somatic mutations in endometrial carcinoma were PIK3CA (33.6%), CTNNB1 (16.3%), KRAS (12.2%) and FGFR2 (11.2%) in this cohort. Abnormal p53 was detected by IHC in 15 out of 75 (20%) cases. Loss of expression was observed in at least one mismatch repair (MMR) protein by means of IHC in 39 out of 72 (39.8%) cases. Metastasis was found in 14 out of 82 (14.3%) patients who underwent lymph node dissection. FGFR2 mutation was more common in the group with lymph node metastasis compared to those without metastasis (p = 0.02). We report the mutational landscape of EC in a tertiary referral hospital in northwestern Turkey. Although our data are very limited, we think that the FGFR2 mutation may be associated with lymph node metastasis, but studies with larger patient numbers and longer follow-up periods are needed.
Collapse
Affiliation(s)
- Sevil Karabağ
- Tekirdağ Namık Kemal University Medical Faculty, Pathology Department, Turkey.
| | - Mehmetbaki Şentürk
- Tekirdağ Namık Kemal University Medical Faculty, Department of Obstetrics and Gynecology, Turkey
| | - Fırat Can Söğüt
- Tekirdağ Namık Kemal University Medical Faculty, Department of Obstetrics and Gynecology, Turkey; Sakarya Training and Research Hospital, Turkey
| | - Özlem Sevinç Ergül
- Tekirdağ Namık Kemal University Medical Faculty, Department of Obstetrics and Gynecology, Turkey
| | - Tuğçe Ersoy
- Tekirdağ Namık Kemal University Medical Faculty, Department of Obstetrics and Gynecology, Turkey
| |
Collapse
|
15
|
Hunia J, Gawalski K, Szredzka A, Suskiewicz MJ, Nowis D. The potential of PARP inhibitors in targeted cancer therapy and immunotherapy. Front Mol Biosci 2022; 9:1073797. [PMID: 36533080 PMCID: PMC9751342 DOI: 10.3389/fmolb.2022.1073797] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/15/2022] [Indexed: 07/29/2023] Open
Abstract
DNA damage response (DDR) deficiencies result in genome instability, which is one of the hallmarks of cancer. Poly (ADP-ribose) polymerase (PARP) enzymes take part in various DDR pathways, determining cell fate in the wake of DNA damage. PARPs are readily druggable and PARP inhibitors (PARPi) against the main DDR-associated PARPs, PARP1 and PARP2, are currently approved for the treatment of a range of tumor types. Inhibition of efficient PARP1/2-dependent DDR is fatal for tumor cells with homologous recombination deficiencies (HRD), especially defects in breast cancer type 1 susceptibility protein 1 or 2 (BRCA1/2)-dependent pathway, while allowing healthy cells to survive. Moreover, PARPi indirectly influence the tumor microenvironment by increasing genomic instability, immune pathway activation and PD-L1 expression on cancer cells. For this reason, PARPi might enhance sensitivity to immune checkpoint inhibitors (ICIs), such as anti-PD-(L)1 or anti-CTLA4, providing a rationale for PARPi-ICI combination therapies. In this review, we discuss the complex background of the different roles of PARP1/2 in the cell and summarize the basics of how PARPi work from bench to bedside. Furthermore, we detail the early data of ongoing clinical trials indicating the synergistic effect of PARPi and ICIs. We also introduce the diagnostic tools for therapy development and discuss the future perspectives and limitations of this approach.
Collapse
Affiliation(s)
- Jaromir Hunia
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Karol Gawalski
- Doctoral School, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Experimental Medicine, Medical University of Warsaw, Warsaw, Poland
| | | | | | - Dominika Nowis
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Experimental Medicine, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
16
|
McCarthy-Leo C, Darwiche F, Tainsky MA. DNA Repair Mechanisms, Protein Interactions and Therapeutic Targeting of the MRN Complex. Cancers (Basel) 2022; 14:5278. [PMID: 36358700 PMCID: PMC9656488 DOI: 10.3390/cancers14215278] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 08/27/2023] Open
Abstract
Repair of a DNA double-strand break relies upon a pathway of proteins to identify damage, regulate cell cycle checkpoints, and repair the damage. This process is initiated by a sensor protein complex, the MRN complex, comprised of three proteins-MRE11, RAD50, and NBS1. After a double-stranded break, the MRN complex recruits and activates ATM, in-turn activating other proteins such as BRCA1/2, ATR, CHEK1/2, PALB2 and RAD51. These proteins have been the focus of many studies for their individual roles in hereditary cancer syndromes and are included on several genetic testing panels. These panels have enabled us to acquire large amounts of genetic data, much of which remains a challenge to interpret due to the presence of variants of uncertain significance (VUS). While the primary aim of clinical testing is to accurately and confidently classify variants in order to inform medical management, the presence of VUSs has led to ambiguity in genetic counseling. Pathogenic variants within MRN complex genes have been implicated in breast, ovarian, prostate, colon cancers and gliomas; however, the hundreds of VUSs within MRE11, RAD50, and NBS1 precludes the application of these data in genetic guidance of carriers. In this review, we discuss the MRN complex's role in DNA double-strand break repair, its interactions with other cancer predisposing genes, the variants that can be found within the three MRN complex genes, and the MRN complex's potential as an anti-cancer therapeutic target.
Collapse
Affiliation(s)
- Claire McCarthy-Leo
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Fatima Darwiche
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Michael A. Tainsky
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Molecular Therapeutics Program, Karmanos Cancer Institute at Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
17
|
Alblihy A, Ali R, Algethami M, Shoqafi A, Toss MS, Brownlie J, Tatum NJ, Hickson I, Moran PO, Grabowska A, Jeyapalan JN, Mongan NP, Rakha EA, Madhusudan S. Targeting Mre11 overcomes platinum resistance and induces synthetic lethality in XRCC1 deficient epithelial ovarian cancers. NPJ Precis Oncol 2022; 6:51. [PMID: 35853939 PMCID: PMC9296550 DOI: 10.1038/s41698-022-00298-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 07/04/2022] [Indexed: 11/11/2022] Open
Abstract
Platinum resistance is a clinical challenge in ovarian cancer. Platinating agents induce DNA damage which activate Mre11 nuclease directed DNA damage signalling and response (DDR). Upregulation of DDR may promote chemotherapy resistance. Here we have comprehensively evaluated Mre11 in epithelial ovarian cancers. In clinical cohort that received platinum- based chemotherapy (n = 331), Mre11 protein overexpression was associated with aggressive phenotype and poor progression free survival (PFS) (p = 0.002). In the ovarian cancer genome atlas (TCGA) cohort (n = 498), Mre11 gene amplification was observed in a subset of serous tumours (5%) which correlated highly with Mre11 mRNA levels (p < 0.0001). Altered Mre11 levels was linked with genome wide alterations that can influence platinum sensitivity. At the transcriptomic level (n = 1259), Mre11 overexpression was associated with poor PFS (p = 0.003). ROC analysis showed an area under the curve (AUC) of 0.642 for response to platinum-based chemotherapy. Pre-clinically, Mre11 depletion by gene knock down or blockade by small molecule inhibitor (Mirin) reversed platinum resistance in ovarian cancer cells and in 3D spheroid models. Importantly, Mre11 inhibition was synthetically lethal in platinum sensitive XRCC1 deficient ovarian cancer cells and 3D-spheroids. Selective cytotoxicity was associated with DNA double strand break (DSB) accumulation, S-phase cell cycle arrest and increased apoptosis. We conclude that pharmaceutical development of Mre11 inhibitors is a viable clinical strategy for platinum sensitization and synthetic lethality in ovarian cancer.
Collapse
Affiliation(s)
- Adel Alblihy
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
- Medical Center, King Fahad Security College (KFSC), Riyadh, 11461, Saudi Arabia
| | - Reem Ali
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Mashael Algethami
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Ahmed Shoqafi
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Michael S Toss
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
- Department of Pathology, Nottingham University Hospitals, City Hospital Campus, Nottingham, NG5 1PB, UK
| | - Juliette Brownlie
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Natalie J Tatum
- Cancer Research UK Newcastle Drug Discovery Unit, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Ian Hickson
- Cancer Research UK Newcastle Drug Discovery Unit, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Paloma Ordonez Moran
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Anna Grabowska
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Jennie N Jeyapalan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Nigel P Mongan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
- Department of Pharmacology, Weill Cornell Medicine, New York, 10065, NY, USA
| | - Emad A Rakha
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
- Department of Pathology, Nottingham University Hospitals, City Hospital Campus, Nottingham, NG5 1PB, UK
| | - Srinivasan Madhusudan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK.
- Department of Oncology, Nottingham University Hospitals, Nottingham, NG51PB, UK.
| |
Collapse
|
18
|
Inhibition of BAD-Ser99 phosphorylation synergizes with PARP inhibition to ablate PTEN-deficient endometrial carcinoma. Cell Death Dis 2022; 13:558. [PMID: 35725817 PMCID: PMC9209517 DOI: 10.1038/s41419-022-04982-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 01/21/2023]
Abstract
Loss of phosphatase and tensin homolog (PTEN) impairs DNA double-strand repair and confers sensitivity to poly (ADP-ribose) polymerase inhibitors (PARPis). However, PARPis also hyperactivate the MAPK and PI3K/AKT/mTOR pathways in PTEN-deficient endometrial carcinoma (EC), which allows the emergence of PARPi resistance. BCL-2-associated death promoter (BAD), integrates the common cell survival effects of the RAS/MEK/MAPK and PI3K/AKT/mTOR pathways. Herein, it was observed that increased BADSer99 (BADS99) phosphorylation in EC cells was significantly associated with PTEN-deficient status. Forced expression of phosphorylation deficient human BADS99A in PTEN-deficient EC cells significantly increased CASPASE 3/7 activity and decreased EC cell viability. Using NPB as a pharmacological inhibitor of pBADS99 phosphorylation, it was demonstrated that NPB synergized with PARPis (Olaparib, Rucaparib and Talazoparib) to enhance PARPi IC50 up to 60-fold and decreased survival, foci formation, and growth in 3D ex vivo culture of PTEN-deficient EC cells. Combined NPB-PARPi treatment of PTEN-deficient EC cells stimulated apoptosis and promoted DNA damage by impairment of homologous recombination. Using the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 endonuclease system it was demonstrated that deletion of PTEN in PTEN replete EC cells enhanced the efficacy of combined NPB-PARPi treatment. Furthermore, combined inhibition of BADS99 phosphorylation and PARP ablated xenograft growth of PTEN-deficient EC cells. Similarly, a combination of NPB and PARPis significantly suppressed the growth of PTEN deficient patient-derived EC organoids. Hence, combined inhibition of BADS99 phosphorylation and PARP represents a rational and efficacious strategy to improve the prognosis of recurrent EC patients.
Collapse
|
19
|
Wang J, Xing W, Lin Y, Uskenbayeva N, Yan H, Xu Y, Fang L. Blocking PARP activity with the inhibitor veliparib enhances radiotherapy sensitivity in endometrial carcinoma. J Clin Lab Anal 2022; 36:e24435. [PMID: 35421273 PMCID: PMC9102625 DOI: 10.1002/jcla.24435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE Our study aimed to investigate the potential clinical utility of a poly(ADP-ribose) polymerase (PARP) inhibitor, veliparib (ABT-888), as a radiosensitizer in the medication of endometrial carcinoma (EC). METHODS Human Ishikawa endometrial adenocarcinoma cells were treated with veliparib, radiotherapy (RT), or combination treatment. The viabilities, radiosensitivity enhancement ratio (sensitizer enhancement ratio (SER), and apoptosis of Ishikawa cells were, respectively, evaluated by Cell Counting Kit-8 (CCK-8), colony formation experiment, and flow cytometry. The tumor growth was assessed by xenograft mice models. Western blot assay investigated the expression of DNA damage and apoptosis-related proteins in vivo and in vitro. RESULTS Cell Counting Kit-8 revealed that the 10% inhibition concentration (IC10 ) and 50% inhibition concentration (IC50 ) values of veliparib-treated Ishikawa cells were 1.7 and 133.5 µM, respectively. The SER of veliparib combined with RT was 1.229 in vitro. Flow cytometry analysis results indicated that the apoptosis rate of the veliparib + RT group was markedly higher than that of the RT group in vitro (p < 0.05). Furthermore, in vivo data revealed that veliparib + RT treatment significantly decreased tumor growth compared with single treatments of veliparib or RT and with the control group (p < 0.05). Then western blot confirmed the levels of anti-phospho-histone (γH2AX), caspase-3, and B-cell lymphoma 2 (Bcl-2) associated protein X (Bax) were significantly higher in the veliparib + RT group, while the level of Bcl-2 was lower compared with that of the RT group (p < 0.05), both in vivo and in vitro. CONCLUSION Our results indicate that veliparib in combination with RT markedly improved the therapeutic efficiency in human endometrial carcinoma.
Collapse
Affiliation(s)
- Jing Wang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Reproductive Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Weizhen Xing
- Department of Gynecology, Sanya Women and Children's Hospital (Sanya Maternal and Child Health Care Hospital), Sanya, China
| | - Yanling Lin
- Department of Gynecology, Sanya Women and Children's Hospital (Sanya Maternal and Child Health Care Hospital), Sanya, China
| | | | - Hongchao Yan
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yang Xu
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Lisha Fang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
20
|
Mas-Ponte D, McCullough M, Supek F. Spectrum of DNA mismatch repair failures viewed through the lens of cancer genomics and implications for therapy. Clin Sci (Lond) 2022; 136:383-404. [PMID: 35274136 PMCID: PMC8919091 DOI: 10.1042/cs20210682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/02/2022] [Accepted: 02/28/2022] [Indexed: 12/15/2022]
Abstract
Genome sequencing can be used to detect DNA repair failures in tumors and learn about underlying mechanisms. Here, we synthesize findings from genomic studies that examined deficiencies of the DNA mismatch repair (MMR) pathway. The impairment of MMR results in genome-wide hypermutation and in the 'microsatellite instability' (MSI) phenotype-occurrence of indel mutations at short tandem repeat (microsatellite) loci. The MSI status of tumors was traditionally assessed by molecular testing of a selected set of MS loci or by measuring MMR protein expression levels. Today, genomic data can provide a more complete picture of the consequences on genomic instability. Multiple computational studies examined somatic mutation distributions that result from failed DNA repair pathways in tumors. These include analyzing the commonly studied trinucleotide mutational spectra of single-nucleotide variants (SNVs), as well as of other features such as indels, structural variants, mutation clusters and regional mutation rate redistribution. The identified mutation patterns can be used to rigorously measure prevalence of MMR failures across cancer types, and potentially to subcategorize the MMR deficiencies. Diverse data sources, genomic and pre-genomic, from human and from experimental models, suggest there are different ways in which MMR can fail, and/or that the cell-type or genetic background may result in different types of MMR mutational patterns. The spectrum of MMR failures may direct cancer evolution, generating particular sets of driver mutations. Moreover, MMR affects outcomes of therapy by DNA damaging drugs, antimetabolites, nonsense-mediated mRNA decay (NMD) inhibitors, and immunotherapy by promoting either resistance or sensitivity, depending on the type of therapy.
Collapse
Affiliation(s)
- David Mas-Ponte
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute for Science and Technology, Baldiri Reixac 10, Barcelona 08028, Spain
| | - Marcel McCullough
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute for Science and Technology, Baldiri Reixac 10, Barcelona 08028, Spain
| | - Fran Supek
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute for Science and Technology, Baldiri Reixac 10, Barcelona 08028, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Pg Lluís Companys, 23, Barcelona 08010, Spain
| |
Collapse
|
21
|
Tarapara B, Shah F. An in-silico analysis to identify structural, functional and regulatory role of SNPs in hMRE11. J Biomol Struct Dyn 2022; 41:2160-2174. [PMID: 35048780 DOI: 10.1080/07391102.2022.2028678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Meiotic recombination 11 (MRE11) is a component of the tri-molecular MRE11-RAD50-NBS1 (MRN) complex, which functions as an exonuclease and endonuclease which is involved in identifying, signalling, protecting and repairing double-strand breaks in DNA (DSBs). Ataxia-telangiectasia-like disorder (ATLD) 1 and Nijmegen breakage syndrome (NBS)-like disorder are MRE11 associated diseases. In the present study, we used an integrated computational approach to identify the most deleterious SNPs and their structural and functional impact on human MRE11. Five of the 68 observed non-synonymous SNP (nsSNPs; I162T, S273C, W210C, D311Y and R364L) should be worked on due to their strong possible pathogenicity and the risk of changing protein properties. All the nsSNPs were highly conserved and decrease the protein stability located in the MRE11 nuclease and MRE11 DNA binding presumed domain. R364L and I162T were predicted to be involved in post-translational modification (PTM) sites. Furthermore, we also analysed the regulatory effect of noncoding SNPs on MRE11 gene regulation in which 6 SNPs were found to affect gene regulation. All six noncoding SNPs predicted chromatin interactive site whereas only one SNP was noted its association with miRNA binding site which disrupts 5 miRNA conserved site. These findings help future studies to get more insights into the role of these variants in the alteration of the MRE11 function. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bhoomi Tarapara
- Department of Cancer Biology, Stem Cell Biology Lab, The Gujarat Cancer and Research Institute, Ahmedabad, India
| | - Franky Shah
- Department of Cancer Biology, Stem Cell Biology Lab, The Gujarat Cancer and Research Institute, Ahmedabad, India
| |
Collapse
|
22
|
Bonazzi VF, Kondrashova O, Smith D, Nones K, Sengal AT, Ju R, Packer LM, Koufariotis LT, Kazakoff SH, Davidson AL, Ramarao-Milne P, Lakis V, Newell F, Rogers R, Davies C, Nicklin J, Garrett A, Chetty N, Perrin L, Pearson JV, Patch AM, Waddell N, Pollock PM. Patient-derived xenograft models capture genomic heterogeneity in endometrial cancer. Genome Med 2022; 14:3. [PMID: 35012638 PMCID: PMC8751371 DOI: 10.1186/s13073-021-00990-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 10/13/2021] [Indexed: 12/12/2022] Open
Abstract
Background Endometrial cancer (EC) is a major gynecological cancer with increasing incidence. It comprises four molecular subtypes with differing etiology, prognoses, and responses to chemotherapy. In the future, clinical trials testing new single agents or combination therapies will be targeted to the molecular subtype most likely to respond. As pre-clinical models that faithfully represent the molecular subtypes of EC are urgently needed, we sought to develop and characterize a panel of novel EC patient-derived xenograft (PDX) models. Methods Here, we report whole exome or whole genome sequencing of 11 PDX models and their matched primary tumor. Analysis of multiple PDX lineages and passages was performed to study tumor heterogeneity across lineages and/or passages. Based on recent reports of frequent defects in the homologous recombination (HR) pathway in EC, we assessed mutational signatures and HR deficiency scores and correlated these with in vivo responses to the PARP inhibitor (PARPi) talazoparib in six PDXs representing the copy number high/p53-mutant and mismatch-repair deficient molecular subtypes of EC. Results PDX models were successfully generated from grade 2/3 tumors, including three uterine carcinosarcomas. The models showed similar histomorphology to the primary tumors and represented all four molecular subtypes of EC, including five mismatch-repair deficient models. The different PDX lineages showed a wide range of inter-tumor and intra-tumor heterogeneity. However, for most PDX models, one arm recapitulated the molecular landscape of the primary tumor without major genomic drift. An in vivo response to talazoparib was detected in four copy number high models. Two models (carcinosarcomas) showed a response consistent with stable disease and two models (one copy number high serous EC and another carcinosarcoma) showed significant tumor growth inhibition, albeit one consistent with progressive disease; however, all lacked the HR deficiency genomic signature. Conclusions EC PDX models represent the four molecular subtypes of disease and can capture intra-tumor heterogeneity of the original primary tumor. PDXs of the copy number high molecular subtype showed sensitivity to PARPi; however, deeper and more durable responses will likely require combination of PARPi with other agents. Supplementary Information The online version contains supplementary material available at 10.1186/s13073-021-00990-z.
Collapse
Affiliation(s)
- Vanessa F Bonazzi
- School of Biomedical Sciences, Queensland University of Technology located at the Translational Research Institute, Brisbane, QLD, Australia.,The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Olga Kondrashova
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Deborah Smith
- Mater Health Services, South Brisbane, QLD, Australia.,Mater Pathology, Mater Research, Brisbane, QLD, Australia.,The University of Queensland, Brisbane, QLD, Australia
| | - Katia Nones
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Asmerom T Sengal
- School of Biomedical Sciences, Queensland University of Technology located at the Translational Research Institute, Brisbane, QLD, Australia
| | - Robert Ju
- School of Biomedical Sciences, Queensland University of Technology located at the Translational Research Institute, Brisbane, QLD, Australia
| | - Leisl M Packer
- School of Biomedical Sciences, Queensland University of Technology located at the Translational Research Institute, Brisbane, QLD, Australia
| | - Lambros T Koufariotis
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Stephen H Kazakoff
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Aimee L Davidson
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,The University of Queensland, Brisbane, QLD, Australia
| | - Priya Ramarao-Milne
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,The University of Queensland, Brisbane, QLD, Australia
| | - Vanessa Lakis
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Felicity Newell
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Rebecca Rogers
- Mater Pathology, Mater Research, Brisbane, QLD, Australia
| | - Claire Davies
- Mater Pathology, Mater Research, Brisbane, QLD, Australia
| | - James Nicklin
- The Wesley Hospital, Auchenflower, QLD, Australia.,Icon Cancer Centre Wesley, Auchenflower, QLD, Australia
| | - Andrea Garrett
- The Wesley Hospital, Auchenflower, QLD, Australia.,Icon Cancer Centre Wesley, Auchenflower, QLD, Australia
| | - Naven Chetty
- Mater Health Services, South Brisbane, QLD, Australia.,Mater Pathology, Mater Research, Brisbane, QLD, Australia
| | - Lewis Perrin
- Mater Health Services, South Brisbane, QLD, Australia.,Mater Pathology, Mater Research, Brisbane, QLD, Australia
| | - John V Pearson
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Ann-Marie Patch
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,The University of Queensland, Brisbane, QLD, Australia
| | - Nicola Waddell
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,The University of Queensland, Brisbane, QLD, Australia
| | - Pamela M Pollock
- School of Biomedical Sciences, Queensland University of Technology located at the Translational Research Institute, Brisbane, QLD, Australia.
| |
Collapse
|
23
|
Li Y, Wang S, Li P, Li Y, Liu Y, Fang H, Zhang X, Liu Z, Kong B. Rad50 promotes ovarian cancer progression through NF-κB activation. J Cell Mol Med 2021; 25:10961-10972. [PMID: 34734468 PMCID: PMC8642684 DOI: 10.1111/jcmm.17017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 09/20/2021] [Accepted: 09/30/2021] [Indexed: 01/12/2023] Open
Abstract
Rad50 is a component of MRN (Mre11-Rad50-Nbs1), which participates in DNA double-strand break repair and DNA-damage checkpoint activation. Here, we sought to investigate the clinical and functional significance of Rad50 in high-grade serous ovarian cancer (HGSOC). We found that Rad50 was frequently upregulated in HGSOCs and enhanced Rad50 expression inversely correlated with patient survival. In addition, ectopic expression of Rad50 promoted proliferation/invasion and induced EMT of ovarian cancer cells, whereas knockdown of Rad50 led to decreased aggressive behaviors. Mechanistic investigations revealed that Rad50 induced aggressiveness in HGSOC via activation of NF-κB signaling pathway. Moreover, we identified CARD9 as an interacting protein of Rad50 in ovarian cancer cells and the activation of NF-κB pathway by Rad50 is CARD9 dependent. Our findings provide evidence that Rad50 exhibits oncogenic property via NF-κB activation in HGSOC.
Collapse
Affiliation(s)
- Yinuo Li
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Obstetrics and Gynecology, Qilu Hospital, Department of Cell Biology, School of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanChina
| | - Shourong Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Obstetrics and Gynecology, Qilu Hospital, Department of Cell Biology, School of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanChina
| | - Peng Li
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Obstetrics and Gynecology, Qilu Hospital, Department of Cell Biology, School of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanChina
| | - Yingwei Li
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Obstetrics and Gynecology, Qilu Hospital, Department of Cell Biology, School of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanChina
| | - Yao Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Obstetrics and Gynecology, Qilu Hospital, Department of Cell Biology, School of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanChina
| | - Haiya Fang
- Department of Obstetrics & GynecologyJinhua Hospital of Zhejiang UniversityJinhuaChina
| | - Xiyu Zhang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Obstetrics and Gynecology, Qilu Hospital, Department of Cell Biology, School of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanChina
- Advanced Medical Research InstituteCheeloo College of MedicineShandong UniversityJinanChina
| | - Zhaojian Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Obstetrics and Gynecology, Qilu Hospital, Department of Cell Biology, School of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanChina
- Advanced Medical Research InstituteCheeloo College of MedicineShandong UniversityJinanChina
| | - Beihua Kong
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Obstetrics and Gynecology, Qilu Hospital, Department of Cell Biology, School of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanChina
| |
Collapse
|
24
|
Balian A, Hernandez FJ. Nucleases as molecular targets for cancer diagnosis. Biomark Res 2021; 9:86. [PMID: 34809722 PMCID: PMC8607607 DOI: 10.1186/s40364-021-00342-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022] Open
Abstract
Early cancer diagnosis is a crucial element to improved treatment options and survival. Great research efforts have been made in the search for better performing cancer diagnostic biomarkers. However, the quest continues as novel biomarkers with high accuracy for an early diagnosis remain an unmet clinical need. Nucleases, which are enzymes capable of cleaving nucleic acids, have been long considered as potential cancer biomarkers. The implications of nucleases are key for biological functions, their presence in different cellular counterparts and catalytic activity led the enthusiasm towards investigating the role of nucleases as promising cancer biomarkers. However, the most essential feature of these proteins, which is their enzymatic activity, has not been fully exploited. This review discusses nucleases interrogated as cancer biomarkers, providing a glimpse of their physiological roles. Moreover, it highlights the potential of harnessing the enzymatic activity of cancer-associated nucleases as a novel diagnostic biomarker using nucleic acid probes as substrates.
Collapse
Affiliation(s)
- Alien Balian
- Department of Physics, Chemistry and Biology, Linköping University, 58185, Linköping, Sweden
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
| | - Frank J Hernandez
- Department of Physics, Chemistry and Biology, Linköping University, 58185, Linköping, Sweden.
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden.
| |
Collapse
|
25
|
Alblihy A, Shoqafi A, Toss MS, Algethami M, Harris AE, Jeyapalan JN, Abdel-Fatah T, Servante J, Chan SYT, Green A, Mongan NP, Rakha EA, Madhusudan S. Untangling the clinicopathological significance of MRE11-RAD50-NBS1 complex in sporadic breast cancers. NPJ Breast Cancer 2021; 7:143. [PMID: 34782604 PMCID: PMC8593132 DOI: 10.1038/s41523-021-00350-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 10/22/2021] [Indexed: 12/27/2022] Open
Abstract
The MRE11-RAD50-NBS1 (MRN) complex is critical for genomic stability. Although germline mutations in MRN may increase breast cancer susceptibility, such mutations are extremely rare. Here, we have conducted a comprehensive clinicopathological study of MRN in sporadic breast cancers. We have protein expression profiled for MRN and a panel of DNA repair factors involved in double-strand break repair (BRCA1, BRCA2, ATM, CHK2, ATR, Chk1, pChk1, RAD51, γH2AX, RPA1, RPA2, DNA-PKcs), RECQ DNA helicases (BLM, WRN, RECQ1, RECQL4, RECQ5), nucleotide excision repair (ERCC1) and base excision repair (SMUG1, APE1, FEN1, PARP1, XRCC1, Pol β) in 1650 clinical breast cancers. The prognostic significance of MRE11, RAD50 and NBS1 transcripts and their microRNA regulators (hsa-miR-494 and hsa-miR-99b) were evaluated in large clinical datasets. Expression of MRN components was analysed in The Cancer Genome Atlas breast cancer cohort. We show that low nuclear MRN is linked to aggressive histopathological phenotypes such as high tumour grade, high mitotic index, oestrogen receptor- and high-risk Nottingham Prognostic Index. In univariate analysis, low nuclear MRE11 and low nuclear RAD50 were associated with poor survival. In multivariate analysis, low nuclear RAD50 remained independently linked with adverse clinical outcomes. Low RAD50 transcripts were also linked with reduced survival. In contrast, overexpression of hsa-miR-494 and hsa-miR-99b microRNAs was associated with poor survival. We observed large-scale genome-wide alterations in MRN-deficient tumours contributing to aggressive behaviour. We conclude that MRN status may be a useful tool to stratify tumours for precision medicine strategies.
Collapse
Affiliation(s)
- Adel Alblihy
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
- Medical Center, King Fahad Security College (KFSC), Riyadh, 11461, Saudi Arabia
| | - Ahmed Shoqafi
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Michael S Toss
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
- Department of Pathology, Nottingham University Hospitals, City Hospital Campus, Nottingham, NG5 1PB, UK
| | - Mashael Algethami
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Anna E Harris
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Jennie N Jeyapalan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Tarek Abdel-Fatah
- Department of Oncology, Nottingham University Hospitals, City Hospital Campus, Nottingham, NG5 1PB, UK
| | | | - Stephen Y T Chan
- Department of Oncology, Nottingham University Hospitals, City Hospital Campus, Nottingham, NG5 1PB, UK
| | - Andrew Green
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Nigel P Mongan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Emad A Rakha
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
- Department of Pathology, Nottingham University Hospitals, City Hospital Campus, Nottingham, NG5 1PB, UK
| | - Srinivasan Madhusudan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK.
- Department of Oncology, Nottingham University Hospitals, City Hospital Campus, Nottingham, NG5 1PB, UK.
| |
Collapse
|
26
|
Wu J, Crowe DL. PARP5B is required for nonhomologous end joining during tumorigenesis in vivo. Mol Carcinog 2021; 61:85-98. [PMID: 34710250 DOI: 10.1002/mc.23363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/27/2022]
Abstract
Poly(ADP-ribose) polymerases (PARP) act as DNA damage sensors that produce poly(ADP-ribose) (PAR) chains at double-strand breaks, facilitating the recruitment of repair factors. Cancers with homologous recombination defects are sensitive to small molecule PARP inhibitors. Despite PARP5B gene copy number changes in many cancers, the effects of this genetic alteration on tumor phenotype are largely unknown. To better understand this clinical finding, we characterized a PARP5B null mutation in a carcinogen-induced in vivo head and neck squamous cell carcinoma (SCC) model. Reduced PARP5B expression inhibited tumor growth, induced primary tumor differentiation and apoptosis, and inhibited cell proliferation and metastasis. Loss of PARP5B expression-induced ataxia telangiectasia and Rad3 related (ATR) activation and depleted the cancer stem cell fraction. PARP5B null tumor cells lacked 53BP1+ double-strand break foci, ATM activation, and p53 induction compared to PARP5B+/+ cancers. PARP5B null SCC expresses a multiprotein complex containing PML, pRPA, Rad50, Rad51, XRCC1, proliferating cell nuclear antigen (PCNA), and Mcm2, suggesting an HR-mediated repair mechanism at DNA replication foci. Low doses of etoposide combined with the PARP5B inhibitor XAV939 induced senescence and apoptosis in human SCC lines. NBS1 overexpression in these cells inhibited the effects of low-dose etoposide/XAV939 treatment. Our results indicate that PARP5B inhibition is new targeted cancer therapy.
Collapse
Affiliation(s)
- Jianchun Wu
- Department of Diagnostic Sciences, University of Illinois Cancer Center, Chicago, Illinois, USA
| | - David L Crowe
- Department of Diagnostic Sciences, University of Illinois Cancer Center, Chicago, Illinois, USA
| |
Collapse
|
27
|
Ghafoor A, Mian I, Wagner C, Mallory Y, Agra MG, Morrow B, Wei JS, Khan J, Thomas A, Sengupta M, Steinberg SM, Hassan R. Phase 2 Study of Olaparib in Malignant Mesothelioma and Correlation of Efficacy With Germline or Somatic Mutations in BAP1 Gene. JTO Clin Res Rep 2021; 2:100231. [PMID: 34661178 PMCID: PMC8502774 DOI: 10.1016/j.jtocrr.2021.100231] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/07/2021] [Accepted: 09/12/2021] [Indexed: 12/27/2022] Open
Abstract
Introduction PARP inhibition may enhance antitumor responses in BAP1-associated mesothelioma by inducing synthetic lethality. Methods A single-center, nonrandomized, phase 2 trial was conducted, in which patients with refractory mesothelioma were given olaparib 300 mg twice daily in a 21-day cycle until disease progression or intolerable toxicity. The primary objective was to determine the objective response rate on the basis of somatic or germline mutation status of DNA repair genes. The secondary objectives were to assess safety and tolerability and to determine progression-free survival (PFS) and overall survival (OS). Whole-exome sequencing was performed on blood and tumor. Results A total of 23 previously treated patients with pleural and peritoneal mesothelioma were enrolled and treated (germline BAP1, n = 4; germline MRE11A, n = 1; somatic BAP1, n = 8 mutations). There was one (4%) partial response, 18 (78%) with stable disease at 6 weeks, and four (17%) with progressive disease. The median overall PFS and OS were 3.6 months (95% confidence interval [CI]: 2.7–4.2 mo) and 8.7 months (95% CI: 4.7 mo–not estimable), respectively. The median PFS of germline BAP1 mutants (n = 4) was 2.3 months (95% CI: 1.3–3.6 mo) versus 4.1 months (95% CI: 2.7–5.5 mo) for wild-type (n = 19; p = 0.019). The median OS was 4.6 months (95% CI: 3.1–4.9 mo) for germline BAP1 mutation versus 9.6 months (95% CI: 5.5 mo–not estimable) in no germline mutation (p = 0.0040). Olaparib was safe with no new safety concerns. Conclusions Olaparib has limited activity in previously treated mesothelioma including patients with BAP1 mutations. Germline BAP1 mutations were associated with decreased PFS and OS.
Collapse
Affiliation(s)
- Azam Ghafoor
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Idrees Mian
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Cathy Wagner
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Yvonne Mallory
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Maria Garcia Agra
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Betsy Morrow
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jun S Wei
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Javed Khan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Anish Thomas
- Developmental Therapeutics Branch, Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Manjistha Sengupta
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Seth M Steinberg
- Biostatistics and Data Management Section, Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Raffit Hassan
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
28
|
Berkel C, Cacan E. Involvement of ATMIN-DYNLL1-MRN axis in the progression and aggressiveness of serous ovarian cancer. Biochem Biophys Res Commun 2021; 570:74-81. [PMID: 34273621 DOI: 10.1016/j.bbrc.2021.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/02/2021] [Indexed: 12/24/2022]
Abstract
The loss of DYNLL1 contributes to chemoresistance in ovarian cancer. DYNLL1 binds to MRE11, a component of MRN complex (MRE11-RAD50-NBS1), and limits its function in homologous recombination (HR) repair in BRCA1-mutant cells. Decreased activity of MRE11 results in less HR-repair events and thus leads to higher sensitivity against DNA-damaging agents such as cisplatin. Therefore, a better understanding of the cellular changes in DYNLL1-MRN axis in ovarian cancer is needed. Here, we showed that DYNLL1 overexpression leads to decreased chemoresistance even in BRCA-proficient ovarian cancer cells. ATMIN, a transcriptional activator of DYNLL1, showed decreased expression; however, two components of MRN complex, MRE11 and NBS1 (NBN), showed increased expression in high grade compared to low grade serous ovarian cancer. We found that the components of MRN complex (MRE11-RAD50-NBS1) have higher protein levels in sites of omental metastasis and serous tubal intraepithelial carcinoma (STIC) compared to surrounding non-malignant stromal cells in patients with high grade serous ovarian cancer. We showed that the percentage of copy number variation (CNV) events in genes encoding ATMIN, DYNLL1, MRE11 and NBN are the highest in ovarian cancer among other cancer types. ATMIN and DYNLL1 genes are mostly characterized by copy number losses; however, CNV events in MRN complex components are mostly copy number gains. This study highlights the importance of ATMIN-DYNLL1-MRN axis in the development, progression and therapy response of ovarian cancer. MRN levels in ovarian cancer that differ from adjacent, non-malignant tissues may represent actionable therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Caglar Berkel
- Department of Molecular Biology and Genetics, Tokat Gaziosmanpasa University, Tokat, 60250, Turkey.
| | - Ercan Cacan
- Department of Molecular Biology and Genetics, Tokat Gaziosmanpasa University, Tokat, 60250, Turkey.
| |
Collapse
|
29
|
Toh M, Ngeow J. Homologous Recombination Deficiency: Cancer Predispositions and Treatment Implications. Oncologist 2021; 26:e1526-e1537. [PMID: 34021944 PMCID: PMC8417864 DOI: 10.1002/onco.13829] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 12/03/2020] [Indexed: 12/19/2022] Open
Abstract
Homologous recombination (HR) is a highly accurate DNA repair mechanism. Several HR genes are established cancer susceptibility genes with clinically actionable pathogenic variants (PVs). Classically, BRCA1 and BRCA2 germline PVs are associated with significant breast and ovarian cancer risks. Patients with BRCA1 or BRCA2 PVs display worse clinical outcomes but respond better to platinum-based chemotherapies and poly-ADP ribose polymerase inhibitors, a trait termed "BRCAness." With the advent of whole-exome sequencing and multigene panels, PVs in other HR genes are increasingly identified among familial cancers. As such, several genes such as PALB2 are reclassified as cancer predisposition genes. But evidence for cancer risks remains unclear for many others. In this review, we will discuss cancer predispositions and treatment implications beyond BRCA1 and BRCA2, with a focus on 24 HR genes: 53BP1, ATM, ATR, ATRIP, BARD1, BLM, BRIP1, DMC1, MRE11A, NBN, PALB2, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RIF1, RMI1, RMI2, RPA1, TOP3A, TOPBP1, XRCC2, and XRCC3. IMPLICATIONS FOR PRACTICE: This review provides a comprehensive reference for readers to quickly identify potential cancer predisposing homologous recombination (HR) genes, and to generate research questions for genes with inconclusive evidence. This review also evaluates the "BRCAness" of each HR member. Clinicians can refer to these discussions to identify potential candidates for future clinical trials.
Collapse
Affiliation(s)
- MingRen Toh
- Duke–National University of Singapore Medical SchoolSingapore
| | - Joanne Ngeow
- Cancer Genetics Service, Division of Medical Oncology, National Cancer CenterSingapore
- Lee Kong Chian School of Medicine, Nanyang Technological UniversitySingapore
| |
Collapse
|
30
|
Valabrega G, Scotto G, Tuninetti V, Pani A, Scaglione F. Differences in PARP Inhibitors for the Treatment of Ovarian Cancer: Mechanisms of Action, Pharmacology, Safety, and Efficacy. Int J Mol Sci 2021; 22:ijms22084203. [PMID: 33921561 PMCID: PMC8073512 DOI: 10.3390/ijms22084203] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/19/2022] Open
Abstract
Poly(ADP-ribose) polymerases (PARP) are proteins responsible for DNA damage detection and signal transduction. PARP inhibitors (PARPi) are able to interact with the binding site for PARP cofactor (NAD+) and trapping PARP on the DNA. In this way, they inhibit single-strand DNA damage repair. These drugs have been approved in recent years for the treatment of ovarian cancer. Although they share some similarities, from the point of view of the chemical structure and pharmacodynamic, pharmacokinetic properties, these drugs also have some substantial differences. These differences may underlie the different safety profiles and activity of PARPi.
Collapse
Affiliation(s)
- Giorgio Valabrega
- Department of Oncology, School of Medicine, University of Torino, 10124 Torino, Italy; (G.S.); (V.T.)
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
- Correspondence: ; Tel.: +39-11-9933-3842
| | - Giulia Scotto
- Department of Oncology, School of Medicine, University of Torino, 10124 Torino, Italy; (G.S.); (V.T.)
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Valentina Tuninetti
- Department of Oncology, School of Medicine, University of Torino, 10124 Torino, Italy; (G.S.); (V.T.)
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Arianna Pani
- Department of Oncology and Hemato-Oncology, School of Medicine, University of Milan, 20122 Milan, Italy; (A.P.); (F.S.)
| | - Francesco Scaglione
- Department of Oncology and Hemato-Oncology, School of Medicine, University of Milan, 20122 Milan, Italy; (A.P.); (F.S.)
| |
Collapse
|
31
|
A novel transcript variant of human G-protein coupled estrogen receptor. Mol Biol Rep 2021; 48:2979-2983. [PMID: 33677756 DOI: 10.1007/s11033-021-06242-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/18/2021] [Indexed: 10/22/2022]
Abstract
The G-protein coupled estrogen receptor (GPER) mediates short-term non-genomic effects of estrogen in diverse cell types and tissues. According to the NCBI nucleotide database, three variants of GPER are known. They are NM_001505.2 (GPER-v2), NM_001039966.1 (GPER-v3), and NM_001098201.1 (GPER-v4). Investigations on GPER expression are key to understand its physiological and pathological roles. However, most studies on GPER mRNA expression have considered total GPER mRNA expression regardless of the individual variants. The present study is motivated by a novel transcript observed in the UCSC Genome Browser (uc010ksd.1), which is annotated as GPER. The novel variant is similar to the known transcript variants of GPER in terms of the protein-coding sequence and the 3'UTR. However, it has a unique 5'UTR, which distinguishes it from other GPER variants. Using primers specific for uc010ksd.1, we have performed RT-PCR to show that the novel GPER transcript (hereafter referred to as GPER-v5) is expressed in human cancer cell lines, such as MCF-7, SW-620, COLO-205, and HT-29. Preliminary evidences indicate that GPER-v5 is a novel GPER mRNA variant. The expression of GPER-v5 in primary cells and tissues should be investigated before probing into its role and relevance in physiological and pathological conditions.
Collapse
|
32
|
Jang A, Sartor O, Barata PC, Paller CJ. Therapeutic Potential of PARP Inhibitors in the Treatment of Metastatic Castration-Resistant Prostate Cancer. Cancers (Basel) 2020; 12:E3467. [PMID: 33233320 PMCID: PMC7700539 DOI: 10.3390/cancers12113467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 02/08/2023] Open
Abstract
Metastatic castration-resistant prostate cancer (mCRPC) is an incurable malignancy with a poor prognosis. Up to 30% of patients with mCRPC have mutations in homologous recombination repair (HRR) genes. Poly (ADP-ribose) polymerase (PARP) inhibitors take advantage of HRR deficiency to kill tumor cells based on the concept of synthetic lethality. Several PARP inhibitors (PARPis) have been successful in various malignancies with HRR gene mutations including BRCA1/2, especially in breast cancer and ovarian cancer. More recently, olaparib and rucaparib were approved for mCRPC refractory to novel hormonal therapies, and other PARPis will likely follow. This article highlights the mechanism of action of PARPis at the cellular level, the preclinical data regarding a proposed mechanism of action and the effectiveness of PARPis in cancer cell lines and animal models. The article expands on the clinical development of PARPis in mCRPC, discusses potential biomarkers that may predict successful tumor control, and summarizes present and future clinical research on PARPis in the metastatic disease landscape.
Collapse
Affiliation(s)
- Albert Jang
- Deming Department of Medicine, Hematology-Oncology Section, Tulane University School of Medicine, New Orleans, LA 70112, USA; (A.J.); (O.S.); (P.C.B.)
| | - Oliver Sartor
- Deming Department of Medicine, Hematology-Oncology Section, Tulane University School of Medicine, New Orleans, LA 70112, USA; (A.J.); (O.S.); (P.C.B.)
- Tulane Cancer Center, New Orleans, LA 70112, USA
| | - Pedro C. Barata
- Deming Department of Medicine, Hematology-Oncology Section, Tulane University School of Medicine, New Orleans, LA 70112, USA; (A.J.); (O.S.); (P.C.B.)
- Tulane Cancer Center, New Orleans, LA 70112, USA
| | - Channing J. Paller
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
33
|
Cunningham CE, MacAuley MJ, Vizeacoumar FS, Abuhussein O, Freywald A, Vizeacoumar FJ. The CINs of Polo-Like Kinase 1 in Cancer. Cancers (Basel) 2020; 12:cancers12102953. [PMID: 33066048 PMCID: PMC7599805 DOI: 10.3390/cancers12102953] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Many alterations specific to cancer cells have been investigated as targets for targeted therapies. Chromosomal instability is a characteristic of nearly all cancers that can limit response to targeted therapies by ensuring the tumor population is not genetically homogenous. Polo-like Kinase 1 (PLK1) is often up regulated in cancers and it regulates chromosomal instability extensively. PLK1 has been the subject of much pre-clinical and clinical studies, but thus far, PLK1 inhibitors have not shown significant improvement in cancer patients. We discuss the numerous roles and interactions of PLK1 in regulating chromosomal instability, and how these may provide an avenue for identifying targets for targeted therapies. As selective inhibitors of PLK1 showed limited clinical success, we also highlight how genetic interactions of PLK1 may be exploited to tackle these challenges. Abstract Polo-like kinase 1 (PLK1) is overexpressed near ubiquitously across all cancer types and dysregulation of this enzyme is closely tied to increased chromosomal instability and tumor heterogeneity. PLK1 is a mitotic kinase with a critical role in maintaining chromosomal integrity through its function in processes ranging from the mitotic checkpoint, centrosome biogenesis, bipolar spindle formation, chromosome segregation, DNA replication licensing, DNA damage repair, and cytokinesis. The relation between dysregulated PLK1 and chromosomal instability (CIN) makes it an attractive target for cancer therapy. However, clinical trials with PLK1 inhibitors as cancer drugs have generally displayed poor responses or adverse side-effects. This is in part because targeting CIN regulators, including PLK1, can elevate CIN to lethal levels in normal cells, affecting normal physiology. Nevertheless, aiming at related genetic interactions, such as synthetic dosage lethal (SDL) interactions of PLK1 instead of PLK1 itself, can help to avoid the detrimental side effects associated with increased levels of CIN. Since PLK1 overexpression contributes to tumor heterogeneity, targeting SDL interactions may also provide an effective strategy to suppressing this malignant phenotype in a personalized fashion.
Collapse
Affiliation(s)
- Chelsea E. Cunningham
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (M.J.M.); (F.S.V.)
- Correspondence: (C.E.C.); (A.F.); (F.J.V.); Tel.: +1-(306)-327-7864 (C.E.C.); +1-(306)-966-5248 (A.F.); +1-(306)-966-7010 (F.J.V.)
| | - Mackenzie J. MacAuley
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (M.J.M.); (F.S.V.)
| | - Frederick S. Vizeacoumar
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (M.J.M.); (F.S.V.)
| | - Omar Abuhussein
- College of Pharmacy, University of Saskatchewan, 104 Clinic Place, Saskatoon, SK S7N 2Z4, Canada;
| | - Andrew Freywald
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (M.J.M.); (F.S.V.)
- Correspondence: (C.E.C.); (A.F.); (F.J.V.); Tel.: +1-(306)-327-7864 (C.E.C.); +1-(306)-966-5248 (A.F.); +1-(306)-966-7010 (F.J.V.)
| | - Franco J. Vizeacoumar
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (M.J.M.); (F.S.V.)
- College of Pharmacy, University of Saskatchewan, 104 Clinic Place, Saskatoon, SK S7N 2Z4, Canada;
- Cancer Research, Saskatchewan Cancer Agency, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
- Correspondence: (C.E.C.); (A.F.); (F.J.V.); Tel.: +1-(306)-327-7864 (C.E.C.); +1-(306)-966-5248 (A.F.); +1-(306)-966-7010 (F.J.V.)
| |
Collapse
|
34
|
Rose M, Burgess JT, O’Byrne K, Richard DJ, Bolderson E. PARP Inhibitors: Clinical Relevance, Mechanisms of Action and Tumor Resistance. Front Cell Dev Biol 2020; 8:564601. [PMID: 33015058 PMCID: PMC7509090 DOI: 10.3389/fcell.2020.564601] [Citation(s) in RCA: 426] [Impact Index Per Article: 85.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022] Open
Abstract
The Poly (ADP-ribose) polymerase (PARP) family has many essential functions in cellular processes, including the regulation of transcription, apoptosis and the DNA damage response. PARP1 possesses Poly (ADP-ribose) activity and when activated by DNA damage, adds branched PAR chains to facilitate the recruitment of other repair proteins to promote the repair of DNA single-strand breaks. PARP inhibitors (PARPi) were the first approved cancer drugs that specifically targeted the DNA damage response in BRCA1/2 mutated breast and ovarian cancers. Since then, there has been significant advances in our understanding of the mechanisms behind sensitization of tumors to PARP inhibitors and expansion of the use of PARPi to treat several other cancer types. Here, we review the recent advances in the proposed mechanisms of action of PARPi, biomarkers of the tumor response to PARPi, clinical advances in PARPi therapy, including the potential of combination therapies and mechanisms of tumor resistance.
Collapse
Affiliation(s)
- Maddison Rose
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Joshua T. Burgess
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kenneth O’Byrne
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
- Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Derek J. Richard
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Emma Bolderson
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
35
|
Lee EK, Konstantinopoulos PA. PARP inhibition and immune modulation: scientific rationale and perspectives for the treatment of gynecologic cancers. Ther Adv Med Oncol 2020; 12:1758835920944116. [PMID: 32782491 PMCID: PMC7383615 DOI: 10.1177/1758835920944116] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022] Open
Abstract
Poly[adenosine diphosphate (ADP) ribose]polymerase (PARP) has multifaceted roles in the maintenance of genomic integrity, deoxyribonucleic acid (DNA) repair and replication, and the maintenance of immune-system homeostasis. PARP inhibitors are an attractive oncologic therapy, causing direct cancer cell cytotoxicity by propagating DNA damage and indirectly, by various mechanisms of immunostimulation, including activation of the cGAS/STING pathway, paracrine stimulation of dendritic cells, increased T-cell infiltration, and upregulation of death-ligand receptors to increase susceptibility to natural-killer-cell killing. However, these immunostimulatory effects are counterbalanced by PARPi-mediated upregulation of programmed cell-death-ligand 1 (PD-L1), which leads to immunosuppression. Combining PARP inhibition with immune-checkpoint blockade seeks to exploit the immune stimulatory effects of PARP inhibition while negating the immunosuppressive effects of PD-L1 upregulation.
Collapse
Affiliation(s)
- Elizabeth K Lee
- Department of Medical Oncology, Division of Gynecologic Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02115, USA
| | | |
Collapse
|
36
|
Expression of DNA repair genes in oral squamous cell carcinoma using reverse transcription-quantitative polymerase chain reaction. Oral Surg Oral Med Oral Pathol Oral Radiol 2020; 130:298-305. [PMID: 32682592 DOI: 10.1016/j.oooo.2020.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/14/2020] [Accepted: 06/01/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the expression of DNA repair genes in cases of oral squamous cell carcinoma (OSCC). STUDY DESIGN Expression of the MLH1, MSH2, MLH3, ATM, MRE11A, XRCC1, and PMS2 genes was evaluated by reverse transcription-quantitative polymerase chain reaction in the OSCC group (32 patients) and the control group (15 patients). The groups were compared by using the Mann-Whitney test, with Bonferroni correction. Associations between gene expression levels and clinical data were explored by using Pearson's and Spearman's correlation coefficients, with P value less than .05 indicating a significant difference. RESULTS The MLH1, MSH2, MLH3, ATM, MRE11A, XRCC1, and PMS2 genes were downregulated in the OSCC group compared with the control group, with significant values for MLH1 (P < .0001); MSH2 (P = .038); MLH3 (P < .0001); ATM (P < .0001); MRE11A (P < .0001); XRCC1 (P = .0004); and PMS2 (P = .008). Analysis of the correlation between gene expression and clinical data only revealed a significant negative correlation between age and expression of the PMS2 gene. CONCLUSIONS Expression of the DNA repair genes MLH1, MSH2, MLH3, ATM, MRE11 AMRE11A, XRCC1, and PMS2 was reduced in OSCC.
Collapse
|
37
|
Lin P, Chen M, Tsai L, Lo C, Yen T, Huang TY, Chen C, Fan S, Kuo S, Huang C. Using next-generation sequencing to redefine BRCAness in triple-negative breast cancer. Cancer Sci 2020; 111:1375-1384. [PMID: 31958182 PMCID: PMC7156820 DOI: 10.1111/cas.14313] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 12/06/2019] [Accepted: 01/08/2020] [Indexed: 12/15/2022] Open
Abstract
BRCAness is considered a predictive biomarker to platinum and poly(ADP-ribose) polymerase (PARP) inhibitors. However, recent trials showed that its predictive value was limited in triple-negative breast cancer (TNBC) treated with platinum. Moreover, tumors with mutations of DNA damage response (DDR) genes, such as homologous recombination (HR) genes, could be sensitive to platinum and PARP inhibitors. Thus, we aim to explore the relationship between mutation status of DDR genes and BRCAness in TNBC. We sequenced 56 DDR genes in 120 TNBC and identified BRCAness by array comparative genomic hybridization. The sequencing results showed that 13, 14, and 14 patients had BRCA, non-BRCA HR, and non-HR DDR gene mutations, respectively. Array comparative genomic hybridization revealed that BRCA-mutated and HR gene-mutated TNBC shared similar BRCAness features, both having higher numbers and longer length of large-scale structural aberration (LSA, >10 Mb) and similar altered chromosomal regions of LSA. These suggested non-BRCA HR gene-mutated TNBC shared similar characteristics with BRCA-mutated TNBC, indicating non-BRCA HR gene-mutated TNBC sensitive to platinum and PARP inhibitors. Among tumors with mutation of non-HR DDR genes, 3 PTEN and 1 MSH6 mutation also contained significant LSAs (BRCAness); however, they had different regions of genomic alteration to BRCA and HR gene-mutated tumors, might explain prior findings that PTEN- and MSH6-mutated cancer cells not sensitive to PARP inhibitors. Therefore, we hypothesize that the heterogeneous genomic background of BRCAness indicates different responsiveness to platinum and PARP inhibitors. Direct sequencing DDR genes in TNBC should be applied to predict their sensitivity toward platinum and PARP inhibitors.
Collapse
Affiliation(s)
- Po‐Han Lin
- Department of Medical GeneticsNational Taiwan University HospitalTaipeiTaiwan
- Institute of Medical Genomics and ProteomicsCollege of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Ming Chen
- Department of Medical GeneticsNational Taiwan University HospitalTaipeiTaiwan
- Department of Genomic Medicine and Center for Medical GeneticsChanghua Christian HospitalChanghuaTaiwan
| | - Li‐Wei Tsai
- Department of SurgeryNational Taiwan University HospitalTaipeiTaiwan
| | - Chiao Lo
- Department of SurgeryNational Taiwan University HospitalTaipeiTaiwan
| | - Tzu‐Chun Yen
- Department of Medical GeneticsNational Taiwan University HospitalTaipeiTaiwan
| | - Thomas Yoyan Huang
- Department of Medical GeneticsNational Taiwan University HospitalTaipeiTaiwan
| | - Chih‐Kai Chen
- Department of Medical GeneticsNational Taiwan University HospitalTaipeiTaiwan
| | - Sheng‐Chih Fan
- Department of Medical GeneticsNational Taiwan University HospitalTaipeiTaiwan
| | - Sung‐Hsin Kuo
- Department of Medical OncologyNational Taiwan University HospitalTaipeiTaiwan
| | - Chiun‐Sheng Huang
- Department of SurgeryNational Taiwan University HospitalTaipeiTaiwan
- Department of SurgeryCollege of MedicineNational Taiwan UniversityTaipeiTaiwan
| |
Collapse
|
38
|
Analysis of 108 patients with endometrial carcinoma using the PROMISE classification and additional genetic analyses for MMR-D. Gynecol Oncol 2020; 157:245-251. [PMID: 31980219 DOI: 10.1016/j.ygyno.2020.01.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/06/2020] [Accepted: 01/11/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To apply the Proactive Molecular Risk Classifier for Endometrial Cancer (ProMisE) to a consecutive series of endometrial cancer (EC) patients diagnosed at a tertiary referral center and assign EC specimens to one of four molecular subgroups using immunohistochemistry (IHC) for p53/mismatch repair protein expression and sequencing for Polymerase Epsilon Exonuclease Domain Mutations (POLE-EDM). Mismatch Repair Deficient (MMR-D) cases were more thoroughly investigated to identify underlying somatic or germline genetic defects. METHODS Hundred-and eight consecutive endometrial cancer patients, diagnosed between March 2017 and April 2019, were subjected to immunohistochemical and molecular analysis, according to ProMisE. IHC for p53 and the mismatch repair proteins (MLH1, PMS2, MSH6 and PMS2) was performed. All patients were also tested for POLE-EDM by Sanger sequencing. In addition, tumor and corresponding normal tissue of cases with abnormal MMR IHC were tested by PCR for microsatellite instability (MSI) (MSI analysis system, Promega). Hypermethylation of MLH1 promotor was tested with (methylation specific) multiplex ligation dependent probe amplification. MMR-D cases were subjected to germline mutation analysis of the mismatch repair genes, using next generation sequencing on MiSeq (Illumina) with the BRCA Hereditary Cancer MASTR Plus, (Multiplicom/Agilent), RNA mutation analysis and MLPA. RESULTS FIGO classification was stage IA (n = 54), IB (n = 22) II(n = 8), III(n = 18) and IV(n = 6). Of the 33 patients with MMR-D on IHC (31%), 26 showed MLH1 promotor hypermethylation as the probable cause of MMR-D. The remaining 7 patients without MLH1 promotor hypermethylation were referred for germline analysis of Lynch syndrome. Six patients carried a pathogenic germline mutation in one of the mismatch repair genes: MSH6(n = 3), PMS2(n = 1), MLH1(n = 1) and MSH2 (n = 1). Pathogenic POLE-EDM were identified in 7 (6%) patients. Multiple molecular features (POLE-EDM + MMR-D or POLE-EDM + p53 abnormal) were observed in 4 patients (4%). A high concordance between MMR-D and microsatellite instability was observed in our cohort. In cases of a genetic defect in the MMR genes, we do note a large proportion of cases exhibiting microsatellite instability. On the contrary a hypermutation state, as seen in POLE EDM, does not result in accompanied phenotypic changes in MSI status. CONCLUSION The ProMisE classification proved to be an efficient and easily implementable system. Future research should elucidate the precise biological and prognostic meaning of the cases with multiple molecular markers.
Collapse
|
39
|
Bian L, Meng Y, Zhang M, Li D. MRE11-RAD50-NBS1 complex alterations and DNA damage response: implications for cancer treatment. Mol Cancer 2019; 18:169. [PMID: 31767017 PMCID: PMC6878665 DOI: 10.1186/s12943-019-1100-5] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 11/08/2019] [Indexed: 01/26/2023] Open
Abstract
Genome instability is a hallmark of cancer cells and can be accelerated by defects in cellular responses to DNA damage. This feature of malignant cells opens new avenues for tumor targeted therapy. MRE11-RAD50-NBS1 complex plays a crucial role in sensing and repair of DNA damage. Through interacting with other important players of DNA damage response, MRE11-RAD50-NBS1 complex is engaged in various DNA damage repair pathways. Mutations in any member of this complex may lead to hypersensitivity to genotoxic agents and predisposition to malignancy. It is assumed that the defects in the complex may contribute to tumorigenesis and that treatments targeting the defect may be beneficial to cancer patients. Here, we summarized the recent research findings of the role of MRE11-RAD50-NBS1 complex in tumorigenesis, cancer treatment and discussed the potential approaches of targeting this complex to treat cancer.
Collapse
Affiliation(s)
- Lei Bian
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yiling Meng
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Meichao Zhang
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dong Li
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
40
|
Li J, Su T, Yang L, Zhang C, He Y. High expression of MRE11 correlates with poor prognosis in gastric carcinoma. Diagn Pathol 2019; 14:60. [PMID: 31221177 PMCID: PMC6587374 DOI: 10.1186/s13000-019-0844-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/14/2019] [Indexed: 01/08/2023] Open
Abstract
Background MRE11, a protein known to play a vital role in DNA double-strand break repair, is associated with the prognosis of a variety of tumours, but there are few studies regarding the role of MRE11 in gastric carcinoma (GC). The present study aimed to explore the clinicopathological significance and prognostic value of MRE11 expression in GC. Methods Data from the TCGA, GEO and Oncomine databases were analysed to assess MRE11 mRNA levels in GC. The prognostic role of the level of MRE11 mRNA was examined via the Kaplan-Meier plotter. MRE11 protein expression in tumour tissues from 155 GC patients was analysed by immunohistochemistry. Relationships between MRE11 expression and clinicopathological characteristics, overall survival (OS) and recurrence-free survival (RFS) were evaluated by Cox proportional hazards regression models and Kaplan-Meier survival curves. Results The results of bioinformatics analysis showed that MRE11 mRNA levels in GC tissues were higher than those in normal tissues (P < 0.01). Tissue microarray analysis showed that MRE11 protein expression was increased in GC tissues (P < 0.001), and MRE11 overexpression in GC tissues was significantly related to lymph node metastasis (P < 0.05), distant metastasis (P < 0.05) and tumour-node-metastasis stage (P < 0.05). Kaplan-Meier analyses showed that patients with GC who exhibited MRE11 overexpression had worse OS and RFS. According to Cox proportional hazards analyses, MRE11 overexpression was an independent prognostic factor for OS and RFS in these GC patients. Conclusions MRE11 overexpression is significantly associated with poor prognosis, and MRE11 may serve as a prognostic biomarker in GC patients.
Collapse
Affiliation(s)
- Junqing Li
- Digestive Disease Center,Seventh Affiliated Hospital, Sun Yat-sen University, 628 Zhenyuan Road, Shenzhen, 518000, China.,Department of Gastrointestinal Surgery, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Taiqiang Su
- Digestive Disease Center,Seventh Affiliated Hospital, Sun Yat-sen University, 628 Zhenyuan Road, Shenzhen, 518000, China.,Department of Gastrointestinal Surgery, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Liang Yang
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China.,General Surgical Laboratory, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Changhua Zhang
- Digestive Disease Center,Seventh Affiliated Hospital, Sun Yat-sen University, 628 Zhenyuan Road, Shenzhen, 518000, China
| | - Yulong He
- Digestive Disease Center,Seventh Affiliated Hospital, Sun Yat-sen University, 628 Zhenyuan Road, Shenzhen, 518000, China. .,Department of Gastrointestinal Surgery, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China.
| |
Collapse
|
41
|
Lima ZS, Ghadamzadeh M, Arashloo FT, Amjad G, Ebadi MR, Younesi L. Recent advances of therapeutic targets based on the molecular signature in breast cancer: genetic mutations and implications for current treatment paradigms. J Hematol Oncol 2019; 12:38. [PMID: 30975222 PMCID: PMC6460547 DOI: 10.1186/s13045-019-0725-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/27/2019] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most common malignancy in women all over the world. Genetic background of women contributes to her risk of having breast cancer. Certain inherited DNA mutations can dramatically increase the risk of developing certain cancers and are responsible for many of the cancers that run in some families. Regarding the widespread multigene panels, whole exome sequencing is capable of providing the evaluation of genetic function mutations for development novel strategy in clinical trials. Targeting the mutant proteins involved in breast cancer can be an effective therapeutic approach for developing novel drugs. This systematic review discusses gene mutations linked to breast cancer, focusing on signaling pathways that are being targeted with investigational therapeutic strategies, where clinical trials could be potentially initiated in the future are being highlighted.
Collapse
Affiliation(s)
- Zeinab Safarpour Lima
- Shahid Akbar Abadi Clinical Research Development Unit (ShCRDU), Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mostafa Ghadamzadeh
- Departement of Radiology, Hasheminejad Kidney Centre (HKC), Iran University of Medical Sciences, Tehran, Iran
| | | | - Ghazaleh Amjad
- Shahid Akbar Abadi Clinical Research Development Unit (ShCRDU), Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mohammad Reza Ebadi
- Shohadaye Haft-e-tir Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Ladan Younesi
- Shahid Akbar Abadi Clinical Research Development Unit (ShCRDU), Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
42
|
Choi JE, Chung WH. Synthetic lethal interaction between oxidative stress response and DNA damage repair in the budding yeast and its application to targeted anticancer therapy. J Microbiol 2018; 57:9-17. [DOI: 10.1007/s12275-019-8475-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/12/2018] [Accepted: 10/12/2018] [Indexed: 12/11/2022]
|
43
|
Synthetically Lethal BMN 673 (Talazoparib) Loaded Solid Lipid Nanoparticles for BRCA1 Mutant Triple Negative Breast Cancer. Pharm Res 2018; 35:218. [DOI: 10.1007/s11095-018-2502-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 09/15/2018] [Indexed: 11/24/2022]
|
44
|
Arend RC, Jones BA, Martinez A, Goodfellow P. Endometrial cancer: Molecular markers and management of advanced stage disease. Gynecol Oncol 2018; 150:569-580. [PMID: 29843906 DOI: 10.1016/j.ygyno.2018.05.015] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/20/2022]
Abstract
Endometrial cancer is the most prevalent gynecologic cancer in the United States. Over the last 10 years, death rates from endometrial cancer have been rising about 1.4% per year. Traditionally endometrial cancer treatment has been driven by stage and histology. Recent studies have, however, shown that cancers of the same stage and histology have very distinct molecular and genomic profiles. Translational research is progressing rapidly and endometrial cancer-specific precision medicine is evolving. The first tissue agnostic therapy based on the molecular profile of the tumor was approved by the FDA this year. The approval of immune checkpoint inhibitor, pembrolizumab (anti-PD-1), for all solid tumors with defective DNA mismatch repair, could benefit 20-30% of patients with advanced endometrial cancer. Other genomic changes and molecular markers in endometrial cancer, such as hormone receptor status, could lead to more tailored therapy in the future. Pre-clinical and clinical investigations of targeted therapies suggest efficacy for some agents. Single agent targeted therapies, however, have modest activity. Identifying biomarkers that effectively determine response to targeted therapy remains a challenge. The next generation of clinical trials will focus on novel combinations and how to best utilize the advances that have been made in sequencing technology and bioinformatics. Although there is currently an immense body of data and many options for obtaining genomic characteristics of endometrial cancer, how to interpret and utilize this data is still being explored. This review will summarize the important trials that have led to the treatment options we have for advanced and/or recurrent endometrial cancer and discuss the important studies that have led to a better understanding of the distinctive molecular and genomic profiles within endometrial cancer. We will review the current status of biomarker-driven targeted therapy in endometrial cancer and the rationale behind ongoing clinical trials that are utilizing novel targeted agents.
Collapse
Affiliation(s)
- Rebecca C Arend
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL, United States.
| | - Bayley A Jones
- University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Alba Martinez
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Paul Goodfellow
- Department of Obstetrics and Gynecology, The Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
45
|
McAndrew EN, Lepage CC, McManus KJ. The synthetic lethal killing of RAD54B-deficient colorectal cancer cells by PARP1 inhibition is enhanced with SOD1 inhibition. Oncotarget 2018; 7:87417-87430. [PMID: 27902462 PMCID: PMC5349998 DOI: 10.18632/oncotarget.13654] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 11/07/2016] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related death throughout the world. Despite improved screening efforts, most CRCs are diagnosed at late stages when surgery alone is not curative. Moreover, the low 5-year survival rate (~8-13%) for those living with stage IV CRC highlights the need for better treatment options. Many current chemotherapeutic approaches are non-specific and associated with side effects due to their tendency to target both normal and cancer cells. To address this issue, synthetic lethal (SL) approaches are now being explored in cancer and are defined as the lethal combination of two independently viable mutations/deletions. From a therapeutic perspective, SL interactors of genes mutated in cancer serve as candidate drug targets. The present study focuses on RAD54B, a gene that is aberrantly expressed in many cancer types, including CRC. We show that PARP1 silencing or inhibition (BMN673 or Olaparib) leads to selective killing within RAD54B-deficient cells relative to controls, and is accompanied by increases in γ-H2AX (a surrogate marker of DNA double strand breaks) and cleaved Caspase-3 (an apoptotic indicator). We further show that BMN673 synergizes with LCS-1 (an inhibitor of an established RAD54B SL interactor) to induce enhanced killing in RAD54B-deficient cells. Collectively, these data identify RAD54B and PARP1 as SL interactors, and thus reveal PARP1 as a novel candidate drug target in RAD54B-deficient CRCs. These findings further show that combinatorial chemotherapies involving multiple SL targets may promote synergistic killing within cancer cells, a strategy that may hold potential in many cancer contexts.
Collapse
Affiliation(s)
- Erin N McAndrew
- University of Manitoba, Department of Biochemistry & Medical Genetics, Winnipeg, Manitoba, Canada.,Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, Manitoba, Canada
| | - Chloe C Lepage
- University of Manitoba, Department of Biochemistry & Medical Genetics, Winnipeg, Manitoba, Canada.,Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, Manitoba, Canada
| | - Kirk J McManus
- University of Manitoba, Department of Biochemistry & Medical Genetics, Winnipeg, Manitoba, Canada.,Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
46
|
Wilkerson PM, Dedes KJ, Samartzis EP, Dedes I, Lambros MB, Natrajan R, Gauthier A, Piscuoglio S, Töpfer C, Vukovic V, Daley F, Weigelt B, Reis-Filho JS. Preclinical evaluation of the PARP inhibitor BMN-673 for the treatment of ovarian clear cell cancer. Oncotarget 2018; 8:6057-6066. [PMID: 28002809 PMCID: PMC5351612 DOI: 10.18632/oncotarget.14011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/10/2016] [Indexed: 12/18/2022] Open
Abstract
Purpose To determine if models of ovarian clear cell carcinomas (OCCCs) harbouring defects in homologous recombination (HR) DNA repair of double strand breaks (DSBs) are sensitive to cisplatin and/or PARP inhibition. Experimental Design The HR status of 12 OCCC cell lines was determined using RAD51/γH2AX foci formation assays. Sensitivity to cisplatin and the PARP inhibitor BMN-673 was correlated with HR status. BRCA1, BRCA2, MRE11 and PTEN loss of expression was investigated as a potential determinant of BMN-673 sensitivity. A tissue microarray containing 50 consecutive primary OCCC was assessed for PTEN expression using immunohistochemistry. Results A subset of OCCC cells displayed reduced RAD51 foci formation in the presence of DNA DSBs, suggestive of HR defects. HR-defective OCCC cells, with the exception of KOC-7c, had higher sensitivity to cisplatin/ BMN-673 than HR-competent OCCC cell lines (Log10 SF50 –9.4 (SD +/− 0.29) vs –8.1 (SD +/− 0.35), mean difference 1.3, p < 0.01). Of the cell lines studied, two, TOV-21G and KOC-7c, showed loss of PTEN expression. In primary OCCCs, loss of PTEN expression was observed in 10% (5/49) of cases. Conclusions A subset of OCCC cells are sensitive to PARP inhibition in vitro, which can be predicted by HR defects as defined by γH2AX/RAD51 foci formation. These results provide a rationale for the testing of HR deficiency and PARP inhibitors as a targeted therapy in a subset of OCCCs.
Collapse
Affiliation(s)
- Paul M Wilkerson
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, SW3 6JB, UK
| | - Konstantin J Dedes
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, SW3 6JB, UK.,Department of Gynaecology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | | | - Ioannis Dedes
- Department of Gynaecology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Maryou B Lambros
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, SW3 6JB, UK
| | - Rachael Natrajan
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, SW3 6JB, UK
| | - Arnaud Gauthier
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, SW3 6JB, UK
| | - Salvatore Piscuoglio
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chantal Töpfer
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, SW3 6JB, UK
| | - Vesna Vukovic
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, SW3 6JB, UK
| | - Frances Daley
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, SW3 6JB, UK
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jorge S Reis-Filho
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, SW3 6JB, UK.,Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
47
|
Makker V, Green AK, Wenham RM, Mutch D, Davidson B, Miller DS. New therapies for advanced, recurrent, and metastatic endometrial cancers. GYNECOLOGIC ONCOLOGY RESEARCH AND PRACTICE 2017; 4:19. [PMID: 29214032 PMCID: PMC5712183 DOI: 10.1186/s40661-017-0056-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/13/2017] [Indexed: 12/21/2022]
Abstract
Endometrial cancer is the most common gynecologic malignancy in the United States, accounting for 6% of cancers in women. In 2017, an estimated 61,380 women were diagnosed with endometrial cancer, and approximately 11,000 died from this disease. From 1987 to 2008, there was a 50% increase in the incidence of endometrial cancer, with an approximate 300% increase in the number of associated deaths. Although there are many chemotherapeutic and targeted therapy agents approved for ovarian, fallopian tube and primary peritoneal cancers, since the 1971 approval of megestrol acetate for the palliative treatment of advanced endometrial cancer, only pembrolizumab has been Food and Drug Administration (FDA)-approved for high microsatellite instability (MSI-H) or mismatch repair deficient (dMMR) endometrial cancer; this highlights the need for new therapies to treat advanced, recurrent, metastatic endometrial cancer. In this review, we discuss current and emerging treatment options for endometrial cancer, including chemotherapy, targeted therapy, and immunotherapy. The National Cancer Institute (NCI) and others are now focusing their efforts on the design of scientifically rational targeted therapy and immunotherapy trials for specific molecular phenotypes of endometrial cancer. This is essential for the advancement of cancer care for women, which is threatened by a severe enrollment decline of approximately 80% for gynecologic oncology clinical trials.
Collapse
Affiliation(s)
- Vicky Makker
- Gynecologic Medical Oncology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, 1275 York Avenue, New York, TX 10065 USA
| | - Angela K Green
- Gynecologic Medical Oncology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, 1275 York Avenue, New York, TX 10065 USA
| | - Robert M Wenham
- Department of Gynecologic Oncology, H. Lee Moffitt Cancer Center, Tampa, FL USA
| | - David Mutch
- Division of Gynecologic Oncology, Washington University School of Medicine, St Louis, MO USA
| | - Brittany Davidson
- Division of Gynecologic Oncology, Duke University Medical Center, Duke Cancer Institute, Durham, NC USA
| | - David Scott Miller
- Division of Gynecologic Oncology, University of Texas Southwestern Medical Center, Dallas, USA
| |
Collapse
|
48
|
Anomalies de la réparation de l’ADN et cancers gynécologiques. Bull Cancer 2017; 104:971-980. [DOI: 10.1016/j.bulcan.2017.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/21/2017] [Indexed: 11/17/2022]
|
49
|
Thompson LL, Jeusset LMP, Lepage CC, McManus KJ. Evolving Therapeutic Strategies to Exploit Chromosome Instability in Cancer. Cancers (Basel) 2017; 9:cancers9110151. [PMID: 29104272 PMCID: PMC5704169 DOI: 10.3390/cancers9110151] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 12/12/2022] Open
Abstract
Cancer is a devastating disease that claims over 8 million lives each year. Understanding the molecular etiology of the disease is critical to identify and develop new therapeutic strategies and targets. Chromosome instability (CIN) is an abnormal phenotype, characterized by progressive numerical and/or structural chromosomal changes, which is observed in virtually all cancer types. CIN generates intratumoral heterogeneity, drives cancer development, and promotes metastatic progression, and thus, it is associated with highly aggressive, drug-resistant tumors and poor patient prognosis. As CIN is observed in both primary and metastatic lesions, innovative strategies that exploit CIN may offer therapeutic benefits and better outcomes for cancer patients. Unfortunately, exploiting CIN remains a significant challenge, as the aberrant mechanisms driving CIN and their causative roles in cancer have yet to be fully elucidated. The development and utilization of CIN-exploiting therapies is further complicated by the associated risks for off-target effects and secondary cancers. Accordingly, this review will assess the strengths and limitations of current CIN-exploiting therapies, and discuss emerging strategies designed to overcome these challenges to improve outcomes and survival for patients diagnosed with cancer.
Collapse
Affiliation(s)
- Laura L Thompson
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada.
| | - Lucile M-P Jeusset
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada.
| | - Chloe C Lepage
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada.
| | - Kirk J McManus
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada.
| |
Collapse
|
50
|
Olaparib modulates DNA repair efficiency, sensitizes cervical cancer cells to cisplatin and exhibits anti-metastatic property. Sci Rep 2017; 7:12876. [PMID: 28993682 PMCID: PMC5634505 DOI: 10.1038/s41598-017-13232-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/20/2017] [Indexed: 11/08/2022] Open
Abstract
PARP1 trapping at DNA lesion by pharmacological inhibitors has been exploited in several cancers exhibiting defects in DNA repair mechanisms. PARP1 hyperactivation is involved in therapeutic resistance in multiple cancers. The role of PARP1 in cervical cancer (CC) resistance and implication of PARP inhibitor is yet to be elucidated. Our data demonstrates significantly higher expression of PARP1 in primary cervical tumors and CC cell lines SiHa and ME180. Upon cisplatin treatment CC cells display significant overexpression of PARP1 and its hyperactivation. PARP inhibitor olaparib shows significant anti-proliferative effect on CC cells and drive loss of clonogenic survival and enhanced cell death in combination with cisplatin. PARP inhibited cells show delay in resolution of γH2A.X foci and prolonged late S and G2-M phase arrest resulting in apoptosis. Further, PARP inhibition disrupts the localization of base excision repair (BER) effector XRCC1 and non-homologous end joining (NHEJ) proteins Ku80 and XRCC4. Due to disrupted relocation of repair factors, cisplatin induced stalled replication forks collapse and convert into double strand breaks (DSBs). Interestingly, PARP inhibition also shows anti-migratory and anti-invasive properties in CC cells, increases anchorage independent cell death and induces anoikis. Collectively, our data demonstrates therapeutic potential of PARP inhibitor in cervical cancer.
Collapse
|