1
|
Guo B, Wang K, Wu J, Yu H, Geng C, Jin Y, Song Y. Runx1 activates the transformation of adipocytes into cancer-associated adipocytes by downregulating Plin1. Exp Cell Res 2025; 448:114573. [PMID: 40280321 DOI: 10.1016/j.yexcr.2025.114573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/23/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Adipocytes play a pivotal role in the breast tumor microenvironment, with the capacity to differentiate into cancer-associated adipocytes (CAAs) under the influence of breast cancer cells. This transformation significantly contributes to the formation and progression of breast cancer; however, the mechanisms underlying this interaction remain poorly understood. This study aims to illuminate these interactions by establishing an in vitro co-culture system of mature adipocytes and breast cancer cells. RNA sequencing analysis identified elevated runt-related transcription factor 1 (Runx1) expression in CAAs. Furthermore, Runx1 expression was also increased in the peritumoral adipose tissue of both breast cancer mouse models and clinical patient samples. Overexpression of Runx1 in 3T3-L1 preadipocytes resulted in reduced adipocyte volume, decreased lipid droplet size, diminished expression of mature adipocyte markers, and an increase in pro-inflammatory factor levels. These findings suggest that Runx1 overexpression facilitates the transformation of adipocytes into CAAs, thereby enhancing breast cancer cell migration and invasion. Conversely, Runx1 knockdown in CAAs diminished their supportive role in cancer progression. Mechanically, Runx1 enhances breast cancer development by regulating perilipin 1 (Plin1) levels, the overexpression of Plin1 in adipocytes inhibited the effect of Runx1 to promote the transition of adipocytes into CAAs. Our findings propose that targeting Runx1 in CAAs may represent a novel therapeutic strategy for breast cancer intervention.
Collapse
Affiliation(s)
- Boning Guo
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Jinan, Shandong, 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Provincial Hospital, Jinan, 250021, China
| | - Kai Wang
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Provincial Hospital, Jinan, 250021, China; Department of Endocrinology, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
| | - Jing Wu
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Jinan, Shandong, 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Provincial Hospital, Jinan, 250021, China
| | - Huimin Yu
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Provincial Hospital, Jinan, 250021, China; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Chong Geng
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Yi Jin
- Department of Endocrinology, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China.
| | - Yongfeng Song
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Jinan, Shandong, 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Provincial Hospital, Jinan, 250021, China; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Department of Endocrinology, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China.
| |
Collapse
|
2
|
Chen X, Wang L, Yang M, Zhao W, Tu J, Liu B, Yuan X. RUNX transcription factors: biological functions and implications in cancer. Clin Exp Med 2024; 24:50. [PMID: 38430423 PMCID: PMC10908630 DOI: 10.1007/s10238-023-01281-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/10/2023] [Indexed: 03/03/2024]
Abstract
Runt-related transcription factors (RUNX) are a family of transcription factors that are essential for normal and malignant hematopoietic processes. Their most widely recognized role in malignancy is to promote the occurrence and development of acute myeloid leukemia. However, it is worth noting that during the last decade, studies of RUNX proteins in solid tumors have made considerable progress, suggesting that these proteins are directly involved in different stages of tumor development, including tumor initiation, progression, and invasion. RUNX proteins also play a role in tumor angiogenesis, the maintenance of tumor cell stemness, and resistance to antitumor drugs. These findings have led to the consideration of RUNX as a tumor biomarker. All RUNX proteins are involved in the occurrence and development of solid tumors, but the role of each RUNX protein in different tumors and the major signaling pathways involved are complicated by tumor heterogeneity and the interacting tumor microenvironment. Understanding how the dysregulation of RUNX in tumors affects normal biological processes is important to elucidate the molecular mechanisms by which RUNX affects malignant tumors.
Collapse
Affiliation(s)
- Xinyi Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China
| | - Lu Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China
| | - Mu Yang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China
| | - Weiheng Zhao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China
| | - Jingyao Tu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China.
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China.
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China.
| |
Collapse
|
3
|
Scarpa JR, Montagna G, Plitas G, Gulati A, Fischer GW, Mincer JS. Opioids and immune checkpoint inhibitors differentially regulate a common immune network in triple-negative breast cancer. Front Oncol 2023; 13:1267532. [PMID: 37781176 PMCID: PMC10539607 DOI: 10.3389/fonc.2023.1267532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
Background Opioids are the primary analgesics for cancer pain. Recent clinical evidence suggests opioids may counteract the effect of immune checkpoint inhibition (ICI) immunotherapy, but the mechanism for this interaction is unknown. The following experiments study how opioids and immunotherapy modulate a common RNA expression pathway in triple negative breast cancer (TNBC), a cancer subtype in which immunotherapy is increasingly used. This study identifies a mechanism by which opioids may decrease ICI efficacy, and compares ketamine, a non-opioid analgesic with emerging use in cancer pain, for potential ICI interaction. Methods Tumor RNA expression and clinicopathologic data from a large cohort with TNBC (N=286) was used to identify RNA expression signatures of disease. Various drug-induced RNA expression profiles were extracted from multimodal RNA expression datasets and analyzed to estimate the RNA expression effects of ICI, opioids, and ketamine on TNBC. Results We identified a RNA expression network in CD8+ T-cells that was relevant to TNBC pathogenesis and prognosis. Both opioids and anti-PD-L1 ICI regulated RNA expression in this network, suggesting a nexus for opioid-ICI interaction. Morphine and anti-PD-L1 therapy regulated RNA expression in opposing directions. By contrast, there was little overlap between the effect of ketamine and anti-PD-L1 therapy on RNA expression. Conclusions Opioids and ICI may target a common immune network in TNBC and regulate gene expression in opposing fashion. No available evidence supports a similar interaction between ketamine and ICI.
Collapse
Affiliation(s)
- Joseph R. Scarpa
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States
| | - Giacomo Montagna
- Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - George Plitas
- Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Amitabh Gulati
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States
- Department of Anesthesiology and Critical Care Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Gregory W. Fischer
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States
- Department of Anesthesiology and Critical Care Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Joshua S. Mincer
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States
- Department of Anesthesiology and Critical Care Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
4
|
She C, Wu C, Guo W, Xie Y, Li S, Liu W, Xu C, Li H, Cao P, Yang Y, Wang X, Chang A, Feng Y, Hao J. Combination of RUNX1 inhibitor and gemcitabine mitigates chemo-resistance in pancreatic ductal adenocarcinoma by modulating BiP/PERK/eIF2α-axis-mediated endoplasmic reticulum stress. J Exp Clin Cancer Res 2023; 42:238. [PMID: 37697370 PMCID: PMC10494371 DOI: 10.1186/s13046-023-02814-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Gemcitabine (GEM)-based chemotherapy is the first-line option for pancreatic ductal adenocarcinoma (PDAC). However, the development of drug resistance limits its efficacy, and the specific mechanisms remain largely unknown. RUNX1, a key transcription factor in hematopoiesis, also involved in the malignant progression of PDAC, but was unclear in the chemoresistance of PDAC. METHODS Comparative analysis was performed to screen GEM-resistance related genes using our single-cell RNA sequencing(scRNA-seq) data and two public RNA-sequencing datasets (GSE223463, GSE183795) for PDAC. The expression of RUNX1 in PDAC tissues was detected by qRT-PCR, immunohistochemistry (IHC) and western blot. The clinical significance of RUNX1 in PDAC was determined by single-or multivariate analysis and survival analysis. We constructed the stably expressing cell lines with shRUNX1 and RUNX1, and successfully established GEM-resistant cell line. The role of RUNX1 in GEM resistance was determined by CCK8 assay, plate colony formation assay and apoptosis analysis in vitro and in vivo. To explore the mechanism, we performed bioinformatic analysis using the scRNA-seq data to screen for the endoplasm reticulum (ER) stress signaling that was indispensable for RUNX1 in GEM resistance. We observed the cell morphology in ER stress by transmission electron microscopy and validated RUNX1 in gemcitabine resistance depended on the BiP/PERK/eIF2α pathway by in vitro and in vivo oncogenic experiments, using ER stress inhibitor(4-PBA) and PERK inhibitor (GSK2606414). The correlation between RUNX1 and BiP expression was assessed using the scRNA-seq data and TCGA dataset, and validated by RT-PCR, immunostaining and western blot. The mechanism of RUNX1 regulation of BiP was confirmed by ChIP-PCR and dual luciferase assay. Finally, the effect of RUNX1 inhibitor on PDAC was conducted in vivo mouse models, including subcutaneous xenograft and patient-derived xenograft (PDX) mouse models. RESULTS RUNX1 was aberrant high expressed in PDAC and closely associated with GEM resistance. Silencing of RUNX1 could attenuate resistance in GEM-resistant cell line, and its inhibitor Ro5-3335 displayed an enhanced effect in inhibiting tumor growth, combined with GEM treatment, in PDX mouse models and GEM-resistant xenografts. In detail, forced expression of RUNX1 in PDAC cells suppressed apoptosis induced by GEM exposure, which was reversed by the ER stress inhibitor 4-PBA and PERK phosphorylation inhibitor GSK2606414. RUNX1 modulation of ER stress signaling mediated GEM resistance was supported by the analysis of scRNA-seq data. Consistently, silencing of RUNX1 strongly inhibited the GEM-induced activation of BiP and PERK/eIF2α signaling, one of the major pathways involved in ER stress. It was identified that RUNX1 directly bound to the promoter region of BiP, a primary ER stress sensor, and stimulated BiP expression to enhance the reserve capacity for cell adaptation, which in turn facilitated GEM resistance in PDAC cells. CONCLUSIONS This study identifies RUNX1 as a predictive biomarker for response to GEM-based chemotherapy. RUNX1 inhibition may represent an effective strategy for overcoming GEM resistance in PDAC cells.
Collapse
Affiliation(s)
- Chunhua She
- Department of Neurosurgery and Neuro-Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Chao Wu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Weihua Guo
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yongjie Xie
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Shouyi Li
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Weishuai Liu
- Department of Pain Management, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Chao Xu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Hui Li
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Pei Cao
- School of Medicine, Nankai University, Tianjin, 300060, China
| | - Yanfang Yang
- Second Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Xiuchao Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Antao Chang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Yukuan Feng
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
- Mudanjiang Medical University, Mudanjiang, 157011, China.
| | - Jihui Hao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
5
|
Almohaywi M, Sugita BM, Centa A, Fonseca AS, Antunes VC, Fadda P, Mannion CM, Abijo T, Goldberg SL, Campbell MC, Copeland RL, Kanaan Y, Cavalli LR. Deregulated miRNA Expression in Triple-Negative Breast Cancer of Ancestral Genomic-Characterized Latina Patients. Int J Mol Sci 2023; 24:13046. [PMID: 37685851 PMCID: PMC10487916 DOI: 10.3390/ijms241713046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 09/10/2023] Open
Abstract
Among patients with triple-negative breast cancer (TNBC), several studies have suggested that deregulated microRNA (miRNA) expression may be associated with a more aggressive phenotype. Although tumor molecular signatures may be race- and/or ethnicity-specific, there is limited information on the molecular profiles in women with TNBC of Hispanic and Latin American ancestry. We simultaneously profiled TNBC biopsies for the genome-wide copy number and miRNA global expression from 28 Latina women and identified a panel of 28 miRNAs associated with copy number alterations (CNAs). Four selected miRNAs (miR-141-3p, miR-150-5p, miR-182-5p, and miR-661) were validated in a subset of tumor and adjacent non-tumor tissue samples, with miR-182-5p being the most discriminatory among tissue groups (AUC value > 0.8). MiR-141-3p up-regulation was associated with increased cancer recurrence; miR-661 down-regulation with larger tumor size; and down-regulation of miR-150-5p with larger tumor size, high p53 expression, increased cancer recurrence, presence of distant metastasis, and deceased status. This study reinforces the importance of integration analysis of CNAs and miRNAs in TNBC, allowing for the identification of interactions among molecular mechanisms. Additionally, this study emphasizes the significance of considering the patients ancestral background when examining TNBC, as it can influence the relationship between intrinsic tumor molecular characteristics and clinical manifestations of the disease.
Collapse
Affiliation(s)
- Maram Almohaywi
- Microbiology Department, Howard University Cancer Center, Howard University, Washington, DC 20059, USA
| | - Bruna M. Sugita
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil
| | - Ariana Centa
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil
| | - Aline S. Fonseca
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil
| | - Valquiria C. Antunes
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil
| | - Paolo Fadda
- Genomics Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Ciaran M. Mannion
- Department of Pathology, Hackensack University Medical Center, Hackensack, NJ 07701, USA
| | - Tomilowo Abijo
- National Institute of Diabetes and Kidney Diseases, National Institute of Health, Bethesda, MD 20814, USA
| | - Stuart L. Goldberg
- John Theurer Cancer Center, Hackensack Meridian School of Medicine, Hackensack, NJ 07701, USA
- COTA, Inc., New York, NY 10014, USA
| | - Michael C. Campbell
- Department of Biological Sciences Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA 90089, USA
| | - Robert L. Copeland
- Pharmacology Department, Howard University Cancer Center, Howard University, Washington, DC 20059, USA
| | - Yasmine Kanaan
- Microbiology Department, Howard University Cancer Center, Howard University, Washington, DC 20059, USA
| | - Luciane R. Cavalli
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil
- Oncology Department, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA
| |
Collapse
|
6
|
Cascianelli S, Galzerano A, Masseroli M. Supervised Relevance-Redundancy assessments for feature selection in omics-based classification scenarios. J Biomed Inform 2023; 144:104457. [PMID: 37488024 DOI: 10.1016/j.jbi.2023.104457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/05/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND AND OBJECTIVE Many classification tasks in translational bioinformatics and genomics are characterized by the high dimensionality of potential features and unbalanced sample distribution among classes. This can affect classifier robustness and increase the risk of overfitting, curse of dimensionality and generalization leaks; furthermore and most importantly, this can prevent obtaining adequate patient stratification required for precision medicine in facing complex diseases, like cancer. Setting up a feature selection strategy able to extract only proper predictive features by removing irrelevant, redundant, and noisy ones is crucial to achieving valuable results on the desired task. METHODS We propose a new feature selection approach, called ReRa, based on supervised Relevance-Redundancy assessments. ReRa consists of a customized step of relevance-based filtering, to identify a reduced subset of meaningful features, followed by a supervised similarity-based procedure to minimize redundancy. This latter step innovatively uses a combination of global and class-specific similarity assessments to remove redundant features while preserving those differentiated across classes, even when these classes are strongly unbalanced. RESULTS We compared ReRa with several existing feature selection methods to obtain feature spaces on which performing breast cancer patient subtyping using several classifiers: we considered two use cases based on gene or transcript isoform expression. In the vast majority of the assessed scenarios, when using ReRa-selected feature spaces, the performances were significantly increased compared to simple feature filtering, LASSO regularization, or even MRmr - another Relevance-Redundancy method. The two use cases represent an insightful example of translational application, taking advantage of ReRa capabilities to investigate and enhance a clinically-relevant patient stratification task, which could be easily applied also to other cancer types and diseases. CONCLUSIONS ReRa approach has the potential to improve the performance of machine learning models used in an unbalanced classification scenario. Compared to another Relevance-Redundancy approach like MRmr, ReRa does not require tuning the number of preserved features, ensures efficiency and scalability over huge initial dimensionalities and allows re-evaluation of all previously selected features at each iteration of the redundancy assessment, to ultimately preserve only the most relevant and class-differentiated features.
Collapse
Affiliation(s)
- Silvia Cascianelli
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy.
| | - Arianna Galzerano
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy
| | - Marco Masseroli
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy
| |
Collapse
|
7
|
Obata H, Ogawa M, Zalutsky MR. DNA Repair Inhibitors: Potential Targets and Partners for Targeted Radionuclide Therapy. Pharmaceutics 2023; 15:1926. [PMID: 37514113 PMCID: PMC10384049 DOI: 10.3390/pharmaceutics15071926] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
The present review aims to explore the potential targets/partners for future targeted radionuclide therapy (TRT) strategies, wherein cancer cells often are not killed effectively, despite receiving a high average tumor radiation dose. Here, we shall discuss the key factors in the cancer genome, especially those related to DNA damage response/repair and maintenance systems for escaping cell death in cancer cells. To overcome the current limitations of TRT effectiveness due to radiation/drug-tolerant cells and tumor heterogeneity, and to make TRT more effective, we propose that a promising strategy would be to target the DNA maintenance factors that are crucial for cancer survival. Considering their cancer-specific DNA damage response/repair ability and dysregulated transcription/epigenetic system, key factors such as PARP, ATM/ATR, amplified/overexpressed transcription factors, and DNA methyltransferases have the potential to be molecular targets for Auger electron therapy; moreover, their inhibition by non-radioactive molecules could be a partnering component for enhancing the therapeutic response of TRT.
Collapse
Affiliation(s)
- Honoka Obata
- Department of Advanced Nuclear Medicine Sciences, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Departments of Radiology and Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan
| | - Mikako Ogawa
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan
| | - Michael R Zalutsky
- Departments of Radiology and Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
8
|
Khan AS, Campbell KJ, Cameron ER, Blyth K. The RUNX/CBFβ Complex in Breast Cancer: A Conundrum of Context. Cells 2023; 12:641. [PMID: 36831308 PMCID: PMC9953914 DOI: 10.3390/cells12040641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/19/2023] Open
Abstract
Dissecting and identifying the major actors and pathways in the genesis, progression and aggressive advancement of breast cancer is challenging, in part because neoplasms arising in this tissue represent distinct diseases and in part because the tumors themselves evolve. This review attempts to illustrate the complexity of this mutational landscape as it pertains to the RUNX genes and their transcription co-factor CBFβ. Large-scale genomic studies that characterize genetic alterations across a disease subtype are a useful starting point and as such have identified recurring alterations in CBFB and in the RUNX genes (particularly RUNX1). Intriguingly, the functional output of these mutations is often context dependent with regards to the estrogen receptor (ER) status of the breast cancer. Therefore, such studies need to be integrated with an in-depth understanding of both the normal and corrupted function in mammary cells to begin to tease out how loss or gain of function can alter the cell phenotype and contribute to disease progression. We review how alterations to RUNX/CBFβ function contextually ascribe to breast cancer subtypes and discuss how the in vitro analyses and mouse model systems have contributed to our current understanding of these proteins in the pathogenesis of this complex set of diseases.
Collapse
Affiliation(s)
- Adiba S. Khan
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Rd, Glasgow G61 1BD, UK; (A.S.K.); (K.J.C.)
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Kirsteen J. Campbell
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Rd, Glasgow G61 1BD, UK; (A.S.K.); (K.J.C.)
| | - Ewan R. Cameron
- School of Biodiversity One Health & Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK;
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Rd, Glasgow G61 1BD, UK; (A.S.K.); (K.J.C.)
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
9
|
Fernández NB, Sosa SM, Roberts JT, Recouvreux MS, Rocha-Viegas L, Christenson JL, Spoelstra NS, Couto FL, Raimondi AR, Richer JK, Rubinstein N. RUNX1 Is Regulated by Androgen Receptor to Promote Cancer Stem Markers and Chemotherapy Resistance in Triple Negative Breast Cancer. Cells 2023; 12:cells12030444. [PMID: 36766786 PMCID: PMC9913961 DOI: 10.3390/cells12030444] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Triple negative breast cancer (TNBC) is an aggressive breast cancer subtype for which no effective targeted therapies are available. Growing evidence suggests that chemotherapy-resistant cancer cells with stem-like properties (CSC) may repopulate the tumor. The androgen receptor (AR) is expressed in up to 50% of TNBCs, and AR inhibition decreases CSC and tumor initiation. Runt-related transcription factor 1 (RUNX1) correlates with poor prognosis in TNBC and is regulated by the AR in prostate cancer. Our group has shown that RUNX1 promotes TNBC cell migration and regulates tumor gene expression. We hypothesized that RUNX1 is regulated by the AR and that both may work together in TNBC CSC to promote disease recurrence following chemotherapy. Chromatin immunoprecipitation sequencing (ChIP-seq) experiments in MDA-MB-453 revealed AR binding to RUNX1 regulatory regions. RUNX1 expression is upregulated by dihydrotestosterone (DHT) in MDA-MB-453 and in an AR+-TNBC HCI-009 patient-derived xenograft (PDX) tumors (p < 0.05). RUNX1 is increased in a CSC-like experimental model in MDA-MB-453 and SUM-159PT cells (p < 0.05). Inhibition of RUNX1 transcriptional activity reduced the expression of CSC markers. Interestingly, RUNX1 inhibition reduced cell viability and enhanced paclitaxel and enzalutamide sensitivity. Targeting RUNX1 may be an attractive strategy to potentiate the anti-tumor effects of AR inhibition, specifically in the slow-growing CSC-like populations that resist chemotherapy which lead to metastatic disease.
Collapse
Affiliation(s)
- Natalia B. Fernández
- Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina
| | - Sofía M. Sosa
- Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina
| | - Justin T. Roberts
- Department of Pharmacology, University of South Alabama College of Medicine, Mobile, AL 36688, USA
| | - María S. Recouvreux
- Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Luciana Rocha-Viegas
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina-Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina
| | - Jessica L. Christenson
- Department of Pathology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| | - Nicole S. Spoelstra
- Department of Pathology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| | - Facundo L. Couto
- Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Ana R. Raimondi
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina-Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina
| | - Jennifer K. Richer
- Department of Pathology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| | - Natalia Rubinstein
- Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina
- Correspondence:
| |
Collapse
|
10
|
Zhang F, Cho WC. Therapeutic potential of RUNX1 and RUNX2 in bone metastasis of breast cancer. Expert Opin Ther Targets 2023; 27:413-417. [PMID: 37243490 DOI: 10.1080/14728222.2023.2219395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/15/2023] [Accepted: 05/25/2023] [Indexed: 05/28/2023]
Affiliation(s)
- Fei Zhang
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| |
Collapse
|
11
|
Ervin EH, French R, Chang CH, Pauklin S. Inside the stemness engine: Mechanistic links between deregulated transcription factors and stemness in cancer. Semin Cancer Biol 2022; 87:48-83. [PMID: 36347438 DOI: 10.1016/j.semcancer.2022.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/22/2022] [Accepted: 11/03/2022] [Indexed: 11/07/2022]
Abstract
Cell identity is largely determined by its transcriptional profile. In tumour, deregulation of transcription factor expression and/or activity enables cancer cell to acquire a stem-like state characterised by capacity to self-renew, differentiate and form tumours in vivo. These stem-like cancer cells are highly metastatic and therapy resistant, thus warranting a more complete understanding of the molecular mechanisms downstream of the transcription factors that mediate the establishment of stemness state. Here, we review recent research findings that provide a mechanistic link between the commonly deregulated transcription factors and stemness in cancer. In particular, we describe the role of master transcription factors (SOX, OCT4, NANOG, KLF, BRACHYURY, SALL, HOX, FOX and RUNX), signalling-regulated transcription factors (SMAD, β-catenin, YAP, TAZ, AP-1, NOTCH, STAT, GLI, ETS and NF-κB) and unclassified transcription factors (c-MYC, HIF, EMT transcription factors and P53) across diverse tumour types, thereby yielding a comprehensive overview identifying shared downstream targets, highlighting unique mechanisms and discussing complexities.
Collapse
Affiliation(s)
- Egle-Helene Ervin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, United Kingdom.
| | - Rhiannon French
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, United Kingdom.
| | - Chao-Hui Chang
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, United Kingdom.
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, United Kingdom.
| |
Collapse
|
12
|
Halperin C, Hey J, Weichenhan D, Stein Y, Mayer S, Lutsik P, Plass C, Scherz-Shouval R. Global DNA Methylation Analysis of Cancer-Associated Fibroblasts Reveals Extensive Epigenetic Rewiring Linked with RUNX1 Upregulation in Breast Cancer Stroma. Cancer Res 2022; 82:4139-4152. [PMID: 36287637 DOI: 10.1158/0008-5472.can-22-0209] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 08/10/2022] [Accepted: 09/14/2022] [Indexed: 12/14/2022]
Abstract
Cancer cells recruit and rewire normal fibroblasts in their microenvironment to become protumorigenic cancer-associated fibroblasts (CAF). These CAFs are genomically stable, yet their transcriptional programs are distinct from those of their normal counterparts. Transcriptional regulation plays a major role in this reprogramming, but the extent to which epigenetic modifications of DNA also contribute to the rewiring of CAF transcription is not clear. Here we address this question by dissecting the epigenetic landscape of breast CAFs. Applying tagmentation-based whole-genome bisulfite sequencing in a mouse model of breast cancer, we found that fibroblasts undergo massive DNA methylation changes as they transition into CAFs. Transcriptional and epigenetic analyses revealed RUNX1 as a potential mediator of this process and identified a RUNX1-dependent stromal gene signature. Coculture and mouse models showed that both RUNX1 and its stromal signature are induced as normal fibroblasts transition into CAFs. In breast cancer patients, RUNX1 was upregulated in CAFs, and expression of the RUNX1 signature was associated with poor disease outcome, highlighting the relevance of these findings to human disease. This work presents a comprehensive genome-wide map of DNA methylation in CAFs and reveals a previously unknown facet of the dynamic plasticity of the stroma. SIGNIFICANCE The first genome-wide map of DNA methylation in breast cancer-associated fibroblasts unravels a previously unknown facet of the dynamic plasticity of the stroma, with far-reaching therapeutic implications.
Collapse
Affiliation(s)
- Coral Halperin
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Joschka Hey
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Ruprecht Karl University of Heidelberg, Heidelberg, Germany
| | - Dieter Weichenhan
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yaniv Stein
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Shimrit Mayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Pavlo Lutsik
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ruth Scherz-Shouval
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
13
|
Dansonka-Mieszkowska A, Szafron LA, Kulesza M, Stachurska A, Leszczynski P, Tomczyk-Szatkowska A, Sobiczewski P, Parada J, Kulinczak M, Moes-Sosnowska J, Pienkowska-Grela B, Kupryjanczyk J, Chechlinska M, Szafron LM. PROM1, CXCL8, RUNX1, NAV1 and TP73 genes as independent markers predictive of prognosis or response to treatment in two cohorts of high-grade serous ovarian cancer patients. PLoS One 2022; 17:e0271539. [PMID: 35867729 PMCID: PMC9307210 DOI: 10.1371/journal.pone.0271539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 07/02/2022] [Indexed: 11/18/2022] Open
Abstract
Considering the vast biological diversity and high mortality rate in high-grade ovarian cancers, identification of novel biomarkers, enabling precise diagnosis and effective, less aggravating treatment, is of paramount importance. Based on scientific literature data, we selected 80 cancer-related genes and evaluated their mRNA expression in 70 high-grade serous ovarian cancer (HGSOC) samples by Real-Time qPCR. The results were validated in an independent Northern American cohort of 85 HGSOC patients with publicly available NGS RNA-seq data. Detailed statistical analyses of our cohort with multivariate Cox and logistic regression models considering clinico-pathological data and different TP53 mutation statuses, revealed an altered expression of 49 genes to affect the prognosis and/or treatment response. Next, these genes were investigated in the validation cohort, to confirm the clinical significance of their expression alterations, and to identify genetic variants with an expected high or moderate impact on their products. The expression changes of five genes, PROM1, CXCL8, RUNX1, NAV1, TP73, were found to predict prognosis or response to treatment in both cohorts, depending on the TP53 mutation status. In addition, we revealed novel and confirmed known SNPs in these genes, and showed that SNPs in the PROM1 gene correlated with its elevated expression.
Collapse
Affiliation(s)
- Agnieszka Dansonka-Mieszkowska
- Laboratory of Genetic and Molecular Cancer Diagnostics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Laura Aleksandra Szafron
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Magdalena Kulesza
- Laboratory of Genetic and Molecular Cancer Diagnostics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Anna Stachurska
- Laboratory of Genetic and Molecular Cancer Diagnostics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Pawel Leszczynski
- Laboratory of Genetic and Molecular Cancer Diagnostics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Agnieszka Tomczyk-Szatkowska
- Department of Cancer Pathomorphology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Piotr Sobiczewski
- Department of Gynecological Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Joanna Parada
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Mariusz Kulinczak
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Joanna Moes-Sosnowska
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Barbara Pienkowska-Grela
- Cytogenetics Laboratory, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Jolanta Kupryjanczyk
- Department of Cancer Pathomorphology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Magdalena Chechlinska
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Lukasz Michal Szafron
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- * E-mail:
| |
Collapse
|
14
|
Wanowska E, Samorowska K, Szcześniak MW. Emerging Roles of Long Noncoding RNAs in Breast Cancer Epigenetics and Epitranscriptomics. Front Cell Dev Biol 2022; 10:922351. [PMID: 35865634 PMCID: PMC9294602 DOI: 10.3389/fcell.2022.922351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Breast carcinogenesis is a multistep process that involves both genetic and epigenetic changes. Epigenetics refers to reversible changes in gene expression that are not accompanied by changes in gene sequence. In breast cancer (BC), dysregulated epigenetic changes, such as DNA methylation and histone modifications, are accompanied by epitranscriptomic changes, in particular adenine to inosine modifications within RNA molecules. Factors that trigger these phenomena are largely unknown, but there is evidence for widespread participation of long noncoding RNAs (lncRNAs) that already have been linked to virtually any aspect of BC biology, making them promising biomarkers and therapeutic targets in BC patients. Here, we provide a systematic review of known and possible roles of lncRNAs in epigenetic and epitranscriptomic processes, along with methods and tools to study them, followed by a brief overview of current challenges regarding the use of lncRNAs in medical applications.
Collapse
Affiliation(s)
- Elżbieta Wanowska
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznań, Poland
- *Correspondence: Elżbieta Wanowska, ; Michał Wojciech Szcześniak,
| | - Klaudia Samorowska
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznań, Poland
| | - Michał Wojciech Szcześniak
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznań, Poland
- *Correspondence: Elżbieta Wanowska, ; Michał Wojciech Szcześniak,
| |
Collapse
|
15
|
Xu Y, Peng Y, Shen M, Liu L, Lei J, Gao S, Wang Y, Lan A, Li H, Liu S. Construction and Validation of Angiogenesis-Related Prognostic Risk Signature to Facilitate Survival Prediction and Biomarker Excavation of Breast Cancer Patients. JOURNAL OF ONCOLOGY 2022; 2022:1525245. [PMID: 35498539 PMCID: PMC9045999 DOI: 10.1155/2022/1525245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/05/2022] [Indexed: 02/06/2023]
Abstract
This study is aimed at exploring the potential mechanism of angiogenesis, a biological process-related gene in breast cancer (BRCA), and constructing a risk model related to the prognosis of BRCA patients. We used multiple bioinformatics databases and multiple bioinformatics analysis methods to complete our exploration in this research. First, we use the RNA-seq transcriptome data in the TCGA database to conduct a preliminary screening of angiogenesis-related genes through univariate Cox curve analysis and then use LASSO regression curve analysis for secondary screening. We successfully established a risk model consisting of seven angiogenesis-related genes in BRCA. The results of ROC curve analysis show that the risk model has good prediction accuracy. We can successfully divide BRCA patients into the high-risk and low-risk groups with significant prognostic differences based on this risk model. In addition, we used angiogenesis-related genes to perform cluster analysis in BRCA patients and successfully divided BRCA patients into three clusters with significant prognostic differences, namely, cluster 1, cluster 2, and cluster 3. Subsequently, we combined the clinical-pathological data for correlation analysis, and there is a significant correlation between the risk model and the patient's T and stage. Multivariate Cox regression curve analysis showed that the age of BRCA patients and the risk score of the risk model could be used as independent risk factors in the progression of BRCA. In particular, based on this angiogenesis-related risk model, we have drawn a matching nomogram that can predict the 5-, 7-, and 10-year overall survival rates of BRCA patients. Subsequently, we performed a series of pan-cancer analyses of CNV, SNV, OS, methylation, and immune infiltration for this risk model gene and used GDSC data to explore drug sensitivity. Subsequently, to gain insight into the protein expression of these risk model genes in BRCA, we used the immunohistochemical data in the THPA database for verification. The results showed that the protein expressions of IL18, RUNX1, SCG2, and THY1 molecules in BRCA tissues were significantly higher than those in normal breast tissues, while the protein expressions of PF4 and TNFSF12 molecules in BRCA tissues were significantly lower than those in normal breast tissues. Finally, we conducted multiple GSEA analyses to explore the biological pathways these risk model genes can cross in cancer progression. In summary, we believe that this study can provide valuable data and clues for future studies on angiogenesis in BRCA.
Collapse
Affiliation(s)
- Yingkun Xu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Yang Peng
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Meiying Shen
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Li Liu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Jinwei Lei
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Shun Gao
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Yuan Wang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Ailin Lan
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Han Li
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Shengchun Liu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| |
Collapse
|
16
|
Ariffin NS. Healthcare Resource Utilization and Costs of Steroid-Associated Complications in Patients With Graft-Versus-Host Disease. Clin Breast Cancer 2022; 22:499-506. [DOI: 10.1016/j.clbc.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/03/2022] [Accepted: 04/18/2022] [Indexed: 11/03/2022]
|
17
|
Marqués M, Sorolla MA, Urdanibia I, Parisi E, Hidalgo I, Morales S, Salud A, Sorolla A. Are Transcription Factors Plausible Oncotargets for Triple Negative Breast Cancers? Cancers (Basel) 2022; 14:cancers14051101. [PMID: 35267409 PMCID: PMC8909618 DOI: 10.3390/cancers14051101] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Triple negative breast cancer is a type of breast cancer that does not have a selective and effective therapy. It is known that this cancer possesses high abundance of certain proteins called transcription factors, which are essential for their growth. However, inhibiting transcription factors is very difficult with common therapeutics due to their inaccessibility inside the cell and their molecular structure. In this work, we identified the most important transcription factors for the growth of triple negative breast cancers, and that can predict worse clinical outcome. Moreover, we described different strategies that have been utilised to inhibit them. A successful inhibition of these transcription factors could reduce the mortality and convalescence associated with triple negative breast cancers. Abstract Breast cancer (BC) is the most diagnosed cancer worldwide and one of the main causes of cancer deaths. BC is a heterogeneous disease composed of different BC intrinsic subtypes such as triple-negative BC (TNBC), which is one of the most aggressive subtypes and which lacks a targeted therapy. Recent comprehensive analyses across cell types and cancer types have outlined a vast network of protein–protein associations between transcription factors (TFs). Not surprisingly, protein–protein networks central to oncogenesis and disease progression are highly altered during TNBC pathogenesis and are responsible for the activation of oncogenic programs, such as uncontrollable proliferation, epithelial-to-mesenchymal transition (EMT) and stemness. From the therapeutic viewpoint, inhibiting the interactions between TFs represents a very significant challenge, as the contact surfaces of TFs are relatively large and featureless. However, promising tools have emerged to offer a solution to the targeting problem. At the clinical level, some TF possess diagnostic and prognostic value in TNBC. In this review, we outline the recent advances in TFs relevant to TNBC growth and progression. Moreover, we highlight different targeting approaches to inhibit these TFs. Furthermore, the validity of such TFs as clinical biomarkers has been explored. Finally, we discuss how research is likely to evolve in the field.
Collapse
Affiliation(s)
- Marta Marqués
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.M.); (M.A.S.); (I.U.); (E.P.); (I.H.); (S.M.); (A.S.)
- Department of Medicine, University of Lleida, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain
| | - Maria Alba Sorolla
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.M.); (M.A.S.); (I.U.); (E.P.); (I.H.); (S.M.); (A.S.)
| | - Izaskun Urdanibia
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.M.); (M.A.S.); (I.U.); (E.P.); (I.H.); (S.M.); (A.S.)
| | - Eva Parisi
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.M.); (M.A.S.); (I.U.); (E.P.); (I.H.); (S.M.); (A.S.)
| | - Iván Hidalgo
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.M.); (M.A.S.); (I.U.); (E.P.); (I.H.); (S.M.); (A.S.)
- Department of Medicine, University of Lleida, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain
| | - Serafín Morales
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.M.); (M.A.S.); (I.U.); (E.P.); (I.H.); (S.M.); (A.S.)
- Department of Medical Oncology, Arnau de Vilanova University Hospital (HUAV), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain
| | - Antonieta Salud
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.M.); (M.A.S.); (I.U.); (E.P.); (I.H.); (S.M.); (A.S.)
- Department of Medicine, University of Lleida, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain
- Department of Medical Oncology, Arnau de Vilanova University Hospital (HUAV), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain
| | - Anabel Sorolla
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.M.); (M.A.S.); (I.U.); (E.P.); (I.H.); (S.M.); (A.S.)
- Correspondence:
| |
Collapse
|
18
|
Uddin MN, Wang X. Identification of key tumor stroma-associated transcriptional signatures correlated with survival prognosis and tumor progression in breast cancer. Breast Cancer 2022; 29:541-561. [PMID: 35020130 DOI: 10.1007/s12282-022-01332-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/05/2022] [Indexed: 12/21/2022]
Abstract
BACKGROUND The aberrant expression of stromal gene signatures in breast cancer has been widely studied. However, the association of stromal gene signatures with tumor immunity, progression, and clinical outcomes remains lacking. METHODS Based on eight breast tumor stroma (BTS) transcriptomics datasets, we identified differentially expressed genes (DEGs) between BTS and normal breast stroma. Based on the DEGs, we identified dysregulated pathways and prognostic hub genes, hub oncogenes, hub protein kinases, and other key marker genes associated with breast cancer. Moreover, we compared the enrichment levels of stromal and immune signatures between breast cancer patients with bad and good clinical outcomes. We also investigated the association between tumor stroma-related genes and breast cancer progression. RESULTS The DEGs included 782 upregulated and 276 downregulated genes in BTS versus normal breast stroma. The pathways significantly associated with the DEGs included cytokine-cytokine receptor interaction, chemokine signaling, T cell receptor signaling, cell adhesion molecules, focal adhesion, and extracellular matrix-receptor interaction. Protein-protein interaction network analysis identified the stromal hub genes with prognostic value in breast cancer, including two oncogenes (COL1A1 and IL21R), two protein kinases encoding genes (PRKACA and CSK), and a growth factor encoding gene (PLAU). Moreover, we observed that the patients with bad clinical outcomes were less enriched in stromal and antitumor immune signatures (CD8 + T cells and tumor-infiltrating lymphocytes) but more enriched in tumor cells and immunosuppressive signatures (MDSCs and CD4 + regulatory T cells) compared with the patients with good clinical outcomes. The ratios of CD8 + /CD4 + regulatory T cells were lower in the patients with bad clinical outcomes. Furthermore, we identified the tumor stroma-related genes, including MCM4, SPECC1, IMPA2, and AGO2, which were gradually upregulated through grade I, II, and III breast cancers. In contrast, COL14A1, ESR1, SLIT2, IGF1, CH25H, PRR5L, ABCA6, CEP126, IGDCC4, LHFP, MFAP3, PCSK5, RAB37, RBMS3, SETBP1, and TSPAN11 were gradually downregulated through grade I, II, and III breast cancers. It suggests that the expression of these stromal genes has an association with the progression of breast cancers. These progression-associated genes also displayed an expression association with recurrence-free survival in breast cancer patients. CONCLUSIONS This study identified tumor stroma-associated biomarkers correlated with deregulated pathways, tumor immunity, tumor progression, and clinical outcomes in breast cancer. Our findings provide new insights into the pathogenesis of breast cancer.
Collapse
Affiliation(s)
- Md Nazim Uddin
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China
- Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
- Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
- Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
19
|
ERK Phosphorylation Regulates the Aml1/Runx1 Splice Variants and the TRP Channels Expression during the Differentiation of Glioma Stem Cell Lines. Cells 2021; 10:cells10082052. [PMID: 34440820 PMCID: PMC8391729 DOI: 10.3390/cells10082052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/15/2022] Open
Abstract
The identification of cancer stem cells in brain tumors paved the way for new therapeutic approaches. Recently, a role for the transcriptional factor Runx1/Aml1 and the downstream ion channel genes in brain cancer development and progression has been suggested. This study aimed to explore the expression and the role of Runx1/Aml1, its Aml1b and Aml1c splice variants and the downstream TRPA1 and TRPV1 ion channels in undifferentiated and day-14 differentiated neural stem cells (NSCs and D-NSCs) and glioblastoma stem cells (GSCs and D-GSCs) lines with different proneural (PN) or mesenchymal (MES) phenotype. Gene and protein expression were evaluated by qRT-PCR, cytofluorimetric, western blot and confocal microscopy analyses. Moreover, by western blot, we observed that ERK phosphorylation enhances the Aml1b and Aml1c protein expression during glioma differentiation. Furthermore, the agonists of TRPA1 and TRPV1 channels stimulated apoptosis/necrosis in GSCs and D-GSCs as evaluated by Annexin V and PI staining and cytofluorimetric analysis. Finally, by qRT-PCR, the modulation of Wnt/β catenin, FGF, and TGFβ/SMAD signaling pathways in PN- and MES-GSCs was reported. Overall, our results provide new evidence regarding Runx1/Aml1 isoform overexpression and modulation in TRP channel expression during gliomagenesis, thus offering new directions for glioblastoma therapy.
Collapse
|
20
|
Fultang N, Chakraborty M, Peethambaran B. Regulation of cancer stem cells in triple negative breast cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:321-342. [PMID: 35582030 PMCID: PMC9019272 DOI: 10.20517/cdr.2020.106] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/28/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Abstract
Triple Negative Breast Cancer (TNBC) is the most lethal subtype of breast cancer. Despite the successes of emerging targeted therapies, relapse, recurrence, and therapy failure rates in TNBC significantly outpace other subtypes of breast cancer. Mounting evidence suggests accumulation of therapy resistant Cancer Stem Cell (CSC) populations within TNBCs contributes to poor clinical outcomes. These CSCs are enriched in TNBC compared to non-TNBC breast cancers. The mechanisms underlying CSC accumulation have been well-characterized and discussed in other reviews. In this review, we focus on TNBC-specific mechanisms that allow the expansion and activity of self-renewing CSCs. We highlight cellular signaling pathways and transcription factors, specifically enriched in TNBC over non-TNBC breast cancer, contributing to stemness. We also analyze publicly available single-cell RNA-seq data from basal breast cancer tumors to highlight the potential of emerging bioinformatic approaches in identifying novel drivers of stemness in TNBC and other cancers.
Collapse
Affiliation(s)
- Norman Fultang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19140, USA
| | - Madhuparna Chakraborty
- Department of Biological Sciences, The University of the Sciences, Philadelphia, PA 19140, USA
| | - Bela Peethambaran
- Department of Biological Sciences, The University of the Sciences, Philadelphia, PA 19140, USA
| |
Collapse
|
21
|
Wang H, Wang X, Xu L, Zhang J, Cao H. RUNX1 and REXO2 are associated with the heterogeneity and prognosis of IDH wild type lower grade glioma. Sci Rep 2021; 11:11836. [PMID: 34088969 PMCID: PMC8178394 DOI: 10.1038/s41598-021-91382-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Based on isocitrate dehydrogenase (IDH) alterations, lower grade glioma (LGG) is divided into IDH mutant and wild type subgroups. However, the further classification of IDH wild type LGG was unclear. Here, IDH wild type LGG patients in The Cancer Genome Atlas and Chinese Glioma Genome Atlas were divided into two sub-clusters using non-negative matrix factorization. IDH wild type LGG patients in sub-cluster2 had prolonged overall survival and low frequency of CDKN2A alterations and low immune infiltrations. Differentially expressed genes in sub-cluster1 were positively correlated with RUNX1 transcription factor. Moreover, IDH wild type LGG patients with higher stromal score or immune score were positively correlated with RUNX1 transcription factor. RUNX1 and its target gene REXO2 were up-regulated in sub-cluster1 and associated with the worse prognosis of IDH wild type LGG. RUNX1 and REXO2 were associated with the higher immune infiltrations. Furthermore, RUNX1 and REXO2 were correlated with the worse prognosis of LGG or glioma. IDH wild type LGG in sub-cluster2 was hyper-methylated. REXO2 hyper-methylation was associated with the favorable prognosis of LGG or glioma. At last, we showed that, age, tumor grade and REXO2 expression were independent prognostic factors in IDH wild type LGG.
Collapse
Affiliation(s)
- Haiwei Wang
- Medical Research Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China. .,Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, National Health and Family Planning Commission, Fuzhou, Fujian, China.
| | - Xinrui Wang
- Medical Research Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China.,Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, National Health and Family Planning Commission, Fuzhou, Fujian, China
| | - Liangpu Xu
- Medical Research Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China.,Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, National Health and Family Planning Commission, Fuzhou, Fujian, China
| | - Ji Zhang
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Hua Cao
- Medical Research Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China. .,Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, National Health and Family Planning Commission, Fuzhou, Fujian, China.
| |
Collapse
|
22
|
Thakuri BKC, Zhang J, Zhao J, Nguyen LN, Nguyen LNT, Schank M, Khanal S, Dang X, Cao D, Lu Z, Wu XY, Jiang Y, El Gazzar M, Ning S, Wang L, Moorman JP, Yao ZQ. HCV-Associated Exosomes Upregulate RUNXOR and RUNX1 Expressions to Promote MDSC Expansion and Suppressive Functions through STAT3-miR124 Axis. Cells 2020; 9:cells9122715. [PMID: 33353065 PMCID: PMC7766103 DOI: 10.3390/cells9122715] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/09/2020] [Accepted: 12/17/2020] [Indexed: 12/17/2022] Open
Abstract
RUNX1 overlapping RNA (RUNXOR) is a long non-coding RNA and plays a pivotal role in the differentiation of myeloid cells via targeting runt-related transcription factor 1 (RUNX1). We and others have previously reported that myeloid-derived suppressor cells (MDSCs) expand and inhibit host immune responses during chronic viral infections; however, the mechanisms responsible for MDSC differentiation and suppressive functions, in particular the role of RUNXOR–RUNX1, remain unclear. Here, we demonstrated that RUNXOR and RUNX1 expressions are significantly upregulated and associated with elevated levels of immunosuppressive molecules, such as arginase 1 (Arg1), inducible nitric oxide synthase (iNOS), signal transducer and activator of transcription 3 (STAT3), and reactive oxygen species (ROS) in MDSCs during chronic hepatitis C virus (HCV) infection. Mechanistically, we discovered that HCV-associated exosomes (HCV-Exo) can induce the expressions of RUNXOR and RUNX1, which in turn regulates miR-124 expression via STAT3 signaling, thereby promoting MDSC differentiation and suppressive functions. Importantly, overexpression of RUNXOR in healthy CD33+ myeloid cells promoted differentiation and suppressive functions of MDSCs. Conversely, silencing RUNXOR or RUNX1 expression in HCV-derived CD33+ myeloid cells significantly inhibited their differentiation and expressions of suppressive molecules and improved the function of co-cultured autologous CD4 T cells. Taken together, these results indicate that the RUNXOR–RUNX1–STAT3–miR124 axis enhances the differentiation and suppressive functions of MDSCs and could be a potential target for immunomodulation in conjunction with antiviral therapy during chronic HCV infection.
Collapse
Affiliation(s)
- Bal Krishna Chand Thakuri
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Jinyu Zhang
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Juan Zhao
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Lam N. Nguyen
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Lam N. T. Nguyen
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Madison Schank
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Sushant Khanal
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Xindi Dang
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Dechao Cao
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Zeyuan Lu
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Xiao Y. Wu
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Yong Jiang
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
| | - Mohamed El Gazzar
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
| | - Shunbin Ning
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Ling Wang
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Jonathan P. Moorman
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
- Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN 37614, USA
| | - Zhi Q. Yao
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
- Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN 37614, USA
- Correspondence: ; Tel.: +1-423-439-8029; Fax: +1-423-439-7010
| |
Collapse
|
23
|
Liu S, Xie F, Gan L, Peng T, Xu X, Guo S, Fu W, Wang Y, Ouyang Y, Yang J, Wang X, Zheng Y, Zhang J, Wang H. Integration of transcriptome and cistrome analysis identifies RUNX1-target genes involved in pancreatic cancer proliferation. Genomics 2020; 112:5343-5355. [PMID: 33189780 DOI: 10.1016/j.ygeno.2020.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/09/2020] [Accepted: 11/10/2020] [Indexed: 12/26/2022]
Abstract
The extremely high proliferation rate of tumor cells contributes to pancreatic cancer (PC) progression. Runt-related transcription factor 1(RUNX1), a key factor in hematopoiesis that was correlated with tumor progression. However, the role of RUNX1 in PC proliferation was still unclear. We found that RUNX1 was significantly upregulated in PC tissues and its expression was negatively associated with prognosis of PC patients in a multicenter analysis according to immunohistochemical (IHC). RUNX1 downregulation in PC resulted in a significantly reduced cell proliferation rate, which was consistent with in vivo subcutaneous tumor formation assay results. RNA-seq and ChIP-seq results revealed that a portion of target genes, including HAP1, GPRC5B, PTPN21, VHL and EN2, were regulated by RUNX1, a finding successfully validated by ChIP-qPCR, qRT-PCR and Western blot. Subsequently, IHC and proliferation assays showed these target genes to be dysregulated in PC, affecting tumor growth. Our data suggest that RUNX1 plays an oncogenic role in tumor proliferation and is a potential prognostic biomarker and therapeutic target for PC.
Collapse
Affiliation(s)
- Songsong Liu
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Fuming Xie
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, PR China
| | - Lang Gan
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Tao Peng
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Xuejun Xu
- Department of Hepatobiliary Surgery, General Hospital of Xinjiang Military Region of PLA, Xinjiang, PR China
| | - Shixiang Guo
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, PR China
| | - Wen Fu
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, PR China
| | - Yunchao Wang
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Yongsheng Ouyang
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Jiali Yang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, PR China
| | - Xianxing Wang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, PR China
| | - Yao Zheng
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, PR China
| | - Junfeng Zhang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, PR China.
| | - Huaizhi Wang
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China; Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, PR China.
| |
Collapse
|
24
|
Ramirez-Valles EG, Rodríguez-Pulido A, Barraza-Salas M, Martínez-Velis I, Meneses-Morales I, Ayala-García VM, Alba-Fierro CA. A Quest for New Cancer Diagnosis, Prognosis and Prediction Biomarkers and Their Use in Biosensors Development. Technol Cancer Res Treat 2020; 19:1533033820957033. [PMID: 33107395 PMCID: PMC7607814 DOI: 10.1177/1533033820957033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Traditional techniques for cancer diagnosis, such as nuclear magnetic resonance, ultrasound and tissue analysis, require sophisticated devices and highly trained personnel, which are characterized by elevated operation costs. The use of biomarkers has emerged as an alternative for cancer diagnosis, prognosis and prediction because their measurement in tissues or fluids, such as blood, urine or saliva, is characterized by shorter processing times. However, the biomarkers used currently, and the techniques used for their measurement, including ELISA, western-blot, polymerase chain reaction (PCR) or immunohistochemistry, possess low sensitivity and specificity. Therefore, the search for new proteomic, genomic or immunological biomarkers and the development of new noninvasive, easier and cheaper techniques that meet the sensitivity and specificity criteria for the diagnosis, prognosis and prediction of this disease has become a relevant topic. The purpose of this review is to provide an overview about the search for new cancer biomarkers, including the strategies that must be followed to identify them, as well as presenting the latest advances in the development of biosensors that possess a high potential for cancer diagnosis, prognosis and prediction, mainly focusing on their relevance in lung, prostate and breast cancers.
Collapse
Affiliation(s)
- Eda G Ramirez-Valles
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Dgo, Mexico
| | | | - Marcelo Barraza-Salas
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Dgo, Mexico
| | - Isaac Martínez-Velis
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Dgo, Mexico
| | - Iván Meneses-Morales
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Dgo, Mexico
| | - Víctor M Ayala-García
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Dgo, Mexico
| | - Carlos A Alba-Fierro
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Dgo, Mexico
| |
Collapse
|
25
|
Mevel R, Steiner I, Mason S, Galbraith LCA, Patel R, Fadlullah MZH, Ahmad I, Leung HY, Oliveira P, Blyth K, Baena E, Lacaud G. RUNX1 marks a luminal castration-resistant lineage established at the onset of prostate development. eLife 2020; 9:e60225. [PMID: 33025905 PMCID: PMC7644213 DOI: 10.7554/elife.60225] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
The characterization of prostate epithelial hierarchy and lineage heterogeneity is critical to understand its regenerative properties and malignancies. Here, we report that the transcription factor RUNX1 marks a specific subpopulation of proximal luminal cells (PLCs), enriched in the periurethral region of the developing and adult mouse prostate, and distinct from the previously identified NKX3.1+ luminal castration-resistant cells. Using scRNA-seq profiling and genetic lineage tracing, we show that RUNX1+ PLCs are unaffected by androgen deprivation, and do not contribute to the regeneration of the distal luminal compartments. Furthermore, we demonstrate that a transcriptionally similar RUNX1+ population emerges at the onset of embryonic prostate specification to populate the proximal region of the ducts. Collectively, our results reveal that RUNX1+ PLCs is an intrinsic castration-resistant and self-sustained lineage that emerges early during prostate development and provide new insights into the lineage relationships of the prostate epithelium.
Collapse
Affiliation(s)
- Renaud Mevel
- Cancer Research United Kingdom, Stem Cell Biology Group, Cancer Research United Kingdom Manchester Institute, The University of Manchester, Alderley Park, Alderley EdgeMacclesfieldUnited Kingdom
| | - Ivana Steiner
- Cancer Research United Kingdom, Prostate Oncobiology Group, Cancer Research United Kingdom Manchester Institute, The University of Manchester, Alderley Park, Alderley EdgeMacclesfieldUnited Kingdom
| | - Susan Mason
- Cancer Research United Kingdom Beatson Institute, BearsdenGlasgowUnited Kingdom
| | - Laura CA Galbraith
- Cancer Research United Kingdom Beatson Institute, BearsdenGlasgowUnited Kingdom
| | - Rahima Patel
- Cancer Research United Kingdom, Stem Cell Biology Group, Cancer Research United Kingdom Manchester Institute, The University of Manchester, Alderley Park, Alderley EdgeMacclesfieldUnited Kingdom
| | - Muhammad ZH Fadlullah
- Cancer Research United Kingdom, Stem Cell Biology Group, Cancer Research United Kingdom Manchester Institute, The University of Manchester, Alderley Park, Alderley EdgeMacclesfieldUnited Kingdom
| | - Imran Ahmad
- Cancer Research United Kingdom Beatson Institute, BearsdenGlasgowUnited Kingdom
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, BearsdenGlasgowUnited Kingdom
| | - Hing Y Leung
- Cancer Research United Kingdom Beatson Institute, BearsdenGlasgowUnited Kingdom
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, BearsdenGlasgowUnited Kingdom
| | - Pedro Oliveira
- Department of Pathology, The Christie NHS Foundation TrustManchesterUnited Kingdom
| | - Karen Blyth
- Cancer Research United Kingdom Beatson Institute, BearsdenGlasgowUnited Kingdom
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, BearsdenGlasgowUnited Kingdom
| | - Esther Baena
- Cancer Research United Kingdom, Prostate Oncobiology Group, Cancer Research United Kingdom Manchester Institute, The University of Manchester, Alderley Park, Alderley EdgeMacclesfieldUnited Kingdom
- Belfast-Manchester Movember Centre of Excellence, Cancer Research United Kingdom Manchester Institute, The University of ManchesterAlderley ParkUnited Kingdom
| | - Georges Lacaud
- Cancer Research United Kingdom, Stem Cell Biology Group, Cancer Research United Kingdom Manchester Institute, The University of Manchester, Alderley Park, Alderley EdgeMacclesfieldUnited Kingdom
| |
Collapse
|
26
|
Soares CD, de Cáceres CVBL, Rodrigues-Fernandes CI, de Lima Morais TM, de Almeida OP, de Carvalho MGF, Fonseca FP. Prognostic importance of RUNX1 expression for head and neck adenoid cystic carcinoma. Oral Dis 2020; 27:266-276. [PMID: 32609408 DOI: 10.1111/odi.13522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVE In the present study, we aimed to investigate the prognostic value of RUNX1 expression in 76 patients with adenoid cystic carcinoma (ACC). MATERIALS AND METHODS All cases were arranged in tissue microarray blocks and submitted to immunohistochemistry against RUNX1. These results were statistically correlated with clinicopathologic features, including age, gender, tumour site, tumour size, lymph node status, AJCC clinical stage, distant metastasis, treatment, recurrences, follow-up, histologic pattern, vascular and neural invasion, all of which obtained from patient's medical records. RESULTS RUNX1 was expressed in the nuclei of tumour cells, with a mean of 18.1% of positivity. Nuclear RUNX1 expression was significantly associated with AJCC clinical stage (p < .0001), solid histologic pattern (p < .0001), vascular invasion (p < .0001) and presence of local recurrence (p < .0001). Using univariate and multivariate analyses, RUNX1 nuclear expression was significantly associated with a lower disease-free survival (p < .0001 and p = .028, respectively) and disease-specific survival (p < .0001 and p = .018, respectively) rates. CONCLUSION In summary, RUNX1 nuclear expression may represent an indicator of unfavourable outcome for patients affected by head and neck ACC.
Collapse
Affiliation(s)
- Ciro Dantas Soares
- Department of Oral Diagnosis, Area of Pathology, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil.,Private Pathology Service, Natal, Rio Grande do Norte, Brazil
| | | | | | - Thayná Melo de Lima Morais
- Department of Oral Diagnosis, Area of Pathology, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Oslei Paes de Almeida
- Department of Oral Diagnosis, Area of Pathology, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | | | - Felipe Paiva Fonseca
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
27
|
Rose JT, Moskovitz E, Boyd JR, Gordon JA, Bouffard NA, Fritz AJ, Illendula A, Bushweller JH, Lian JB, Stein JL, Zaidi SK, Stein GS. Inhibition of the RUNX1-CBFβ transcription factor complex compromises mammary epithelial cell identity: a phenotype potentially stabilized by mitotic gene bookmarking. Oncotarget 2020; 11:2512-2530. [PMID: 32655837 PMCID: PMC7335667 DOI: 10.18632/oncotarget.27637] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
RUNX1 has recently been shown to play an important role in determination of mammary epithelial cell identity. However, mechanisms by which loss of the RUNX1 transcription factor in mammary epithelial cells leads to epithelial-to-mesenchymal transition (EMT) are not known. Here, we report that interaction between RUNX1 and its heterodimeric partner CBFβ is essential for sustaining mammary epithelial cell identity. Disruption of RUNX1-CBFβ interaction, DNA binding, and association with mitotic chromosomes alters cell morphology, global protein synthesis, and phenotype-related gene expression. During interphase, RUNX1 is organized as punctate, predominantly nuclear, foci that are dynamically redistributed during mitosis, with a subset localized to mitotic chromosomes. Genome-wide RUNX1 occupancy profiles for asynchronous, mitotically enriched, and early G1 breast epithelial cells reveal RUNX1 associates with RNA Pol II-transcribed protein coding and long non-coding RNA genes and RNA Pol I-transcribed ribosomal genes critical for mammary epithelial proliferation, growth, and phenotype maintenance. A subset of these genes remains occupied by the protein during the mitosis to G1 transition. Together, these findings establish that the RUNX1-CBFβ complex is required for maintenance of the normal mammary epithelial phenotype and its disruption leads to EMT. Importantly, our results suggest, for the first time, that RUNX1 mitotic bookmarking of a subset of epithelial-related genes may be an important epigenetic mechanism that contributes to stabilization of the mammary epithelial cell identity.
Collapse
Affiliation(s)
- Joshua T. Rose
- Department of Biochemistry and University of Vermont Cancer Center, Robert Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
- These authors contributed equally to this work
| | - Eliana Moskovitz
- Department of Biochemistry and University of Vermont Cancer Center, Robert Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
- These authors contributed equally to this work
| | - Joseph R. Boyd
- Department of Biochemistry and University of Vermont Cancer Center, Robert Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Jonathan A. Gordon
- Department of Biochemistry and University of Vermont Cancer Center, Robert Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Nicole A. Bouffard
- Microscopy Imaging Center at the Robert Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Andrew J. Fritz
- Department of Biochemistry and University of Vermont Cancer Center, Robert Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Anuradha Illendula
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - John H. Bushweller
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Jane B. Lian
- Department of Biochemistry and University of Vermont Cancer Center, Robert Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Janet L. Stein
- Department of Biochemistry and University of Vermont Cancer Center, Robert Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Sayyed K. Zaidi
- Department of Biochemistry and University of Vermont Cancer Center, Robert Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Gary S. Stein
- Department of Biochemistry and University of Vermont Cancer Center, Robert Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
28
|
Rooney N, Mason SM, McDonald L, Däbritz JHM, Campbell KJ, Hedley A, Howard S, Athineos D, Nixon C, Clark W, Leach JDG, Sansom OJ, Edwards J, Cameron ER, Blyth K. RUNX1 Is a Driver of Renal Cell Carcinoma Correlating with Clinical Outcome. Cancer Res 2020; 80:2325-2339. [PMID: 32156779 DOI: 10.1158/0008-5472.can-19-3870] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/17/2020] [Accepted: 03/06/2020] [Indexed: 11/16/2022]
Abstract
The recurring association of specific genetic lesions with particular types of cancer is a fascinating and largely unexplained area of cancer biology. This is particularly true of clear cell renal cell carcinoma (ccRCC) where, although key mutations such as loss of VHL is an almost ubiquitous finding, there remains a conspicuous lack of targetable genetic drivers. In this study, we have identified a previously unknown protumorigenic role for the RUNX genes in this disease setting. Analysis of patient tumor biopsies together with loss-of-function studies in preclinical models established the importance of RUNX1 and RUNX2 in ccRCC. Patients with high RUNX1 (and RUNX2) expression exhibited significantly poorer clinical survival compared with patients with low expression. This was functionally relevant, as deletion of RUNX1 in ccRCC cell lines reduced tumor cell growth and viability in vitro and in vivo. Transcriptional profiling of RUNX1-CRISPR-deleted cells revealed a gene signature dominated by extracellular matrix remodeling, notably affecting STMN3, SERPINH1, and EPHRIN signaling. Finally, RUNX1 deletion in a genetic mouse model of kidney cancer improved overall survival and reduced tumor cell proliferation. In summary, these data attest to the validity of targeting a RUNX1-transcriptional program in ccRCC. SIGNIFICANCE: These data reveal a novel unexplored oncogenic role for RUNX genes in kidney cancer and indicate that targeting the effects of RUNX transcriptional activity could be relevant for clinical intervention in ccRCC.
Collapse
Affiliation(s)
- Nicholas Rooney
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, United Kingdom
| | - Susan M Mason
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, United Kingdom
| | - Laura McDonald
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, United Kingdom
| | - J Henry M Däbritz
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, United Kingdom
| | - Kirsteen J Campbell
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, United Kingdom
| | - Ann Hedley
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, United Kingdom
| | - Steven Howard
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, United Kingdom
| | - Dimitris Athineos
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, United Kingdom
| | - Colin Nixon
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, United Kingdom
| | - William Clark
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, United Kingdom
| | - Joshua D G Leach
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow, United Kingdom
| | - Owen J Sansom
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow, United Kingdom
| | - Joanne Edwards
- Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow, United Kingdom
| | - Ewan R Cameron
- School of Veterinary Medicine, University of Glasgow, Bearsden, Glasgow, United Kingdom
| | - Karen Blyth
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, United Kingdom.
- Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow, United Kingdom
| |
Collapse
|
29
|
Ran R, Harrison H, Syamimi Ariffin N, Ayub R, Pegg HJ, Deng W, Mastro A, Ottewell PD, Mason SM, Blyth K, Holen I, Shore P. A role for CBFβ in maintaining the metastatic phenotype of breast cancer cells. Oncogene 2020; 39:2624-2637. [PMID: 32005976 PMCID: PMC7082223 DOI: 10.1038/s41388-020-1170-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 12/04/2019] [Accepted: 01/20/2020] [Indexed: 11/09/2022]
Abstract
Epithelial to mesenchymal transition (EMT) is a dynamic process that drives cancer cell plasticity and is thought to play a major role in metastasis. Here we show, using MDA-MB-231 cells as a model, that the plasticity of at least some metastatic breast cancer cells is dependent on the transcriptional co-regulator CBFβ. We demonstrate that CBFβ is essential to maintain the mesenchymal phenotype of triple-negative breast cancer cells and that CBFβ-depleted cells undergo a mesenchymal to epithelial transition (MET) and re-organise into acini-like structures, reminiscent of those formed by epithelial breast cells. We subsequently show, using an inducible CBFβ system, that the MET can be reversed, thus demonstrating the plasticity of CBFβ-mediated EMT. Moreover, the MET can be reversed by expression of the EMT transcription factor Slug whose expression is dependent on CBFβ. Finally, we demonstrate that loss of CBFβ inhibits the ability of metastatic breast cancer cells to invade bone cell cultures and suppresses their ability to form bone metastases in vivo. Together our findings demonstrate that CBFβ can determine the plasticity of the metastatic cancer cell phenotype, suggesting that its regulation in different micro-environments may play a key role in the establishment of metastatic tumours.
Collapse
Affiliation(s)
- Ran Ran
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Hannah Harrison
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Nur Syamimi Ariffin
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Rahna Ayub
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Henry J Pegg
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Wensheng Deng
- Wuhan University of Science and Technology, Jishi Rd, Hongshan Qu, Wuhan Shi, Hubei Sheng, 430065, China
| | - Andrea Mastro
- Penn State University, 428 South Frear Laboratory, University Park, Philadelphia, PA, 16802, USA
| | - Penny D Ottewell
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Susan M Mason
- CRUK Beatson Institute, Garscube Estate, Bearsden, Glasgow, G61 1BD, UK
| | - Karen Blyth
- CRUK Beatson Institute, Garscube Estate, Bearsden, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Ingunn Holen
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK.
| | - Paul Shore
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
30
|
Lie-a-ling M, Mevel R, Patel R, Blyth K, Baena E, Kouskoff V, Lacaud G. RUNX1 Dosage in Development and Cancer. Mol Cells 2020; 43:126-138. [PMID: 31991535 PMCID: PMC7057845 DOI: 10.14348/molcells.2019.0301] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 12/30/2022] Open
Abstract
The transcription factor RUNX1 first came to prominence due to its involvement in the t(8;21) translocation in acute myeloid leukemia (AML). Since this discovery, RUNX1 has been shown to play important roles not only in leukemia but also in the ontogeny of the normal hematopoietic system. Although it is currently still challenging to fully assess the different parameters regulating RUNX1 dosage, it has become clear that the dose of RUNX1 can greatly affect both leukemia and normal hematopoietic development. It is also becoming evident that varying levels of RUNX1 expression can be used as markers of tumor progression not only in the hematopoietic system, but also in non-hematopoietic cancers. Here, we provide an overview of the current knowledge of the effects of RUNX1 dosage in normal development of both hematopoietic and epithelial tissues and their associated cancers.
Collapse
Affiliation(s)
- Michael Lie-a-ling
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, SK0 4TG, UK
| | - Renaud Mevel
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, SK0 4TG, UK
| | - Rahima Patel
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, SK0 4TG, UK
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Esther Baena
- Cancer Research UK Prostate Oncobiology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, SK10 TG, UK
| | - Valerie Kouskoff
- Division of Developmental Biology & Medicine, The University of Manchester, Manchester, M13 9PT, UK
| | - Georges Lacaud
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, SK0 4TG, UK
| |
Collapse
|
31
|
Farina NH, Scalia S, Adams CE, Hong D, Fritz AJ, Messier TL, Balatti V, Veneziano D, Lian JB, Croce CM, Stein GS, Stein JL. Identification of tRNA-derived small RNA (tsRNA) responsive to the tumor suppressor, RUNX1, in breast cancer. J Cell Physiol 2020; 235:5318-5327. [PMID: 31919859 DOI: 10.1002/jcp.29419] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 12/16/2019] [Indexed: 01/09/2023]
Abstract
Despite recent advances in targeted therapies, the molecular mechanisms driving breast cancer initiation, progression, and metastasis are minimally understood. Growing evidence indicate that transfer RNA (tRNA)-derived small RNAs (tsRNA) contribute to biological control and aberrations associated with cancer development and progression. The runt-related transcription factor 1 (RUNX1) transcription factor is a tumor suppressor in the mammary epithelium whereas RUNX1 downregulation is functionally associated with breast cancer initiation and progression. We identified four tsRNA (ts-19, ts-29, ts-46, and ts-112) that are selectively responsive to expression of the RUNX1 tumor suppressor. Our finding that ts-112 and RUNX1 anticorrelate in normal-like mammary epithelial and breast cancer lines is consistent with tumor-related activity of ts-112 and tumor suppressor activity of RUNX1. Inhibition of ts-112 in MCF10CA1a aggressive breast cancer cells significantly reduced proliferation. Ectopic expression of a ts-112 mimic in normal-like mammary epithelial MCF10A cells significantly increased proliferation. These findings support an oncogenic potential for ts-112. Moreover, RUNX1 may repress ts-112 to prevent overactive proliferation in breast epithelial cells to augment its established roles in maintaining the mammary epithelium.
Collapse
Affiliation(s)
- Nicholas H Farina
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,Larner College of Medicine, University of Vermont Cancer Center, Burlington, Vermont.,Northern New England Clinical and Translational Research Network
| | - Stephanie Scalia
- Northern New England Clinical and Translational Research Network.,Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Caroline E Adams
- Northern New England Clinical and Translational Research Network.,Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Deli Hong
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,Larner College of Medicine, University of Vermont Cancer Center, Burlington, Vermont
| | - Andrew J Fritz
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,Larner College of Medicine, University of Vermont Cancer Center, Burlington, Vermont
| | - Terri L Messier
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,Larner College of Medicine, University of Vermont Cancer Center, Burlington, Vermont
| | - Veronica Balatti
- Department of Cancer Biology and Medical Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Dario Veneziano
- Department of Cancer Biology and Medical Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Jane B Lian
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,Larner College of Medicine, University of Vermont Cancer Center, Burlington, Vermont.,Northern New England Clinical and Translational Research Network
| | - Carlo M Croce
- Department of Cancer Biology and Medical Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Gary S Stein
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,Larner College of Medicine, University of Vermont Cancer Center, Burlington, Vermont.,Northern New England Clinical and Translational Research Network.,Department of Surgery, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Janet L Stein
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,Larner College of Medicine, University of Vermont Cancer Center, Burlington, Vermont.,Northern New England Clinical and Translational Research Network
| |
Collapse
|
32
|
Falconi G, Fabiani E, Criscuolo M, Fianchi L, Finelli C, Cerqui E, Pelosi E, Screnci M, Gurnari C, Zangrilli I, Postorino M, Laurenti L, Piciocchi A, Testa U, Lo-Coco F, Voso MT. Transcription factors implicated in late megakaryopoiesis as markers of outcome after azacitidine and allogeneic stem cell transplantation in myelodysplastic syndrome. Leuk Res 2019; 84:106191. [DOI: 10.1016/j.leukres.2019.106191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/25/2019] [Accepted: 07/14/2019] [Indexed: 01/07/2023]
|
33
|
Nie Y, Zhou L, Wang H, Chen N, Jia L, Wang C, Wang Y, Chen J, Wen X, Niu C, Li H, Guo R, Zhang S, Cui J, Hoffman AR, Hu JF, Li W. Profiling the epigenetic interplay of lncRNA RUNXOR and oncogenic RUNX1 in breast cancer cells by gene in situ cis-activation. Am J Cancer Res 2019; 9:1635-1649. [PMID: 31497347 PMCID: PMC6726995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023] Open
Abstract
RUNX1 is frequently mutated as chromosomal translocations in a variety of hematological malignancies. Recent studies show that RUNX1 is also mutated somatically in many solid tumors. We have recently identified a 260 kb un-spliced intragenic overlapping long noncoding RNA RUNXOR in the RUNX1 locus, yet its role as an epigenetic regulator in tumors remains to be characterized. To delineate this RUNXOR-RUNX1 regulatory interplay in breast cancer cells, we devised a novel "gene in situ cis-activation" approach to activate the endogenous RUNXOR gene. We found that the in situ activation of RUNXOR lncRNA upregulated RUNX1 in cis from the P1 promoter. The preferred activation of the P1 promoter caused a shift to the RUNX1c isoform expression. Using a chromatin conformation capture (3C) approach, we showed that RUNXOR lncRNA epigenetically activated the RUNX1 P1 promoter in cis by altering the local chromatin structure. The binding of RUNXOR lncRNA triggered DNA demethylation and induced active histone modification markers in the P1 CpG island. Changes in RUNX1 isoform composition correlated with a trend to cell cycle arrest at G0/G1, although cell proliferation rate, apoptosis, and migration ability were not significantly changed. Our results reveal an underlying epigenetic mechanism by which the lncRNA regulates in cis the RUNX1 promoter usage in breast cancer cells, thereby shedding light on potential genetic therapies in malignancies in which RUNX1 loss-of-function mutations frequently occur.
Collapse
Affiliation(s)
- Yuanyuan Nie
- Stem Cell and Cancer Center, First Hospital, Jilin UniversityChangchun 130061, Jilin, China
- Stanford University Medical School, VA Palo Alto Health Care SystemPalo Alto, CA 94304, USA
| | - Lei Zhou
- Stem Cell and Cancer Center, First Hospital, Jilin UniversityChangchun 130061, Jilin, China
| | - Hong Wang
- Stem Cell and Cancer Center, First Hospital, Jilin UniversityChangchun 130061, Jilin, China
| | - Naifei Chen
- Stem Cell and Cancer Center, First Hospital, Jilin UniversityChangchun 130061, Jilin, China
| | - Lin Jia
- Stem Cell and Cancer Center, First Hospital, Jilin UniversityChangchun 130061, Jilin, China
- Stanford University Medical School, VA Palo Alto Health Care SystemPalo Alto, CA 94304, USA
| | - Cong Wang
- Stem Cell and Cancer Center, First Hospital, Jilin UniversityChangchun 130061, Jilin, China
- Stanford University Medical School, VA Palo Alto Health Care SystemPalo Alto, CA 94304, USA
| | - Yichen Wang
- Stem Cell and Cancer Center, First Hospital, Jilin UniversityChangchun 130061, Jilin, China
- Stanford University Medical School, VA Palo Alto Health Care SystemPalo Alto, CA 94304, USA
| | - Jingcheng Chen
- Stem Cell and Cancer Center, First Hospital, Jilin UniversityChangchun 130061, Jilin, China
- Stanford University Medical School, VA Palo Alto Health Care SystemPalo Alto, CA 94304, USA
| | - Xue Wen
- Stem Cell and Cancer Center, First Hospital, Jilin UniversityChangchun 130061, Jilin, China
| | - Chao Niu
- Stem Cell and Cancer Center, First Hospital, Jilin UniversityChangchun 130061, Jilin, China
| | - Hui Li
- Stem Cell and Cancer Center, First Hospital, Jilin UniversityChangchun 130061, Jilin, China
| | - Rui Guo
- Stem Cell and Cancer Center, First Hospital, Jilin UniversityChangchun 130061, Jilin, China
| | - Songling Zhang
- Stem Cell and Cancer Center, First Hospital, Jilin UniversityChangchun 130061, Jilin, China
| | - Jiuwei Cui
- Stem Cell and Cancer Center, First Hospital, Jilin UniversityChangchun 130061, Jilin, China
| | - Andrew R Hoffman
- Stanford University Medical School, VA Palo Alto Health Care SystemPalo Alto, CA 94304, USA
| | - Ji-Fan Hu
- Stem Cell and Cancer Center, First Hospital, Jilin UniversityChangchun 130061, Jilin, China
- Stanford University Medical School, VA Palo Alto Health Care SystemPalo Alto, CA 94304, USA
| | - Wei Li
- Stem Cell and Cancer Center, First Hospital, Jilin UniversityChangchun 130061, Jilin, China
| |
Collapse
|
34
|
Hasan MS, Wu X, Zhang L. Uncovering missed indels by leveraging unmapped reads. Sci Rep 2019; 9:11093. [PMID: 31366961 PMCID: PMC6668410 DOI: 10.1038/s41598-019-47405-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/12/2019] [Indexed: 02/08/2023] Open
Abstract
In current practice, Next Generation Sequencing (NGS) applications start with mapping/aligning short reads to the reference genome, with the aim of identifying genetic variants. Although existing alignment tools have shown great accuracy in mapping short reads to the reference genome, a significant number of short reads still remain unmapped and are often excluded from downstream analyses thereby causing nonnegligible information loss in the subsequent variant calling procedure. This paper describes Genesis-indel, a computational pipeline that explores the unmapped reads to identify novel indels that are initially missed in the original procedure. Genesis-indel is applied to the unmapped reads of 30 breast cancer patients from TCGA. Results show that the unmapped reads are conserved between the two subtypes of breast cancer investigated in this study and might contribute to the divergence between the subtypes. Genesis-indel identifies 72,997 novel high-quality indels previously not found, among which 16,141 have not been annotated in the widely used mutation database. Statistical analysis of these indels shows significant enrichment of indels residing in oncogenes and tumour suppressor genes. Functional annotation further reveals that these indels are strongly correlated with pathways of cancer and can have high to moderate impact on protein functions. Additionally, some of the indels overlap with the genes that do not have any indel mutations called from the originally mapped reads but have been shown to contribute to the tumorigenesis in multiple carcinomas, further emphasizing the importance of rescuing indels hidden in the unmapped reads in cancer and disease studies.
Collapse
Affiliation(s)
| | - Xiaowei Wu
- Department of Statistics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Liqing Zhang
- Department of Computer Science, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
35
|
Hong D, Fritz AJ, Gordon JA, Tye CE, Boyd JR, Tracy KM, Frietze SE, Carr FE, Nickerson JA, Van Wijnen AJ, Imbalzano AN, Zaidi SK, Lian JB, Stein JL, Stein GS. RUNX1-dependent mechanisms in biological control and dysregulation in cancer. J Cell Physiol 2019; 234:8597-8609. [PMID: 30515788 PMCID: PMC6395522 DOI: 10.1002/jcp.27841] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/12/2018] [Indexed: 01/02/2023]
Abstract
The RUNX1 transcription factor has recently been shown to be obligatory for normal development. RUNX1 controls the expression of genes essential for proper development in many cell lineages and tissues including blood, bone, cartilage, hair follicles, and mammary glands. Compromised RUNX1 regulation is associated with many cancers. In this review, we highlight evidence for RUNX1 control in both invertebrate and mammalian development and recent novel findings of perturbed RUNX1 control in breast cancer that has implications for other solid tumors. As RUNX1 is essential for definitive hematopoiesis, RUNX1 mutations in hematopoietic lineage cells have been implicated in the etiology of several leukemias. Studies of solid tumors have revealed a context-dependent function for RUNX1 either as an oncogene or a tumor suppressor. These RUNX1 functions have been reported for breast, prostate, lung, and skin cancers that are related to cancer subtypes and different stages of tumor development. Growing evidence suggests that RUNX1 suppresses aggressiveness in most breast cancer subtypes particularly in the early stage of tumorigenesis. Several studies have identified RUNX1 suppression of the breast cancer epithelial-to-mesenchymal transition. Most recently, RUNX1 repression of cancer stem cells and tumorsphere formation was reported for breast cancer. It is anticipated that these new discoveries of the context-dependent diversity of RUNX1 functions will lead to innovative therapeutic strategies for the intervention of cancer and other abnormalities of normal tissues.
Collapse
Affiliation(s)
- Deli Hong
- Dana Farber Cancer Institute, Boston, Massachusetts
| | - Andrew J Fritz
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Jonathan A Gordon
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Coralee E Tye
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Joseph R Boyd
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Kirsten M Tracy
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Seth E Frietze
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont
| | - Frances E. Carr
- Department of Pharmacology, University of Vermont, Burlington, Vermont
| | | | - Andre J. Van Wijnen
- Departments of Orthopedic Surgery and Biochemistry & Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Anthony N. Imbalzano
- Graduate Program in Cell Biology and Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, Massachusetts
| | - Sayyed K. Zaidi
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Jane B. Lian
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Janet L. Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Gary S. Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| |
Collapse
|
36
|
Down-regulation of lncRNA-NEF indicates poor prognosis in intrahepatic cholangiocarcinoma. Biosci Rep 2019; 39:BSR20181573. [PMID: 31015363 PMCID: PMC6527927 DOI: 10.1042/bsr20181573] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/26/2019] [Accepted: 03/18/2019] [Indexed: 11/17/2022] Open
Abstract
LncRNA-NEF is a tumor suppressor lncRNA in liver cancer. The present study aimed to investigate the role of lncRNA-NEF in intrahepatic cholangiocarcinoma (IHCC), which is second most common type of primary cancer of the hepatobiliary system that causes high mortality rate. In the present study we found that lncRNA-NEF was down-regulated, while Runt-related transcription factor 1 (RUNX1) was up-regulated in tumor tissues than in adjacent healthy tissues of IHCC patients. Expression levels of lncRNA-NEF and RUNX1 were significantly and reversely correlated in tumor tissues but not in adjacent healthy tissues. Plasma levels of lncRNA-NEF were significantly lower in IHCC patients than in healthy controls. Down-regulation of lncRNA-NEF effectively distinguished stage I and II IHCC patients from healthy controls. Patients were followed up for 5 years, patients with high plasma levels of lncRNA-NEF showed significantly better survival conditions compared with patients with low expression levels of lncRNA-NEF. LncRNA-NEF overexpression led to inhibited expression of RUNX1 in cells of IHCC cell lines and inhibited cancer cell migration and invasion. In contrast, RUNX1 overexpression showed no significant effects on lncRNA-NEF expression, but attenuated the effects of lncRNA-NEF overexpression on cancer cell migration and invasion. We therefore concluded that lncRNA-NEF participated in IHCC possibly by interacting with RUNX1.
Collapse
|
37
|
Chen Y, Zhang L, Liu L, Sun S, Zhao X, Wang Y, Zhang Y, Du J, Gu L. Rasip1 is a RUNX1 target gene and promotes migration of NSCLC cells. Cancer Manag Res 2018; 10:4537-4552. [PMID: 30349386 PMCID: PMC6190810 DOI: 10.2147/cmar.s168438] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Runt-related transcription factor 1 (RUNX1), an essential regulator of hematopoiesis, is overexpressed in patients with nonsmall-cell lung cancer (NSCLC) and is correlated with enhanced metastatic ability. Ras-interacting protein 1 (Rasip1), a potential oncogene, is required for blood vessel formation, and recently, it has been shown that Rasip1 is widely expressed in NSCLC patients. We noticed that Rasip1 promoter contains several potential RUNX1-binding sequences. However, the relationship between Rasip1 and RUNX1 in NSCLC is still unknown. In this study, the potential function of RUNX1 involving in Rasip1 expression and the potential role of Rasip1 in lung cancer cells were investigated. Materials and methods Rasip1 and RUNX1 expressions were analyzed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blotting in NSCLC cells lines. A549 and H1299 cells were transfected with plasmids or interfering RNA (siRNA) to upregulate or downregulate the expression of Rasip1 and RUNX1. Cell motility was assessed by transwell and wound-healing assay. Location of Rasip1 and RUNX1 was detected via immunofluorescence. Meanwhile, chromatin immunoprecipitation was done using an anti-RUNX1 antibody. Rasip1 promoter was constructed, and cells were lysed for the analysis of luciferase activity. Results In this study, we showed that ectopic expression or knockdown of RUNX1 resulted in a significant increase or reduction in Rasip1 expression, respectively. RUNX1 bound directly to a specific DNA sequence within Rasip1 promoter and modulated its transcription. Furthermore, silencing of Rasip1 inhibited the migration of RUNX1-overexpressing NSCLC cells through inactivation of Rac1 pathway. Moreover, we found that Rasip1 was expressed ubiquitously in NSCLC cells lines and enhanced cell migration. In addition, EGFR signaling was involved both in the expression and the subcellular localization of Rasip1. Conclusion Our data indicated that Rasip1 is regulated in part by the transcription factor RUNX1 and might be developed as a therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Yan Chen
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China,
| | - Lin Zhang
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China,
| | - Lei Liu
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China,
| | - Shixiu Sun
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China,
| | - Xuyang Zhao
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China,
| | - Yueyuan Wang
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China,
| | - Yujie Zhang
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China, .,Cancer Center, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China,
| | - Jun Du
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China, .,Cancer Center, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China,
| | - Luo Gu
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China, .,Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China, .,Cancer Center, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China,
| |
Collapse
|
38
|
Penkert J, Schmidt G, Hofmann W, Schubert S, Schieck M, Auber B, Ripperger T, Hackmann K, Sturm M, Prokisch H, Hille-Betz U, Mark D, Illig T, Schlegelberger B, Steinemann D. Breast cancer patients suggestive of Li-Fraumeni syndrome: mutational spectrum, candidate genes, and unexplained heredity. Breast Cancer Res 2018; 20:87. [PMID: 30086788 PMCID: PMC6081832 DOI: 10.1186/s13058-018-1011-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 06/27/2018] [Indexed: 01/07/2023] Open
Abstract
Background Breast cancer is the most prevalent tumor entity in Li-Fraumeni syndrome. Up to 80% of individuals with a Li-Fraumeni-like phenotype do not harbor detectable causative germline TP53 variants. Yet, no systematic panel analyses for a wide range of cancer predisposition genes have been conducted on cohorts of women with breast cancer fulfilling Li-Fraumeni(-like) clinical diagnostic criteria. Methods To specifically help explain the diagnostic gap of TP53 wild-type Li-Fraumeni(-like) breast cancer cases, we performed array-based CGH (comparative genomic hybridization) and panel-based sequencing of 94 cancer predisposition genes on 83 breast cancer patients suggestive of Li-Fraumeni syndrome who had previously had negative test results for causative BRCA1, BRCA2, and TP53 germline variants. Results We identified 13 pathogenic or likely pathogenic germline variants in ten patients and in nine genes, including four copy number aberrations and nine single-nucleotide variants or small indels. Three patients presented as double-mutation carriers involving two different genes each. In five patients (5 of 83; 6% of cohort), we detected causative pathogenic variants in established hereditary breast cancer susceptibility genes (i.e., PALB2, CHEK2, ATM). Five further patients (5 of 83; 6% of cohort) were found to harbor pathogenic variants in genes lacking a firm association with breast cancer susceptibility to date (i.e., Fanconi pathway genes, RECQ family genes, CDKN2A/p14ARF, and RUNX1). Conclusions Our study details the mutational spectrum in breast cancer patients suggestive of Li-Fraumeni syndrome and indicates the need for intensified research on monoallelic variants in Fanconi pathway and RECQ family genes. Notably, this study further reveals a large portion of still unexplained Li-Fraumeni(-like) cases, warranting comprehensive investigation of recently described candidate genes as well as noncoding regions of the TP53 gene in patients with Li-Fraumeni(-like) syndrome lacking TP53 variants in coding regions. Electronic supplementary material The online version of this article (10.1186/s13058-018-1011-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Judith Penkert
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.
| | - Gunnar Schmidt
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Winfried Hofmann
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Stephanie Schubert
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Maximilian Schieck
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Bernd Auber
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Tim Ripperger
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Karl Hackmann
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases (NCT) Partner Site Dresden, Dresden, Germany
| | - Marc Sturm
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Holger Prokisch
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Ursula Hille-Betz
- Department of Gynecology and Obstetrics, Hannover Medical School, Hannover, Germany
| | - Dorothea Mark
- Department of Internal Medicine, Hematology/Oncology, University Hospital Frankfurt, Frankfurt, Germany
| | - Thomas Illig
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Brigitte Schlegelberger
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Doris Steinemann
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| |
Collapse
|
39
|
Genetic alterations crossing the borders of distinct hematopoetic lineages and solid tumors: Diagnostic challenges in the era of high-throughput sequencing in hemato-oncology. Crit Rev Oncol Hematol 2018; 126:64-79. [DOI: 10.1016/j.critrevonc.2018.03.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/03/2018] [Accepted: 03/25/2018] [Indexed: 02/07/2023] Open
|
40
|
Krygier A, Szmajda D, Żebrowska M, Jeleń A, Balcerczak E. Expression levels of the runt-related transcription factor 1 and 3 genes in the development of acute myeloid leukemia. Oncol Lett 2018; 15:6733-6738. [PMID: 29725413 DOI: 10.3892/ol.2018.8143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/16/2018] [Indexed: 01/25/2023] Open
Abstract
The aim of the present study was to evaluate the mRNA expression level of the runt-related transcription factor 1 (RUNX1) and runt-related transcription factor 3 (RUNX3) genes in patients with acute myeloid leukemia (AML). The etiology of AML is not yet fully known, but certain genetic factors may contribute to its manifestation. The RUNX1 and RUNX3 genes have been demonstrated to serve a role in the transcription process. The group investigated in the present study included 43 patients diagnosed with AML, and the relative RUNX1 and RUNX3 expression levels were determined using reverse transcription-quantitative polymerase chain reaction. The results indicated that RUNX1 and RUNX3 expression was associated with clinicopathological features, including sex and mortality risk. Expression levels of the RUNX1 gene were higher and more variable among females (P=0.044), and mortality was more frequent among patients with a higher RUNX3 expression level (P=0.036). The data obtained from the present study suggested that RUNX3 expression may have potential value as a prognostic factor; furthermore, sex is potentially a factor that may affect the difference in RUNX1 gene expression level among females and males. Further analyses in this field will aid in the identification and elucidation of the molecular basis of leukemia.
Collapse
Affiliation(s)
- Adrian Krygier
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Laboratory of Molecular Diagnostics and Pharmacogenomics, Medical University of Lodz, 90-151 Lodz, Poland
| | - Dagmara Szmajda
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Laboratory of Molecular Diagnostics and Pharmacogenomics, Medical University of Lodz, 90-151 Lodz, Poland
| | - Marta Żebrowska
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Laboratory of Molecular Diagnostics and Pharmacogenomics, Medical University of Lodz, 90-151 Lodz, Poland
| | - Agnieszka Jeleń
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Laboratory of Molecular Diagnostics and Pharmacogenomics, Medical University of Lodz, 90-151 Lodz, Poland
| | - Ewa Balcerczak
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Laboratory of Molecular Diagnostics and Pharmacogenomics, Medical University of Lodz, 90-151 Lodz, Poland
| |
Collapse
|
41
|
Zhang G, Han G, Zhang X, Yu Q, Li Z, Li Z, Li J. Long non-coding RNA FENDRR reduces prostate cancer malignancy by competitively binding miR-18a-5p with RUNX1. Biomarkers 2018; 23:435-445. [PMID: 29465000 DOI: 10.1080/1354750x.2018.1443509] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
CONTEXT Prostate cancer (PCa) is one of the most commonly diagnosed malignancy in men in the western world. OBJECTIVE We aim to investigate the biological role of long non-coding RNA FENDRR and its mechanism in PCa. MATERIALS AND METHODS We determined the expression of FENDRR and miR-18a-5p in PCa tissues and examined the regulatory mechanism in PCa cell lines. RESULTS FENDRR transcripts in human PCa tissues were significantly decreased compared with the normal controls. Reduced expression of FENDRR was correlated with the increase of pathological degree and poor prognosis in PCa patients. Upregulation of FENDRR inhibited cell proliferation, increased apoptosis and decreased invasion and migration ability, which was inhibited by miR-18a-5p mimic. Knockdown of FENDRR resulted in a significant increase of PCa cell proliferation and decrease of apoptosis and this effect was inhibited miR-18a-5p inhibitor. FENDRR and RUNX1 contain potential target sites for miR-18a-5p. miR-18a-5p mimic inhibited RUNX1 expression and luciferase activity. FENDRR could increase RUNX1 expression, which was inhibited by miR-18a-5p. The effect of FENDRR on cell proliferation, apoptosis and invasion and migration ability was suppressed by silence of RUNX1. DISCUSSION AND CONCLUSION These results position FENDRR/miR-18a-5p/RUNX1 as a potential therapeutic target and biomarker for PCa.
Collapse
Affiliation(s)
- Guanying Zhang
- a The Second Department of Urinary Surgery , The First Affiliated Hospital of Xinxiang Medical University , Weihui , Henan , China
| | - Guangye Han
- a The Second Department of Urinary Surgery , The First Affiliated Hospital of Xinxiang Medical University , Weihui , Henan , China
| | - Xinjun Zhang
- b The First Department of Urinary Surgery , The First Affiliated Hospital of Xinxiang Medical University , Weihui , Henan , China
| | - Quanfeng Yu
- a The Second Department of Urinary Surgery , The First Affiliated Hospital of Xinxiang Medical University , Weihui , Henan , China
| | - Zeyu Li
- a The Second Department of Urinary Surgery , The First Affiliated Hospital of Xinxiang Medical University , Weihui , Henan , China
| | - Zhenhui Li
- a The Second Department of Urinary Surgery , The First Affiliated Hospital of Xinxiang Medical University , Weihui , Henan , China
| | - Jianchang Li
- b The First Department of Urinary Surgery , The First Affiliated Hospital of Xinxiang Medical University , Weihui , Henan , China
| |
Collapse
|
42
|
Farina NH, Zingiryan A, Akech JA, Callahan CJ, Lu H, Stein JL, Languino LR, Stein GS, Lian JB. A microRNA/Runx1/Runx2 network regulates prostate tumor progression from onset to adenocarcinoma in TRAMP mice. Oncotarget 2018; 7:70462-70474. [PMID: 27634876 PMCID: PMC5342565 DOI: 10.18632/oncotarget.11992] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/02/2016] [Indexed: 01/08/2023] Open
Abstract
While decades of research have identified molecular pathways inducing and promoting stages of prostate cancer malignancy, studies addressing dynamic changes of cancer-related regulatory factors in a prostate tumor progression model are limited. Using the TRAMP mouse model of human prostate cancer, we address mechanisms of deregulation for the cancer-associated transcription factors, Runx1 and Runx2 by identifying microRNAs with reciprocal expression changes at six time points during 33 weeks of tumorigenesis. We molecularly define transition stages from PIN lesions to hyperplasia/neoplasia and progression to adenocarcinoma by temporal changes in expression of human prostate cancer markers, including the androgen receptor and tumor suppressors, Nkx3.1 and PTEN. Concomitant activation of PTEN, AR, and Runx factors occurs at early stages. At late stages, PTEN and AR are downregulated, while Runx1 and Runx2 remain elevated. Loss of Runx-targeting microRNAs, miR-23b-5p, miR-139-5p, miR-205-5p, miR-221-3p, miR-375-3p, miR-382-5p, and miR-384-5p, contribute to aberrant Runx expression in prostate tumors. Our studies reveal a Runx/miRNA interaction axis centered on PTEN-PI3K-AKT signaling. This regulatory network translates to mechanistic understanding of prostate tumorigenesis that can be developed for diagnosis and directed therapy.
Collapse
Affiliation(s)
- Nicholas H Farina
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Areg Zingiryan
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Jacqueline A Akech
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Cody J Callahan
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Huimin Lu
- Prostate Cancer Discovery and Development Program, Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Janet L Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Lucia R Languino
- Prostate Cancer Discovery and Development Program, Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Gary S Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Jane B Lian
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT 05405, USA
| |
Collapse
|
43
|
Krøigård AB, Larsen MJ, Lænkholm AV, Knoop AS, Jensen JD, Bak M, Mollenhauer J, Thomassen M, Kruse TA. Identification of metastasis driver genes by massive parallel sequencing of successive steps of breast cancer progression. PLoS One 2018; 13:e0189887. [PMID: 29293529 PMCID: PMC5749725 DOI: 10.1371/journal.pone.0189887] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 12/04/2017] [Indexed: 12/17/2022] Open
Abstract
Cancer results from alterations at essential genomic sites and is characterized by uncontrolled cell proliferation, invasion and metastasis. Identification of driver genes of metastatic progression is essential, as metastases, not primary tumors, are fatal. To gain insight into the mutational concordance between different steps of malignant progression we performed exome sequencing and validation with targeted deep sequencing of successive steps of malignant progression from pre-invasive stages to asynchronous distant metastases in six breast cancer patients. Using the ratio of non-synonymous to synonymous mutations, a surprisingly large number of cancer driver genes, ranging between 3 and 145, were estimated to confer a selective advantage in the studied primary tumors. We report a substantial amount of metastasis specific mutations and a number of novel putative metastasis driver genes. Most notable are the DCC, ABCA13, TIAM2, CREBBP, BCL6B and ZNF185 genes, mainly mutated exclusively in metastases and highly likely driver genes of metastatic progression. We find different genes and pathways to be affected at different steps of malignant progression. The Adherens junction pathway is affected in four of the six studied patients and this pathway most likely plays a vital role in the metastatic process.
Collapse
Affiliation(s)
- Anne Bruun Krøigård
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Human Genetics, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
- * E-mail:
| | - Martin Jakob Larsen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Human Genetics, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | | | - Ann S. Knoop
- Department of Oncology, Rigshospitalet, Copenhagen, Denmark
| | | | - Martin Bak
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Jan Mollenhauer
- Lundbeckfonden Center of Excellence NanoCAN, University of Southern Denmark, Odense, Denmark
- Molecular Oncology Group, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Human Genetics, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
- Lundbeckfonden Center of Excellence NanoCAN, University of Southern Denmark, Odense, Denmark
| | - Torben A. Kruse
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Human Genetics, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
- Lundbeckfonden Center of Excellence NanoCAN, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
44
|
High expression of RUNX1 is associated with poorer outcomes in cytogenetically normal acute myeloid leukemia. Oncotarget 2017; 7:15828-39. [PMID: 26910834 PMCID: PMC4941280 DOI: 10.18632/oncotarget.7489] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/24/2016] [Indexed: 12/13/2022] Open
Abstract
Depending on its expression level, RUNX1 can act as a tumor promoter or suppressor in hematological malignancies. The clinical impact of RUNX1 expression in cytogenetically normal acute myeloid leukemia (CN-AML) remained unknown, however. We evaluated the prognostic significance of RUNX1 expression using several public microarray datasets. In the testing group (n = 157), high RUNX1 expression (RUNX1high) was associated with poorer overall survival (OS; P = 0.0025) and event-free survival (EFS; P = 0.0025) than low RUNX1 expression (RUNX1low). In addition, the prognostic significance of RUNX1 was confirmed using European Leukemia Net (ELN) genetic categories and multivariable analysis, which was further validated using a second independent CN-AML cohort (n = 162, OS; P = 0.03953). To better understand the mechanisms of RUNX1, we investigated genome-wide gene/microRNAs expression signatures and cell signaling pathways associated with RUNX1 expression status. Several known oncogenes/oncogenic microRNAs and cell signaling pathways were all up-regulated, while some anti-oncogenes and molecules of immune activation were down-regulated in RUNX1high CN-AML patients. These findings suggest RUNX1high is a prognostic biomarker of unfavorable outcome in CN-AML, which is supported by the distinctive gene/microRNA signatures and cell signaling pathways.
Collapse
|
45
|
Kim MS, Gernapudi R, Choi EY, Lapidus RG, Passaniti A. Characterization of CADD522, a small molecule that inhibits RUNX2-DNA binding and exhibits antitumor activity. Oncotarget 2017; 8:70916-70940. [PMID: 29050333 PMCID: PMC5642608 DOI: 10.18632/oncotarget.20200] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/12/2017] [Indexed: 12/29/2022] Open
Abstract
The RUNX2 transcription factor promotes breast cancer growth and metastasis through interactions with a variety of cofactors that activate or repress target genes. Using a direct drug discovery approach we identified CADD522 as a small molecule that inhibits the DNA binding of the runt box domain protein, RUNX2. The current study defines the effect of CADD522 on breast cancer growth and metastasis, and addresses the mechanisms by which it exerts its anti-tumor activity. CADD522 treatment resulted in significant growth inhibition, clonogenic survival, tumorsphere formation, and invasion of breast cancer cells. CADD522 negatively regulated transcription of RUNX2 target genes such as matrix metalloproteinase-13, vascular endothelial growth factor and glucose transporter-1, but upregulated RUNX2 expression by increasing RUNX2 stability. CADD522 reduced RUNX2-mediated increases in glucose uptake and decreased the level of CBF-β and RUNX2 phosphorylation at the S451 residue. These results suggest several potential mechanisms by which CADD522 exerts an inhibitory function on RUNX2-DNA binding; interference with RUNX2 for the DNA binding pocket, inhibition of glucose uptake leading to cell cycle arrest, down-regulation of CBF-β, and reduction of S451-RUNX2 phosphorylation. The administration of CADD522 into MMTV-PyMT mice resulted in significant delay in tumor incidence and reduction in tumor burden. A significant decrease of tumor volume was also observed in a CADD522-treated human triple-negative breast cancer-patient derived xenograft model. CADD522 impaired the lung retention and outgrowth of breast cancer cells in vivo with no apparent toxicity to the mice. Therefore, by inhibiting RUNX2-DNA binding, CADD522 may represent a potential antitumor drug.
Collapse
Affiliation(s)
- Myoung Sook Kim
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA.,The Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.,The Veteran's Health Administration Research & Development Service, Baltimore, MD, USA
| | - Ramkishore Gernapudi
- Department of Biochemistry & Molecular Biology and Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.,The Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Eun Yong Choi
- The Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rena G Lapidus
- The Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Antonino Passaniti
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Biochemistry & Molecular Biology and Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.,The Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.,The Veteran's Health Administration Research & Development Service, Baltimore, MD, USA
| |
Collapse
|
46
|
Karsli-Ceppioglu S, Dagdemir A, Judes G, Lebert A, Penault-Llorca F, Bignon YJ, Bernard-Gallon D. The Epigenetic Landscape of Promoter Genome-wide Analysis in Breast Cancer. Sci Rep 2017; 7:6597. [PMID: 28747748 PMCID: PMC5529370 DOI: 10.1038/s41598-017-06790-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/19/2017] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is a heterogeneous disease due to its clinico-pathological features and response to therapy. The classification of breast tumors based on their hormone receptor status and pathologic features. Post-translational histone modifications come into prominence for regulation of gene expression in cancer pathogenesis. Here, we analyzed dysregulation of H3K9ac and H3K27me3-enriched subtype-specific genes using ChIP-on-chip assay in breast cancer tumors and matched normal tissue samples. Breast cancer tumors were classified according to St Gallen Consensus 2013. Our results indicated that the promoter regions of genes modified by H3K9ac epi-mark are commonly associated with tumors with HER2-positive and TNBC subtype. H3K27me3-enriched genes were comprised of Luminal A and B1 subtypes. We constructed a network structure to elicit epigenetically regulated genes related with breast cancer progression. The central genes of the network (RUNX1, PAX3, GATA4 and DLX5) were subjected for epigenetically dysregulation in association with different breast cancer subtypes. Our study submits epigenetic mechanisms are crucial to elicit subtype-specific regulation in breast cancer and ChIP-on-chip assay provides a better understanding for breast tumorigenesis and new approaches for prevention and treatment.
Collapse
Affiliation(s)
- Seher Karsli-Ceppioglu
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri-Dunant, 63001, Clermont-Ferrand, France.,INSERM U 1240, IMOST, 58 rue Montalembert-BP184, 63005, Clermont-Ferrand, France.,Department of Toxicology, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - Aslihan Dagdemir
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri-Dunant, 63001, Clermont-Ferrand, France.,INSERM U 1240, IMOST, 58 rue Montalembert-BP184, 63005, Clermont-Ferrand, France
| | - Gaëlle Judes
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri-Dunant, 63001, Clermont-Ferrand, France.,INSERM U 1240, IMOST, 58 rue Montalembert-BP184, 63005, Clermont-Ferrand, France
| | - André Lebert
- University Blaise Pascal, Institute Pascal UMR 6602 CNRS/UBP, 63178, Aubiere, France
| | - Frédérique Penault-Llorca
- INSERM U 1240, IMOST, 58 rue Montalembert-BP184, 63005, Clermont-Ferrand, France.,Department of Biopathology, Centre Jean Perrin, 58 rue Montalembert, 63011, Clermont-Ferrand, France
| | - Yves-Jean Bignon
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri-Dunant, 63001, Clermont-Ferrand, France.,INSERM U 1240, IMOST, 58 rue Montalembert-BP184, 63005, Clermont-Ferrand, France
| | - Dominique Bernard-Gallon
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri-Dunant, 63001, Clermont-Ferrand, France. .,INSERM U 1240, IMOST, 58 rue Montalembert-BP184, 63005, Clermont-Ferrand, France.
| |
Collapse
|
47
|
Dey N, Krie A, Klein J, Williams K, McMillan A, Elsey R, Sun Y, Williams C, De P, Leyland-Jones B. Down's Syndrome and Triple Negative Breast Cancer: A Rare Occurrence of Distinctive Clinical Relationship. Int J Mol Sci 2017; 18:ijms18061218. [PMID: 28590426 PMCID: PMC5486041 DOI: 10.3390/ijms18061218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 05/31/2017] [Accepted: 06/05/2017] [Indexed: 02/05/2023] Open
Abstract
Down’s syndrome (DS), the most common genetic cause of significant intellectual disability in children and adults is caused by the trisomy of either all or a part of human chromosome 21 (HSA21). Patients with DS mostly suffer from characteristic tumor types. Although individual patients of DS are at a higher risk for acute leukemia and testicular cancers, other types of solid tumors including breast cancers are mostly uncommon and have significantly lower-than-expected age-adjusted incidence rates. Except for an increased risk of retinoblastomas, and lymphomas, the risk of developing solid tumors has been found to be lower in both children and adults, and breast cancer was found to be almost absent (Hasle H., The Lancet Oncology, 2001). A study conducted in the United States found only one death when 11.65 were expected (Scholl T et al., Dev Med Child Neurol. 1982). A recent study examined mammogram reports of women with DS treated in the largest medical facility specifically serving adults with DS in the United States. It was found that only 0.7% women with DS had been diagnosed with breast cancers (Chicoine B et al., Intellect Dev Disabil. 2015). Here we describe a case of breast cancer in a 25-year-old patient with DS. The disease was presented as lymph node positive carcinoma with alterations of tumor suppressor genes characteristic to the triple negative breast cancer subtype. Comprehensive Genomic Profiling (CGP) revealed a wild-type status for BRCA1. The CGP report showed a frameshift mutation, A359fs*10 of the tumor suppressor gene INPP4B and another frameshift mutation, R282fs*63 of tumor suppressor gene TP53 in the tumor biopsy as characteristically found in triple-negative breast cancers. The VUS (Variance of Unknown Significance) alteration(s) were identified in ASXL1 (L1395V), NTRK1 (G18E), DDR2 (I159T), RUNX1 (amplification), ERG (amplification), SOX2 (T26A), FAM123B (G1031D), and HNF1A (A301T). Bonafide cancer-related genes of chromosome 21 amplified in the patient’s tumor are RUNX1 and ERG genes. After the completion of the radiation, the patient was placed on everolimus which was based on the result of her CGP report. Thus, post-mastectomy radiation therapy was completed with a recommendation for everolimus for one year. During the time of writing of this report, no metastatic lesions were identified. The patient currently has no evidence of disease.
Collapse
Affiliation(s)
- Nandini Dey
- Center for Precision Oncology, Department of Molecular and Experimental Medicine, Avera Cancer Institute, Sioux Falls, SD 57105, USA.
- Departmental of Internal Medicine, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA.
| | - Amy Krie
- Center for Precision Oncology, Department of Molecular and Experimental Medicine, Avera Cancer Institute, Sioux Falls, SD 57105, USA.
| | - Jessica Klein
- Center for Precision Oncology, Department of Molecular and Experimental Medicine, Avera Cancer Institute, Sioux Falls, SD 57105, USA.
| | - Kirstin Williams
- Center for Precision Oncology, Department of Molecular and Experimental Medicine, Avera Cancer Institute, Sioux Falls, SD 57105, USA.
| | - Amanda McMillan
- Center for Precision Oncology, Department of Molecular and Experimental Medicine, Avera Cancer Institute, Sioux Falls, SD 57105, USA.
| | - Rachel Elsey
- Center for Precision Oncology, Department of Molecular and Experimental Medicine, Avera Cancer Institute, Sioux Falls, SD 57105, USA.
| | - Yuliang Sun
- Center for Precision Oncology, Department of Molecular and Experimental Medicine, Avera Cancer Institute, Sioux Falls, SD 57105, USA.
| | - Casey Williams
- Center for Precision Oncology, Department of Molecular and Experimental Medicine, Avera Cancer Institute, Sioux Falls, SD 57105, USA.
- Departmental of Internal Medicine, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA.
| | - Pradip De
- Center for Precision Oncology, Department of Molecular and Experimental Medicine, Avera Cancer Institute, Sioux Falls, SD 57105, USA.
- Departmental of Internal Medicine, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA.
| | - Brian Leyland-Jones
- Center for Precision Oncology, Department of Molecular and Experimental Medicine, Avera Cancer Institute, Sioux Falls, SD 57105, USA.
| |
Collapse
|
48
|
RUNX transcription factors at the interface of stem cells and cancer. Biochem J 2017; 474:1755-1768. [PMID: 28490659 DOI: 10.1042/bcj20160632] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 12/22/2022]
Abstract
The RUNX1 transcription factor is a critical regulator of normal haematopoiesis and its functional disruption by point mutations, deletions or translocations is a major causative factor leading to leukaemia. In the majority of cases, genetic changes in RUNX1 are linked to loss of function classifying it broadly as a tumour suppressor. Despite this, several recent studies have reported the need for a certain level of active RUNX1 for the maintenance and propagation of acute myeloid leukaemia and acute lymphoblastic leukaemia cells, suggesting an oncosupportive role of RUNX1. Furthermore, in solid cancers, RUNX1 is overexpressed compared with normal tissue, and RUNX factors have recently been discovered to promote growth of skin, oral, breast and ovarian tumour cells, amongst others. RUNX factors have key roles in stem cell fate regulation during homeostasis and regeneration of many tissues. Cancer cells appear to have corrupted these stem cell-associated functions of RUNX factors to promote oncogenesis. Here, we discuss current knowledge on the role of RUNX genes in stem cells and as oncosupportive factors in haematological malignancies and epithelial cancers.
Collapse
|
49
|
Affiliation(s)
- Jose Mercado-Matos
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Asia N Matthew-Onabanjo
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Leslie M Shaw
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
50
|
Riggio AI, Blyth K. The enigmatic role of RUNX1 in female-related cancers - current knowledge & future perspectives. FEBS J 2017; 284:2345-2362. [PMID: 28304148 DOI: 10.1111/febs.14059] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/15/2017] [Accepted: 03/13/2017] [Indexed: 12/15/2022]
Abstract
Historically associated with the aetiology of human leukaemia, the runt-related transcription factor 1 (RUNX1) gene has in recent years reared its head in an assortment of epithelial cancers. This review discusses the state-of-the-art knowledge of the enigmatic role played by RUNX1 in female-related cancers of the breast, the uterus and the ovary. The weight of evidence accumulated so far is indicative of a very context-dependent role, as either an oncogene or a tumour suppressor. This is corroborated by high-throughput sequencing endeavours which report different genetic alterations affecting the gene, including amplification, deep deletion and mutations. Herein, we attempt to dissect that contextual role by firstly giving an overview of what is currently known about RUNX1 function in these specific tumour types, and secondly by delving into connections between this transcription factor and the physiology of these female tissues. In doing so, RUNX1 emerges not only as a gene involved in female sex development but also as a crucial mediator of female hormone signalling. In view of RUNX1 now being listed as a driver gene, we believe that greater knowledge of the mechanisms underlying its functional dualism in epithelial cancers is worthy of further investigation.
Collapse
Affiliation(s)
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Bearsden, Glasgow, UK
| |
Collapse
|