1
|
Ma L, Xing L, Li Z, Jiang D. Epigenetic control of plant abiotic stress responses. J Genet Genomics 2025; 52:129-144. [PMID: 39322116 DOI: 10.1016/j.jgg.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
On top of genetic information, organisms have evolved complex and sophisticated epigenetic regulation to adjust gene expression in response to developmental and environmental signals. Key epigenetic mechanisms include DNA methylation, histone modifications and variants, chromatin remodeling, and chemical modifications of RNAs. Epigenetic control of environmental responses is particularly important for plants, which are sessile and unable to move away from adverse environments. Besides enabling plants to rapidly respond to environmental stresses, some stress-induced epigenetic changes can be maintained, providing plants with a pre-adapted state to recurring stresses. Understanding these epigenetic mechanisms offers valuable insights for developing crop varieties with enhanced stress tolerance. Here, we focus on abiotic stresses and summarize recent progress in characterizing stress-induced epigenetic changes and their regulatory mechanisms and roles in plant abiotic stress resistance.
Collapse
Affiliation(s)
- Lijun Ma
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Ministry of Education Key Laboratory of Plant Development and Environmental Adaption Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Lihe Xing
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zicong Li
- Ministry of Education Key Laboratory of Plant Development and Environmental Adaption Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Danhua Jiang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Republic of Singapore.
| |
Collapse
|
2
|
Li J, Liu H, Qian H, Lu S, Wu Y, Hua J, Zou B. Chromatin accessibility mediated by CHROMATIN REMODELING 11 promotes chilling tolerance in rice. PLANT PHYSIOLOGY 2024; 197:kiaf018. [PMID: 39797915 DOI: 10.1093/plphys/kiaf018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/22/2024] [Accepted: 12/10/2024] [Indexed: 01/13/2025]
Abstract
Chromatin remodeling plays a crucial role in controlling gene transcription by modifying chromatin structure. However, the involvement of chromatin remodeling in plant stress responses, especially cold tolerance, through chromatin accessibility remains largely unexplored. Here, we report that rice (Oryza sativa L.) CHROMATIN REMODELING 11 (OsCHR11) positively regulates chilling tolerance by enhancing chromatin accessibility and facilitating changes in gene expression. Loss-of-function mutants of OsCHR11 exhibited increased susceptibility to chilling stress compared to wild-type rice plants. Transcriptome analysis revealed that the chr11 mutant displays diminished transcriptomic responses to chilling. Additionally, assay for transposase-accessible chromatin indicated that chilling treatment increases chromatin accessibility in the promoter regions, and this process depended on OsCHR11 function. Chromatin immunoprecipitation sequencing showed that OsCHR11 is physically associated with the promoters of cold-responsive genes. Integrated multiomics analysis further demonstrated a correlation between OsCHR11 enrichment and chromatin accessibility, as well as a correlation between chromatin accessibility and gene expression. Furthermore, OsCHR11 is required for the full expression of key cold-response genes, including those involved in trehalose biosynthesis. The exogenous application of trehalose partially rescued the chilling-susceptible phenotype of the chr11 mutant, suggesting that trehalose biosynthesis contributes to the chilling tolerance promoted by OsCHR11. Collectively, these findings indicate that OsCHR11 enhances cold tolerance in plants, likely by increasing chromatin accessibility and elevating the expression levels of cold-response genes in response to chilling.
Collapse
Affiliation(s)
- Jing Li
- The State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - He Liu
- School of Life Sciences/Zhejiang Provincial Key Laboratory of Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Hanying Qian
- The State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Shan Lu
- The State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Yufeng Wu
- The State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian Hua
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Baohong Zou
- The State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Cao X, Zhang M, Xiao X, Yin F, Yao Y, Sui M, Hu Y, Xiang Y, Wang L. Regulation of reactive oxygen molecules in pakchoi by histone acetylation modifications under Cd stress. PLoS One 2024; 19:e0314043. [PMID: 39565822 PMCID: PMC11578466 DOI: 10.1371/journal.pone.0314043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024] Open
Abstract
Reactive oxygen species (ROS) are essential modulators of epigenetic modifications under abiotic stress. However, the mutual regulation mechanism of the two under cadmium (Cd) stress is unclear. In this work, we investigated this issue using Cd-stressed pakchoi seedlings treated with six epi-modification inhibitors (5-AC, RG108, TSA, CUDC101, AT13148, and H89) as experimental materials. The experimental data showed that Cd stress caused ROS accumulation and chromatin decondensation. Addition of low concentrations of epi-modification inhibitors increased histone acetylation modification levels, and effectively attenuated cell cycle arrest and DNA damage caused by Cd-induced ROS accumulation, where histone acetylation modification levels were co-regulated by histone acetyltransferase and deacetyltransferase gene transcription. Moreover, the addition of the antioxidant Thi enhanced this mitigating effect. Also, TSA addition at high concentrations could also increase Cd-induced ROS accumulation. Based on this, we propose that the ROS molecular pathway may be related to epigenetic regulation, and chromatin modification may affect ROS accumulation by regulating gene expression, providing a new perspective for studying the regulatory mechanism of epigenetic modification under abiotic stress.
Collapse
Affiliation(s)
- Xiaoqun Cao
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, P. R. China
| | - Ming Zhang
- Department of Animal Science, Jiangxi Biotech Vocational College, Nanchang, Jiangxi, P. R. China
| | - Xufeng Xiao
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, P. R. China
| | - Fengrui Yin
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, P. R. China
| | - Yuekeng Yao
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, P. R. China
| | - Meilan Sui
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, P. R. China
| | - Yifan Hu
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, P. R. China
| | - Yan Xiang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, P. R. China
| | - Liangdeng Wang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, P. R. China
| |
Collapse
|
4
|
Herrera-Isidron L, Uribe-Lopez B, Barraza A, Cabrera-Ponce JL, Valencia-Lozano E. Analysis of Stress Response Genes in Microtuberization of Potato Solanum tuberosum L.: Contributions to Osmotic and Combined Abiotic Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2024; 13:2996. [PMID: 39519915 PMCID: PMC11548447 DOI: 10.3390/plants13212996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Wild Solanum species have contributed many introgressed genes during domestication into current cultivated potatoes, enhancing their biotic and abiotic stress resistance and facilitating global expansion. Abiotic stress negatively impacts potato physiology and productivity. Understanding the molecular mechanisms regulating tuber development may help solve this global problem. We made a transcriptomic analysis of potato microtuberization under darkness, cytokinins, and osmotic stress conditions. A protein-protein interaction (PPI) network analysis identified 404 genes with high confidence. These genes were involved in important processes like oxidative stress, carbon metabolism, sterol biosynthesis, starch and sucrose metabolism, fatty acid biosynthesis, and nucleosome assembly. From this network, we selected nine ancestral genes along with eight additional stress-related genes. We used qPCR to analyze the expression of the selected genes under osmotic, heat-osmotic, cold-osmotic, salt-osmotic, and combined-stress conditions. The principal component analysis (PCA) revealed that 60.61% of the genes analyzed were associated with osmotic, cold-osmotic, and heat-osmotic stress. Seven out of ten introgression/domestication genes showed the highest variance in the analysis. The genes H3.2 and GAPCP1 were involved in osmotic, cold-osmotic, and heat-osmotic stress. Under combined-all stress, TPI and RPL4 were significant, while in salt-osmotic stress conditions, ENO1, HSP70-8, and PER were significant. This indicates the importance of ancestral genes for potato survival during evolution. The targeted manipulation of these genes could improve combined-stress tolerance in potatoes, providing a genetic basis for enhancing crop resilience.
Collapse
Affiliation(s)
- Lisset Herrera-Isidron
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato (UPIIG), Instituto Politécnico Nacional, Av. Mineral de Valenciana 200, Puerto Interior, Silao de la Victoria 36275, Guanajuato, Mexico; (L.H.-I.); (B.U.-L.)
| | - Braulio Uribe-Lopez
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato (UPIIG), Instituto Politécnico Nacional, Av. Mineral de Valenciana 200, Puerto Interior, Silao de la Victoria 36275, Guanajuato, Mexico; (L.H.-I.); (B.U.-L.)
| | - Aaron Barraza
- CONAHCYT-Centro de Investigaciones Biológicas del Noreste, SC. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, Baja California Sur, Mexico;
| | - José Luis Cabrera-Ponce
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato 36824, Guanajuato, Mexico
| | - Eliana Valencia-Lozano
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato 36824, Guanajuato, Mexico
| |
Collapse
|
5
|
Białoskórska M, Rucińska A, Boczkowska M. Molecular Mechanisms Underlying Freezing Tolerance in Plants: Implications for Cryopreservation. Int J Mol Sci 2024; 25:10110. [PMID: 39337593 PMCID: PMC11432106 DOI: 10.3390/ijms251810110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Cryopreservation is a crucial technique for the long-term ex situ conservation of plant genetic resources, particularly in the context of global biodiversity decline. This process entails freezing biological material at ultra-low temperatures using liquid nitrogen, which effectively halts metabolic activities and preserves plant tissues over extended periods. Over the past seven decades, a plethora of techniques for cryopreserving plant materials have been developed. These include slow freezing, vitrification, encapsulation dehydration, encapsulation-vitrification, droplet vitrification, cryo-plates, and cryo-mesh techniques. A key challenge in the advancement of cryopreservation lies in our ability to understand the molecular processes underlying plant freezing tolerance. These mechanisms include cold acclimatization, the activation of cold-responsive genes through pathways such as the ICE-CBF-COR cascade, and the protective roles of transcription factors, non-coding RNAs, and epigenetic modifications. Furthermore, specialized proteins, such as antifreeze proteins (AFPs) and late embryogenesis abundant (LEA) proteins, play crucial roles in protecting plant cells during freezing and thawing. Despite its potential, cryopreservation faces significant challenges, particularly in standardizing protocols for a wide range of plant species, especially those from tropical and subtropical regions. This review highlights the importance of ongoing research and the integration of omics technologies to improve cryopreservation techniques, ensuring their effectiveness across diverse plant species and contributing to global efforts regarding biodiversity conservation.
Collapse
Affiliation(s)
- Magdalena Białoskórska
- Plant Breeding and Acclimatization Institute-National Research Institute in Radzików, 05-870 Błonie, Poland
| | - Anna Rucińska
- Plant Breeding and Acclimatization Institute-National Research Institute in Radzików, 05-870 Błonie, Poland
- Botanical Garden, Center for Biological Diversity Conservation in Powsin, Polish Academy of Science, Prawdziwka 2, 02-976 Warszawa, Poland
| | - Maja Boczkowska
- Plant Breeding and Acclimatization Institute-National Research Institute in Radzików, 05-870 Błonie, Poland
| |
Collapse
|
6
|
Plskova Z, Van Breusegem F, Kerchev P. Redox regulation of chromatin remodelling in plants. PLANT, CELL & ENVIRONMENT 2024; 47:2780-2792. [PMID: 38311877 DOI: 10.1111/pce.14843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/23/2023] [Accepted: 01/22/2024] [Indexed: 02/06/2024]
Abstract
Changes in the cellular redox balance that occur during plant responses to unfavourable environmental conditions significantly affect a myriad of redox-sensitive processes, including those that impact on the epigenetic state of the chromatin. Various epigenetic factors, like histone modifying enzymes, chromatin remodelers, and DNA methyltransferases can be targeted by oxidative posttranslational modifications. As their combined action affects the epigenetic regulation of gene expression, they form an integral part of plant responses to (a)biotic stress. Epigenetic changes triggered by unfavourable environmental conditions are intrinsically linked with primary metabolism that supplies intermediates and donors, such acetyl-CoA and S-adenosyl-methionine, that are critical for the epigenetic decoration of histones and DNA. Here, we review the recent advances in our understanding of redox regulation of chromatin remodelling, dynamics of epigenetic marks, and the interplay between epigenetic control of gene expression, redox signalling and primary metabolism within an (a)biotic stress context.
Collapse
Affiliation(s)
- Zuzana Plskova
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
- VIB Center of Plant Systems Biology, Ghent, Belgium
| | - Frank Van Breusegem
- VIB Center of Plant Systems Biology, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, UGent, Ghent, Belgium
| | - Pavel Kerchev
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| |
Collapse
|
7
|
Wang F, Li CH, Liu Y, He LF, Li P, Guo JX, Zhang N, Zhao B, Guo YD. Plant responses to abiotic stress regulated by histone acetylation. FRONTIERS IN PLANT SCIENCE 2024; 15:1404977. [PMID: 39081527 PMCID: PMC11286584 DOI: 10.3389/fpls.2024.1404977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024]
Abstract
In eukaryotes, histone acetylation and deacetylation play an important role in the regulation of gene expression. Histone acetylation levels are reversibly regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs). Increasing evidence highlights histone acetylation plays essential roles in the regulation of gene expression in plant response to environmental stress. In this review, we discussed the recent advance of histone acetylation in the regulation of abiotic stress responses including temperature, light, salt and drought stress. This information will contribute to our understanding of how plants adapt to environmental changes. As the mechanisms of epigenetic regulation are conserved in many plants, research in this field has potential applications in improvement of agricultural productivity.
Collapse
Affiliation(s)
- Fei Wang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Chong-Hua Li
- College of Horticulture, China Agricultural University, Beijing, China
| | - Ying Liu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Ling-Feng He
- College of Horticulture, China Agricultural University, Beijing, China
| | - Ping Li
- College of Horticulture, China Agricultural University, Beijing, China
| | - Jun-Xin Guo
- College of Horticulture, China Agricultural University, Beijing, China
| | - Na Zhang
- College of Horticulture, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| | - Bing Zhao
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yang-Dong Guo
- College of Horticulture, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| |
Collapse
|
8
|
Cai J, Hu F, Yang M, Wu R, Liu X. Genome-wide identification of HDAC members and function analysis of PnHDT1/2 in salt stress response in Phyla nodiflora (L.) Greene. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108442. [PMID: 38382345 DOI: 10.1016/j.plaphy.2024.108442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/28/2024] [Accepted: 02/15/2024] [Indexed: 02/23/2024]
Abstract
Reversible histone acetylation and deacetylation play an essential role in regulating chromatin structure and gene expression. Histone deacetylases (HDACs) catalyze the removal of acetyl groups from lysine residues of core histones, resulting in closed chromatin structure and transcription repression. Although the HDCAs have been extensively studied in model plants, the HDAC members have not been identified in Phyla nodiflora (L.) Greene (P. nodiflora), a salt-tolerant plant species. Here, 17 PnHDAC genes were identified in the genome of P. nodiflora. Phylogenetic analysis displayed that the PnHDACs were classified into three groups, the RPD3/HDA1-group (11 members), the SIR2-group (2 members) and the plant-specific HD2-group (4 members). Transcription analysis displayed that the gene expression patterns of PnHDACs were affected by salt stress in P. nodiflora seedlings. PnHDT1 and PnHDT2, two HD2-type HDAC proteins were found to be subcellular localized in the nucleolus. Furthermore, overexpressing PnHDT1 and PnHDT2 in Arabidopsis decreased the sensitivity to plant hormone abscisic acid whereas reduced the tolerance to salt stress during seed germination and seedling stages. Overall, our work identified the PnHDAC gene family for the first time in P. nodiflora and revealed an involvement of PnHDT1 and PnHDT2 in salt stress tolerance, which may contribute to uncover the mechanism of P. nodiflora in adaption to salt environments.
Collapse
Affiliation(s)
- Jiajia Cai
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Feng Hu
- Department of Landscape and Tourism Planning and Design, Guangzhou Urban Planning and Design Survey Research Institute, Guangzhou, 510650, China
| | - Min Yang
- Department of Landscape and Tourism Planning and Design, Guangzhou Urban Planning and Design Survey Research Institute, Guangzhou, 510650, China
| | - Ronghua Wu
- Department of Landscape and Tourism Planning and Design, Guangzhou Urban Planning and Design Survey Research Institute, Guangzhou, 510650, China
| | - Xuncheng Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
9
|
Wang Y, Wang J, Sarwar R, Zhang W, Geng R, Zhu KM, Tan XL. Research progress on the physiological response and molecular mechanism of cold response in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1334913. [PMID: 38352650 PMCID: PMC10861734 DOI: 10.3389/fpls.2024.1334913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024]
Abstract
Low temperature is a critical environmental stress factor that restricts crop growth and geographical distribution, significantly impacting crop quality and yield. When plants are exposed to low temperatures, a series of changes occur in their external morphology and internal physiological and biochemical metabolism. This article comprehensively reviews the alterations and regulatory mechanisms of physiological and biochemical indices, such as membrane system stability, redox system, fatty acid content, photosynthesis, and osmoregulatory substances, in response to low-temperature stress in plants. Furthermore, we summarize recent research on signal transduction and regulatory pathways, phytohormones, epigenetic modifications, and other molecular mechanisms mediating the response to low temperatures in higher plants. In addition, we outline cultivation practices to improve plant cold resistance and highlight the cold-related genes used in molecular breeding. Last, we discuss future research directions, potential application prospects of plant cold resistance breeding, and recent significant breakthroughs in the research and application of cold resistance mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiao-Li Tan
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
10
|
Ao C, Tang S, Yang Y, Liu Y, Zhao H, Ban J, Li J. Identification of histone acetylation modification sites in the striatum of subchronically manganese-exposed rats. Epigenomics 2024; 16:5-21. [PMID: 38174439 DOI: 10.2217/epi-2023-0364] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
Aim: To explore the specific histone acetylation sites and oxidative stress-related genes that are associated with the pathogenesis of manganese toxicity. Methods: We employed liquid chromatography-tandem mass spectrometry and bioinformatics analysis to identify acetylated proteins in the striatum of subchronic manganese-intoxicated rats. Results: We identified a total of 12 differentially modified histone acetylation sites: H3K9ac, H3K14ac, H3K18ac, H3K56ac and H3K79ac were upregulated and H3K27ac, H3K36ac, H4K91ac, H4K79ac, H4K31ac, H2BK16ac and H2BK20ac were downregulated. Additionally, we found that CAT, SOD1 and SOD2 might be epigenetically regulated and involved in the pathogenesis of manganism. Conclusion: This study identified histone acetylation sites and oxidative stress-related genes associated with the pathogenesis of manganese toxicity, and these findings are useful in the search for potential epigenetic targets for manganese toxicity.
Collapse
Affiliation(s)
- Chunyan Ao
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring & Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Shunfang Tang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring & Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Yue Yang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring & Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Ying Liu
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring & Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Hua Zhao
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring & Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Jiaqi Ban
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring & Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Jun Li
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring & Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| |
Collapse
|
11
|
Song S, Wang Y, Wang J, Liu Y, Zhang X, Yang A, Li F. Low H3K27me3 deposition at CYP82E4 determines the nicotinic conversion rate in Nicotiana tabacum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108234. [PMID: 38056040 DOI: 10.1016/j.plaphy.2023.108234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/22/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023]
Abstract
Nicotine conversion is the process by which nornicotine is synthesized from nicotine. The capacity of a plant to carry out this process is represented by the nicotine conversion rate (NCR), which is defined as the percentage of nornicotine content out of the total nicotine + nornicotine content. Nicotine conversion in tobacco is mediated by CYP82E4. Although there are cultivar-specific differences in NCR, these do not correspond to differences in the CYP82E4 promoter or gene body sequences, and little is known about the underlying regulatory mechanism. Here, we found that histone H3 Lysine 27 trimethylation (H3K27me3) was involved in CYP82E4 expression, functioning as a transcriptional repressor. Compared to a high-NCR near-isogenic line, a low-NCR cultivar showed increased levels of the repressive histone modification markers H3K27me3 and H3K9me3 at CYP82E4. Comparison of histone markers between several cultivars with varying NCRs showed that H3K27me3 and H3K9me3 levels were significantly associated with cultivar-specific differences in NCR. Treatment with the H3K27me3 demethylase inhibitor GSK-J4 increased total H3K27me3 levels and enriched H3K27me3 at the CYP82E4 locus; the increased levels of H3K27me3 further inhibited CYP82E4 expression. Knocking out E(z), an indispensable gene for H3K27me3 formation, decreased H3K27me3 levels at CYP82E4, leading to a more than three-fold increase in CYP82E4 expression. Changes in CYP82E4 expression during leaf senescence and chilling stress were also strongly correlated with H3K27me3 levels. These findings reveal a strong correlation between CYP82E4 expression and histone modifications, and demonstrate an instance of histone-mediated alkaloid regulation for the first time.
Collapse
Affiliation(s)
- Shiyang Song
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; Graduate School of Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Yaqi Wang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; Graduate School of Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Jin Wang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; Graduate School of Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Yanfang Liu
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; Graduate School of Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Xingzi Zhang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; Graduate School of Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Aiguo Yang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| | - Fengxia Li
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| |
Collapse
|
12
|
Ivanova T, Dincheva I, Badjakov I, Iantcheva A. Transcriptional and Metabolic Profiling of Arabidopsis thaliana Transgenic Plants Expressing Histone Acetyltransferase HAC1 upon the Application of Abiotic Stress-Salt and Low Temperature. Metabolites 2023; 13:994. [PMID: 37755274 PMCID: PMC10536276 DOI: 10.3390/metabo13090994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023] Open
Abstract
Augmented knowledge of plant responses upon application of stress could help improve our understanding of plant tolerance under abiotic stress conditions. Histone acetylation plays an important role in gene expression regulation during plant growth and development and in the response of plants to abiotic stress. The current study examines the level of transcripts and free metabolite content in transgenic Arabidopsis thaliana plants expressing a gene encoding histone acetyltransferase from Medicago truncatula (MtHAC1) after its heterologous expression. Stable transgenic plants with HAC1 gain and loss of function were constructed, and their T5 generation was used. Transgenic lines with HAC1-modified expression showed a deviation in root growth dynamics and leaf area compared to the wild-type control. Transcriptional profiles were evaluated after the application of salinity stress caused by 150 mM NaCl at four different time points (0, 24, 48, and 72 h) in treated and non-treated transgenic and control plants. The content and quantity of free metabolites-amino acids, mono- and dicarbohydrates, organic acids, and fatty acids-were assessed at time points 0 h and 72 h in treated and non-treated transgenic and control plants. The obtained transcript profiles of HAC1 in transgenic plants with modified expression and control were assessed after application of cold stress (low temperature, 4 °C).
Collapse
Affiliation(s)
| | | | | | - Anelia Iantcheva
- AgroBioInstitute, Agricultural Academy, Blvd. Dragan Tzankov 8, 1164 Sofia, Bulgaria; (T.I.); (I.D.); (I.B.)
| |
Collapse
|
13
|
Liu K, Chen J, Sun S, Chen X, Zhao X, Hu Y, Qi G, Li X, Xu B, Miao J, Xue C, Zhou Y, Gong Z. Histone deacetylase OsHDA706 increases salt tolerance via H4K5/K8 deacetylation of OsPP2C49 in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36807738 DOI: 10.1111/jipb.13470] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
High salt is a major environmental factor that threatens plant growth and development. Increasing evidence indicates that histone acetylation is involved in plant responses to various abiotic stress; however, the underlying epigenetic regulatory mechanisms remain poorly understood. In this study, we revealed that the histone deacetylase OsHDA706 epigenetically regulates the expression of salt stress response genes in rice (Oryza sativa L.). OsHDA706 localizes to the nucleus and cytoplasm and OsHDA706 expression is significantly induced under salt stress. Moreover, oshda706 mutants showed a higher sensitivity to salt stress than the wild-type. In vivo and in vitro enzymatic activity assays demonstrated that OsHDA706 specifically regulates the deacetylation of lysines 5 and 8 on histone H4 (H4K5 and H4K8). By combining chromatin immunoprecipitation and mRNA sequencing, we identified the clade A protein phosphatase 2 C gene, OsPP2C49, which is involved in the salt response as a direct target of H4K5 and H4K8 acetylation. We found that the expression of OsPP2C49 is induced in the oshda706 mutant under salt stress. Furthermore, the knockout of OsPP2C49 enhances plant tolerance to salt stress, while its overexpression has the opposite effect. Taken together, our results indicate that OsHDA706, a histone H4 deacetylase, participates in the salt stress response by regulating the expression of OsPP2C49 via H4K5 and H4K8 deacetylation.
Collapse
Affiliation(s)
- Kai Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Jijin Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Shang Sun
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Xu Chen
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Xinru Zhao
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yingying Hu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Guoxiao Qi
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Xiya Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Bo Xu
- Institute of Lianyungang Agricultural Science of Xuhuai Area, Lianyungang, 222006, China
| | - Jun Miao
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Chao Xue
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yong Zhou
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Zhiyun Gong
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
14
|
Tian Y, Hou Y, Song Y. LncRNAs elevate plant adaptation under low temperature by maintaining local chromatin landscape. PLANT SIGNALING & BEHAVIOR 2022; 17:2014677. [PMID: 35352623 PMCID: PMC8973372 DOI: 10.1080/15592324.2021.2014677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Epigenetic regulation is one of the most precise and subtle ways of gene regulation, including DNA modification, histone modification, RNA modification, histone variants, chromatin remodeling, and long non-coding RNAs (lncRNAs). Chromatin modification is the most basic type of epigenetic regulation, which plays a key role in a myriad of developmental and physiological processes that have been thoroughly studied. These modifications are usually completed by a series of conserved chromatin modification complexes in eukaryotes. In recent years, a series of lncRNAs in organisms also have been described as having irreplaceable functions in biological environment adaptation, especially in biotic and abiotic stresses. Moreover, these molecules form a sophisticated regulatory network through mutual cross-regulation to achieve quantitative expression of key environmental response genes to external signals. For instance, the function of lncRNAs will directly or indirectly depend on the function of the chromatin modification complex. In this review, we mainly focus on chromatin modification, lncRNA, and their coordination mechanism to achieve the high adaptability of plants in low-temperature environments. We highlight recent findings and insights into lncRNA-mediated local chromatin environment changes during plant growth under low temperature via chromatin modification complexes, including target gene specificity for different lncRNA.
Collapse
Affiliation(s)
- Yongke Tian
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Yukang Hou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Yuan Song
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
15
|
Liu Y, Wang J, Liu B, Xu ZY. Dynamic regulation of DNA methylation and histone modifications in response to abiotic stresses in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2252-2274. [PMID: 36149776 DOI: 10.1111/jipb.13368] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
DNA methylation and histone modification are evolutionarily conserved epigenetic modifications that are crucial for the expression regulation of abiotic stress-responsive genes in plants. Dynamic changes in gene expression levels can result from changes in DNA methylation and histone modifications. In the last two decades, how epigenetic machinery regulates abiotic stress responses in plants has been extensively studied. Here, based on recent publications, we review how DNA methylation and histone modifications impact gene expression regulation in response to abiotic stresses such as drought, abscisic acid, high salt, extreme temperature, nutrient deficiency or toxicity, and ultraviolet B exposure. We also review the roles of epigenetic mechanisms in the formation of transgenerational stress memory. We posit that a better understanding of the epigenetic underpinnings of abiotic stress responses in plants may facilitate the design of more stress-resistant or -resilient crops, which is essential for coping with global warming and extreme environments.
Collapse
Affiliation(s)
- Yutong Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jie Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
16
|
Saharan BS, Brar B, Duhan JS, Kumar R, Marwaha S, Rajput VD, Minkina T. Molecular and Physiological Mechanisms to Mitigate Abiotic Stress Conditions in Plants. Life (Basel) 2022; 12:1634. [PMID: 36295069 PMCID: PMC9605384 DOI: 10.3390/life12101634] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 10/03/2023] Open
Abstract
Agriculture production faces many abiotic stresses, mainly drought, salinity, low and high temperature. These abiotic stresses inhibit plants' genetic potential, which is the cause of huge reduction in crop productivity, decrease potent yields for important crop plants by more than 50% and imbalance agriculture's sustainability. They lead to changes in the physio-morphological, molecular, and biochemical nature of the plants and change plants' regular metabolism, which makes them a leading cause of losses in crop productivity. These changes in plant systems also help to mitigate abiotic stress conditions. To initiate the signal during stress conditions, sensor molecules of the plant perceive the stress signal from the outside and commence a signaling cascade to send a message and stimulate nuclear transcription factors to provoke specific gene expression. To mitigate the abiotic stress, plants contain several methods of avoidance, adaption, and acclimation. In addition to these, to manage stress conditions, plants possess several tolerance mechanisms which involve ion transporters, osmoprotectants, proteins, and other factors associated with transcriptional control, and signaling cascades are stimulated to offset abiotic stress-associated biochemical and molecular changes. Plant growth and survival depends on the ability to respond to the stress stimulus, produce the signal, and start suitable biochemical and physiological changes. Various important factors, such as the biochemical, physiological, and molecular mechanisms of plants, including the use of microbiomes and nanotechnology to combat abiotic stresses, are highlighted in this article.
Collapse
Affiliation(s)
- Baljeet Singh Saharan
- Department of Microbiology, CCS Haryana Agricultural University, Hisar 125004, India
| | - Basanti Brar
- Department of Microbiology, CCS Haryana Agricultural University, Hisar 125004, India
| | | | - Ravinder Kumar
- Department of Biotechnology, Ch. Devi Lal University, Sirsa 125055, India
| | - Sumnil Marwaha
- ICAR-National Research Centre on Camel, Bikaner 334001, India
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| |
Collapse
|
17
|
Lee S, Choi JH, Truong HA, Lee YJ, Lee H. Enhanced nitrate reductase activity offers Arabidopsis ecotype Landsberg erecta better salt stress resistance than Col-0. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:854-862. [PMID: 35357062 DOI: 10.1111/plb.13420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
The nitrogen utilization efficiency of plants varies depending on the plant species. In modern agriculture, nitrogen fertilizer is used to increase crop production, with the amount of fertilizer addition increasing steadily worldwide. This study included the two most used ecotypes of Arabidopsis thaliana, Landsberg erecta (Ler) and Col-0, which were used to identify differences at the molecular level. We found that the efficiency of nitrogen utilization and salt stress resistance differed between these two ecotypes of the same species. We demonstrated distinct salt stress resistance between Ler and Col-0 depending on the differences in nitrate level, which was explained by different regulation of the NIA2 gene expression in these two ecotypes. Our results demonstrate that the genes and promoters regulate expression of these genes and contribute to trait differences. Further studies are required on genes and promoter elements for an improved understanding of the salinity stress resistance mechanism in plants.
Collapse
Affiliation(s)
- S Lee
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - J H Choi
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - H A Truong
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Y J Lee
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
- Institute of Life Science and Natural Resources, Korea University, Seoul, Republic of Korea
| | - H Lee
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
- Institute of Life Science and Natural Resources, Korea University, Seoul, Republic of Korea
| |
Collapse
|
18
|
Bulbul Ahmed M, Humayan Kabir A. Understanding of the various aspects of gene regulatory networks related to crop improvement. Gene 2022; 833:146556. [PMID: 35609798 DOI: 10.1016/j.gene.2022.146556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/14/2022] [Accepted: 05/06/2022] [Indexed: 12/30/2022]
Abstract
The hierarchical relationship between transcription factors, associated proteins, and their target genes is defined by a gene regulatory network (GRN). GRNs allow us to understand how the genotype and environment of a plant are incorporated to control the downstream physiological responses. During plant growth or environmental acclimatization, GRNs are diverse and can be differently regulated across tissue types and organs. An overview of recent advances in the development of GRN that speed up basic and applied plant research is given here. Furthermore, the overview of genome and transcriptome involving GRN research along with the exciting advancement and application are discussed. In addition, different approaches to GRN predictions were elucidated. In this review, we also describe the role of GRN in crop improvement, crop plant manipulation, stress responses, speed breeding and identifying genetic variations/locus. Finally, the challenges and prospects of GRN in plant biology are discussed.
Collapse
Affiliation(s)
- Md Bulbul Ahmed
- Plant Science Department, McGill University, 21111 lakeshore Road, Ste. Anne de Bellevue H9X3V9, Quebec, Canada; Institut de Recherche en Biologie Végétale (IRBV), University of Montreal, Montréal, Québec H1X 2B2, Canada.
| | | |
Collapse
|
19
|
Dasgupta P, Prasad P, Bag SK, Chaudhuri S. Dynamicity of histone H3K27ac and H3K27me3 modifications regulate the cold-responsive gene expression in Oryza sativa L. ssp. indica. Genomics 2022; 114:110433. [PMID: 35863676 DOI: 10.1016/j.ygeno.2022.110433] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/15/2022] [Accepted: 07/10/2022] [Indexed: 11/29/2022]
Abstract
Cultivated in tropical and subtropical regions, Oryza sativa L. ssp. indica is largely affected by cold-stress, especially at the seedling stage. The present model of the stress-responsive regulatory network in plants entails the role of genetic and epigenetic factors in stress-responsive gene expression. Despite extensive transcriptomic studies, the regulation of various epigenetic factors in plants cold-stress response is less explored. The present study addresses the effect of genome-wide changes of H3K27 modifications on gene expression in IR64 rice, during cold-stress. Our results suggest a positive correlation between the changes in H3K27 modifications and stress-responsive gene activation in indica rice. Cold-induced enrichment of H3K27 acetylation promotes nucleosomal rearrangement, thereby facilitating the accessibility of the transcriptional machinery at the stress-responsive loci for transcription activation. Although H3K27ac exhibits uniform distribution throughout the loci of enriched genes; occupancy of H3K27me3 is biased to intergenic regions. Integration of the ChIP-seq data with transcriptome indicated that upregulation of stress-responsive TFs, photosynthesis-TCA-related, water-deficit genes, redox and JA signalling components, was associated with differential changes of H3K27ac and H3K27me3 levels. Furthermore, cold-induced upregulation of histone acetyltransferases and downregulation of DNA methyltransferases was noted through the antagonistic switch of H3K27ac and H3K27me3. Moreover, motif analysis of H3K27ac and H3K27me3 enriched regions are associated with putative stress responsive transcription factors binding sites, GAGA element and histone H3K27demethylase. Collectively our analysis suggests that differential expression of various chromatin and DNA modifiers coupled with increased H3K27ac and depleted H3K27me3 increases DNA accessibility, thereby promoting transcription of the cold-responsive genes in indica rice.
Collapse
Affiliation(s)
- Pratiti Dasgupta
- Division of Plant Biology, Bose Institute, Unified Academic Campus, EN 80, Sector V, Bidhan Nagar, Kolkata 700091, WB, India
| | - Priti Prasad
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, Uttar Pradesh 226001, India
| | - Sumit K Bag
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, Uttar Pradesh 226001, India
| | - Shubho Chaudhuri
- Division of Plant Biology, Bose Institute, Unified Academic Campus, EN 80, Sector V, Bidhan Nagar, Kolkata 700091, WB, India.
| |
Collapse
|
20
|
Li B, Yang C, An B, Wang H, Albaqami M, Abou-Elwafa SF, Xu L, Xu Y. Comparative transcriptomic and epigenetic analyses reveal conserved and divergent regulatory pathways in barley response to temperature stresses. PHYSIOLOGIA PLANTARUM 2022; 174:e13727. [PMID: 35657636 DOI: 10.1111/ppl.13727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/29/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
DNA methylation and histone modification enable plants to rapidly adapt to adverse temperature stresses, including low temperature (LT) and high temperature (HT) stress. In this study, we conducted physiological, epigenetic, and transcriptomic analyses of barley seedlings grown under control (22°C), mild low temperature (MLT, 14°C) and HT (38°C) conditions to elucidate the underlying molecular mechanisms. Compared to MLT, HT implies greater deleterious effects on barley seedlings' growth. The methylation-sensitive amplification polymorphism analysis showed that MLT induced more DNA methylation and HT more DNA demethylation compared to control. Besides, the higher levels of H3K9ac and H3K4me3 under HT compared to MLT stresses might lead to the loosening of chromatin and, subsequently, the activation of gene expression. Consistently, the transcriptome analysis revealed that there were more differentially expressed genes (DEGs) in plants subjected to HT stress than MLT stress compared to control. The common and unique pathways of these DEGs between MLT and HT were also analyzed. Transcription factors, such as ERF, bHLH, NAC, HSF, and MYB, were most involved in MLT and HT stress. The underlying gene regulation networks of epigenetic modulation-related genes were further explored by weight gene co-expression network analysis. Our study provides new insights into the understanding of epigenetic regulation responses to temperature stress in barley, which will lead to improved strategies for the development of cold- and heat-tolerant barley varieties for sustainable barley production in a climate-changing world.
Collapse
Affiliation(s)
- Bo Li
- Hubei Collaborative Innovation Centre for Grain Industry/Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
| | - Caixian Yang
- Hubei Collaborative Innovation Centre for Grain Industry/Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Bingzhuang An
- Hubei Collaborative Innovation Centre for Grain Industry/Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Hongpan Wang
- Hubei Collaborative Innovation Centre for Grain Industry/Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Mohammed Albaqami
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Le Xu
- Hubei Collaborative Innovation Centre for Grain Industry/Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
| | - Yanhao Xu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
21
|
Halder K, Chaudhuri A, Abdin MZ, Majee M, Datta A. Chromatin-Based Transcriptional Reprogramming in Plants under Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2022; 11:1449. [PMID: 35684223 PMCID: PMC9182740 DOI: 10.3390/plants11111449] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 06/15/2023]
Abstract
Plants' stress response machinery is characterized by an intricate network of signaling cascades that receive and transmit environmental cues and ultimately trigger transcriptional reprogramming. The family of epigenetic regulators that are the key players in the stress-induced signaling cascade comprise of chromatin remodelers, histone modifiers, DNA modifiers and regulatory non-coding RNAs. Changes in the histone modification and DNA methylation lead to major alterations in the expression level and pattern of stress-responsive genes to adjust with abiotic stress conditions namely heat, cold, drought and salinity. The spotlight of this review falls primarily on the chromatin restructuring under severe abiotic stresses, crosstalk between epigenetic regulators along with a brief discussion on stress priming in plants.
Collapse
Affiliation(s)
- Koushik Halder
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India; (K.H.); (A.C.); (M.M.)
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India;
| | - Abira Chaudhuri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India; (K.H.); (A.C.); (M.M.)
| | - Malik Z. Abdin
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India;
| | - Manoj Majee
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India; (K.H.); (A.C.); (M.M.)
| | - Asis Datta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India; (K.H.); (A.C.); (M.M.)
| |
Collapse
|
22
|
Genetic Mechanisms of Cold Signaling in Wheat (Triticum aestivum L.). Life (Basel) 2022; 12:life12050700. [PMID: 35629367 PMCID: PMC9147279 DOI: 10.3390/life12050700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 11/28/2022] Open
Abstract
Cold stress is a major environmental factor affecting the growth, development, and productivity of various crop species. With the current trajectory of global climate change, low temperatures are becoming more frequent and can significantly decrease crop yield. Wheat (Triticum aestivum L.) is the first domesticated crop and is the most popular cereal crop in the world. Because of a lack of systematic research on cold signaling pathways and gene regulatory networks, the underlying molecular mechanisms of cold signal transduction in wheat are poorly understood. This study reviews recent progress in wheat, including the ICE-CBF-COR signaling pathway under cold stress and the effects of cold stress on hormonal pathways, reactive oxygen species (ROS), and epigenetic processes and elements. This review also highlights possible strategies for improving cold tolerance in wheat.
Collapse
|
23
|
Stochastic Variation in DNA Methylation Modulates Nucleosome Occupancy and Alternative Splicing in Arabidopsis thaliana. PLANTS 2022; 11:plants11091105. [PMID: 35567106 PMCID: PMC9101026 DOI: 10.3390/plants11091105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022]
Abstract
Plants use complex gene regulatory mechanisms to overcome diverse environmental challenges. For instance, cold stress induces rapid and massive transcriptome changes via alternative splicing (AS) to confer cold tolerance in plants. In mammals, mounting evidence suggests chromatin structure can regulate co-transcriptional AS. Recent evidence also supports co-transcriptional regulation of AS in plants, but how dynamic changes in DNA methylation and the chromatin structure influence the AS process upon cold stress remains poorly understood. In this study, we used the DNA methylation inhibitor 5-Aza-2′-Deoxycytidine (5-aza-dC) to investigate the role of stochastic variations in DNA methylation and nucleosome occupancy in modulating cold-induced AS, in Arabidopsis thaliana (Arabidopsis). Our results demonstrate that 5-aza-dC derived stochastic hypomethylation modulates nucleosome occupancy and AS profiles of genes implicated in RNA metabolism, plant hormone signal transduction, and of cold-related genes in response to cold stress. We also demonstrate that cold-induced remodelling of DNA methylation regulates genes involved in amino acid metabolism. Collectively, we demonstrate that sudden changes in DNA methylation via drug treatment can influence nucleosome occupancy levels and modulate AS in a temperature-dependent manner to regulate plant metabolism and physiological stress adaptation.
Collapse
|
24
|
Li S, He X, Gao Y, Zhou C, Chiang VL, Li W. Histone Acetylation Changes in Plant Response to Drought Stress. Genes (Basel) 2021; 12:genes12091409. [PMID: 34573391 PMCID: PMC8468061 DOI: 10.3390/genes12091409] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023] Open
Abstract
Drought stress causes recurrent damage to a healthy ecosystem because it has major adverse effects on the growth and productivity of plants. However, plants have developed drought avoidance and resilience for survival through many strategies, such as increasing water absorption and conduction, reducing water loss and conversing growth stages. Understanding how plants respond and regulate drought stress would be important for creating and breeding better plants to help maintain a sound ecosystem. Epigenetic marks are a group of regulators affecting drought response and resilience in plants through modification of chromatin structure to control the transcription of pertinent genes. Histone acetylation is an ubiquitous epigenetic mark. The level of histone acetylation, which is regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), determines whether the chromatin is open or closed, thereby controlling access of DNA-binding proteins for transcriptional activation. In this review, we summarize histone acetylation changes in plant response to drought stress, and review the functions of HATs and HDACs in drought response and resistance.
Collapse
Affiliation(s)
- Shuang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.H.); (Y.G.); (C.Z.); (V.L.C.); (W.L.)
- Correspondence: ; Tel.: +86-15114585206
| | - Xu He
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.H.); (Y.G.); (C.Z.); (V.L.C.); (W.L.)
| | - Yuan Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.H.); (Y.G.); (C.Z.); (V.L.C.); (W.L.)
| | - Chenguang Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.H.); (Y.G.); (C.Z.); (V.L.C.); (W.L.)
| | - Vincent L. Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.H.); (Y.G.); (C.Z.); (V.L.C.); (W.L.)
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.H.); (Y.G.); (C.Z.); (V.L.C.); (W.L.)
| |
Collapse
|
25
|
Ganguly P, Roy D, Das T, Kundu A, Cartieaux F, Ghosh Z, DasGupta M. The Natural Antisense Transcript DONE40 Derived from the lncRNA ENOD40 Locus Interacts with SET Domain Protein ASHR3 During Inception of Symbiosis in Arachis hypogaea. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1057-1070. [PMID: 33934615 DOI: 10.1094/mpmi-12-20-0357-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The long noncoding RNA ENOD40 is required for cortical cell division during root nodule symbiosis (RNS) of legumes, though it is not essential for actinorhizal RNS. Our objective was to understand whether ENOD40 was required for aeschynomenoid nodule formation in Arachis hypogaea. AhENOD40 express from chromosome 5 (chr5) (AhENOD40-1) and chr15 (AhENOD40-2) during symbiosis, and RNA interference of these transcripts drastically affected nodulation, indicating the importance of ENOD40 in A. hypogaea. Furthermore, we demonstrated several distinct characteristics of ENOD40. (i) Natural antisense transcript (NAT) of ENOD40 was detected from the AhENOD40-1 locus (designated as NAT-AhDONE40). (ii) Both AhENOD40-1 and AhENOD40-2 had two exons, whereas NAT-AhDONE40 was monoexonic. Reverse-transcription quantitative PCR analysis indicated both sense and antisense transcripts to be present in both cytoplasm and nucleus, and their expression increased with the progress of symbiosis. (iii) RNA pull-down from whole cell extracts of infected roots at 4 days postinfection indicated NAT-AhDONE40 to interact with the SET (Su(var)3-9, enhancer of Zeste and Trithorax) domain containing absent small homeotic disc (ASH) family protein AhASHR3 and this interaction was further validated using RNA immunoprecipitation and electrophoretic mobility shift assay. (iv) Chromatin immunoprecipitation assays indicate deposition of ASHR3-specific histone marks H3K36me3 and H3K4me3 in both of the ENOD40 loci during the progress of symbiosis. ASHR3 is known for its role in optimizing cell proliferation and reprogramming. Because both ASHR3 and ENOD40 from legumes cluster away from those in actinorhizal plants and other nonlegumes in phylogenetic distance trees, we hypothesize that the interaction of DONE40 with ASHR3 could have evolved for adapting the nodule organogenesis program for legumes.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Pritha Ganguly
- Department of Biochemistry, University of Calcutta, Kolkata, West Bengal, 700019, India
| | - Dipan Roy
- Department of Biochemistry, University of Calcutta, Kolkata, West Bengal, 700019, India
| | - Troyee Das
- Division of Bioinformatics, Bose Institute, Kolkata, West Bengal, 700054, India
| | - Anindya Kundu
- Department of Biochemistry, University of Calcutta, Kolkata, West Bengal, 700019, India
| | - Fabienne Cartieaux
- LSTM, Université de Montpellier, CIRAD, INRA, IRD, SupAgro, Montpellier, France
| | - Zhumur Ghosh
- Division of Bioinformatics, Bose Institute, Kolkata, West Bengal, 700054, India
| | - Maitrayee DasGupta
- Department of Biochemistry, University of Calcutta, Kolkata, West Bengal, 700019, India
| |
Collapse
|
26
|
Chaudhary S, Jabre I, Syed NH. Epigenetic differences in an identical genetic background modulate alternative splicing in A. thaliana. Genomics 2021; 113:3476-3486. [PMID: 34391867 DOI: 10.1016/j.ygeno.2021.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 11/19/2022]
Abstract
How stable and temperature-dependent variations in DNA methylation and nucleosome occupancy influence alternative splicing (AS) remains poorly understood in plants. To answer this, we generated transcriptome, whole-genome bisulfite, and MNase sequencing data for an epigenetic Recombinant Inbred Line (epiRIL) of A. thaliana at normal and cold temperature. For comparative analysis, the same data sets for the parental ecotype Columbia (Col-0) were also generated, whereas for DNA methylation, previously published high confidence methylation profiles of Col-0 were used. Significant epigenetic differences in an identical genetic background were observed between Col-0 and epiRIL lines under normal and cold temperatures. Our transcriptome data revealed that differential DNA methylation and nucleosome occupancy modulate expression levels of many genes and AS in response to cold. Collectively, DNA methylation and nucleosome levels exhibit characteristic patterns around intron-exon boundaries at normal and cold conditions, and any perturbation in them, in an identical genetic background is sufficient to modulate AS in Arabidopsis.
Collapse
Affiliation(s)
- Saurabh Chaudhary
- School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury CT1 1QU, UK; Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.
| | - Ibtissam Jabre
- School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury CT1 1QU, UK; Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Naeem H Syed
- School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury CT1 1QU, UK.
| |
Collapse
|
27
|
Hereme R, Galleguillos C, Morales-Navarro S, Molina-Montenegro MA. What if the cold days return? Epigenetic mechanisms in plants to cold tolerance. PLANTA 2021; 254:46. [PMID: 34370110 DOI: 10.1007/s00425-021-03694-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
The epigenetic could be an important, but seldom assessed, mechanisms in plants inhabiting cold ecosystems. Thus, this review could help to fill a gap in the current literature. Low temperatures are one of the most critical environmental conditions that negatively affect the growth, development, and geographic distribution of plants. Exposure to low temperatures results in a suit of physiological, biochemical and molecular modifications through the reprogramming of the expression of genes and transcription factors. Scientific evidence shows that the average annual temperature has increased in recent years worldwide, with cold ecosystems (polar and high mountain) being among the most sensitive to these changes. However, scientific evidence also indicates that there would be specific events of low temperatures, due it is highly relevant to know the capacity for adaptation, regulation and epigenetic memory in the face of these events, by plants. Epigenetic regulation has been described to play an important role in the face of environmental stimuli, especially in response to abiotic stress. Several studies on epigenetic mechanisms have focused on responses to stress as drought and/or salinity; however, there is a gap in the current literature considering those related to low temperatures. In this review, we focus on systematizing the information published to date, related to the regulation of epigenetic mechanisms such as DNA methylation, histone modification, and non-coding RNA-dependent silencing mechanisms, in the face of plant´s stress due to low temperatures. Finally, we present a schematic model about the potential responses by plants taking in count their epigenetic memory; considering a global warming scenario and with the presence or absence of extreme specific events of low temperatures.
Collapse
Affiliation(s)
- Rasme Hereme
- Instituto de Ciencias Biológicas, Universidad de Talca, Campus Talca, Talca, Chile
| | | | | | - Marco A Molina-Montenegro
- Instituto de Ciencias Biológicas, Universidad de Talca, Campus Talca, Talca, Chile.
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Universidad Católica del Norte, Coquimbo, Chile.
- Centro de Investigaciones y Estudios Avanzados del Maule (CIEAM), Universidad Católica del Maule, Talca, Chile.
| |
Collapse
|
28
|
Multifaceted Chromatin Structure and Transcription Changes in Plant Stress Response. Int J Mol Sci 2021; 22:ijms22042013. [PMID: 33670556 PMCID: PMC7922328 DOI: 10.3390/ijms22042013] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 01/06/2023] Open
Abstract
Sessile plants are exposed throughout their existence to environmental abiotic and biotic stress factors, such as cold, heat, salinity, drought, dehydration, submergence, waterlogging, and pathogen infection. Chromatin organization affects genome stability, and its dynamics are crucial in plant stress responses. Chromatin dynamics are epigenetically regulated and are required for stress-induced transcriptional regulation or reprogramming. Epigenetic regulators facilitate the phenotypic plasticity of development and the survival and reproduction of plants in unfavorable environments, and they are highly diversified, including histone and DNA modifiers, histone variants, chromatin remodelers, and regulatory non-coding RNAs. They contribute to chromatin modifications, remodeling and dynamics, and constitute a multilayered and multifaceted circuitry for sophisticated and robust epigenetic regulation of plant stress responses. However, this complicated epigenetic regulatory circuitry creates challenges for elucidating the common or differential roles of chromatin modifications for transcriptional regulation or reprogramming in different plant stress responses. Particularly, interacting chromatin modifications and heritable stress memories are difficult to identify in the aspect of chromatin-based epigenetic regulation of transcriptional reprogramming and memory. Therefore, this review discusses the recent updates from the three perspectives—stress specificity or dependence of transcriptional reprogramming, the interplay of chromatin modifications, and transcriptional stress memory in plants. This helps solidify our knowledge on chromatin-based transcriptional reprogramming for plant stress response and memory.
Collapse
|
29
|
Jabre I, Chaudhary S, Guo W, Kalyna M, Reddy ASN, Chen W, Zhang R, Wilson C, Syed NH. Differential nucleosome occupancy modulates alternative splicing in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2021; 229:1937-1945. [PMID: 33135169 DOI: 10.1111/nph.17062] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/24/2020] [Indexed: 05/13/2023]
Abstract
Alternative splicing (AS) is a major gene regulatory mechanism in plants. Recent evidence supports co-transcriptional splicing in plants, hence the chromatin state can impact AS. However, how dynamic changes in the chromatin state such as nucleosome occupancy influence the cold-induced AS remains poorly understood. Here, we generated transcriptome (RNA-Seq) and nucleosome positioning (MNase-Seq) data for Arabidopsis thaliana to understand how nucleosome positioning modulates cold-induced AS. Our results show that characteristic nucleosome occupancy levels are strongly associated with the type and abundance of various AS events under normal and cold temperature conditions in Arabidopsis. Intriguingly, exitrons, alternatively spliced internal regions of protein-coding exons, exhibit distinctive nucleosome positioning pattern compared to other alternatively spliced regions. Likewise, nucleosome patterns differ between exitrons and retained introns, pointing to their distinct regulation. Collectively, our data show that characteristic changes in nucleosome positioning modulate AS in plants in response to cold.
Collapse
Affiliation(s)
- Ibtissam Jabre
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK
- School of Biosciences and Medicine, University of Surrey, Guildford, GU2 7XH, UK
| | - Saurabh Chaudhary
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK
- Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Wenbin Guo
- Computational Sciences, The James Hutton Institute, Dundee, DD2 5DA, UK
| | - Maria Kalyna
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences - BOKU, Muthgasse 18, 1190, Vienna, Austria
| | - Anireddy S N Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, 80523-1878, USA
| | - Weizhong Chen
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, 14853-2703, USA
| | - Runxuan Zhang
- Computational Sciences, The James Hutton Institute, Dundee, DD2 5DA, UK
| | - Cornelia Wilson
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK
| | - Naeem H Syed
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK
| |
Collapse
|
30
|
Bhadouriya SL, Mehrotra S, Basantani MK, Loake GJ, Mehrotra R. Role of Chromatin Architecture in Plant Stress Responses: An Update. FRONTIERS IN PLANT SCIENCE 2021; 11:603380. [PMID: 33510748 PMCID: PMC7835326 DOI: 10.3389/fpls.2020.603380] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/07/2020] [Indexed: 05/08/2023]
Abstract
Sessile plants possess an assembly of signaling pathways that perceive and transmit environmental signals, ultimately resulting in transcriptional reprogramming. Histone is a key feature of chromatin structure. Numerous histone-modifying proteins act under different environmental stress conditions to help modulate gene expression. DNA methylation and histone modification are crucial for genome reprogramming for tissue-specific gene expression and global gene silencing. Different classes of chromatin remodelers including SWI/SNF, ISWI, INO80, and CHD are reported to act upon chromatin in different organisms, under diverse stresses, to convert chromatin from a transcriptionally inactive to a transcriptionally active state. The architecture of chromatin at a given promoter is crucial for determining the transcriptional readout. Further, the connection between somatic memory and chromatin modifications may suggest a mechanistic basis for a stress memory. Studies have suggested that there is a functional connection between changes in nuclear organization and stress conditions. In this review, we discuss the role of chromatin architecture in different stress responses and the current evidence on somatic, intergenerational, and transgenerational stress memory.
Collapse
Affiliation(s)
- Sneha Lata Bhadouriya
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Sancoale, India
| | - Sandhya Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Sancoale, India
| | - Mahesh K. Basantani
- Institute of Bioscience and Technology, Shri Ramswaroop Memorial University, Lucknow, India
| | - Gary J. Loake
- School of Biological Sciences, Institute of Molecular Plant Sciences, University of Edinburg, Edinburg, United Kingdom
| | - Rajesh Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Sancoale, India
| |
Collapse
|
31
|
Mallik R, Prasad P, Kundu A, Sachdev S, Biswas R, Dutta A, Roy A, Mukhopadhyay J, Bag SK, Chaudhuri S. Identification of genome-wide targets and DNA recognition sequence of the Arabidopsis HMG-box protein AtHMGB15 during cold stress response. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194644. [PMID: 33068782 DOI: 10.1016/j.bbagrm.2020.194644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/12/2020] [Accepted: 10/07/2020] [Indexed: 12/27/2022]
Abstract
AtHMGB15 belongs to a group of ARID-HMG proteins which are plant specific. The presence of two known DNA binding domains: AT rich interacting domain (ARID) and High Mobility Group (HMG)-box, in one polypeptide, makes this protein intriguing. Although proteins containing individual HMG and ARID domains have been characterized, not much is known about the role of ARID-HMG proteins. Promoter analysis of AtHMGB15 showed the presence of various stress responsive cis regulatory elements along with MADS-box containing transcription factors. Our result shows that the expression of AtHMGB15 increased significantly upon application of cold stress. Using ChIP-chip approach, we have identified 6128 and 4689 significantly enriched loci having AtHMGB15 occupancy under control and cold stressed condition respectively. GO analysis shows genes belonging to abiotic stress response, cold response and root development were AtHMGB15 targets during cold stress. DNA binding and footprinting assays further identified A(A/C)--ATA---(A/T)(A/T) as AtHMGB15 binding motif. The enriched probe distribution in both control and cold condition shows a bias of AtHMGB15 binding towards the transcribed (gene body) region. Further, the expression of cold stress responsive genes decreased in athmgb15 knockout plants compared to wild-type. Taken together, binding enrichment of AtHMGB15 to the promoter and upstream to stress loci suggest an unexplored role of the protein in stress induced transcription regulation.
Collapse
Affiliation(s)
- Rwitie Mallik
- Division of Plant Biology, Bose Institute, P1/12 C.I.T Scheme VII M, Kolkata 700054, India
| | - Priti Prasad
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NBRI Campus, Lucknow, India; Computational Biology Lab, Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, Uttar Pradesh 226001, India
| | - Anindya Kundu
- Division of Plant Biology, Bose Institute, P1/12 C.I.T Scheme VII M, Kolkata 700054, India
| | - Sonal Sachdev
- Division of Plant Biology, Bose Institute, P1/12 C.I.T Scheme VII M, Kolkata 700054, India
| | - Ruby Biswas
- Division of Plant Biology, Bose Institute, P1/12 C.I.T Scheme VII M, Kolkata 700054, India
| | - Arkajyoti Dutta
- Department of Chemistry, Bose Institute, P1/12 C.I.T Scheme VII M, Kolkata 700054, India
| | - Adrita Roy
- Division of Plant Biology, Bose Institute, P1/12 C.I.T Scheme VII M, Kolkata 700054, India
| | - Jayanta Mukhopadhyay
- Department of Chemistry, Bose Institute, P1/12 C.I.T Scheme VII M, Kolkata 700054, India
| | - Sumit K Bag
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NBRI Campus, Lucknow, India; Computational Biology Lab, Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, Uttar Pradesh 226001, India
| | - Shubho Chaudhuri
- Division of Plant Biology, Bose Institute, P1/12 C.I.T Scheme VII M, Kolkata 700054, India.
| |
Collapse
|
32
|
Sengupta S, Ray A, Mandal D, Nag Chaudhuri R. ABI3 mediated repression of RAV1 gene expression promotes efficient dehydration stress response in Arabidopsis thaliana. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194582. [DOI: 10.1016/j.bbagrm.2020.194582] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/01/2020] [Accepted: 05/14/2020] [Indexed: 01/19/2023]
|
33
|
Pan Y, Liang H, Gao L, Dai G, Chen W, Yang X, Qing D, Gao J, Wu H, Huang J, Zhou W, Huang C, Liang Y, Deng G. Transcriptomic profiling of germinating seeds under cold stress and characterization of the cold-tolerant gene LTG5 in rice. BMC PLANT BIOLOGY 2020; 20:371. [PMID: 32762649 PMCID: PMC7409433 DOI: 10.1186/s12870-020-02569-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/22/2020] [Indexed: 05/25/2023]
Abstract
BACKGROUND Low temperature is a limiting factor of rice productivity and geographical distribution. Wild rice (Oryza rufipogon Griff.) is an important germplasm resource for rice improvement. It has superior tolerance to many abiotic stresses, including cold stress, but little is known about the mechanism underlying its resistance to cold. RESULTS This study elucidated the molecular genetic mechanisms of wild rice in tolerating low temperature. Comprehensive transcriptome profiles of two rice genotypes (cold-sensitive ce 253 and cold-tolerant Y12-4) at the germinating stage under cold stress were comparatively analyzed. A total of 42.44-68.71 million readings were obtained, resulting in the alignment of 29,128 and 30,131 genes in genotypes 253 and Y12-4, respectively. Many common and differentially expressed genes (DEGs) were analyzed in the cold-sensitive and cold-tolerant genotypes. Results showed more upregulated DEGs in the cold-tolerant genotype than in the cold-sensitive genotype at four stages under cold stress. Gene ontology enrichment analyses based on cellular process, metabolic process, response stimulus, membrane part, and catalytic activity indicated more upregulated genes than downregulated ones in the cold-tolerant genotype than in the cold-sensitive genotype. Quantitative real-time polymerase chain reaction was performed on seven randomly selected DEGs to confirm the RNA Sequencing (RNA-seq) data. These genes showed similar expression patterns corresponding with the RNA-Seq method. Weighted gene co-expression network analysis (WGCNA) revealed Y12-4 showed more positive genes than 253 under cold stress. We also explored the cold tolerance gene LTG5 (Low Temperature Growth 5) encoding a UDP-glucosyltransferase. The overexpression of the LTG5 gene conferred cold tolerance to indica rice. CONCLUSION Gene resources related to cold stress from wild rice can be valuable for improving the cold tolerance of crops.
Collapse
Affiliation(s)
- Yinghua Pan
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Haifu Liang
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Lijun Gao
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, China
| | - Gaoxing Dai
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Weiwei Chen
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Xinghai Yang
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Dongjin Qing
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, China
| | - Ju Gao
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, China
| | - Hao Wu
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, China
| | - Juan Huang
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, China
| | - Weiyong Zhou
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, China
| | - Chengcui Huang
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Yuntao Liang
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Guofu Deng
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| |
Collapse
|
34
|
Dasgupta P, Das A, Datta S, Banerjee I, Tripathy S, Chaudhuri S. Understanding the early cold response mechanism in IR64 indica rice variety through comparative transcriptome analysis. BMC Genomics 2020; 21:425. [PMID: 32580699 PMCID: PMC7315535 DOI: 10.1186/s12864-020-06841-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 06/16/2020] [Indexed: 11/10/2022] Open
Abstract
Background Cellular reprogramming in response to environmental stress involves alteration of gene expression, changes in the protein and metabolite profile for ensuring better stress management in plants. Similar to other plant species originating in tropical and sub-tropical areas, indica rice is highly sensitive to low temperature that adversely affects its growth and grain productivity. Substantial work has been done to understand cold induced changes in gene expression in rice plants. However, adequate information is not available for early gene expression, especially in indica variety. Therefore, a transcriptome profile was generated for cold shock treated seedlings of IR64 variety to identify early responsive genes. Results The functional annotation of early DEGs shows enrichment of genes involved in altered membrane rigidity and electrolytic leakage, the onset of calcium signaling, ROS generation and activation of stress responsive transcription factors in IR64. Gene regulatory network suggests that cold shock induced Ca2+ signaling activates DREB/CBF pathway and other groups of transcription factors such as MYB, NAC and ZFP; for activating various cold-responsive genes. The analysis also indicates that cold induced signaling proteins like RLKs, RLCKs, CDPKs and MAPKK and ROS signaling proteins. Further, several late-embryogenesis-abundant (LEA), dehydrins and low temperature-induced-genes were upregulated under early cold shock condition, indicating the onset of water-deficit conditions. Expression profiling in different high yielding cultivars shows high expression of cold-responsive genes in Heera and CB1 indica varieties. These varieties show low levels of cold induced ROS production, electrolytic leakage and high germination rate post-cold stress, compared to IR36 and IR64. Collectively, these results suggest that these varieties may have improved adaptability to cold stress. Conclusions The results of this study provide insights about early responsive events in Oryza sativa l.ssp. indica cv IR64 in response to cold stress. Our data shows the onset of cold response is associated with upregulation of stress responsive TFs, hydrophilic proteins and signaling molecules, whereas, the genes coding for cellular biosynthetic enzymes, cell cycle control and growth-related TFs are downregulated. This study reports that the generation of ROS is integral to the early response to trigger the ROS mediated signaling events during later stages.
Collapse
Affiliation(s)
- Pratiti Dasgupta
- Division of Plant Biology, Bose Institute, P1/12 CIT Scheme VII M, Kolkata, 700054, India
| | - Abhishek Das
- Structural Biology & Bioinformatics Division, CSIR- Indian Institute of Chemical Biology, Kolkata, 700032, India
| | - Sambit Datta
- Division of Plant Biology, Bose Institute, P1/12 CIT Scheme VII M, Kolkata, 700054, India
| | - Ishani Banerjee
- Division of Plant Biology, Bose Institute, P1/12 CIT Scheme VII M, Kolkata, 700054, India
| | - Sucheta Tripathy
- Structural Biology & Bioinformatics Division, CSIR- Indian Institute of Chemical Biology, Kolkata, 700032, India
| | - Shubho Chaudhuri
- Division of Plant Biology, Bose Institute, P1/12 CIT Scheme VII M, Kolkata, 700054, India.
| |
Collapse
|
35
|
Abstract
IMPACT STATEMENT NAD is a central metabolite connecting energy balance and organismal growth with genomic integrity and function. It is involved in the development of malignancy and has a regulatory role in the aging process. These processes are mediated by a diverse series of enzymes whose common focus is either NAD's biosynthesis or its utilization as a redox cofactor or enzyme substrate. These enzymes include dehydrogenases, cyclic ADP-ribose hydrolases, mono(ADP-ribosyl)transferases, poly(ADP-ribose) polymerases, and sirtuin deacetylases. This article describes the manifold pathways that comprise NAD metabolism and promotes an increased awareness of how perturbations in these systems may be important in disease prevention and/or progression.
Collapse
Affiliation(s)
- John Wr Kincaid
- Department of Nutrition, 12304Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,151230Case Comprehensive Cancer Center, 12304Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Nathan A Berger
- 151230Case Comprehensive Cancer Center, 12304Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Department of Biochemistry, 12304Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Department of Genetics and Genome Sciences, 12304Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Department of Medicine, 12304Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Center for Science, Health and Society, 12304Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
36
|
Vyse K, Faivre L, Romich M, Pagter M, Schubert D, Hincha DK, Zuther E. Transcriptional and Post-Transcriptional Regulation and Transcriptional Memory of Chromatin Regulators in Response to Low Temperature. FRONTIERS IN PLANT SCIENCE 2020; 11:39. [PMID: 32117378 PMCID: PMC7020257 DOI: 10.3389/fpls.2020.00039] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/13/2020] [Indexed: 05/04/2023]
Abstract
Chromatin regulation ensures stable repression of stress-inducible genes under non-stress conditions and transcriptional activation and memory of stress-related genes after stress exposure. However, there is only limited knowledge on how chromatin genes are regulated at the transcriptional and post-transcriptional level upon stress exposure and relief from stress. We reveal that the repressive modification histone H3 lysine 27 trimethylation (H3K27me3) targets genes which are quickly activated upon cold exposure, however, H3K27me3 is not necessarily lost during a longer time in the cold. In addition, we have set-up a quantitative reverse transcription polymerase chain reaction-based platform for high-throughput transcriptional profiling of a large set of chromatin genes. We find that the expression of many of these genes is regulated by cold. In addition, we reveal an induction of several DNA and histone demethylase genes and certain histone variants after plants have been shifted back to ambient temperature (deacclimation), suggesting a role in the memory of cold acclimation. We also re-analyze large scale transcriptomic datasets for transcriptional regulation and alternative splicing (AS) of chromatin genes, uncovering an unexpected level of regulation of these genes, particularly at the splicing level. This includes several vernalization regulating genes whose AS may result in cold-regulated protein diversity. Overall, we provide a profiling platform for the analysis of chromatin regulatory genes and integrative analyses of their regulation, suggesting a dynamic regulation of key chromatin genes in response to low temperature stress.
Collapse
Affiliation(s)
- Kora Vyse
- Central Infrastructure Group Genomics and Transcript Profiling, Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Léa Faivre
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Melissa Romich
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Majken Pagter
- Department of Chemistry and Bioscience, Aalborg University, Aalborg East, Denmark
| | - Daniel Schubert
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- *Correspondence: Daniel Schubert, ; Ellen Zuther,
| | - Dirk K. Hincha
- Central Infrastructure Group Genomics and Transcript Profiling, Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Ellen Zuther
- Central Infrastructure Group Genomics and Transcript Profiling, Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
- *Correspondence: Daniel Schubert, ; Ellen Zuther,
| |
Collapse
|
37
|
Identification, Evolution, and Expression Profiling of Histone Lysine Methylation Moderators in Brassica rapa. PLANTS 2019; 8:plants8120526. [PMID: 31756989 PMCID: PMC6963287 DOI: 10.3390/plants8120526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 02/08/2023]
Abstract
Histone modifications, such as methylation and demethylation, are vital for regulating chromatin structure, thus affecting its expression patterns. The objective of this study is to understand the phylogenetic relationships, genomic organization, diversification of motif modules, gene duplications, co-regulatory network analysis, and expression dynamics of histone lysine methyltransferases and histone demethylase in Brassica rapa. We identified 60 SET (HKMTases), 53 JmjC, and 4 LSD (HDMases) genes in B. rapa. The domain composition analysis subcategorized them into seven and nine subgroups, respectively. Duplication analysis for paralogous pairs of SET and JmjC (eight and nine pairs, respectively) exhibited variation. Interestingly, three pairs of SET exhibited Ka/Ks > 1.00 values, signifying positive selection, whereas the remaining underwent purifying selection with values less than 1.00. Furthermore, RT-PCR validation analysis and RNA-sequence data acquired on six different tissues (i.e., leaf, stem, callus, silique, flower, and root) revealed dynamic expression patterns. This comprehensive study on the abundance, classification, co-regulatory network analysis, gene duplication, and responses to heat and cold stress of SET and JmjC provides insights into the structure and diversification of these family members in B. rapa. This study will be helpful to reveal functions of these putative SET and JmjC genes in B. rapa.
Collapse
|
38
|
Histone deacetylase inhibitors promote ATP2A3 gene expression in hepatocellular carcinoma cells: p300 as a transcriptional regulator. Int J Biochem Cell Biol 2019; 113:8-16. [DOI: 10.1016/j.biocel.2019.05.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/22/2019] [Accepted: 05/25/2019] [Indexed: 11/24/2022]
|
39
|
Li L, Peng H, Tan S, Zhou J, Fang Z, Hu Z, Gao L, Li T, Zhang W, Chen L. Effects of early cold stress on gene expression in Chlamydomonas reinhardtii. Genomics 2019; 112:1128-1138. [PMID: 31251979 DOI: 10.1016/j.ygeno.2019.06.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 06/03/2019] [Accepted: 06/24/2019] [Indexed: 11/24/2022]
Abstract
Cold stress imposes a great impact on the growth of nearly all photosynthetic organisms, including Chlamydomonas reinhardtii (C. reinhardtii). Despite prior studies on the mechanism of stress acclimation in plants, little has been done on the early events of cold sensing in C. reinhardtii. Here, we used C. reinhardtii as a model to study early events of cold signal transduction. By analyzing transcriptomic changes of C. reinhardtii exposed to cold, we found that 3471 genes were differentially expressed after 1 h of cold exposure. These genes were associated with a wide range of biological events and processes such as protein synthesis, cell cycle and protein kinase-based phosphorylation. Besides, the promoter of one gene (named as crAP2) which belongs to AP2/EREBP family and was significantly induced by cold was cloned, and functional analysis was conducted using GUS activity analysis through Agrobacterium-mediated transient assay in tobacco leaves.
Collapse
Affiliation(s)
- Lun Li
- The Institute for Systems Biology, Jianghan University, Wuhan 430056, China
| | - Hai Peng
- The Institute for Systems Biology, Jianghan University, Wuhan 430056, China
| | - Shenglong Tan
- School of Information and Communication Engineering, Hubei University of Economics, Wuhan 430205, China.
| | - Junfei Zhou
- The Institute for Systems Biology, Jianghan University, Wuhan 430056, China
| | - Zhiwei Fang
- The Institute for Systems Biology, Jianghan University, Wuhan 430056, China
| | - Zhangfeng Hu
- The Institute for Systems Biology, Jianghan University, Wuhan 430056, China
| | - Lifen Gao
- The Institute for Systems Biology, Jianghan University, Wuhan 430056, China
| | - Tiantian Li
- The Institute for Systems Biology, Jianghan University, Wuhan 430056, China
| | - Weixiong Zhang
- The Institute for Systems Biology, Jianghan University, Wuhan 430056, China; Department of Computer Science and Engineering, Washington University, St. Louis, MO 36130, USA.
| | - Lihong Chen
- The Institute for Systems Biology, Jianghan University, Wuhan 430056, China.
| |
Collapse
|
40
|
Sharma A, Basu U, Malik N, Daware A, Thakro V, Narnoliya L, Bajaj D, Tripathi S, Hegde VS, Upadhyaya HD, Tyagi AK, Parida SK. Genome-wide cis-regulatory signatures for modulation of agronomic traits as exemplified by drought yield index (DYI) in chickpea. Funct Integr Genomics 2019; 19:973-992. [PMID: 31177403 DOI: 10.1007/s10142-019-00691-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 12/26/2022]
Abstract
Developing functional molecular tags from the cis-regulatory sequence components of genes is vital for their deployment in efficient genetic dissection of complex quantitative traits in crop plants including chickpea. The current study identified 431,194 conserved non-coding SNP (CNSNP) from the cis-regulatory element regions of genes which were annotated on a chickpea genome. These genome-wide CNSNP marker resources are made publicly accessible through a user-friendly web-database ( http://www.cnsnpcicarbase.com ). The CNSNP-based quantitative trait loci (QTL) and expression QTL (eQTL) mapping and genome-wide association study (GWAS) were further integrated with global gene expression landscapes, molecular haplotyping, and DNA-protein interaction study in the association panel and recombinant inbred lines (RIL) mapping population to decode complex genetic architecture of one of the vital seed yield trait under drought stress, drought yield index (DYI), in chickpea. This delineated two constituted natural haplotypes and alleles from a histone H3 protein-coding gene and its transcriptional regulator NAC transcription factor (TF) harboring the major QTLs and trans-acting eQTL governing DYI in chickpea. The effect of CNSNPs in TF-binding cis-element of a histone H3 gene in altering the binding affinity and transcriptional activity of NAC TF based on chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) assay was evident. The CNSNP-led promising molecular tags scanned will essentially have functional significance to decode transcriptional gene regulatory function and thus can drive translational genomic analysis in chickpea.
Collapse
Affiliation(s)
- Akash Sharma
- Genomics-Assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Udita Basu
- Genomics-Assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Naveen Malik
- Genomics-Assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Anurag Daware
- Genomics-Assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Virevol Thakro
- Genomics-Assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Laxmi Narnoliya
- Genomics-Assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Deepak Bajaj
- Genomics-Assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Shailesh Tripathi
- Division of Genetics, Indian Agricultural Research Institute (IARI), New Delhi, 110012, India
| | - V S Hegde
- Division of Genetics, Indian Agricultural Research Institute (IARI), New Delhi, 110012, India
| | - Hari D Upadhyaya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, 502324, India
| | - Akhilesh K Tyagi
- Genomics-Assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.,Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Swarup K Parida
- Genomics-Assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
41
|
Ding Y, Shi Y, Yang S. Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants. THE NEW PHYTOLOGIST 2019; 222:1690-1704. [PMID: 30664232 DOI: 10.1111/nph.15696] [Citation(s) in RCA: 446] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/15/2019] [Indexed: 05/18/2023]
Abstract
Contents Summary I. Introduction II. Cold stress and physiological responses in plants III. Sensing of cold signals in plants IV. Messenger molecules involved in cold signal transduction V. Cold signal transduction in plants VI. Conclusions and perspectives Acknowledgements References SUMMARY: Cold stress is a major environmental factor that seriously affects plant growth and development, and influences crop productivity. Plants have evolved a series of mechanisms that allow them to adapt to cold stress at both the physiological and molecular levels. Over the past two decades, much progress has been made in identifying crucial components involved in cold-stress tolerance and dissecting their regulatory mechanisms. In this review, we summarize recent major advances in our understanding of cold signalling and put forward open questions in the field of plant cold-stress responses. Answering these questions should help elucidate the molecular mechanisms underlying plant tolerance to cold stress.
Collapse
Affiliation(s)
- Yanglin Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yiting Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
42
|
Roy D, Chakrabarty J, Mallik R, Chaudhuri S. Rice Trithorax factor ULTRAPETALA 1 (OsULT1) specifically binds to “GAGAG” sequence motif present in Polycomb response elements. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:582-597. [DOI: 10.1016/j.bbagrm.2019.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 02/07/2023]
|
43
|
Baier M, Bittner A, Prescher A, van Buer J. Preparing plants for improved cold tolerance by priming. PLANT, CELL & ENVIRONMENT 2019; 42:782-800. [PMID: 29974962 DOI: 10.1111/pce.13394] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/21/2018] [Accepted: 06/25/2018] [Indexed: 05/26/2023]
Abstract
Cold is a major stressor, which limits plant growth and development in many parts of the world, especially in the temperate climate zones. A large number of experimental studies has demonstrated that not only acclimation and entrainment but also the experience of single short stress events of various abiotic or biotic kinds (priming stress) can improve the tolerance of plants to chilling temperatures. This process, called priming, depends on a stress "memory". It does not change cold sensitivity per se but beneficially modifies the response to cold and can last for days, months, or even longer. Elicitor factors and antagonists accumulate due to increased biosynthesis or decreased degradation either during or after the priming stimulus. Comparison of priming studies investigating improved tolerance to chilling temperatures highlighted key regulatory functions of ROS/RNS and antioxidant enzymes, plant hormones, especially jasmonates, salicylates, and abscisic acid, and signalling metabolites, such as β- and γ-aminobutyric acid (BABA and GABA) and melatonin. We conclude that these elicitors and antagonists modify local and systemic cold tolerance by integration into cold-induced signalling cascades.
Collapse
Affiliation(s)
- Margarete Baier
- Plant Physiology, Dahlem Centre of Plant Sciences, Free University of Berlin, Berlin, Germany
| | - Andras Bittner
- Plant Physiology, Dahlem Centre of Plant Sciences, Free University of Berlin, Berlin, Germany
| | - Andreas Prescher
- Plant Physiology, Dahlem Centre of Plant Sciences, Free University of Berlin, Berlin, Germany
| | - Jörn van Buer
- Plant Physiology, Dahlem Centre of Plant Sciences, Free University of Berlin, Berlin, Germany
| |
Collapse
|
44
|
Chen H, Feng H, Zhang X, Zhang C, Wang T, Dong J. An Arabidopsis E3 ligase HUB2 increases histone H2B monoubiquitination and enhances drought tolerance in transgenic cotton. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:556-568. [PMID: 30117653 PMCID: PMC6381789 DOI: 10.1111/pbi.12998] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 05/02/2023]
Abstract
The HUB2 gene encoding histone H2B monoubiquitination E3 ligase is involved in seed dormancy, flowering timing, defence response and salt stress regulation in Arabidopsis thaliana. In this study, we used the cauliflower mosaic virus (CaMV) 35S promoter to drive AtHUB2 overexpression in cotton and found that it can significantly improve the agricultural traits of transgenic cotton plants under drought stress conditions, including increasing the fruit branch number, boll number, and boll-setting rate and decreasing the boll abscission rate. In addition, survival and soluble sugar, proline and leaf relative water contents were increased in transgenic cotton plants after drought stress treatment. In contrast, RNAi knockdown of GhHUB2 genes reduced the drought resistance of transgenic cotton plants. AtHUB2 overexpression increased the global H2B monoubiquitination (H2Bub1) level through a direct interaction with GhH2B1 and up-regulated the expression of drought-related genes in transgenic cotton plants. Furthermore, we found a significant increase in H3K4me3 at the DREB locus in transgenic cotton, although no change in H3K4me3 was identified at the global level. These results demonstrated that AtHUB2 overexpression changed H2Bub1 and H3K4me3 levels at the GhDREB chromatin locus, leading the GhDREB gene to respond quickly to drought stress to improve transgenic cotton drought resistance, but had no influence on transgenic cotton development under normal growth conditions. Our findings also provide a useful route for breeding drought-resistant transgenic plants.
Collapse
Affiliation(s)
- Hong Chen
- State Key Laboratory of AgrobiotechnologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Hao Feng
- State Key Laboratory of AgrobiotechnologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Xueyan Zhang
- Key Laboratory of Cotton Genetic ImprovementMinistry of AgricultureCotton Research InstituteChinese Academy of Agriculture SciencesAnyangChina
| | - Chaojun Zhang
- Key Laboratory of Cotton Genetic ImprovementMinistry of AgricultureCotton Research InstituteChinese Academy of Agriculture SciencesAnyangChina
| | - Tao Wang
- State Key Laboratory of AgrobiotechnologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Jiangli Dong
- State Key Laboratory of AgrobiotechnologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| |
Collapse
|
45
|
Hu Y, Lu Y, Zhao Y, Zhou DX. Histone Acetylation Dynamics Integrates Metabolic Activity to Regulate Plant Response to Stress. FRONTIERS IN PLANT SCIENCE 2019; 10:1236. [PMID: 31636650 PMCID: PMC6788390 DOI: 10.3389/fpls.2019.01236] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/05/2019] [Indexed: 05/20/2023]
Abstract
Histone lysine acetylation is an essential chromatin modification for epigenetic regulation of gene expression during plant response to stress. On the other hand, enzymes involved in histone acetylation homeostasis require primary metabolites as substrates or cofactors whose levels are greatly influenced by stress and growth conditions in plants. In addition, histone lysine acylation that requires similar enzymes for deposition and removal as histone acetylation has been recently characterized in plant. Results on understanding the intrinsic relationship between histone acetylation/acylation, metabolism and stress response in plants are accumulating. In this review, we summarize recent advance in the field and propose a model of interplay between metabolism and epigenetic regulation of genes expression in plant adaptation to stress.
Collapse
Affiliation(s)
- Yongfeng Hu
- College of Bioengineering, Jingchu University of Technology, Jingmen, China
| | - Yue Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Institute of Plant Science of Paris-Saclay (IPS2), CNRS, INRA, University Paris-sud 11, University Paris-Saclay, Orsay, France
- *Correspondence: Dao-Xiu Zhou,
| |
Collapse
|
46
|
Sharma C, Kumar S, Saripalli G, Jain N, Raghuvanshi S, Sharma JB, Prabhu KV, Sharma PK, Balyan HS, Gupta PK. H3K4/K9 acetylation and Lr28-mediated expression of six leaf rust responsive genes in wheat (Triticum aestivum). Mol Genet Genomics 2018; 294:227-241. [PMID: 30298213 DOI: 10.1007/s00438-018-1500-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/28/2018] [Indexed: 10/28/2022]
Abstract
Development of leaf rust-resistant cultivars is a priority during wheat breeding, since leaf rust causes major losses in yield. Resistance against leaf rust due to Lr genes is partly controlled by epigenetic modifications including histone acetylation that is known to respond to biotic/abiotic stresses. In the present study, enrichment of H3K4ac and H3K9ac in promoters of six defense responsive genes (N-acetyltransferase, WRKY 40, WRKY 70, ASR1, Peroxidase 12 and Sarcosine oxidase) was compared with their expression in a pair of near-isogenic lines (NILs) for the gene Lr28 following inoculation with leaf rust pathotype '77-5'; ChIP-qPCR was used for this purpose. The proximal and distal promoters of these genes contained a number of motifs that are known to respond to biotic stresses. The enrichment of two acetylation marks changed with passage of time; changes in expression of two of the six genes (N-acetyltransferase and peroxidase12), largely matched with changes in H3K4/H3K9 acetylation patterns of the two promoter regions. For example, enrichment of both the marks matched with higher expression of N-acetyltransferase gene in susceptible NIL and the deacetylation (H3K4ac) largely matched with reduced gene expression in resistant NIL. In peroxidase12, enrichment of H3K4ac and H3K9ac largely matched with higher expression in both the NILs. In the remaining four genes, changes in H3 acetylation did not always match with gene expression levels. This indicated complexity in the regulation of the expression of these remaining four genes, which may be controlled by other epigenetic/genetic regulatory mechanisms that need further analysis.
Collapse
Affiliation(s)
- Chanchal Sharma
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India.,Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan, Gyeongbuk, 38453, South Korea
| | - Santosh Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Gautam Saripalli
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India
| | - Neelu Jain
- Division of Genetics, ICAR-Indian Agricultural Research Institute (IARI), Pusa, New Delhi, 110022, India
| | - Saurabh Raghuvanshi
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - J B Sharma
- Division of Genetics, ICAR-Indian Agricultural Research Institute (IARI), Pusa, New Delhi, 110022, India
| | - K V Prabhu
- Division of Genetics, ICAR-Indian Agricultural Research Institute (IARI), Pusa, New Delhi, 110022, India
| | - P K Sharma
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India
| | - H S Balyan
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India
| | - P K Gupta
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India.
| |
Collapse
|
47
|
Bedi S, Nag Chaudhuri R. Transcription factor
ABI
3 auto‐activates its own expression during dehydration stress response. FEBS Lett 2018; 592:2594-2611. [DOI: 10.1002/1873-3468.13194] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/28/2018] [Accepted: 07/06/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Sonia Bedi
- Department of Biotechnology St. Xavier's College Kolkata India
| | | |
Collapse
|
48
|
Epigenetics and Epigenomics of Plants. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 164:237-261. [DOI: 10.1007/10_2017_51] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Paul A, Dasgupta P, Roy D, Chaudhuri S. Comparative analysis of Histone modifications and DNA methylation at OsBZ8 locus under salinity stress in IR64 and Nonabokra rice varieties. PLANT MOLECULAR BIOLOGY 2017; 95:63-88. [PMID: 28741224 DOI: 10.1007/s11103-017-0636-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 07/17/2017] [Indexed: 06/07/2023]
Abstract
Rice being an important cereal crop is highly sensitive to salinity stress causing growth retardation and loss in productivity. However, certain rice genotypes like Nonabokra and Pokkali show a high level of tolerance towards salinity stress compared to IR64 variety. This differential response of tolerant varieties towards salinity stress may be a cumulative effect of genetic and epigenetic factors. In this study, we have compared the salinity-induced changes in chromatin modifications at the OsBZ8 locus in salt-tolerant Nonabokra and salt-sensitive IR64 rice varieties. Expression analysis indicates that the OsBZ8 gene is highly induced in Nonabokra plants even in the absence of salt stress, whereas in IR64, the expression significantly increases only during salt stress. Sequence analysis and nucleosomal arrangement within the region -2000 to +1000 of OsBZ8 gene show no difference between the two rice varieties. However, there was a considerable difference in histone modifications and DNA methylation at the locus between these varieties. In Nonabokra, the upstream region was hyperacetylated at H3K9 and H3K27, and this acetylation did not change during salt stress. However, in IR64, histone acetylation was observed only during salt stress. Moreover, the upstream region of OsBZ8 gene has highly dynamic nucleosome arrangement in Nonabokra, compared to IR64. Furthermore, loss of DNA methylation was observed at OsBZ8 locus in Nonabokra control plants along with low H3K27me3 and high H3K4me3. Control IR64 plants show high DNA methylation and enriched H3K27me3. Collectively these results indicate a significant difference in chromatin modifications between the rice varieties that regulates differential expression of OsBZ8 gene during salt stress.
Collapse
Affiliation(s)
- Amit Paul
- Division of Plant Biology, Bose Institute, P 1/12 C.I.T. Scheme VII M, Kolkata, 700054, India
| | - Pratiti Dasgupta
- Division of Plant Biology, Bose Institute, P 1/12 C.I.T. Scheme VII M, Kolkata, 700054, India
| | - Dipan Roy
- Division of Plant Biology, Bose Institute, P 1/12 C.I.T. Scheme VII M, Kolkata, 700054, India
| | - Shubho Chaudhuri
- Division of Plant Biology, Bose Institute, P 1/12 C.I.T. Scheme VII M, Kolkata, 700054, India.
| |
Collapse
|
50
|
Green AL, Zhan L, Eid A, Zarbl H, Guo GL, Richardson JR. Valproate increases dopamine transporter expression through histone acetylation and enhanced promoter binding of Nurr1. Neuropharmacology 2017; 125:189-196. [PMID: 28743636 DOI: 10.1016/j.neuropharm.2017.07.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 07/17/2017] [Accepted: 07/18/2017] [Indexed: 12/19/2022]
Abstract
The dopamine transporter (DAT) is the key regulator of dopaminergic transmission and is a target of several xenobiotics, including pesticides and pharmacological agents. Previously, we identified a prominent role for histone deacetylases in the regulation of DAT expression. Here, we utilized a rat dopaminergic cell line (N27) to probe the responsiveness of DAT mRNA expression to inhibitors of histone acetylation. Inhibition of histone deacetylases (HDACs) by valproate, butyrate and Trichostatin A led to a 3-10-fold increase in DAT mRNA expression, a 50% increase in protein levels, which were accompanied by increased H3 acetylation levels. To confirm the mechanism of valproate-mediated increase in DAT mRNA, chromatin immunoprecipitation (ChIP) assays were used and demonstrated a significant increase in enrichment of acetylation of histone 3 on lysines 9 and 14 (H3K9/K14ac) in the DAT promoter. Expression of Nurr1 and Pitx3, key regulators of DAT expression, were increased following valproate treatment and Nurr1 binding was enriched in the DAT promoter. Together, these results indicate that histone acetylation and subsequent enhancement of transcription factor binding are plausible mechanisms for DAT regulation by valproate and, perhaps, by other xenobiotics.
Collapse
Affiliation(s)
- Ashley L Green
- Environmental and Occupational Health Sciences Institute, Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Le Zhan
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University Piscataway, NJ, USA
| | - Aseel Eid
- Department of Pharmaceutical Sciences, Center for Neurodegenerative Disease and Aging, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Helmut Zarbl
- Environmental and Occupational Health Sciences Institute, Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Grace L Guo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University Piscataway, NJ, USA
| | - Jason R Richardson
- Environmental and Occupational Health Sciences Institute, Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA; Department of Pharmaceutical Sciences, Center for Neurodegenerative Disease and Aging, Northeast Ohio Medical University, Rootstown, OH, USA.
| |
Collapse
|