1
|
Aguilera-Sepúlveda P, Llorente F, Rosenstierne MW, Bravo-Barriga D, Frontera E, Fomsgaard A, Fernández-Pinero J, Jiménez-Clavero MÁ. Detection of a new avian bornavirus in barn owl (Tyto alba) by pan-viral microarray. Vet Microbiol 2024; 289:109959. [PMID: 38134487 DOI: 10.1016/j.vetmic.2023.109959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023]
Abstract
A barn owl (Tyto alba) died with neurological signs compatible with a viral infection. After discarding other possible infections caused by circulating viruses in the area, analysis of the central nervous system using a pan-viral microarray revealed hybridization to canary bornavirus 2 (CnBV-2). Subsequent sequence analysis confirmed the presence of a virus sharing more than 83% identity with CnBV-2. Surprisingly, the new sequence corresponds to a new virus, here named Barn owl Bornavirus 1 (BoBV-1), within the Orthobornavirus serini species. Moreover, it is the first member of this species that has been detected in a non-passerine bird, indicating that Orthobornavirus serini species comprises viruses with a wider range of hosts than previously presumed. The use of this microarray has proven to be an excellent tool for viral detection in clinical samples, with capacity to detect new viral variants. This allows the diagnosis of a great range of viruses, which can cause similar disease symptoms and which identification by PCR methods might be tedious, probably unsuccessful and, in the long run, expensive. This platform is highly useful for a fast and precise viral detection, contributing to the improvement of diagnostic methods.
Collapse
Affiliation(s)
| | - Francisco Llorente
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, 28130 Valdeolmos, Spain
| | - Maiken Worsoe Rosenstierne
- QlifeAps, Industriparken 39-41, DK-2750 Ballerup, Denmark; Virus Research & Development Laboratory Statens Serum Institut, Copenhagen, Denmark
| | - Daniel Bravo-Barriga
- Departamento de Sanidad Animal, Grupo de Investigación en Salud Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - Eva Frontera
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - Anders Fomsgaard
- Virus Research & Development Laboratory Statens Serum Institut, Copenhagen, Denmark
| | | | - Miguel Ángel Jiménez-Clavero
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, 28130 Valdeolmos, Spain; CIBER of Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain.
| |
Collapse
|
2
|
Fomsgaard AS, Tahas SA, Spiess K, Polacek C, Fonager J, Belsham GJ. Unbiased Virus Detection in a Danish Zoo Using a Portable Metagenomic Sequencing System. Viruses 2023; 15:1399. [PMID: 37376698 DOI: 10.3390/v15061399] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Metagenomic next-generation sequencing (mNGS) is receiving increased attention for the detection of new viruses and infections occurring at the human-animal interface. The ability to actively transport and relocate this technology enables in situ virus identification, which could reduce response time and enhance disease management. In a previous study, we developed a straightforward mNGS procedure that greatly enhances the detection of RNA and DNA viruses in human clinical samples. In this study, we improved the mNGS protocol with transportable battery-driven equipment for the portable, non-targeted detection of RNA and DNA viruses in animals from a large zoological facility, to simulate a field setting for point-of-incidence virus detection. From the resulting metagenomic data, we detected 13 vertebrate viruses from four major virus groups: (+)ssRNA, (+)ssRNA-RT, dsDNA and (+)ssDNA, including avian leukosis virus in domestic chickens (Gallus gallus), enzootic nasal tumour virus in goats (Capra hircus) and several small, circular, Rep-encoding, ssDNA (CRESS DNA) viruses in several mammal species. More significantly, we demonstrate that the mNGS method is able to detect potentially lethal animal viruses, such as elephant endotheliotropic herpesvirus in Asian elephants (Elephas maximus) and the newly described human-associated gemykibivirus 2, a human-to-animal cross-species virus, in a Linnaeus two-toed sloth (Choloepus didactylus) and its enclosure, for the first time.
Collapse
Affiliation(s)
- Anna S Fomsgaard
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 5 Artillerivej, 2300 Copenhagen, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, 4 Stigboejlen, 1870 Frederiksberg, Denmark
| | | | - Katja Spiess
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 5 Artillerivej, 2300 Copenhagen, Denmark
| | - Charlotta Polacek
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 5 Artillerivej, 2300 Copenhagen, Denmark
| | - Jannik Fonager
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 5 Artillerivej, 2300 Copenhagen, Denmark
| | - Graham J Belsham
- Department of Veterinary and Animal Sciences, University of Copenhagen, 4 Stigboejlen, 1870 Frederiksberg, Denmark
| |
Collapse
|
3
|
Evaluation of co-circulating pathogens and microbiome from COVID-19 infections. PLoS One 2022; 17:e0278543. [PMID: 36455065 PMCID: PMC9714956 DOI: 10.1371/journal.pone.0278543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022] Open
Abstract
Co-infections or secondary infections with SARS-CoV-2 have the potential to affect disease severity and morbidity. Additionally, the potential influence of the nasal microbiome on COVID-19 illness is not well understood. In this study, we analyzed 203 residual samples, originally submitted for SARS-CoV-2 testing, for the presence of viral, bacterial, and fungal pathogens and non-pathogens using a comprehensive microarray technology, the Lawrence Livermore Microbial Detection Array (LLMDA). Eighty-seven percent of the samples were nasopharyngeal samples, and 23% of the samples were oral, nasal and oral pharyngeal swabs. We conducted bioinformatics analyses to examine differences in microbial populations of these samples, as a proxy for the nasal and oral microbiome, from SARS-CoV-2 positive and negative specimens. We found 91% concordance with the LLMDA relative to a diagnostic RT-qPCR assay for detection of SARS-CoV-2. Sixteen percent of all the samples (32/203) revealed the presence of an opportunistic bacterial or frank viral pathogen with the potential to cause co-infections. The two most detected bacteria, Streptococcus pyogenes and Streptococcus pneumoniae, were present in both SARS-CoV-2 positive and negative samples. Human metapneumovirus was the most prevalent viral pathogen in the SARS-CoV-2 negative samples. Sequence analysis of 16S rRNA was also conducted to evaluate bacterial diversity and confirm LLMDA results.
Collapse
|
4
|
Fomsgaard AS, Rasmussen M, Spiess K, Fomsgaard A, Belsham GJ, Fonager J. Improvements in metagenomic virus detection by simple pretreatment methods. JOURNAL OF CLINICAL VIROLOGY PLUS 2022; 2:100120. [PMID: 36945677 PMCID: PMC10024160 DOI: 10.1016/j.jcvp.2022.100120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 09/26/2022] [Accepted: 10/24/2022] [Indexed: 11/21/2022] Open
Abstract
Early detection of pathogens at the point of care helps reduce the threats to human and animal health from emerging pathogens. Initially, the disease-causing agent will be unknown and needs to be identified; this often requires specific laboratory facilities. Here we describe the development of an unbiased detection assay for RNA and DNA viruses using metagenomic Nanopore sequencing and simple methods that can be transferred into a field setting. Human clinical samples containing the RNA virus SARS-CoV-2 or the DNA viruses human papillomavirus (HPV) and molluscum contagiosum virus (MCV) were used as a test of concept. Firstly, the virus detection potential was optimized by investigating different pretreatments for reducing non-viral nucleic acid components. DNase I pretreatment followed by filtration increased the proportion of SARS-CoV-2 sequenced reads > 500-fold compared with no pretreatments. This was sufficient to achieve virus detection with high confidence and allowed variant identification. Next, we tested individual SARS-CoV-2 samples with various viral loads (measured as CT-values determined by RT-qPCR). Lastly, we tested the assay on clinical samples containing the DNA virus HPV and co-infection with MCV to show the assay's detection potential for DNA viruses. This protocol is fast (same day results). We hope to apply this method in other settings for point of care detection of virus pathogens, thus eliminating the need for transport of infectious samples, cold storage and a specialized laboratory.
Collapse
Affiliation(s)
- Anna S. Fomsgaard
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 5 Artillerivej, DK-2300 Copenhagen, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, 4 Stigboejlen, 1870 Frederiksberg, Denmark
| | - Morten Rasmussen
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 5 Artillerivej, DK-2300 Copenhagen, Denmark
| | - Katja Spiess
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 5 Artillerivej, DK-2300 Copenhagen, Denmark
| | - Anders Fomsgaard
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 5 Artillerivej, DK-2300 Copenhagen, Denmark
| | - Graham J. Belsham
- Department of Veterinary and Animal Sciences, University of Copenhagen, 4 Stigboejlen, 1870 Frederiksberg, Denmark
| | - Jannik Fonager
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 5 Artillerivej, DK-2300 Copenhagen, Denmark
| |
Collapse
|
5
|
Pan J, Li Y, Wang T, Chang J, Hao L, Chen J, Peng W, Deng J, Huang B, Tian K. A poly(dimethylsiloxane)-based solid-phase microchip platform for dual detection of Pseudorabies virus gD and gE antibodies. Front Cell Infect Microbiol 2022; 12:912108. [PMID: 35959367 PMCID: PMC9360482 DOI: 10.3389/fcimb.2022.912108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
Pseudorabies caused by pseudorabies virus (PRV) infection is still a major disease affecting the pig industry; its eradication depends on effective vaccination and antibody (Ab) detection. For a more rapid and accurate PRV detection method that is suitable for clinical application, here, we established a poly(dimethylsiloxane)-based (efficient removal of non-specific binding) solid-phase protein chip platform (blocking ELISA) for dual detection of PRV gD and gE Abs. The purified gD and gE proteins expressed in baculovirus were coated into the highly hydrophobic nanomembrane by an automatic spotter, and the gray values measured by a scanner were used for the S/N (sample/negative) value calculation (gD and gE Abs standard, positive: S/N value ≤0.6; negative: S/N value >0.7; suspicious: 0.6 < S/N ≤ 0.7). The method showed an equal sensitivity in the gD Ab test of immunized pig serum samples compared to the neutralization test and higher sensitivity in the gE Ab test compared to the commercial gE Ab detection kit. In the clinical evaluation, we found an agreement of 100% (122/122) in the gD Ab detection compared to the neutralization test and an agreement of 97.5% (119/122) in the gE Ab detection compared to the commercial PRV gE Ab detection kit. In summary, the protein chip platform for dual detection of PRV gD and gE Abs showed high sensitivity and specificity, which is suitable for PRV immune efficacy evaluation and epidemic monitoring.
Collapse
Affiliation(s)
| | - Yufang Li
- Luoyang Zhongke Biochip Technology Co., Ltd., Luoyang, China
| | - Tongyan Wang
- National Research Center for Veterinary Medicine, Luoyang, China
| | | | - Liying Hao
- Luoyang Putai Biotech Co., Ltd., Luoyang, China
| | - Junjie Chen
- Department of Statistical Science, University College London, London, United Kingdom
| | - Wuping Peng
- Luoyang Putai Biotech Co., Ltd., Luoyang, China
| | - Junhua Deng
- Luoyang Putai Biotech Co., Ltd., Luoyang, China
| | - Baicheng Huang
- National Research Center for Veterinary Medicine, Luoyang, China
| | - Kegong Tian
- National Research Center for Veterinary Medicine, Luoyang, China
| |
Collapse
|
6
|
Gut microbiome associations with outcome following co-infection with porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2) in pigs immunized with a PRRS modified live virus vaccine. Vet Microbiol 2021; 254:109018. [PMID: 33639341 DOI: 10.1016/j.vetmic.2021.109018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/14/2021] [Indexed: 12/18/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2) are two of the most significant pathogens affecting swine. Co-infections are common and result in respiratory disease and reduced weight gain in growing pigs. Although PRRS modified live virus (MLV) vaccines are widely used to decrease PRRS-associated losses, they are generally considered inadequate for disease control. The gut microbiome provides an alternative strategy to enhance vaccine efficacy and improve PRRS control. The objective of this study was to identify gut microbiome characteristics associated with improved outcome in pigs immunized with a PRRS MLV and co-challenged with PRRSV and PCV2b. Twenty-eight days after vaccination and prior to co-challenge, fecal samples were collected from an experimental population of 50 nursery pigs. At 42 days post-challenge, 20 pigs were retrospectively identified as having high or low growth outcomes during the post-challenge period. Gut microbiomes of the two outcome groups were compared using the Lawrence Livermore Microbial Detection Array (LLMDA) and 16S rDNA sequencing. High growth outcomes were associated with several gut microbiome characteristics, such as increased bacterial diversity, increased Bacteroides pectinophilus, decreased Mycoplasmataceae species diversity, higher Firmicutes:Bacteroidetes ratios, increased relative abundance of the phylum Spirochaetes, reduced relative abundance of the family Lachnospiraceae, and increased Lachnospiraceae species C6A11 and P6B14. Overall, this study identifies gut microbiomes associated with improved outcomes in PRRS vaccinated pigs following a polymicrobial respiratory challenge and provides evidence towards the gut microbiome playing a role in PRRS vaccine efficacy.
Collapse
|
7
|
Malfatti MA, Kuhn EA, Murugesh DK, Mendez ME, Hum N, Thissen JB, Jaing CJ, Loots GG. Manipulation of the Gut Microbiome Alters Acetaminophen Biodisposition in Mice. Sci Rep 2020; 10:4571. [PMID: 32165665 PMCID: PMC7067795 DOI: 10.1038/s41598-020-60982-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 02/19/2020] [Indexed: 12/30/2022] Open
Abstract
The gut microbiota is a vast and diverse microbial community that has co-evolved with its host to perform a variety of essential functions involved in the utilization of nutrients and the processing of xenobiotics. Shifts in the composition of gut microbiota can disturb the balance of organisms which can influence the biodisposition of orally administered drugs. To determine how changes in the gut microbiome can alter drug disposition, the pharmacokinetics (PK), and biodistribution of acetaminophen were assessed in C57Bl/6 mice after treatment with the antibiotics ciprofloxacin, amoxicillin, or a cocktail of ampicillin/neomycin. Altered PK, and excretion profiles of acetaminophen were observed in antibiotic exposed animals. Plasma Cmax was significantly decreased in antibiotic treated animals suggesting decreased bioavailability. Urinary metabolite profiles revealed decreases in acetaminophen-sulfate metabolite levels in both the amoxicillin and ampicillin/neomycin treated animals. The ratio between urinary and fecal excretion was also altered in antibiotic treated animals. Analysis of gut microbe composition revealed that changes in microbe content in antibiotic treated animals was associated with changes in acetaminophen biodisposition. These results suggest that exposure to amoxicillin or ampicillin/neomycin can alter the biodisposition of acetaminophen and that these alterations could be due to changes in gut microbiome composition.
Collapse
Affiliation(s)
- Michael A Malfatti
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA.
| | - Edward A Kuhn
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Deepa K Murugesh
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Melanie E Mendez
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA.,School of Natural Sciences, University of California Merced, Merced, CA, 95343, USA
| | - Nicholas Hum
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA.,School of Natural Sciences, University of California Merced, Merced, CA, 95343, USA
| | - James B Thissen
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Crystal J Jaing
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Gabriela G Loots
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA.,School of Natural Sciences, University of California Merced, Merced, CA, 95343, USA
| |
Collapse
|
8
|
Abstract
Once the genome of a microbial organism has been sequenced, it becomes possible to utilize portions of the genome, known as “signatures” to identify when that organism is present in a complex clinical or environmental sample. Genomic signatures can be at multiple levels of resolution depending on the questions being asked. (“Is this white powder anthrax?”; “Does this white powder match any of the anthrax samples taken from every laboratory in the United States that possesses anthrax?”) Multiple technologies exist to turn abstract genomic signatures into assays that can interrogate complex samples with varying degrees of speed, sensitivity, specificity, and cost. The recent flood of microbial genomic data has complicated the task of designing genomic signatures.
Collapse
|
9
|
Mosquito-Borne Viruses and Insect-Specific Viruses Revealed in Field-Collected Mosquitoes by a Monitoring Tool Adapted from a Microbial Detection Array. Appl Environ Microbiol 2019; 85:AEM.01202-19. [PMID: 31350319 DOI: 10.1128/aem.01202-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/22/2019] [Indexed: 12/19/2022] Open
Abstract
Several mosquito-borne diseases affecting humans are emerging or reemerging in the United States. The early detection of pathogens in mosquito populations is essential to prevent and control the spread of these diseases. In this study, we tested the potential applicability of the Lawrence Livermore Microbial Detection Array (LLMDA) to enhance biosurveillance by detecting microbes present in Aedes aegypti, Aedes albopictus, and Culex mosquitoes, which are major vector species globally, including in Texas. The sensitivity and reproducibility of the LLMDA were tested in mosquito samples spiked with different concentrations of dengue virus (DENV), revealing a detection limit of >100 but <1,000 PFU/ml. Additionally, field-collected mosquitoes from Chicago, IL, and College Station, TX, of known infection status (West Nile virus [WNV] and Culex flavivirus [CxFLAV] positive) were tested on the LLMDA to confirm its efficiency. Mosquito field samples of unknown infection status, collected in San Antonio, TX, and the Lower Rio Grande Valley (LRGV), TX, were run on the LLMDA and further confirmed by PCR or quantitative PCR (qPCR). The analysis of the field samples with the LLMDA revealed the presence of cell-fusing agent virus (CFAV) in A. aegypti populations. Wolbachia was also detected in several of the field samples (A. albopictus and Culex spp.) by the LLMDA. Our findings demonstrated that the LLMDA can be used to detect multiple arboviruses of public health importance, including viruses that belong to the Flavivirus, Alphavirus, and Orthobunyavirus genera. Additionally, insect-specific viruses and bacteria were also detected in field-collected mosquitoes. Another strength of this array is its ability to detect multiple viruses in the same mosquito pool, allowing for the detection of cocirculating pathogens in an area and the identification of potential ecological associations between different viruses. This array can aid in the biosurveillance of mosquito-borne viruses circulating in specific geographical areas.IMPORTANCE Viruses associated with mosquitoes have made a large impact on public and veterinary health. In the United States, several viruses, including WNV, DENV, and chikungunya virus (CHIKV), are responsible for human disease. From 2015 to 2018, imported Zika cases were reported in the United States, and in 2016 to 2017, local Zika transmission occurred in the states of Texas and Florida. With globalization and a changing climate, the frequency of outbreaks linked to arboviruses will increase, revealing a need to better detect viruses in vector populations. With the capacity of the LLMDA to detect viruses, bacteria, and fungi, this study highlights its ability to broadly screen field-collected mosquitoes and contribute to the surveillance and management of arboviral diseases.
Collapse
|
10
|
Yi L, Hu N, Mu H, Sun J, Yin J, Dai K, Xu F, Yang N, Ding D. Identification of Cofilin-1 and Destrin as Potential Early-warning Biomarkers for Gamma Radiation in Mouse Liver Tissues. HEALTH PHYSICS 2019; 116:749-759. [PMID: 30913056 DOI: 10.1097/hp.0000000000001012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gamma radiation causes cell injury and leads to an increased risk of cancer, so it is of practical significance to identify biomarkers for gamma radiation. We used proteomic analysis to identify differentially expressed proteins in liver tissues of C57BL/6J mice treated with gamma radiation from Cs for 360 d. We confirmed obvious pathological changes in mouse liver tissues after irradiation. Compared with the control group, 74 proteins showed a fold change of ≥1.5 in the irradiated groups. We selected 24 proteins for bioinformatics analysis and peptide mass fingerprinting and found that 20 of the identified proteins were meaningful. These proteins were associated with tumorigenesis, tumor suppression, catalysis, cell apoptosis, cytoskeleton, metabolism, gene transcription, T-cell response, and other pathways. We confirmed that both cofilin-1 and destrin were up regulated in the irradiated groups by western blot and real-time polymerase chain reaction. Our findings indicate that cofilin-1 and destrin are sensitive to gamma radiation and may be potential biomarkers for gamma radiation. Whether these proteins are involved in radiation-induced tumorigenesis requires further investigation.
Collapse
Affiliation(s)
- Lan Yi
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China
- Institute of Cytology and Genetics, College of Pharmaceutical and Biological Science, University of South China
| | - Nan Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China
| | - Hongxiang Mu
- Institute of Cytology and Genetics, College of Pharmaceutical and Biological Science, University of South China
| | - Jing Sun
- Institute of Cytology and Genetics, College of Pharmaceutical and Biological Science, University of South China
| | - Jie Yin
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China
- Institute of Cytology and Genetics, College of Pharmaceutical and Biological Science, University of South China
| | - Keren Dai
- Institute of Cytology and Genetics, College of Pharmaceutical and Biological Science, University of South China
| | - Fanghui Xu
- Institute of Cytology and Genetics, College of Pharmaceutical and Biological Science, University of South China
| | - Nanyang Yang
- Institute of Cytology and Genetics, College of Pharmaceutical and Biological Science, University of South China
| | - Dexin Ding
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China
| |
Collapse
|
11
|
Petersen A, Rosenstierne MW, Rasmussen M, Fuursted K, Nielsen HV, O'Brien Andersen L, Bødker R, Fomsgaard A. Field samplings of Ixodes ricinus ticks from a tick-borne encephalitis virus micro-focus in Northern Zealand, Denmark. Ticks Tick Borne Dis 2019; 10:1028-1032. [PMID: 31151922 DOI: 10.1016/j.ttbdis.2019.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 04/25/2019] [Accepted: 05/17/2019] [Indexed: 12/01/2022]
Abstract
In 2008-2009 a tick-borne encephalitis virus (TBEV) micro-focus was detected in Northern Zealand, Denmark. No new cases of TBE with an epidemiological link to Northern Zealand has been reported since. Here we undertook to investigate Ixodes ricinus ticks from this endemic micro-focus in 2016 and 2017. In addition to TBEV, I. ricinus ticks may host other pathogens that include Borrelia spp., Babesia spp., Rickettsia spp. and Neoehrlichia mikurensis, together with various endosymbiont microorganisms. To detect multiple organisms we used a metagenomics PanVirus microarray and next-generation sequencing to examine the persistence and evolution of other emerging viruses, bacteria and parasites. Here we report the rise and fall of the Danish TBEV micro-focus in Northern Zealand. However, we identify for the first time in Danish I. ricinus ticks the presence of Uukuniemi virus in addition to a tick-borne phlebovirus and a range of bacteria.
Collapse
Affiliation(s)
- Andreas Petersen
- European Program for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control, (ECDC), Solna, Sweden; Virus Research and Development Laboratory, Department of Virus and Microbiological Special Diagnosis, Statens Serum Institut, Copenhagen, Denmark; Bacteria, Parasites and Fungi, Infection Preparedness, Statens Serum Institut, Copenhagen, Denmark.
| | - Maiken Worsøe Rosenstierne
- Virus Research and Development Laboratory, Department of Virus and Microbiological Special Diagnosis, Statens Serum Institut, Copenhagen, Denmark
| | - Morten Rasmussen
- Virus Research and Development Laboratory, Department of Virus and Microbiological Special Diagnosis, Statens Serum Institut, Copenhagen, Denmark
| | - Kurt Fuursted
- Bacteria, Parasites and Fungi, Infection Preparedness, Statens Serum Institut, Copenhagen, Denmark
| | - Henrik Vedel Nielsen
- Bacteria, Parasites and Fungi, Infection Preparedness, Statens Serum Institut, Copenhagen, Denmark
| | - Lee O'Brien Andersen
- Bacteria, Parasites and Fungi, Infection Preparedness, Statens Serum Institut, Copenhagen, Denmark
| | - René Bødker
- DTU National Veterinary Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Anders Fomsgaard
- Virus Research and Development Laboratory, Department of Virus and Microbiological Special Diagnosis, Statens Serum Institut, Copenhagen, Denmark; Infectious Disease Research Unit, Clinical Institute, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
12
|
Gondard M, Michelet L, Nisavanh A, Devillers E, Delannoy S, Fach P, Aspan A, Ullman K, Chirico J, Hoffmann B, van der Wal FJ, de Koeijer A, van Solt-Smits C, Jahfari S, Sprong H, Mansfield KL, Fooks AR, Klitgaard K, Bødker R, Moutailler S. Prevalence of tick-borne viruses in Ixodes ricinus assessed by high-throughput real-time PCR. Pathog Dis 2018; 76:5181333. [PMID: 30423120 DOI: 10.1093/femspd/fty083] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/12/2018] [Indexed: 12/18/2022] Open
Abstract
Ticks are one of the principal arthropod vectors of human and animal infectious diseases. Whereas the prevalence of tick-borne encephalitis virus in ticks in Europe is well studied, there is less information available on the prevalence of the other tick-borne viruses (TBVs) existing worldwide. The aim of this study was to improve the epidemiological survey tools of TBVs by the development of an efficient high-throughput test to screen a wide range of viruses in ticks.In this study, we developed a new high-throughput virus-detection assay based on parallel real-time PCRs on a microfluidic system, and used it to perform a large scale epidemiological survey screening for the presence of 21 TBVs in 18 135 nymphs of Ixodes ricinus collected from five European countries. This extensive investigation has (i) evaluated the prevalence of four viruses present in the collected ticks, (ii) allowed the identification of viruses in regions where they were previously undetected.In conclusion, we have demonstrated the capabilities of this new screening method that allows the detection of numerous TBVs in a large number of ticks. This tool represents a powerful and rapid system for TBVs surveillance in Europe and could be easily customized to assess viral emergence.
Collapse
Affiliation(s)
- Mathilde Gondard
- UMR BIPAR, Animal Health Laboratory, ANSES, INRA, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, 14 Rue P. et M. Curie, 94700 Maisons-Alfort, France
| | - Lorraine Michelet
- UMR BIPAR, Animal Health Laboratory, ANSES, INRA, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, 14 Rue P. et M. Curie, 94700 Maisons-Alfort, France
| | - Athinna Nisavanh
- UMR BIPAR, Animal Health Laboratory, ANSES, INRA, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, 14 Rue P. et M. Curie, 94700 Maisons-Alfort, France
| | - Elodie Devillers
- UMR BIPAR, Animal Health Laboratory, ANSES, INRA, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, 14 Rue P. et M. Curie, 94700 Maisons-Alfort, France
| | - Sabine Delannoy
- IdentyPath Platform, Food Safety Laboratory, ANSES, 14 Rue P. et M. Curie, 94700 Maisons-Alfort, France
| | - Patrick Fach
- IdentyPath Platform, Food Safety Laboratory, ANSES, 14 Rue P. et M. Curie, 94700 Maisons-Alfort, France
| | - Anna Aspan
- Department of Microbiology, National Veterinary Institute (SVA), SE-751 89 Uppsala, Sweden
| | - Karin Ullman
- Department of Microbiology, National Veterinary Institute (SVA), SE-751 89 Uppsala, Sweden
| | - Jan Chirico
- Department of Microbiology, National Veterinary Institute (SVA), SE-751 89 Uppsala, Sweden
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Sü dufer 10, 17493 Greifswald - Insel Riems, Germany
| | - Fimme Jan van der Wal
- Wageningen Bioveterinary Research (WBVR), Wageningen UR, Houtribweg 39, 8221 RA Lelystad, The Netherlands
| | - Aline de Koeijer
- Wageningen Bioveterinary Research (WBVR), Wageningen UR, Houtribweg 39, 8221 RA Lelystad, The Netherlands
| | - Conny van Solt-Smits
- Wageningen Bioveterinary Research (WBVR), Wageningen UR, Houtribweg 39, 8221 RA Lelystad, The Netherlands
| | - Seta Jahfari
- Laboratory for Zoonoses and Environmental Microbiology, National Institute for Public Health and Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Hein Sprong
- Laboratory for Zoonoses and Environmental Microbiology, National Institute for Public Health and Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Karen L Mansfield
- Animal and Plant Health Agency (APHA), Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Anthony R Fooks
- Animal and Plant Health Agency (APHA), Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Kirstine Klitgaard
- National Veterinary Institute, DTU, Henrik Dams Allé, Building 205B, 2800 Kgs. Lyngby, Denmark
| | - Rene Bødker
- National Veterinary Institute, DTU, Henrik Dams Allé, Building 205B, 2800 Kgs. Lyngby, Denmark
| | - Sara Moutailler
- UMR BIPAR, Animal Health Laboratory, ANSES, INRA, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, 14 Rue P. et M. Curie, 94700 Maisons-Alfort, France
| |
Collapse
|
13
|
Kim Y, Pierce CM, Robinson LA. Impact of viral presence in tumor on gene expression in non-small cell lung cancer. BMC Cancer 2018; 18:843. [PMID: 30134863 PMCID: PMC6106745 DOI: 10.1186/s12885-018-4748-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 08/14/2018] [Indexed: 12/26/2022] Open
Abstract
Background In our recent study, most non-small-lung cancer (NSCLC) tumor specimens harbored viral DNA but it was absent in non-neoplastic lung. However, their targets and roles in the tumor cells remain poorly understood. We analyzed gene expression microarrays to identify genes and pathways differentially altered between virus-infected and uninfected NSCLC tumors. Methods Gene expression microarrays of 30 primary and 9 metastatic NSCLC patients were preprocessed through a series of quality control analyses. Linear Models for Microarray Analysis and Gene Set Enrichment Analysis were used to assess differential expression. Results Various genes and gene sets had significantly altered expressions between virus-infected and uninfected NSCLC tumors. Notably, 22 genes on the viral carcinogenesis pathway were significantly overexpressed in virus-infected primary tumors, along with three oncogenic gene sets. A total of 12 genes, as well as seven oncogenic and 133 immunologic gene sets, were differentially altered in squamous cell carcinomas, depending on the virus. In adenocarcinoma, 14 differentially expressed genes (DEGs) were identified, but no oncogenic and immunogenic gene sets were significantly altered. In bronchioloalveolar carcinoma, several genes were highly overexpressed in virus-infected specimens, but not statistically significant. Only five of 69 DEGs (7.2%) from metastatic tumor analysis overlapped with 1527 DEGs from the primary tumor analysis, indicating differences in host cellular targets and the viral impact between primary and metastatic NSCLC. Conclusions The differentially expressed genes and gene sets were distinctive among infected viral types, histological subtypes, and metastatic disease status of NSCLC. These results support the hypothesis that tumor viruses play a role in NSCLC by regulating host genes in tumor cells during NSCLC differentiation and progression. Electronic supplementary material The online version of this article (10.1186/s12885-018-4748-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Youngchul Kim
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, 33612-9416, Florida, USA.
| | - Christine M Pierce
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, 33612-9416, Florida, USA.,Center for Immunization and Infection Research in Cancer, Moffitt Cancer Center, Tampa, 33612-9416, Florida, USA.,Division of Thoracic Oncology, Moffitt Cancer Center, Tampa, Florida, 33612-9416, USA
| | - Lary A Robinson
- Center for Immunization and Infection Research in Cancer, Moffitt Cancer Center, Tampa, 33612-9416, Florida, USA.,Division of Thoracic Oncology, Moffitt Cancer Center, Tampa, Florida, 33612-9416, USA
| |
Collapse
|
14
|
Niederwerder MC, Constance LA, Rowland RRR, Abbas W, Fernando SC, Potter ML, Sheahan MA, Burkey TE, Hesse RA, Cino-Ozuna AG. Fecal Microbiota Transplantation Is Associated With Reduced Morbidity and Mortality in Porcine Circovirus Associated Disease. Front Microbiol 2018; 9:1631. [PMID: 30083142 PMCID: PMC6064930 DOI: 10.3389/fmicb.2018.01631] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/29/2018] [Indexed: 12/12/2022] Open
Abstract
Porcine circovirus associated disease (PCVAD) is a term used to describe the multi-factorial disease syndromes caused by porcine circovirus type 2 (PCV-2), which can be reproduced in an experimental setting through the co-infection of pigs with PCV-2 and porcine reproductive and respiratory syndrome virus (PRRSV). The resulting PCVAD-affected pigs represent a subpopulation within the co-infected group. In co-infection studies, the presence of increased microbiome diversity is linked to a reduction in clinical signs. In this study, fecal microbiota transplantation (FMT) was investigated as a means to prevent PCVAD in pigs co-infected with PRRSV and PCV-2d. The sources of the FMT material were high-parity sows with a documented history of high health status and robust litter characteristics. The analysis of the donated FMT material showed the absence of common pathogens along with the presence of diverse microbial phyla and families. One group of pigs (n = 10) was administered the FMT while a control group (n = 10) was administered a sterile mock-transplant. Over the 42-day post-infection period, the FMT group showed fewer PCVAD-affected pigs, as evidenced by a significant reduction in morbidity and mortality in transplanted pigs, along with increased antibody levels. Overall, this study provides evidence that FMT decreases the severity of clinical signs following co-infection with PRRSV and PCV-2 by reducing the prevalence of PCVAD.
Collapse
Affiliation(s)
- Megan C Niederwerder
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Laura A Constance
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Raymond R R Rowland
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Waseem Abbas
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Samodha C Fernando
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| | | | - Maureen A Sheahan
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Thomas E Burkey
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Richard A Hesse
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States.,Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS, United States
| | - Ada G Cino-Ozuna
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States.,Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
15
|
Mu H, Sun J, Li L, Yin J, Hu N, Zhao W, Ding D, Yi L. Ionizing radiation exposure: hazards, prevention, and biomarker screening. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:15294-15306. [PMID: 29705904 DOI: 10.1007/s11356-018-2097-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/20/2018] [Indexed: 06/08/2023]
Abstract
Radiation is a form of energy derived from a source that is propagated through material in space. It consists of ionizing radiation or nonionizing radiation. Ionizing radiation is a feature of the environment and an important tool in medical treatment, but it can cause serious damage to organisms. A number of protective measures and standards of protection have been proposed to protect against radiation. There is also a need for biomarkers to rapidly assess individual doses of radiation, which can not only estimate the dose of radiation but also determine its effects on health. Proteomics, genomics, metabolomics, and lipidomics have been widely used in the search for such biomarkers. These topics are discussed in depth in this review.
Collapse
Affiliation(s)
- Hongxiang Mu
- Institute of Cytology and Genetics, College of pharmaceutical and biological science, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Jing Sun
- Institute of Cytology and Genetics, College of pharmaceutical and biological science, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Linwei Li
- Institute of Cytology and Genetics, College of pharmaceutical and biological science, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Jie Yin
- Institute of Cytology and Genetics, College of pharmaceutical and biological science, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Nan Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Weichao Zhao
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Dexin Ding
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Lan Yi
- Institute of Cytology and Genetics, College of pharmaceutical and biological science, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China.
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China.
| |
Collapse
|
16
|
Olesen ML, Jørgensen LL, Blixenkrone-Møller M, Sandberg E, Frandsen PL, Østergaard E, Bækdahl ER, Fridholm H, Fomsgaard A, Rosenstierne MW. Screening for viral extraneous agents in live-attenuated avian vaccines by using a microbial microarray and sequencing. Biologicals 2018; 51:37-45. [DOI: 10.1016/j.biologicals.2017.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 06/30/2017] [Accepted: 10/17/2017] [Indexed: 11/28/2022] Open
|
17
|
Yi L, Hu N, Yin J, Sun J, Mu H, Dai K, Ding D. Up-regulation of calreticulin in mouse liver tissues after long-term irradiation with low-dose-rate gamma rays. PLoS One 2017; 12:e0182671. [PMID: 28931006 PMCID: PMC5607120 DOI: 10.1371/journal.pone.0182671] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/21/2017] [Indexed: 02/06/2023] Open
Abstract
The biological effects of low-dose or low-dose-rate ionizing radiation on normal tissues has attracted attention. Based on previous research, we observed the morphology of liver tissues of C57BL/6J mice that received <50, 50–500, and 500–1000 μGy/h of 137Cs radiation for 180 d. We found that the pathological changes in liver tissues were more obvious as the irradiation dose rates increased. Additionally, differential protein expression in liver tissues was analyzed using a proteomics approach. Compared with the matched group in the 2D gel analysis of the irradiated groups, 69 proteins had ≥ 1.5-fold changes in expression. Twenty-three proteins were selected based on ≥2.5-fold change in expression, and 22 of them were meaningful for bioinformatics and protein fingerprinting analysis. These molecules were relevant to cytoskeleton processes, cell metabolism, biological defense, mitochondrial damage, detoxification and tumorigenesis. The results from real-time PCR and western blot (WB) analyses showed that calreticulin (CRT) was up-regulated in the irradiated groups, which indicates that CRT may be relevant to stress reactions when mouse livers are exposed to low-dose irradiation and that low-dose-rate ionizing radiation may pose a cancer risk. The CRT protein can be a potential candidate for low-dose or low-dose-rate ionizing radiation early-warning biomarkers. However, the underlying mechanism requires further investigation.
Collapse
Affiliation(s)
- Lan Yi
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, Hunan, P.R. China
- College of Pharmacy and Biological Sciences, University of South China, Hengyang, Hunan, P.R. China
| | - Nan Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, Hunan, P.R. China
| | - Jie Yin
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, Hunan, P.R. China
- College of Pharmacy and Biological Sciences, University of South China, Hengyang, Hunan, P.R. China
| | - Jing Sun
- College of Pharmacy and Biological Sciences, University of South China, Hengyang, Hunan, P.R. China
| | - Hongxiang Mu
- College of Pharmacy and Biological Sciences, University of South China, Hengyang, Hunan, P.R. China
| | - Keren Dai
- College of Pharmacy and Biological Sciences, University of South China, Hengyang, Hunan, P.R. China
| | - Dexin Ding
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, Hunan, P.R. China
- * E-mail:
| |
Collapse
|
18
|
Ober RA, Thissen JB, Jaing CJ, Cino-Ozuna AG, Rowland RRR, Niederwerder MC. Increased microbiome diversity at the time of infection is associated with improved growth rates of pigs after co-infection with porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2). Vet Microbiol 2017; 208:203-211. [PMID: 28888639 DOI: 10.1016/j.vetmic.2017.06.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/20/2017] [Accepted: 06/20/2017] [Indexed: 01/30/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2) are two of the most important pathogens affecting the swine industry worldwide. Co-infections are common on a global scale, resulting in pork production losses through reducing weight gain and causing respiratory disease in growing pigs. Our initial work demonstrated that the fecal microbiome was associated with clinical outcome of pigs 70days post-infection (dpi) with PRRSV and PCV2. However, it remained uncertain if microbiome characteristics could predispose response to viral infection. The purpose of this study was to determine if microbiome characteristics present at the time of virus exposure were associated with outcome after co-infection. Using the Lawrence Livermore Microbial Detection Array, we profiled the microbiome in feces prior to infection from pigs identified retrospectively as having high or low growth rates after co-infection. High growth rate pigs had less severe interstitial pneumonia, reduced virus replication, and a significant increase in average daily weight gain throughout the study. At the level of the fecal microbiome, high growth rate pigs had increased microbial diversity on both a family and species level. Shifts in the microbiome composition of high growth rate pigs included reduced Methanobacteriaceae species, increased Ruminococcaceae species, and increased Streptococcaceae species when compared to low growth rate pigs. The results indicate that both microbiome diversity and composition at the time of virus exposure may play a role in the subsequent response of pigs to PRRSV/PCV2 co-infection.
Collapse
Affiliation(s)
- Rebecca A Ober
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University,1800 Denison Avenue, Manhattan, KS 66506, USA
| | - James B Thissen
- Physical & Life Sciences Directorate, Lawrence Livermore National Laboratory,7000 East Avenue, Livermore, CA 94550, USA
| | - Crystal J Jaing
- Physical & Life Sciences Directorate, Lawrence Livermore National Laboratory,7000 East Avenue, Livermore, CA 94550, USA
| | - Ada G Cino-Ozuna
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University,1800 Denison Avenue, Manhattan, KS 66506, USA; Kansas State Veterinary Diagnostic Laboratory, Kansas State University,1800 Denison Avenue, Manhattan, KS 66506, USA
| | - Raymond R R Rowland
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University,1800 Denison Avenue, Manhattan, KS 66506, USA
| | - Megan C Niederwerder
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University,1800 Denison Avenue, Manhattan, KS 66506, USA; Kansas State Veterinary Diagnostic Laboratory, Kansas State University,1800 Denison Avenue, Manhattan, KS 66506, USA.
| |
Collapse
|
19
|
Robinson LA, Jaing CJ, Pierce Campbell C, Magliocco A, Xiong Y, Magliocco G, Thissen JB, Antonia S. Molecular evidence of viral DNA in non-small cell lung cancer and non-neoplastic lung. Br J Cancer 2016; 115:497-504. [PMID: 27415011 PMCID: PMC4985355 DOI: 10.1038/bjc.2016.213] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 01/02/2023] Open
Abstract
Background: Although ∼20% of human cancers are caused by microorganisms, only suspicion exists for a microbial cause of lung cancer. Potential infectious agents were investigated in non-small cell lung cancer (NSCLC) and non-neoplastic lung. Methods: Seventy NSCLC tumours (33 squamous cell carcinomas, 17 adenocarcinomas, 10 adenocarcinomas with lepidic spread, and 10 oligometastases) and 10 non-neoplastic lung specimens were evaluated for molecular evidence of microorganisms. Tissues were subjected to the Lawrence Livermore Microbial Detection Array, an oncovirus panel of the International Agency for Research on Cancer, and human papillomavirus (HPV) genotyping. Associations were examined between microbial prevalence, clinical characteristics, and p16 and EGFR expression. Results: Retroviral DNA was observed in 85% squamous cell carcinomas, 47% adenocarcinomas, and 10% adenocarcinomas with lepidic spread. Human papillomavirus DNA was found in 69% of squamous cell carcinomas with 30% containing high-risk HPV types. No significant viral DNA was detected in non-neoplastic lung. Patients with tumours containing viral DNA experienced improved long-term survival compared with patients with viral DNA-negative tumours. Conclusions: Most squamous cell carcinomas and adenocarcinomas contained retroviral DNA and one-third of squamous cell carcinomas contained high-risk HPV DNA. Viral DNA was absent in non-neoplastic lung. Trial results encourage further study of the viral contribution to lung carcinogenesis.
Collapse
Affiliation(s)
- Lary A Robinson
- Department of Thoracic Oncology, Moffitt Cancer Center, Tampa, Florida 33612-9416, USA.,Center for Infection Research in Cancer (CIRC), Moffitt Cancer Center, Tampa, Florida 33612-9416, USA
| | - Crystal J Jaing
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94559-9698, USA
| | - Christine Pierce Campbell
- Center for Infection Research in Cancer (CIRC), Moffitt Cancer Center, Tampa, Florida 33612-9416, USA.,Department of Epidemiology, Moffitt Cancer Center, Tampa, Florida 33612-9416, USA
| | - Anthony Magliocco
- Department of Pathology, Moffitt Cancer Center, Tampa, Florida 33612-9416, USA
| | - Yin Xiong
- Department of Pathology, Moffitt Cancer Center, Tampa, Florida 33612-9416, USA
| | - Genevra Magliocco
- Department of Pathology, Moffitt Cancer Center, Tampa, Florida 33612-9416, USA
| | - James B Thissen
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94559-9698, USA
| | - Scott Antonia
- Department of Thoracic Oncology, Moffitt Cancer Center, Tampa, Florida 33612-9416, USA
| |
Collapse
|
20
|
Niederwerder MC, Jaing CJ, Thissen JB, Cino-Ozuna AG, McLoughlin KS, Rowland RRR. Microbiome associations in pigs with the best and worst clinical outcomes following co-infection with porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2). Vet Microbiol 2016; 188:1-11. [PMID: 27139023 DOI: 10.1016/j.vetmic.2016.03.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 03/08/2016] [Accepted: 03/10/2016] [Indexed: 01/17/2023]
Abstract
On a world-wide basis, co-infections involving porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2) are common and contribute to a range of polymicrobial disease syndromes in swine. Both viruses compromise host defenses, resulting in increased susceptibility to infections by primary and secondary pathogens that can affect growth performance as well as increased morbidity and mortality. An experimental population of 95 pigs was co-infected with PRRSV and PCV2. At 70days post-infection (dpi), 20 representative pigs were selected as having the best or worst clinical outcome based on average daily gain (ADG) and the presence of clinical disease. Worst clinical outcome pigs had prolonged and greater levels of viremia as measured by qPCR. Serum, lung and fecal samples collected at 70 dpi were analyzed using a comprehensive DNA microarray technology, the Lawrence Livermore Microbial Detection Array, to detect over 8000 microbes. Bacterial species, such as Bacillus cereus, were detected at a higher rate in the serum of worst performing pigs. At the level of the fecal microbiome, the overall microbial diversity was lower in the worst clinical outcome group. The results reinforce the importance of pathogen load in determining clinical outcome and suggest an important role of microbial diversity as a contributing factor in disease.
Collapse
Affiliation(s)
- Megan C Niederwerder
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA; Kansas State Veterinary Diagnostic Laboratory, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA.
| | - Crystal J Jaing
- Physical & Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
| | - James B Thissen
- Physical & Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
| | - Ada Giselle Cino-Ozuna
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA; Kansas State Veterinary Diagnostic Laboratory, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA
| | - Kevin S McLoughlin
- Computations Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
| | - Raymond R R Rowland
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA
| |
Collapse
|
21
|
Yi L, Li L, Yin J, Hu N, Li G, Ding D. Proteomics analysis of liver tissues from C57BL/6J mice receiving low-dose 137Cs radiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:2549-2556. [PMID: 26429139 DOI: 10.1007/s11356-015-5494-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/21/2015] [Indexed: 06/05/2023]
Abstract
Differentially expressed proteins in liver tissues of C57BL/6J mice receiving low-dose (137)Cs radiation were examined by proteomics analysis. Compared with the control group, 80 proteins were differentially expressed in the irradiated group. Among the 40 randomly selected proteins used for peptide mass fingerprinting analysis and bioinformatics, 24 were meaningful. These proteins were related to antioxidant defense, amino acid metabolism, detoxification, anti-tumor development, amino acid transport, anti-peroxidation, and composition of respiratory chain. Western blot analysis showed that catalase (CAT), glycine N-methyltransferase (GNMT), and glutathione S-transferase P1 (GSTP1) were up-regulated in the irradiated group; these results were in agreement with qPCR results. These results show that CAT, GNMT, and GSTP1 may be related to stress response induced by low-dose irradiation in mice liver. The underlying mechanism however requires further investigation.
Collapse
Affiliation(s)
- Lan Yi
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, Hunan, 421001, People's Republic of China
- College of Pharmacy and Biological Sciences, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Linwei Li
- College of Pharmacy and Biological Sciences, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Jie Yin
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, Hunan, 421001, People's Republic of China
- College of Pharmacy and Biological Sciences, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Nan Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Guangyue Li
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Dexin Ding
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, Hunan, 421001, People's Republic of China.
| |
Collapse
|
22
|
Human pegivirus detected in a patient with severe encephalitis using a metagenomic pan-virus array. J Clin Virol 2016; 77:5-8. [PMID: 26872326 PMCID: PMC7106502 DOI: 10.1016/j.jcv.2016.01.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/04/2015] [Accepted: 01/27/2016] [Indexed: 01/20/2023]
Abstract
Metagenomic microarray for unbiased detection of virus in patient samples. Discovery of an occult viral infection, HPgV, in the spinal fluid of a patient with severe encephalitis. HPgV can on rare occasions enter the CSF at high viral load, but uncertain if its presence in the CNS has any clinical implications.
We have used a metagenomic microarray to detect genomic RNA from human pegivirus in serum and cerebrospinal fluid from a patient suffering from severe encephalitis. No other pathogen was detected. HPgV in cerebrospinal fluid during encephalitis has never been reported before and its prevalence in cerebrospinal fluid needs further investigation.
Collapse
|
23
|
Stramer SL, Dodd RY, Chiu CY. Advances in testing technology to ensure transfusion safety - NAT and beyond. ACTA ACUST UNITED AC 2015. [DOI: 10.1111/voxs.12152] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- S. L. Stramer
- American Red Cross Biomedical Services; Gaithersburg MD USA
| | - R. Y. Dodd
- Research and Development; American Red Cross Biomedical Services; Rockville MD USA
| | - C. Y. Chiu
- Laboratory Medicine and Medicine/Infectious Diseases; UCSF School of Medicine; San Francisco CA USA
- UCSF-Abbott Viral Diagnostics and Discovery Center; UCSF School of Medicine; San Francisco CA USA
| |
Collapse
|
24
|
Tellez J, Jaing C, Wang J, Green R, Chen M. Detection of Epstein-Barr virus (EBV) in human lymphoma tissue by a novel microbial detection array. Biomark Res 2014; 2:24. [PMID: 25635226 PMCID: PMC4310026 DOI: 10.1186/s40364-014-0024-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 11/21/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Infectious agents are estimated to play a causative role in approximately 20% of cancers worldwide. Viruses, notably the Epstein-Barr virus (EBV), are associated with 10-15% of B-cell lymphomas and are found at a higher frequency in immunosuppressed patients. In this study, we screened human lymphoma tissues using a novel Lawrence Livermore Microbial Detection Array (LLMDA), a comprehensive detection system that contains probes for all sequenced viruses and bacteria. This technology has been applied to identify pathogen-associated diseases. RESULTS We evaluated samples from 58 cases with various lymphoid tissue disorders using LLMDA. These included 30 B-cell lymphomas (9 indolent and 21 aggressive type), 2 T-cell lymphomas and 2 NK/T cell lymphomas, 4 plasmacytomas as well as 8 specimens of benign lymphoid tissue. Five of 21 high-grade B-cell lymphomas were positive for Epstein-Barr virus-encoded small RNA (EBER+), while all the indolent B-cell lymphomas were EBER-. Similarly, both NK/T cell lymphomas were EBER+, and the benign tissues were EBER-. We also screened 10 cases of post-transplant lymphoproliferative disorder (PTLD). Five of these cases (4 B-cell lymphomas and 1 NK/T cell lymphoma) were EBER+, and the remaining five cases were EBER-. CONCLUSIONS We have confirmed the reliability of the LLMDA methods by detecting EBV in EBV-positive lymphomas while observing no false-positive results in EBV-negative lymphomas. The LLMDA technique provides a sensitive and alternative method for identifying known viral pathogen associated with tumors and may prove useful for future clinical identification of novel cancer-associated viral pathogens.
Collapse
Affiliation(s)
- Joseph Tellez
- Deptartment of Pathology and Laboratory Medicine, University of California, Davis Medical Center, PATH Bldg. 4400V Street, Sacramento, CA 95817 USA
| | - Crystal Jaing
- Applied Genomics, Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94551 USA
| | - Jun Wang
- Department of Pathology and Laboratory Medicine, Loma Linda University Medical Center, Loma Linda, CA 92354 USA
| | - Ralph Green
- Deptartment of Pathology and Laboratory Medicine, University of California, Davis Medical Center, PATH Bldg. 4400V Street, Sacramento, CA 95817 USA
| | - Mingyi Chen
- Deptartment of Pathology and Laboratory Medicine, University of California, Davis Medical Center, PATH Bldg. 4400V Street, Sacramento, CA 95817 USA
| |
Collapse
|