1
|
Facheng Z, Rongli Q, Li Z, Baoxiang W, Sheng Y, Mingqiu S. Shaoyao Gancao decoction, an Ancient Classical Prescription: a review on its chemical composition, pharmacology, pharmacokinetics, clinical applications, and toxicology. J Pharm Pharmacol 2025:rgaf017. [PMID: 40328511 DOI: 10.1093/jpp/rgaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/27/2025] [Indexed: 05/08/2025]
Abstract
OBJECTIVES Shaoyao Gancao decoction (SGD) is a famous Ancient Classical Prescription (ACP) from "Treatise on Febrile Diseases." It has been clinically used for spasm- and pain-related disorders induced by insufficiency of Qi and blood and malnutrition of tendons and vessels for thousands of years. To expand comprehensive understanding and to highlight the importance of more effective utilization, this study aimed to provide a comprehensive review of SGD covering multiple research fields. METHODS Some databases, including PubMed, Web of Science, Google Scholar, and China National Knowledge Infrastructure, were used to collect the related information with "Shaoyao Gancao decoction" and similar ones as the keywords. KEY FINDINGS Phytochemical researches revealed that flavonoids and monoterpenoids were the predominant components in SGD. It was documented that SGD had demonstrated a variety of effects, such as analgesic and anti-inflammatory activity, neuroprotection, antispasmodic activity, gastrointestinal protection, hepatoprotection, anti-asthma activity, and effects on gynecological diseases. As for its toxicology, pseudoaldosteronism occasionally occurred and 18β-glycyrrhetyl-3-O-sulfate was believed to be a causative agent. CONCLUSIONS As a whole, many valuable achievements have been made, exhibiting great attraction and potential of SGD as a famous ACP. This review is also expected to facilitate SGD application and research in the future.
Collapse
Affiliation(s)
- Zhang Facheng
- Polifarma (Nanjing) Co., Ltd., Nanjing, 210038, PR China
| | - Qiu Rongli
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Zhang Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Wu Baoxiang
- Polifarma (Nanjing) Co., Ltd., Nanjing, 210038, PR China
| | - Yu Sheng
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Shan Mingqiu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| |
Collapse
|
2
|
Prasad K, Raghu KS, Maruthiyodan S, Wadhwa R, Kaul SC, Satyamoorthy K, Guruprasad KP. Promotion of cellular differentiation and DNA repair potential in brain cancer cells by Clitoria ternatea L. with rasayana properties in vitro. J Ayurveda Integr Med 2025; 16:101050. [PMID: 39798267 PMCID: PMC11773022 DOI: 10.1016/j.jaim.2024.101050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 06/03/2024] [Accepted: 08/08/2024] [Indexed: 01/15/2025] Open
Abstract
BACKGROUND Brain ageing is accompanied by the diminution of neuronal plasticity, which is correlated with the inability to respond to loss of memory, various stress-induced stimuli, and increased risk of neurodegenerative disorders. In the recent past, plant based herbal medicines are of interest over synthetic drugs for therapeutic purposes due to lower side effects. The Indian traditional medicine Ayurveda describes several herbal remedies, such as rasayana (elixirs for rejuvenation), to treat many age-related diseases. Medhya rasayana (brain elixir) is a class of rasayana used for its nootropic functions, such as enhancement of memory and intellect, in addition to promoting normal health. Clitoria ternatea L. is one such plant used in the preparation of medhya rasayana. OBJECTIVE To investigate the neuronal differentiation and DNA repair potential of Shankhpushpi (Clitoria ternatea L.) in neuroblastoma cells. MATERIALS & METHODS The effect of Clitoria ternatea L. on neuronal cell differentiation, DNA repair (base excision repair, comet, γH2AX immunostaining assays), autophagy by cadaverine uptake and mitochondrial functions by fluorescent dye staining through flow cytometry were evaluated. RESULTS The results revealed that Clitoria ternatea L. enhanced DNA repair and mitochondrial membrane potential and reduced autophagy and reactive oxygen species (ROS) in IMR-32 neuroblastoma cells. Treatment of IMR-32 neuroblastoma and C6 glioblastoma cells with shankhpushpi induced neuronal differentiation and exhibited markers such as MAP2, Mortalin and GFAP. CONCLUSION Neurobiological pathways and molecular mechanisms influenced by rasayana herb shankhpushpi suggests its therapeutic potential for neurodegenerative diseases.
Collapse
Affiliation(s)
- Keshava Prasad
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, 576 104, Karnataka, India
| | - Kothanahalli S Raghu
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, 576 104, Karnataka, India
| | - Swathi Maruthiyodan
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, 576 104, Karnataka, India
| | - Renu Wadhwa
- Drug Discovery and Assets Innovation DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Biomedical Research Institute, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 305 8565, Japan
| | - Sunil C Kaul
- Drug Discovery and Assets Innovation DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Biomedical Research Institute, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 305 8565, Japan
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, 576 104, Karnataka, India; Shri Dharmasthala Manjunatheshwara (SDM) University, SDM College of Medical Sciences and Hospital, Manjushree Nagar, Sattur, Dharwad, 580009, Karnataka, India
| | - Kanive Parashiva Guruprasad
- Centre for Ayurvedic Biology, Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
3
|
Lal R, Singh A, Watts S, Chopra K. Experimental models of Parkinson's disease: Challenges and Opportunities. Eur J Pharmacol 2024; 980:176819. [PMID: 39029778 DOI: 10.1016/j.ejphar.2024.176819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 05/29/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
Parkinson's disease (PD) is a widespread neurodegenerative disorder occurs due to the degradation of dopaminergic neurons present in the substantia nigra pars compacta (SNpc). Millions of people are affected by this devastating disorder globally, and the frequency of the condition increases with the increase in the elderly population. A significant amount of progress has been made in acquiring more knowledge about the etiology and the pathogenesis of PD over the past decades. Animal models have been regarded to be a vital tool for the exploration of complex molecular mechanisms involved in PD. Various animals used as models for disease monitoring include vertebrates (zebrafish, rats, mice, guinea pigs, rabbits and monkeys) and invertebrate models (Drosophila, Caenorhabditis elegans). The animal models most relevant for study of PD are neurotoxin induction-based models (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 6-Hydroxydopamine (6-OHDA) and agricultural pesticides (rotenone, paraquat), pharmacological models (reserpine or haloperidol treated rats), genetic models (α-synuclein, Leucine-rich repeat kinase 2 (LRRK2), DJ-1, PINK-1 and Parkin). Several non-mammalian genetic models such as zebrafish, Drosophila and Caenorhabditis elegance have also gained popularity in recent years due to easy genetic manipulation, presence of genes homologous to human PD, and rapid screening of novel therapeutic molecules. In addition, in vitro models (SH-SY5Y, PC12, Lund human mesencephalic (LUHMES) cells, Human induced pluripotent stem cell (iPSC), Neural organoids, organ-on-chip) are also currently in trend providing edge in investigating molecular mechanisms involved in PD as they are derived from PD patients. In this review, we explain the current situation and merits and demerits of the various animal models.
Collapse
Affiliation(s)
- Roshan Lal
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| | - Aditi Singh
- TR(i)P for Health Laboratory, Centre for Excellence in Functional Foods, Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City, Sector 81, SAS Nagar, Punjab, 140306, India.
| | - Shivam Watts
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| | - Kanwaljit Chopra
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
4
|
Lyu S, Zhang CS, Mao Z, Guo X, Li Z, Luo X, Sun J, Su Q. Real-world Chinese herbal medicine for Parkinson's disease: a hospital-based retrospective analysis of electronic medical records. Front Aging Neurosci 2024; 16:1362948. [PMID: 38756536 PMCID: PMC11096516 DOI: 10.3389/fnagi.2024.1362948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Background Parkinson's disease (PD) is a progressive neurodegenerative condition. Chinese medicine therapies have demonstrated effectiveness for PD in controlled settings. However, the utilization of Chinese medicine therapies for PD in real-world clinical practice and the characteristics of patients seeking these therapies have not been thoroughly summarized. Method The study retrospectively analyzed initial patient encounters (PEs) with a first-listed diagnosis of PD, based on electronic medical records from Guangdong Provincial Hospital of Chinese Medicine between July 2018 and July 2023. Results A total of 3,206 PEs, each corresponding to an individual patient, were eligible for analyses. Approximately 60% of patients made initial visits to the Chinese medicine hospital after receiving a PD diagnosis, around 4.59 years after the onset of motor symptoms. Over 75% of the patients visited the Internal Medicine Outpatient Clinic at their initial visits, while a mere 13.85% visited PD Chronic Care Clinic. Rest tremor (61.98%) and bradykinesia (52.34%) are the most commonly reported motor symptoms, followed by rigidity (40.70%). The most commonly recorded non-motor symptoms included constipation (31.88%) and sleep disturbance (25.27%). Integration of Chinese medicine and conventional medicine therapies was the most common treatment method (39.15%), followed by single use of Chinese herbal medicine (27.14%). The most frequently prescribed herbs for PD included Glycyrrhiza uralensis Fisch. (gan cao), Astragalus mongholicus Bunge (huang qi), Atractylodes macrocephala Koidz. (bai zhu), Angelica sinensis (Oliv.) Diels (dang gui), Rehmannia glutinosa (Gaertn.) DC. (di huang), Paeonia lactiflora Pall. (bai shao), Bupleurum chinense DC. (chai hu), Citrus aurantium L. (zhi qiao/zhi shi/chen pi), Panax ginseng C. A. Mey. (ren shen), and Poria cocos (Schw.) Wolf (fu ling). These herbs contribute to formulation of Bu zhong yi qi tang (BZYQT). Conclusion Patients typically initiated Chinese medical care after the establishment of PD diagnosis, ~4.59 years post-onset of motor symptoms. The prevalent utilization of CHM decoctions and patented Chinese herbal medicine products, underscores its potential in addressing both motor and non-motor symptoms. Despite available evidence, rigorous clinical trials are needed to validate and optimize the integration of CHM, particularly BZYQT, into therapeutic strategies for PD.
Collapse
Affiliation(s)
- Shaohua Lyu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Claire Shuiqing Zhang
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, VIC, Australia
| | - Zhenhui Mao
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Xinfeng Guo
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Zhe Li
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Xiaodong Luo
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Jingbo Sun
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Qiaozhen Su
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| |
Collapse
|
5
|
IMATSUJI SAYAKA, UJIE YUKIKO, ODAKE HIROYUKI, IMOTO MASAYA, ITOH SUSUMU, TASHIRO ETSU. Cisplatin-induced activation of TGF-β signaling contributes to drug resistance. Oncol Res 2023; 32:139-150. [PMID: 38188677 PMCID: PMC10767239 DOI: 10.32604/or.2023.030190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 08/09/2023] [Indexed: 01/09/2024] Open
Abstract
Growing evidence suggests an association between epithelial-mesenchymal transition (EMT), a hallmark of tumor malignancy, and chemoresistance to a number of anti-cancer drugs. However, the mechanism of EMT induction in the process of acquiring anti-cancer drug resistance remains unclear. To address this issue, we obtained a number of cisplatin-resistant clones from LoVo cells and found that almost all of them lost cell-cell contacts. In these clones, the epithelial marker E-cadherin was downregulated, whereas the mesenchymal marker N-cadherin was upregulated. Moreover, the expression of EMT-related transcription factors, including Slug, was elevated. On the other hand, the upregulation of other mesenchymal marker Vimentin was weak, suggesting that the mesenchymal-like phenotypic changes occurred in these cisplatin-resistant clones. These mesenchymal-like features of cisplatin-resistant clones were partially reversed to parental epithelial-like features by treatment with transforming growth factor-β (TGF-β) receptor kinase inhibitors, indicating that TGF-β signaling is involved in cisplatin-induced the mesenchymal-like phenotypic changes. Moreover, cisplatin was observed to enhance the secretion of TGF-β into the culture media without influencing TGF-β gene transcription. These results suggest that cisplatin may induce the mesenchymal-like phenotypic changes by enhancing TGF-β secretion, ultimately resulting in drug resistance.
Collapse
Affiliation(s)
- SAYAKA IMATSUJI
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, 223-8522, Japan
| | - YUKIKO UJIE
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, 223-8522, Japan
| | - HIROYUKI ODAKE
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, 223-8522, Japan
| | - MASAYA IMOTO
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, 223-8522, Japan
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - SUSUMU ITOH
- Laboratory of Biochemistry, Showa Pharmaceutical University, Tokyo, 194-8543, Japan
| | - ETSU TASHIRO
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, 223-8522, Japan
- Laboratory of Biochemistry, Showa Pharmaceutical University, Tokyo, 194-8543, Japan
| |
Collapse
|
6
|
Bērziņa L, Mieriņa I. Antiradical and Antioxidant Activity of Compounds Containing 1,3-Dicarbonyl Moiety: An Overview. Molecules 2023; 28:6203. [PMID: 37687032 PMCID: PMC10488980 DOI: 10.3390/molecules28176203] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/12/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Free radicals and oxidants may cause various damages both to the lifeworld and different products. A typical solution for the prophylaxis of oxidation-caused conditions is the usage of various antioxidants. Among them, various classes are found-polyphenols, conjugated polyalkenes, and some sulfur and nitrogen derivatives. Regarding the active site in the molecules, a widely discussed group of compounds are 1,3-dicarbonyl compounds. Among them are natural (e.g., curcumin and pulvinic acids) and synthetic (e.g., 4-hydroxy coumarins, substituted Meldrum's acids) compounds. Herein, information about various compounds containing the 1,3-dicarbonyl moiety is covered, and their antiradical and antioxidant activity, depending on the structure, is discussed.
Collapse
Affiliation(s)
| | - Inese Mieriņa
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, LV-1048 Riga, Latvia;
| |
Collapse
|
7
|
Atiq A, Lee HJ, Khan A, Kang MH, Rehman IU, Ahmad R, Tahir M, Ali J, Choe K, Park JS, Kim MO. Vitamin E Analog Trolox Attenuates MPTP-Induced Parkinson's Disease in Mice, Mitigating Oxidative Stress, Neuroinflammation, and Motor Impairment. Int J Mol Sci 2023; 24:9942. [PMID: 37373089 DOI: 10.3390/ijms24129942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Trolox is a potent antioxidant and a water-soluble analog of vitamin E. It has been used in scientific studies to examine oxidative stress and its impact on biological systems. Trolox has been shown to have a neuroprotective effect against ischemia and IL-1β-mediated neurodegeneration. In this study, we investigated the potential protective mechanisms of Trolox against a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease mouse model. Western blotting, immunofluorescence staining, and ROS/LPO assays were performed to investigate the role of trolox against neuroinflammation, the oxidative stress mediated by MPTP in the Parkinson's disease (PD) mouse model (wild-type mice (C57BL/6N), eight weeks old, average body weight 25-30 g). Our study showed that MPTP increased the expression of α-synuclein, decreased tyrosine hydroxylase (TH) and dopamine transporter (DAT) levels in the striatum and substantia nigra pars compacta (SNpc), and impaired motor function. However, Trolox treatment significantly reversed these PD-like pathologies. Furthermore, Trolox treatment reduced oxidative stress by increasing the expression of nuclear factor erythroid-2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1). Lastly, Trolox treatment inhibited the activated astrocytes (GFAP) and microglia (Iba-1), also reducing phosphorylated nuclear factor-κB, (p-NF-κB) and tumor necrosis factor-alpha (TNF-α) in the PD mouse brain. Overall, our study demonstrated that Trolox may exert neuroprotection on dopaminergic neurons against MPTP-induced oxidative stress, neuroinflammation, motor dysfunction, and neurodegeneration.
Collapse
Affiliation(s)
- Abubakar Atiq
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyeon Jin Lee
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Amjad Khan
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Min Hwa Kang
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Inayat Ur Rehman
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Riaz Ahmad
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Muhammad Tahir
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jawad Ali
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Kyonghwan Choe
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Jun Sung Park
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
- Alz-Dementia Korea Co., Jinju 52828, Republic of Korea
| |
Collapse
|
8
|
Savall ASP, Fidelis EM, de Mello JD, Quines CB, Denardin CC, Marques LS, Klann IP, Nogueira CW, Sampaio TB, Pinton S. Neuroprotective effect of Eugenia uniflora against intranasal MPTP-induced memory impairments in rats: The involvement of pro-BDNF/p75 NTR pathway. Life Sci 2023; 324:121711. [PMID: 37088413 DOI: 10.1016/j.lfs.2023.121711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
Parkinson's disease is a multisystemic neurodegenerative disorder that includes motor and non-motor symptoms, and common symptoms include memory loss and learning difficulties. Thus, we investigated the neuroprotective potential of a hydroalcoholic extract of Brazilian purple cherry (Eugenia uniflora) (HAE-BC) on memory impairments induced by intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration in rats and the involvement of hippocampal BDNF/TrkB/p75NTR pathway in its effects. Adult male Wistar rats were exposed to MPTP (1 mg/nostril) or vehicle. Twenty-four hours later, the HAE-BC treatments began at doses of 300 or 2000 mg/kg/day or vehicle for 14 days. From 7 days after the MPTP induction, the animals were subjected to behavioral tests to evaluate several cognitive paradigms. HAE-BC treatments, at both doses, blocked the MPTP-caused disruption in the social recognition memory, short- and long-term object recognition memories, and working memory. Furthermore, MPTP-induced motor deficit linked to striatal tyrosine hydroxylase levels decreased, which was blocked by HAE-BC. Our findings demonstrated that HAE-BC blocked the MPTP-induced increase in the hippocampal pro-BDNF, TrkB.t1, and p75NTR levels. The pro-BDNF/p75NTR interaction negatively regulates synaptic transmission and plasticity, and the neuroprotective effect of HAE-BC was related, at least partly, to the modulation of this hippocampal signaling pathway. Thus, our study reports the first evidence of the potential therapeutic of E. uniflora in a Parkinson's disease model in rodents.
Collapse
Affiliation(s)
| | | | | | | | | | - Luiza Souza Marques
- Federal University of Santa Maria - Campus Camobi, Santa Maria CEP 97105-900, RS, Brazil
| | | | | | | | - Simone Pinton
- Federal University of Pampa - Campus Uruguaiana, Uruguaiana CEP 97500-970, RS, Brazil.
| |
Collapse
|
9
|
Nian Y, Hu X, Zhang R, Feng J, Du J, Li F, Bu L, Zhang Y, Chen Y, Tao C. Mining on Alzheimer's diseases related knowledge graph to identity potential AD-related semantic triples for drug repurposing. BMC Bioinformatics 2022; 23:407. [PMID: 36180861 PMCID: PMC9523633 DOI: 10.1186/s12859-022-04934-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To date, there are no effective treatments for most neurodegenerative diseases. Knowledge graphs can provide comprehensive and semantic representation for heterogeneous data, and have been successfully leveraged in many biomedical applications including drug repurposing. Our objective is to construct a knowledge graph from literature to study the relations between Alzheimer's disease (AD) and chemicals, drugs and dietary supplements in order to identify opportunities to prevent or delay neurodegenerative progression. We collected biomedical annotations and extracted their relations using SemRep via SemMedDB. We used both a BERT-based classifier and rule-based methods during data preprocessing to exclude noise while preserving most AD-related semantic triples. The 1,672,110 filtered triples were used to train with knowledge graph completion algorithms (i.e., TransE, DistMult, and ComplEx) to predict candidates that might be helpful for AD treatment or prevention. RESULTS Among three knowledge graph completion models, TransE outperformed the other two (MR = 10.53, Hits@1 = 0.28). We leveraged the time-slicing technique to further evaluate the prediction results. We found supporting evidence for most highly ranked candidates predicted by our model which indicates that our approach can inform reliable new knowledge. CONCLUSION This paper shows that our graph mining model can predict reliable new relationships between AD and other entities (i.e., dietary supplements, chemicals, and drugs). The knowledge graph constructed can facilitate data-driven knowledge discoveries and the generation of novel hypotheses.
Collapse
Affiliation(s)
- Yi Nian
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, 7000 Fannin St, Houston, TX 77030 USA
| | - Xinyue Hu
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, 7000 Fannin St, Houston, TX 77030 USA
| | - Rui Zhang
- Department of Pharmaceutical Care & Health System (PCHS) and the Institute for Health Informatics (IHI), University of Minnesota, 7-115A Weaver-Densford Hall, Minneapolis, MN 55455 USA
| | - Jingna Feng
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, 7000 Fannin St, Houston, TX 77030 USA
| | - Jingcheng Du
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, 7000 Fannin St, Houston, TX 77030 USA
| | - Fang Li
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, 7000 Fannin St, Houston, TX 77030 USA
| | - Larry Bu
- University of Maryland School of Medicine, 655 W Baltimore St S, Baltimore, MD 21201 USA
| | - Yuji Zhang
- University of Maryland School of Medicine, 655 W Baltimore St S, Baltimore, MD 21201 USA
| | - Yong Chen
- Department of Biostatistics, Epidemiology and Informatics (DBEI), the Perelman School of Medicine, University of Pennsylvania, 602 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104 USA
| | - Cui Tao
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, 7000 Fannin St, Houston, TX 77030 USA
| |
Collapse
|
10
|
Mustapha M, Taib CNM. MPTP-induced mouse model of Parkinson's disease: A promising direction of therapeutic strategies. Bosn J Basic Med Sci 2021; 21:422-433. [PMID: 33357211 PMCID: PMC8292858 DOI: 10.17305/bjbms.2020.5181] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/10/2020] [Indexed: 12/23/2022] Open
Abstract
Among the popular animal models of Parkinson's disease (PD) commonly used in research are those that employ neurotoxins, especially 1-methyl- 4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP). This neurotoxin exerts it neurotoxicity by causing a barrage of insults, such as oxidative stress, mitochondrial apoptosis, inflammation, excitotoxicity, and formation of inclusion bodies acting singly and in concert, ultimately leading to dopaminergic neuronal damage in the substantia nigra pars compacta and striatum. The selective neurotoxicity induced by MPTP in the nigrostriatal dopaminergic neurons of the mouse brain has led to new perspectives on PD. For decades, the MPTP-induced mouse model of PD has been the gold standard in PD research even though it does not fully recapitulate PD symptomatology, but it does have the advantages of simplicity, practicability, affordability, and fewer ethical considerations and greater clinical correlation than those of other toxin models of PD. The model has rejuvenated PD research and opened new frontiers in the quest for more novel therapeutic and adjuvant agents for PD. Hence, this review summarizes the role of MPTP in producing Parkinson-like symptoms in mice and the experimental role of the MPTP-induced mouse model. We discussed recent developments of more promising PD therapeutics to enrich our existing knowledge about this neurotoxin using this model.
Collapse
Affiliation(s)
- Musa Mustapha
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor (Darul Ehsan), Malaysia
- Department of Human Anatomy, Faculty of Basic Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Che Norma Mat Taib
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor (Darul Ehsan), Malaysia
| |
Collapse
|
11
|
Shinde VN, Rangan K, Kumar D, Kumar A. Palladium-Catalyzed Weakly Coordinating Lactone-Directed C-H Bond Functionalization of 3-Arylcoumarins: Synthesis of Bioactive Coumestan Derivatives. J Org Chem 2021; 86:9755-9770. [PMID: 34181412 DOI: 10.1021/acs.joc.1c01097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A palladium-catalyzed highly regioselective ortho-selective C-H functionalization of 3-arylcoumarins has been developed. The method utilizes the weakly coordinating lactone as a directing group. The versatility of the strategy is highlighted by developing methodologies for alkenylation, halogenation, fluoroalkoxylation, and hydroxylation. Different functional groups were well tolerated, and functionalized coumarins were obtained in moderate to high yields. The method also showed good selectivity for monofunctionalization versus difunctionalization. The generated ortho-hydroxy derivatives were cyclized in the presence of DDQ, thus developing a simple and fast method for the synthesis of bioactive coumestan from 3-arylcoumarins.
Collapse
Affiliation(s)
- Vikki N Shinde
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Krishnan Rangan
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Telangana 500078, India
| | - Dalip Kumar
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Anil Kumar
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| |
Collapse
|
12
|
Tu Y, Yang Y, Li Y, He C. Naturally occurring coumestans from plants, their biological activities and therapeutic effects on human diseases. Pharmacol Res 2021; 169:105615. [PMID: 33872808 DOI: 10.1016/j.phrs.2021.105615] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/24/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023]
Abstract
Naturally occurring coumestans are known as a collection of plant-derived polycyclic aromatic secondary metabolites which are characterized by the presence of an oxygen heterocyclic four-ring system comprising a coumarin moiety and a benzofuran moiety sharing a C˭C bond. Recently, there is an increasing attention in excavating the medicinal potential of coumestans, particularly coumestrol, wedelolactone, psoralidin and glycyrol, in a variety of diseases. This review is a comprehensive inventory of the chemical structures of coumestans isolated from various plant sources during the period of 1956-2020, together with their reported biological activities. 120 molecules were collected and further classified as coumestans containing core skeleton, dimethylpyranocoumestans, furanocoumestans, O-glycosylated coumestans and others, which showed a wide range of pharmacological activities including estrogenic, anti-cancer, anti-inflammatory, anti-osteoporotic, organ protective, neuroprotective, anti-diabetic and anti-obesity, antimicrobial, immunosuppressive, antioxidant and skin-protective activities. Furthermore, this review focuses on the counteraction of coumestans against bone diseases and organ damages, and the involved molecular mechanisms, which could provide important information to better understand the medicinal values of these compounds. This review is intended to be instructive for the rational design and development of less toxic and more effective drugs with a coumestan scaffold.
Collapse
Affiliation(s)
- Yanbei Tu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Ying Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Yanfang Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China.
| |
Collapse
|
13
|
Yang Z, Li J, Chen X, Zhao X, Wang Y. Deciphering bioactive compounds of complex natural products by tandem mass spectral molecular networking combined with an aggregation-induced emission based probe. J Pharm Anal 2020; 12:129-135. [PMID: 35573878 PMCID: PMC9073139 DOI: 10.1016/j.jpha.2020.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 01/18/2023] Open
Abstract
Natural products are great treasure troves for the discovery of bioactive components. Current bioassay guided fractionation for identification of bioactive components is time- and workload-consuming. In this study, we proposed a robust and convenient strategy for deciphering the bioactive profile of natural products by mass spectral molecular networking combined with rapid bioassay. As a proof-of-concept, the strategy was applied to identify angiotensin converting enzyme (ACE) inhibitors of Fangjihuangqi decoction (FJHQD), a traditional medicine clinically used for the treatment of heart failure. The chemical profile of FJHQD was comprehensively revealed with the assistance of tandem mass spectral molecular networking, and a total of 165 compounds were identified. With characterized constituents, potential clinical applications of FJHQD were predicted by Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine, and a range of cardiovascular related diseases were significantly enriched. ACE inhibitory activities of FJHQD and its constituents were then investigated with an aggregation-induced emission based fluorescent probe. FJHQD exhibited excellent ACE inhibitory effects, and a bioactive molecular network was established to elucidate the ACE inhibitory profile of constituents in FJHQD. This bioactive molecular network provided a panoramic view of FJHQD's ACE inhibitory activities, which demonstrated that flavones from Astragali Radix and Glycyrrhizae Radix et Rhizoma, saponins from Astragali Radix, and sesquiterpenoids from Atractylodis Macrocephalae Rhizoma were principal components responsible for this effect of FJHQD. Among them, four novel ACE inhibitors were the first to be reported. Our study indicated that the proposed strategy offers a useful approach to uncover the bioactive profile of traditional medicines and provides a pragmatic workflow for exploring bioactive components. A novel strategy for deciphering the bioactive profile of traditional medicines was proposed. The chemical profile of FJHQD was revealed with assist of tandem mass spectral molecular networking. Four new angiotensin converting enzyme inhibitors were discovered.
Collapse
Affiliation(s)
- Zhenzhong Yang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jun Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xuechun Chen
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoping Zhao
- College of Preclinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Corresponding author.
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Corresponding author.
| |
Collapse
|
14
|
Abstract
Licorice is a traditional medicine commonly used in China and many other countries. Over the last 50 years, the structure and pharmacological effects of coumarin compounds in licorice have been investigated. However, a comprehensive review of the literature summarizing current trends is currently lacking. Thus, the aim of the present review is to provide an up-to-date summary of the scientific literature regarding the pharmacological effects of coumarin compounds in licorice, thereby laying the foundation for further research and optimal utilization of licorice. We retrieved 111 articles on the coumarin components of licorice and their potential pharmacological effects, based on titles, keywords, and abstracts from databases (including PubMed and Web of Science). Glycycoumarin, isoglycycoumarin, licoarylcoumarin, licopyranocoumarin, glycyrin, isotrifoliol, glycyrol, and glycyrurol have been investigated for their anticancer, hepatoprotective, antispasmodic, immunosuppressive, anti-inflammatory, and antibacterial properties, and use as therapeutic agents in metabolic syndrome, thereby demonstrating their potential for clinical applications. Future research should further explore the pharmacological mechanisms of action of coumarin compounds, including their antibacterial activities. Investigations into the pharmacological activities of different glycycoumarin isomers might open new research frontiers.
Collapse
Affiliation(s)
- Yimei Zang
- Pharmacy Teaching and Research Office, Biomedicine College, Beijing City University, Beijing, P. R. China
| |
Collapse
|
15
|
Chang YM, Manoj Kumar M, Lu CY, Te Tsai C, Tsai CC, Liao PH, Lin SL, Chang CC, Mahalakshmi B, Kuo WW, Huang CY. Parkinson's disease a futile entangle of Mankind's credence on an herbal remedy: A review. Life Sci 2020; 257:118019. [PMID: 32629002 DOI: 10.1016/j.lfs.2020.118019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/14/2020] [Accepted: 06/24/2020] [Indexed: 10/23/2022]
Abstract
Parkinson's disease (PD) is a disease of the human nervous system with an onset, in the sixth and seventh decades of the human life. Chiefly perceived as progressive degeneration of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) with the ensued loss of dopamine in the striatum and the presence of Lewy bodies, consisting of α-synuclein agglomeration. In which the neuronal bridge between substantia nigra and striatum plays an advent role in the motor system. Dilapidation of these neurons results in dopamine depletion which in-turn makes hay to PD. Eventually, the etiology and pathogenesis of PD were still on a hike of dilemma. Traditional Chinese medicine (TCM), including Chinese herbal remedies, acupuncture, and manipulative therapies, is commonly used as an adjunctive therapy in different diseases, particularly neurological diseases, in Asian countries. Additionally, TCM might improve the prognoses and the quality of life of patients with PD because it induces less adverse drug reactions. The present review describes research on the various neuroprotective components and herbal extracts from herbal medicines in the context of addressing the effects of PD.
Collapse
Affiliation(s)
- Yung Ming Chang
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan; Chinese Medicine Department, E-DA Hospital, Kaohsiung, Taiwan; 1PT Biotechnology Co., Ltd., Taichung, Taiwan
| | - M Manoj Kumar
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Cheng You Lu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | | | - Chin Chuan Tsai
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan; Chinese Medicine Department, E-DA Hospital, Kaohsiung, Taiwan
| | - Po Hsiang Liao
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Shu Luan Lin
- 1PT Lukang Chinese Medicine Clinics, Changhua, Taiwan
| | - Chia Cheng Chang
- Department of Physical Therapy, I-Shou University, Kaohsiung, Taiwan
| | - B Mahalakshmi
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - Wei Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan.
| | - Chih Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan; Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan; Department of Biotechnology, Asia University, Taichung 413, Taiwan.
| |
Collapse
|
16
|
Kataura T, Saiki S, Ishikawa KI, Akamatsu W, Sasazawa Y, Hattori N, Imoto M. BRUP-1, an intracellular bilirubin modulator, exerts neuroprotective activity in a cellular Parkinson's disease model. J Neurochem 2020; 155:81-97. [PMID: 32128811 DOI: 10.1111/jnc.14997] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/11/2020] [Accepted: 02/27/2020] [Indexed: 01/20/2023]
Abstract
Bilirubin, the end product of heme redox metabolism, has cytoprotective properties and is an essential metabolite associated with cardiovascular disease, inflammatory bowel disease, type 2 diabetes, and neurodegenerative diseases including Parkinson's disease (PD). PD is characterized by progressive degeneration of nigral dopaminergic neurons and is associated with elevated oxidative stress due to mitochondrial dysfunction. In this study, using a ratiometric bilirubin probe, we revealed that the mitochondrial inhibitor, rotenone, which is widely used to create a PD model, significantly decreased intracellular bilirubin levels in HepG2 cells. Chemical screening showed that BRUP-1 was a top hit that restored cellular bilirubin levels that were lowered by rotenone. We found that BRUP-1 up-regulated the expression level of heme oxygenase-1 (HO-1), one of the rate-limiting enzyme of bilirubin production via nuclear factor erythroid 2-related factor 2 (Nrf2) activation. In addition, we demonstrated that this Nrf2 activation was due to a direct inhibition of the interaction between Nrf2 and Kelch-like ECH-associated protein 1 (Keap1) by BRUP-1. Both HO-1 up-regulation and bilirubin restoration by BRUP-1 treatment were significantly abrogated by Nrf2 silencing. In neuronal PC12D cells, BRUP-1 also activated the Nrf2-HO-1 axis and increased bilirubin production, resulted in the suppression of neurotoxin-induced cell death, reactive oxygen species production, and protein aggregation, which are hallmarks of PD. Furthermore, BRUP-1 showed neuroprotective activity against rotenone-treated neurons derived from induced pluripotent stem cells. These findings provide a new member of Keap1-Nrf2 direct inhibitors and suggest that chemical modulation of heme metabolism using BRUP-1 may be beneficial for PD treatment.
Collapse
Affiliation(s)
- Tetsushi Kataura
- Department of Biosciences and Informatics, Keio University, Yokohama, Japan.,Research Fellow, Japan Society for the Promotion of Science, Chiyoda, Tokyo, Japan
| | - Shinji Saiki
- Department of Neurology, Juntendo University School of Medicine, Bunkyo, Tokyo, Japan
| | - Kei-Ichi Ishikawa
- Department of Neurology, Juntendo University School of Medicine, Bunkyo, Tokyo, Japan.,Center for Genomic and Regenerative Medicine, Juntendo University School of Medicine, Bunkyo, Tokyo, Japan
| | - Wado Akamatsu
- Center for Genomic and Regenerative Medicine, Juntendo University School of Medicine, Bunkyo, Tokyo, Japan
| | - Yukiko Sasazawa
- Department of Biosciences and Informatics, Keio University, Yokohama, Japan.,Department of Neurology, Juntendo University School of Medicine, Bunkyo, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Bunkyo, Tokyo, Japan
| | - Masaya Imoto
- Department of Biosciences and Informatics, Keio University, Yokohama, Japan
| |
Collapse
|
17
|
Ostrowska K. Coumarin-piperazine derivatives as biologically active compounds. Saudi Pharm J 2020; 28:220-232. [PMID: 32042262 PMCID: PMC7000312 DOI: 10.1016/j.jsps.2019.11.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 11/29/2019] [Indexed: 11/06/2022] Open
Abstract
A number of psychiatric disorders, including anxiety, schizophrenia, Parkinson's disease, depression and others CNS diseases are known to induce defects in the function of neural pathways sustained by the neurotransmitters, like dopamine and serotonin. N-arylpiperazine moiety is important for CNS-activity, particularly for serotonergic and dopaminergic activity. In the scientific literature there are many examples of coumarin-piperazine derivatives, particularly with arylpiperazines linked to a coumarin system via an alkyl liner, which can modulate serotonin, dopamine and adrenergic receptors. Numerous studies have revealed that the inclusion of a piperazine moiety could occasionally provide unexpected improvements in the bioactivity of various biologically active compounds. The piperazine analogs have been shown to have a potent antimicrobial activity and they can also act as BACE-1 inhibitors. On the other hand, arylpiperazines linked to coumarin derivatives have been shown to have antiproliferative activity against leukemia, lung, colon, breast, and prostate tumors. Recently, it has been reported that coumarin-piperazine derivatives exhibit a Fneuroprotective effect by their antioxidant and anti-inflammatory activities and they also show activity as acetylcholinesterase inhibitors and antifilarial activity. In this work we provide a summary of the latest advances in coumarin-related chemistry relevant for biological activity.
Collapse
|
18
|
Wang C, Chen L, Xu C, Shi J, Chen S, Tan M, Chen J, Zou L, Chen C, Liu Z, Liu X. A Comprehensive Review for Phytochemical, Pharmacological, and Biosynthesis Studies on Glycyrrhiza spp. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:17-45. [PMID: 31931596 DOI: 10.1142/s0192415x20500020] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Licorice is extensively applied in food as well as herbal medicine across the world, possessing a substantial share in the global market. It has made great progress in chemical and pharmacological research in recent years. Currently, Glycyrrhiza uralensis Fisch., Glycyrrhiza inflata Bat., and Glycyrrhiza glabra L. were officially used as Gan-Cao according to the Chinese Pharmacopoeia. Accumulating evidence demonstrated three varieties of licorice have their own special compounds except for two quality markers set by Pharmacopoeia, providing great possibility for better understanding their characteristics, evaluating quality of each species and studying biosynthesis mechanisms of species-specific compounds. As a special "guide drug" in clinic, licorice plays an important role in Chinese herbal formulas. The interaction between licorice with other ingredients and their metabolism in vivo should also be taken into consideration. In addition, draft genome annotation, and success of the final step of glycyrrhizin biosynthesis have paved the way for biosynthesis of other active constituents in licorice, a promising beginning of solving source shortage. Accordingly, we comprehensively explored the nearly 400 chemical compounds found in the three varieties of licorice so far, systematically excavated various pharmacological activities, including metabolism via CYP450 system in vivo, and introduced the complete biosynthesis pathway of glycyrrhizin in licorice. The review will facilitate the further research toward this herbal medicine.
Collapse
Affiliation(s)
- Chengcheng Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Lihong Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Chaoqie Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Jingjing Shi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Shuyu Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Mengxia Tan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Jiali Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Lisi Zou
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Cuihua Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Zixiu Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Xunhong Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China.,Collaborative Innovation Center of Chinese, Medicinal Resources Industrialization, Nanjing 210023, P. R. China.,National and Local Collaborative Engineering, Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing 210023, P. R. China
| |
Collapse
|
19
|
Zhang J, He Y, Jiang X, Jiang H, Shen J. Nature brings new avenues to the therapy of central nervous system diseases—An overview of possible treatments derived from natural products. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1332-1367. [DOI: 10.1007/s11427-019-9587-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/01/2019] [Indexed: 12/11/2022]
|
20
|
Park SH, Hwang MS, Park HJ, Shin HK, Baek JU, Choi BT. Herbal Prescriptions and Medicinal Herbs for Parkinson-Related Rigidity in Korean Medicine: Identification of Candidates Using Text Mining. J Altern Complement Med 2018; 24:733-740. [PMID: 29583014 DOI: 10.1089/acm.2017.0387] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Dongeuibogam (DongYiBaoGian), one of the most important books in Korean medicine, comprises a comprehensive summary of all traditional medicines of North-East Asia before the 17th century. This medicinal literature was mined to establish a list of candidate herbs to treat Parkinson-related rigidity. METHODS A systematic search for terms describing Parkinson-related rigidity and candidate prescriptions for the treatment of Parkinson-related rigidity in the Dongeuibogam was performed. A high-frequency medicinal herb combination group and candidates for the treatment of Parkinson-related rigidity were also selected through an analysis of medicinal herb combination frequencies. The existing literature pertaining to the potential effects of candidate herbs for Parkinson-related rigidity was reviewed. RESULTS AND CONCLUSIONS Ten medicinal herb candidates for the treatment of Parkinson-related rigidity were selected, and their respective precedent studies were analyzed.
Collapse
Affiliation(s)
- So Hyun Park
- 1 Division of Humanities and Social Medicine, School of Korean Medicine, Pusan National University , Yangsan, Republic of Korea
| | - Min Seob Hwang
- 1 Division of Humanities and Social Medicine, School of Korean Medicine, Pusan National University , Yangsan, Republic of Korea
| | - Hye Jin Park
- 1 Division of Humanities and Social Medicine, School of Korean Medicine, Pusan National University , Yangsan, Republic of Korea
| | - Hwa Kyoung Shin
- 2 Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University , Yangsan, Republic of Korea
| | - Jin Ung Baek
- 1 Division of Humanities and Social Medicine, School of Korean Medicine, Pusan National University , Yangsan, Republic of Korea
| | - Byung Tae Choi
- 2 Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University , Yangsan, Republic of Korea
| |
Collapse
|
21
|
Igarashi Y, Matsuoka N, In Y, Kataura T, Tashiro E, Saiki I, Sudoh Y, Duangmal K, Thamchaipenet A. Nonthmicin, a Polyether Polyketide Bearing a Halogen-Modified Tetronate with Neuroprotective and Antiinvasive Activity from Actinomadura sp. Org Lett 2017; 19:1406-1409. [PMID: 28256141 DOI: 10.1021/acs.orglett.7b00318] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nonthmicin (1), a new polyether polyketide bearing a chlorinated tetronic acid, was isolated from the culture extract of a soil-derived Actinomadura strain. The structure of 1 was elucidated by interpretation of NMR and MS spectroscopic data, and the absolute configuration of 1 was proposed on the basis of the crystal structure of its dechloro congener ecteinamycin (2) also isolated from the same strain. Tetronic acids modified by halogenation have never been reported from natural products. Compounds 1 and 2 were found to have neuroprotective activity and antimetastatic properties at submicromolar concentrations in addition to antibacterial activity.
Collapse
Affiliation(s)
- Yasuhiro Igarashi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University , Imizu, Toyama 939-0398, Japan
| | - Noriaki Matsuoka
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University , Imizu, Toyama 939-0398, Japan
| | - Yasuko In
- Department of Physical Chemistry, Osaka University of Pharmaceutical Sciences , Takatsuki, Osaka 569-1041, Japan
| | - Tetsushi Kataura
- Bioscience and Informatics, Keio University , Yokohama, Kanagawa 223-8522, Japan
| | - Etsu Tashiro
- Bioscience and Informatics, Keio University , Yokohama, Kanagawa 223-8522, Japan
| | - Ikuo Saiki
- Department of Bioscience, Institute of Natural Medicine, Toyama University , 2630 Sugitani, Toyama 930-0194, Japan
| | - Yuri Sudoh
- Hyphagenesis, Inc. , 2-18-28 Tamagawa Gakuen, Machida, Tokyo 194-0041, Japan
| | | | | |
Collapse
|
22
|
Sarker SD, Nahar L. Progress in the Chemistry of Naturally Occurring Coumarins. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2017; 106:241-304. [PMID: 28762091 DOI: 10.1007/978-3-319-59542-9_3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Coumarins are the largest group of 1-benzopyran derivatives found in plants. The initial member of this group of compounds, coumarin (2H-1-benzopyran-2-one), a fragrant colorless compound, was first isolated from the Tonka bean (Dipteryx odorata, family Fabaceae) in 1820. The name coumarin comes from a French term for the tonka bean, coumarou. Since the discovery of coumarin, several of its derivatives, with umbelliferone (7-hydroxycoumarin) being the most common one, have been reported from various natural sources. The families Apiaceae, Asteraceae, and Rutaceae are the three major plant sources of coumarins.Generally, these plant secondary metabolites may be classified into simple, simple prenylated, simple geranylated, furano, pyrano, sesquiterpenyl and oligomeric coumarins. Using this standard classification, this chapter aims to present an account on the advances of the chemistry of naturally occurring coumarins, as reported in the literature during the period 2013-2015.In Sect. 1, the coumarins are introduced and their generic biosynthetic route discussed briefly. In Sect. 2, the largest of the three sections, various classes of natural coumarins are detailed, with their relevant structures and the citation of appropriate references. In a concluding section, it is highlighted that during the last 3 years, more than 400 coumarins have been reported in the literature. Many of these coumarins have been re-isolations of known compounds from known or new sources, most often associated with various biological activities. However, a substantial number of coumarins bearing new skeletons, especially dimers, prenylated furanocoumarins, sesquiterpenyl, and some unusual coumarins were also reported during the period of 2013-2015.Coumarin chemistry remains one of the major interest areas of phytochemists, especially because of their structural diversity and medicinal properties, along with the wide-ranging bioactivities of these compounds, inclusive of analgesic, anticoagulant anti-HIV, anti-inflammatory, antimicrobial, antineoplastic, antioxidant, and immunomodulatory effects. Despite significant advancements in the extraction, isolation, structure elucidation and bioactivity testing of naturally occurring coumarins, only a marginal advancement has been observed recently in relation to the study of their biosynthesis.
Collapse
Affiliation(s)
- Satyajit D Sarker
- Medicinal Chemistry and Natural Products Research Group, School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK.
| | - Lutfun Nahar
- Medicinal Chemistry and Natural Products Research Group, School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| |
Collapse
|
23
|
Skalicka-Woźniak K, Orhan IE, Cordell GA, Nabavi SM, Budzyńska B. Implication of coumarins towards central nervous system disorders. Pharmacol Res 2015; 103:188-203. [PMID: 26657416 DOI: 10.1016/j.phrs.2015.11.023] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 11/28/2015] [Accepted: 11/29/2015] [Indexed: 01/11/2023]
Abstract
Coumarins are widely distributed, plant-derived, 2H-1-benzopyran-2-one derivatives which have attracted intense interest in recent years as a result of their diverse and potent pharmacological properties. Particularly, their effects on the central nervous system (CNS) have been established. The present review discusses the most important pharmacological effects of natural and synthetic coumarins on the CNS, including their interactions with benzodiazepine receptors, their dopaminergic and serotonergic affinity, and their ability to inhibit cholinesterases and monoamine oxidases. The structure-activity relationships pertaining to these effects are also discussed. This review posits that natural or synthetic coumarins have the potential for development in the therapy of psychiatric and neurodegenerative disorders, including Alzheimer's and Parkinson's diseases, schizophrenia, anxiety, epilepsy, and depression.
Collapse
Affiliation(s)
- Krystyna Skalicka-Woźniak
- Department of Pharmacognosy with Medicinal Plant Unit, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland.
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
| | - Geoffrey A Cordell
- Natural Products Inc., Evanston, IL 60203, USA; Department of Pharmaceutics, College of Pharmacy, University of FL, Gainesville, FL 32610, USA
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Barbara Budzyńska
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Poland
| |
Collapse
|
24
|
Hosseinzadeh H, Nassiri-Asl M. Pharmacological Effects of Glycyrrhiza spp. and Its Bioactive Constituents: Update and Review. Phytother Res 2015; 29:1868-86. [PMID: 26462981 DOI: 10.1002/ptr.5487] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 07/25/2015] [Accepted: 09/15/2015] [Indexed: 01/26/2023]
Abstract
The roots and rhizomes of various species of the perennial herb licorice (Glycyrrhiza) are used in traditional medicine for the treatment of several diseases. In experimental and clinical studies, licorice has been shown to have several pharmacological properties including antiinflammatory, antiviral, antimicrobial, antioxidative, antidiabetic, antiasthma, and anticancer activities as well as immunomodulatory, gastroprotective, hepatoprotective, neuroprotective, and cardioprotective effects. In recent years, several of the biochemical, molecular, and cellular mechanisms of licorice and its active components have also been demonstrated in experimental studies. In this review, we summarized the new phytochemical, pharmacological, and toxicological data from recent experimental and clinical studies of licorice and its bioactive constituents after our previous published review.
Collapse
Affiliation(s)
- Hossein Hosseinzadeh
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marjan Nassiri-Asl
- Cellular and Molecular Research Center, Department of Pharmacology, School of Medicine, Qazvin University of Medical Sciences, P.O. Box: 341197-5981, Qazvin, Iran
| |
Collapse
|