1
|
Abdullaev ET, Haridoss DA, Arndt PF. Reconstruction of Segmental Duplication Rates and Associated Genomic Features by Network Analysis. Genome Biol Evol 2025; 17:evaf011. [PMID: 39980358 PMCID: PMC11925013 DOI: 10.1093/gbe/evaf011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 12/20/2024] [Accepted: 01/05/2025] [Indexed: 02/22/2025] Open
Abstract
Segmental duplications are long genomic duplications that are fixed in a genome. Segmental duplications play an important evolutionary role because entire genes can be duplicated along with regulatory sequences. The ancestral segmental duplications of the human lineage gave rise to genes that are involved in the development of the human brain and provided sites for further genomic rearrangements. While some duplicated loci have been extensively studied, the universal principles and biological factors underlying the spread of segmental duplications remain unclear. Here, we represent segmental duplications in a network, with edges corresponding to duplication events and nodes corresponding to affected genomic sites. This representation allowed us to estimate how many duplications had occurred at each locus, and thereby enabling the prediction of genomic features associated with increased duplication rates. Our comprehensive study of genomic features associated with duplications and those associated with increased duplication rates allowed us to identify several biological factors affecting a segmental duplication process. In our study, we describe genomic features associated with increased duplication rates, three signatures of the duplication process and associations of segmental duplications with different classes of high-copy repeats. Furthermore our method is readily implemented and can easily be applied to segmental duplications of other genomes to build a network of segmental duplications or to predict real duplication events.
Collapse
Affiliation(s)
- Eldar T Abdullaev
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Dinesh A Haridoss
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Electrical Engineering and Computer Science, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Peter F Arndt
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
2
|
Celus CS, Ahmad SF, Gangwar M, Kumar S, Kumar A. Deciphering new insights into copy number variations as drivers of genomic diversity and adaptation in farm animal species. Gene 2025; 939:149159. [PMID: 39672215 DOI: 10.1016/j.gene.2024.149159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/15/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
The basis of all improvement in (re)production performance of animals and plants lies in the genetic variation. The underlying genetic variation can be further explored through investigations using molecular markers including single nucleotide polymorphism (SNP) and microsatellite, and more recently structural variants like copy number variations (CNVs). Unlike SNPs, CNVs affect a larger proportion of the genome, making them more impactful vis-à-vis variation at the phenotype level. They significantly contribute to genetic variation and provide raw material for natural and artificial selection for improved performance. CNVs are characterized as unbalanced structural variations that arise from four major mechanisms viz., non-homologous end joining (NHEJ), non-allelic homologous recombination (NAHR), fork stalling and template switching (FoSTeS), and retrotransposition. Various detection methods have been developed to identify CNVs, including molecular techniques and massively parallel sequencing. Next-generation sequencing (NGS)/high-throughput sequencing offers higher resolution and sensitivity, but challenges remain in delineating CNVs in regions with repetitive sequences or high GC content. High-throughput sequencing technologies utilize different methods based on read-pair, split-read, read depth, and assembly approaches (or their combination) to detect CNVs. Read-pair based methods work by mapping discordant reads, while the read-depth approach works on detecting the correlation between read depth and copy number of genetic segments or a gene. Split-read methods involve mapping segments of reads to different locations on the genome, while assembly methods involve comparing contigs to a reference or de novo sequencing. Similar to other marker-trait association studies, CNV-association studies are not uncommon in humans and farm animals. Soon, extensive studies will be needed to deduce the unique evolutionary trajectories and underlying molecular mechanisms for targeted genetic improvements in different farm animal species. The present review delineates the importance of CNVs in genetic studies, their generation along with programs and principles to efficiently identify them, and finally throw light on the existing literature on studies in farm animal species vis-à-vis CNVs.
Collapse
Affiliation(s)
- C S Celus
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Sheikh Firdous Ahmad
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India; Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India.
| | - Munish Gangwar
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Subodh Kumar
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Amit Kumar
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| |
Collapse
|
3
|
Murat P, Guilbaud G, Sale JE. DNA replication initiation drives focal mutagenesis and rearrangements in human cancers. Nat Commun 2024; 15:10850. [PMID: 39738026 PMCID: PMC11685606 DOI: 10.1038/s41467-024-55148-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 12/03/2024] [Indexed: 01/01/2025] Open
Abstract
The rate and pattern of mutagenesis in cancer genomes is significantly influenced by DNA accessibility and active biological processes. Here we show that efficient sites of replication initiation drive and modulate specific mutational processes in cancer. Sites of replication initiation impede nucleotide excision repair in melanoma and are off-targets for activation-induced deaminase (AICDA) activity in lymphomas. Using ductal pancreatic adenocarcinoma as a cancer model, we demonstrate that the initiation of DNA synthesis is error-prone at G-quadruplex-forming sequences in tumours displaying markers of replication stress, resulting in a previously recognised but uncharacterised mutational signature. Finally, we demonstrate that replication origins serve as hotspots for genomic rearrangements, including structural and copy number variations. These findings reveal replication origins as functional determinants of tumour biology and demonstrate that replication initiation both passively and actively drives focal mutagenesis in cancer genomes.
Collapse
Affiliation(s)
- Pierre Murat
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
- Wellcome Sanger Institute, Hinxton, CB10 1RQ, UK.
| | - Guillaume Guilbaud
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Julian E Sale
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
4
|
Ventayol-Guirado M, Torres L, Asensio-Landa V, Pérez-Granero Á, Madrid MI, Hernandez-Rodriguez J, Llull-Alberti MV, Lumbreras J, Escribà S, Pons M, Roldan J, Martínez-López I, Heine-Suñer D, Santos-Simarro F. Atypical noncontiguous TSC2/PKD1 gene deletions presenting as tuberous sclerosis/polycystic kidney disease contiguous gene syndrome. Am J Med Genet A 2024; 194:e63830. [PMID: 39095963 DOI: 10.1002/ajmg.a.63830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/05/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
Tuberous sclerosis complex (TSC) and autosomal dominant polycystic kidney disease (ADPKD) are genetically distinct disorders typically associated with pathogenic variants in TSC1 and TSC2 for the former and PKD1 and PKD2 for the latter. TSC2 and PKD1 lie adjacent to each other, and large deletions comprising both genes lead to TSC2/PKD1 contiguous gene deletion syndrome (CGS). In this study, we describe a young female patient exhibiting symptoms of TSC2/PKD1 CGS in which genetic analysis disclosed two noncontiguous partial gene deletions in TSC2 and PKD1 that putatively are responsible for the manifestations of the syndrome. Further analysis revealed that both deletions appear to be de novo on the maternal chromosome, presumably with a germline origin. Despite extensive analysis, no maternal chromosomal rearrangement triggering these pathogenic variants was detected. This case elucidates a unique pathogenesis for TSC2/PKD1 CGS, diverging from the common contiguous deletions typically observed, marking the first reported instance of TSC2/PKD1 CGS caused by independent, functionally significant partial gene deletions.
Collapse
Affiliation(s)
- Marc Ventayol-Guirado
- Health Research Institute of the Balearic Islands (IdISBa), Genomics of Health research group, Palma, Spain
| | - Laura Torres
- Health Research Institute of the Balearic Islands (IdISBa), Genomics of Health research group, Palma, Spain
- Hospital Universitari Son Espases, Unit of Molecular Diagnostics and Clinical Genetics, Palma, Spain
| | - Victor Asensio-Landa
- Health Research Institute of the Balearic Islands (IdISBa), Genomics of Health research group, Palma, Spain
- Hospital Universitari Son Espases, Unit of Molecular Diagnostics and Clinical Genetics, Palma, Spain
| | - Ángeles Pérez-Granero
- Hospital Universitari Son Espases, Unit of Molecular Diagnostics and Clinical Genetics, Palma, Spain
| | - Maria Isabel Madrid
- Hospital Universitari Son Espases, Unit of Molecular Diagnostics and Clinical Genetics, Palma, Spain
| | - Jessica Hernandez-Rodriguez
- Health Research Institute of the Balearic Islands (IdISBa), Genomics of Health research group, Palma, Spain
- Hospital Universitari Son Espases, Unit of Molecular Diagnostics and Clinical Genetics, Palma, Spain
| | | | - Javier Lumbreras
- Pediatrics Department, Hospital Universitari Son Espases, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Multidisciplinary Pediatric Research Group, Palma, Spain
| | - Silvia Escribà
- Pediatrics Department, Hospital Universitari Son Espases, Palma, Spain
| | - Monserrat Pons
- Pediatrics Department, Hospital Universitari Son Espases, Palma, Spain
| | - Jordi Roldan
- Radiology Department, Hospital Universitari Son Espases, Palma, Spain
| | - Iciar Martínez-López
- Health Research Institute of the Balearic Islands (IdISBa), Genomics of Health research group, Palma, Spain
- Hospital Universitari Son Espases, Unit of Molecular Diagnostics and Clinical Genetics, Palma, Spain
| | - Damian Heine-Suñer
- Health Research Institute of the Balearic Islands (IdISBa), Genomics of Health research group, Palma, Spain
- Hospital Universitari Son Espases, Unit of Molecular Diagnostics and Clinical Genetics, Palma, Spain
| | - Fernando Santos-Simarro
- Health Research Institute of the Balearic Islands (IdISBa), Genomics of Health research group, Palma, Spain
- Hospital Universitari Son Espases, Unit of Molecular Diagnostics and Clinical Genetics, Palma, Spain
| |
Collapse
|
5
|
Kusch S, Frantzeskakis L, Lassen BD, Kümmel F, Pesch L, Barsoum M, Walden KD, Panstruga R. A fungal plant pathogen overcomes mlo-mediated broad-spectrum disease resistance by rapid gene loss. THE NEW PHYTOLOGIST 2024; 244:962-979. [PMID: 39155769 DOI: 10.1111/nph.20063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/03/2024] [Indexed: 08/20/2024]
Abstract
Hosts and pathogens typically engage in a coevolutionary arms race. This also applies to phytopathogenic powdery mildew fungi, which can rapidly overcome plant resistance and perform host jumps. Using experimental evolution, we show that the powdery mildew pathogen Blumeria hordei is capable of breaking the agriculturally important broad-spectrum resistance conditioned by barley loss-of-function mlo mutants. Partial mlo virulence of evolved B. hordei isolates is correlated with a distinctive pattern of adaptive mutations, including small-sized (c. 8-40 kb) deletions, of which one is linked to the de novo insertion of a transposable element. Occurrence of the mutations is associated with a transcriptional induction of effector protein-encoding genes that is absent in mlo-avirulent isolates on mlo mutant plants. The detected mutational spectrum comprises the same loci in at least two independently isolated mlo-virulent isolates, indicating convergent multigenic evolution. The mutational events emerged in part early (within the first five asexual generations) during experimental evolution, likely generating a founder population in which incipient mlo virulence was later stabilized by additional events. This work highlights the rapid dynamic genome evolution of an obligate biotrophic plant pathogen with a transposon-enriched genome.
Collapse
Affiliation(s)
- Stefan Kusch
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056, Aachen, Germany
| | - Lamprinos Frantzeskakis
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056, Aachen, Germany
| | - Birthe D Lassen
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056, Aachen, Germany
| | - Florian Kümmel
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056, Aachen, Germany
| | - Lina Pesch
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056, Aachen, Germany
| | - Mirna Barsoum
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056, Aachen, Germany
| | - Kim D Walden
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056, Aachen, Germany
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056, Aachen, Germany
| |
Collapse
|
6
|
Trinh J, Schaake S, Gabbert C, Lüth T, Cowley SA, Fienemann A, Ullrich KK, Klein C, Seibler P. Optical genome mapping of structural variants in Parkinson's disease-related induced pluripotent stem cells. BMC Genomics 2024; 25:980. [PMID: 39425080 PMCID: PMC11490025 DOI: 10.1186/s12864-024-10902-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Certain structural variants (SVs) including large-scale genetic copy number variants, as well as copy number-neutral inversions and translocations may not all be resolved by chromosome karyotype studies. The identification of genetic risk factors for Parkinson's disease (PD) has been primarily focused on the gene-disruptive single nucleotide variants. In contrast, larger SVs, which may significantly influence human phenotypes, have been largely underexplored. Optical genomic mapping (OGM) represents a novel approach that offers greater sensitivity and resolution for detecting SVs. In this study, we used induced pluripotent stem cell (iPSC) lines of patients with PD-linked SNCA and PRKN variants as a proof of concept to (i) show the detection of pathogenic SVs in PD with OGM and (ii) provide a comprehensive screening of genetic abnormalities in iPSCs. RESULTS OGM detected SNCA gene triplication and duplication in patient-derived iPSC lines, which were not identified by long-read sequencing. Additionally, various exon deletions were confirmed by OGM in the PRKN gene of iPSCs, of which exon 3-5 and exon 2 deletions were unable to phase with conventional multiplex-ligation-dependent probe amplification. In terms of chromosomal abnormalities in iPSCs, no gene fusions, no aneuploidy but two balanced inter-chromosomal translocations were detected in one line that were absent in the parental fibroblasts and not identified by routine single nucleotide variant karyotyping. CONCLUSIONS In summary, OGM can detect pathogenic SVs in PD-linked genes as well as reveal genomic abnormalities for iPSCs that were not identified by other techniques, which is supportive for OGM's future use in gene discovery and iPSC line screening.
Collapse
Affiliation(s)
- Joanne Trinh
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Susen Schaake
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Carolin Gabbert
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Theresa Lüth
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Sally A Cowley
- James and Lillian Martin Centre for Stem Cell Research, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - André Fienemann
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Kristian K Ullrich
- Division Scientific IT Group, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Philip Seibler
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23562, Lübeck, Germany.
| |
Collapse
|
7
|
Rothschild D, Susanto TT, Sui X, Spence JP, Rangan R, Genuth NR, Sinnott-Armstrong N, Wang X, Pritchard JK, Barna M. Diversity of ribosomes at the level of rRNA variation associated with human health and disease. CELL GENOMICS 2024; 4:100629. [PMID: 39111318 PMCID: PMC11480859 DOI: 10.1016/j.xgen.2024.100629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/07/2024] [Accepted: 07/14/2024] [Indexed: 09/14/2024]
Abstract
With hundreds of copies of rDNA, it is unknown whether they possess sequence variations that form different types of ribosomes. Here, we developed an algorithm for long-read variant calling, termed RGA, which revealed that variations in human rDNA loci are predominantly insertion-deletion (indel) variants. We developed full-length rRNA sequencing (RIBO-RT) and in situ sequencing (SWITCH-seq), which showed that translating ribosomes possess variation in rRNA. Over 1,000 variants are lowly expressed. However, tens of variants are abundant and form distinct rRNA subtypes with different structures near indels as revealed by long-read rRNA structure probing coupled to dimethyl sulfate sequencing. rRNA subtypes show differential expression in endoderm/ectoderm-derived tissues, and in cancer, low-abundance rRNA variants can become highly expressed. Together, this study identifies the diversity of ribosomes at the level of rRNA variants, their chromosomal location, and unique structure as well as the association of ribosome variation with tissue-specific biology and cancer.
Collapse
Affiliation(s)
- Daphna Rothschild
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | | | - Xin Sui
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jeffrey P Spence
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Ramya Rangan
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Naomi R Genuth
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Xiao Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jonathan K Pritchard
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Maria Barna
- Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
8
|
Wu CC, Huang L, Zhang Z, Ju Z, Song X, Kolb EA, Zhang W, Gill J, Ha M, Smith MA, Houghton P, Morton CL, Kurmasheva R, Maris J, Mosse Y, Lu Y, Gorlick R, Futreal PA, Beird HC. Whole genome and reverse protein phase array landscapes of patient derived osteosarcoma xenograft models. Sci Rep 2024; 14:19891. [PMID: 39191826 PMCID: PMC11350124 DOI: 10.1038/s41598-024-69382-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
Osteosarcoma is the most common primary bone malignancy in children and young adults, and it has few treatment options. As a result, there has been little improvement in survival outcomes in the past few decades. The need for models to test novel therapies is especially great in this disease since it is both rare and does not respond to most therapies. To address this, an NCI-funded consortium has characterized and utilized a panel of patient-derived xenograft models of osteosarcoma for drug testing. The exomes, transcriptomes, and copy number landscapes of these models have been presented previously. This study now adds whole genome sequencing and reverse-phase protein array profiling data, which can be correlated with drug testing results. In addition, four additional osteosarcoma models are described for use in the research community.
Collapse
Affiliation(s)
- Chia-Chin Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Licai Huang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhongting Zhang
- Pediatric Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhenlin Ju
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xingzhi Song
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - E Anders Kolb
- Nemours Center for Cancer and Blood Disorders, Alfred I. DuPont Hospital for Children, Wilmington, DE, USA
| | - Wendong Zhang
- Pediatric Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jonathan Gill
- Pediatric Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Min Ha
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Health Informatics and Biostatistics, Yonsei University, Seoul, Korea
| | - Malcolm A Smith
- Cancer Therapy Evaluation Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peter Houghton
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | | | - John Maris
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yael Mosse
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yiling Lu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Richard Gorlick
- Pediatric Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - P Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hannah C Beird
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
9
|
Annapragada AV, Niknafs N, White JR, Bruhm DC, Cherry C, Medina JE, Adleff V, Hruban C, Mathios D, Foda ZH, Phallen J, Scharpf RB, Velculescu VE. Genome-wide repeat landscapes in cancer and cell-free DNA. Sci Transl Med 2024; 16:eadj9283. [PMID: 38478628 PMCID: PMC11323656 DOI: 10.1126/scitranslmed.adj9283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/16/2024] [Indexed: 03/22/2024]
Abstract
Genetic changes in repetitive sequences are a hallmark of cancer and other diseases, but characterizing these has been challenging using standard sequencing approaches. We developed a de novo kmer finding approach, called ARTEMIS (Analysis of RepeaT EleMents in dISease), to identify repeat elements from whole-genome sequencing. Using this method, we analyzed 1.2 billion kmers in 2837 tissue and plasma samples from 1975 patients, including those with lung, breast, colorectal, ovarian, liver, gastric, head and neck, bladder, cervical, thyroid, or prostate cancer. We identified tumor-specific changes in these patients in 1280 repeat element types from the LINE, SINE, LTR, transposable element, and human satellite families. These included changes to known repeats and 820 elements that were not previously known to be altered in human cancer. Repeat elements were enriched in regions of driver genes, and their representation was altered by structural changes and epigenetic states. Machine learning analyses of genome-wide repeat landscapes and fragmentation profiles in cfDNA detected patients with early-stage lung or liver cancer in cross-validated and externally validated cohorts. In addition, these repeat landscapes could be used to noninvasively identify the tissue of origin of tumors. These analyses reveal widespread changes in repeat landscapes of human cancers and provide an approach for their detection and characterization that could benefit early detection and disease monitoring of patients with cancer.
Collapse
Affiliation(s)
- Akshaya V. Annapragada
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Noushin Niknafs
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - James R. White
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Daniel C. Bruhm
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Christopher Cherry
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jamie E. Medina
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Vilmos Adleff
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Carolyn Hruban
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Dimitrios Mathios
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Zachariah H. Foda
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jillian Phallen
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Robert B. Scharpf
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Victor E. Velculescu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
10
|
Ibarra-Ramírez M, Campos-Acevedo LD, Martínez de Villarreal LE. Chromosomal Abnormalities of Interest in Turner Syndrome: An Update. J Pediatr Genet 2023; 12:263-272. [PMID: 38162151 PMCID: PMC10756729 DOI: 10.1055/s-0043-1770982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/01/2023] [Indexed: 01/03/2024]
Abstract
Turner syndrome (TS) is caused by the total or partial loss of the second sex chromosome; it occurs in 1 every 2,500-3,000 live births. The clinical phenotype is highly variable and includes short stature and gonadal dysgenesis. In 1959, the chromosomal origin of the syndrome was recognized; patients had 45 chromosomes with a single X chromosome. TS presents numerical and structural abnormalities in the sex chromosomes, interestingly only 40% have a 45, X karyotype. The rest of the chromosomal abnormalities include mosaics, deletions of the short and long arms of the X chromosome, rings, and isochromosomes. Despite multiple studies to establish a relationship between the clinical characteristics and the different chromosomal variants in TS, a clear association cannot yet be established. Currently, different mechanisms involved in the phenotype have been explored. This review focuses to analyze the different chromosomal abnormalities and phenotypes in TS and discusses the possible mechanisms that lead to these abnormalities.
Collapse
Affiliation(s)
- Marisol Ibarra-Ramírez
- Department of Genetics, “Dr. José Eleuterio González” University Hospital of the Autonomous University of Nuevo León, Monterrey, México
| | - Luis Daniel Campos-Acevedo
- Department of Genetics, “Dr. José Eleuterio González” University Hospital of the Autonomous University of Nuevo León, Monterrey, México
| | - Laura E. Martínez de Villarreal
- Department of Genetics, “Dr. José Eleuterio González” University Hospital of the Autonomous University of Nuevo León, Monterrey, México
| |
Collapse
|
11
|
Divakar MK, Jain A, Bhoyar RC, Senthivel V, Jolly B, Imran M, Sharma D, Bajaj A, Gupta V, Scaria V, Sivasubbu S. Whole-genome sequencing of 1029 Indian individuals reveals unique and rare structural variants. J Hum Genet 2023; 68:409-417. [PMID: 36813834 DOI: 10.1038/s10038-023-01131-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/24/2023]
Abstract
Structural variants contribute to genetic variability in human genomes and they can be presented in population-specific patterns. We aimed to understand the landscape of structural variants in the genomes of healthy Indian individuals and explore their potential implications in genetic disease conditions. For the identification of structural variants, a whole genome sequencing dataset of 1029 self-declared healthy Indian individuals from the IndiGen project was analysed. Further, these variants were evaluated for potential pathogenicity and their associations with genetic diseases. We also compared our identified variations with the existing global datasets. We generated a compendium of total 38,560 high-confident structural variants, comprising 28,393 deletions, 5030 duplications, 5038 insertions, and 99 inversions. Particularly, we identified around 55% of all these variants were found to be unique to the studied population. Further analysis revealed 134 deletions with predicted pathogenic/likely pathogenic effects and their affected genes were majorly enriched for neurological disease conditions, such as intellectual disability and neurodegenerative diseases. The IndiGenomes dataset helped us to understand the unique spectrum of structural variants in the Indian population. More than half of identified variants were not present in the publicly available global dataset on structural variants. Clinically important deletions identified in IndiGenomes might aid in improving the diagnosis of unsolved genetic diseases, particularly in neurological conditions. Along with basal allele frequency data and clinically important deletions, IndiGenomes data might serve as a baseline resource for future studies on genomic structural variant analysis in the Indian population.
Collapse
Affiliation(s)
- Mohit Kumar Divakar
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mathura Road, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Abhinav Jain
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mathura Road, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rahul C Bhoyar
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mathura Road, New Delhi, 110025, India
| | - Vigneshwar Senthivel
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mathura Road, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bani Jolly
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mathura Road, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohamed Imran
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mathura Road, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Disha Sharma
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mathura Road, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anjali Bajaj
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mathura Road, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vishu Gupta
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mathura Road, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vinod Scaria
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mathura Road, New Delhi, 110025, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Sridhar Sivasubbu
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mathura Road, New Delhi, 110025, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
12
|
Colin E, Duffourd Y, Chevarin M, Tisserant E, Verdez S, Paccaud J, Bruel AL, Tran Mau-Them F, Denommé-Pichon AS, Thevenon J, Safraou H, Besnard T, Goldenberg A, Cogné B, Isidor B, Delanne J, Sorlin A, Moutton S, Fradin M, Dubourg C, Gorce M, Bonneau D, El Chehadeh S, Debray FG, Doco-Fenzy M, Uguen K, Chatron N, Aral B, Marle N, Kuentz P, Boland A, Olaso R, Deleuze JF, Sanlaville D, Callier P, Philippe C, Thauvin-Robinet C, Faivre L, Vitobello A. Stepwise use of genomics and transcriptomics technologies increases diagnostic yield in Mendelian disorders. Front Cell Dev Biol 2023; 11:1021920. [PMID: 36926521 PMCID: PMC10011630 DOI: 10.3389/fcell.2023.1021920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/30/2023] [Indexed: 03/08/2023] Open
Abstract
Purpose: Multi-omics offer worthwhile and increasingly accessible technologies to diagnostic laboratories seeking potential second-tier strategies to help patients with unresolved rare diseases, especially patients clinically diagnosed with a rare OMIM (Online Mendelian Inheritance in Man) disease. However, no consensus exists regarding the optimal diagnostic care pathway to adopt after negative results with standard approaches. Methods: In 15 unsolved individuals clinically diagnosed with recognizable OMIM diseases but with negative or inconclusive first-line genetic results, we explored the utility of a multi-step approach using several novel omics technologies to establish a molecular diagnosis. Inclusion criteria included a clinical autosomal recessive disease diagnosis and single heterozygous pathogenic variant in the gene of interest identified by first-line analysis (60%-9/15) or a clinical diagnosis of an X-linked recessive or autosomal dominant disease with no causative variant identified (40%-6/15). We performed a multi-step analysis involving short-read genome sequencing (srGS) and complementary approaches such as mRNA sequencing (mRNA-seq), long-read genome sequencing (lrG), or optical genome mapping (oGM) selected according to the outcome of the GS analysis. Results: SrGS alone or in combination with additional genomic and/or transcriptomic technologies allowed us to resolve 87% of individuals by identifying single nucleotide variants/indels missed by first-line targeted tests, identifying variants affecting transcription, or structural variants sometimes requiring lrGS or oGM for their characterization. Conclusion: Hypothesis-driven implementation of combined omics technologies is particularly effective in identifying molecular etiologies. In this study, we detail our experience of the implementation of genomics and transcriptomics technologies in a pilot cohort of previously investigated patients with a typical clinical diagnosis without molecular etiology.
Collapse
Affiliation(s)
- Estelle Colin
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France.,Service de Génétique Médicale, CHU d'Angers, Angers, France
| | - Yannis Duffourd
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France
| | - Martin Chevarin
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Emilie Tisserant
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France
| | - Simon Verdez
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France
| | - Julien Paccaud
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France
| | - Ange-Line Bruel
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Frédéric Tran Mau-Them
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Anne-Sophie Denommé-Pichon
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Julien Thevenon
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France
| | - Hana Safraou
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Thomas Besnard
- Service de Génétique Médicale, Nantes Université, CHU Nantes, Nantes, France.,CNRS, INSERM, L'institut du thorax, Nantes Université, CHU Nantes, Nantes, France
| | - Alice Goldenberg
- Department of Genetics and Reference Center for Developmental Disorders, Normandy Center for Genomic and Personalized Medicine, Rouen University Hospital, Rouen, France.,Normandie Univ, UNIROUEN, Inserm U1245, Rouen, France
| | - Benjamin Cogné
- Service de Génétique Médicale, Nantes Université, CHU Nantes, Nantes, France.,CNRS, INSERM, L'institut du thorax, Nantes Université, CHU Nantes, Nantes, France
| | - Bertrand Isidor
- Service de Génétique Médicale, CHU de Nantes, Nantes, France
| | - Julian Delanne
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France.,Centre de Génétique et Centre de référence "Anomalies du Développement et Syndromes Malformatifs", Hôpital d'Enfants, Centre Hospitalier Universitaire de Dijon, Dijon, France
| | - Arthur Sorlin
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France.,Centre de Génétique et Centre de référence "Anomalies du Développement et Syndromes Malformatifs", Hôpital d'Enfants, Centre Hospitalier Universitaire de Dijon, Dijon, France
| | - Sébastien Moutton
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France.,Centre de Génétique et Centre de référence "Anomalies du Développement et Syndromes Malformatifs", Hôpital d'Enfants, Centre Hospitalier Universitaire de Dijon, Dijon, France
| | - Mélanie Fradin
- CHU Rennes, Service de Génétique Clinique, Centre de Référence Maladies Rares, CLAD-Ouest, Rennes, France
| | - Christèle Dubourg
- Service de Génétique Moléculaire et Génomique, CHU Rennes, Rennes, France.,Univ Rennes, CNRS, Institut de Genetique et Developpement de Rennes, UMR 6290, Rennes, France
| | - Magali Gorce
- Service de Génétique Médicale, CHU d'Angers, Angers, France
| | | | - Salima El Chehadeh
- Service de Génétique Médicale, Hôpital de Hautepierre, CHU Strasbourg, Strasbourg, France
| | | | - Martine Doco-Fenzy
- Medical School IFR53, EA3801, Université de Reims Champagne-Ardenne, Reims, France.,Service de Génétique, CHU Reims, Reims, France
| | - Kevin Uguen
- Department of Genetics and Reference Center for Developmental Disorders, Lyon University Hospital, Groupement Hospitalier Est, Hospices Civils de Lyon, Lyon, France.,CHU Brest, Inserm, Univ Brest, EFS, UMR 1078, GGB, Brest, France
| | - Nicolas Chatron
- Department of Genetics and Reference Center for Developmental Disorders, Lyon University Hospital, Groupement Hospitalier Est, Hospices Civils de Lyon, Lyon, France
| | - Bernard Aral
- Laboratoire de Génétique Chromosomique et Moléculaire, Pôle Biologie, CHU de Dijon, Dijon, France
| | - Nathalie Marle
- Laboratoire de Génétique Chromosomique et Moléculaire, Pôle Biologie, CHU de Dijon, Dijon, France
| | - Paul Kuentz
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France.,Oncobiologie Génétique Bioinformatique, PCBio, Centre Hospitalier Universitaire de Besançon, Besançon, France
| | - Anne Boland
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France
| | - Robert Olaso
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France.,LabEx GENMED (Medical Genomics), Dijon, France
| | - Jean-François Deleuze
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France.,LabEx GENMED (Medical Genomics), Dijon, France
| | - Damien Sanlaville
- Department of Genetics and Reference Center for Developmental Disorders, Lyon University Hospital, Groupement Hospitalier Est, Hospices Civils de Lyon, Lyon, France
| | - Patrick Callier
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France.,Laboratoire de Génétique Chromosomique et Moléculaire, Pôle Biologie, CHU de Dijon, Dijon, France
| | - Christophe Philippe
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Christel Thauvin-Robinet
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France.,Centre de Référence Maladies Rares "Déficiences Intellectuelles de Causes Rares", Centre de Génétique, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Laurence Faivre
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France.,Centre de Génétique et Centre de référence "Anomalies du Développement et Syndromes Malformatifs", Hôpital d'Enfants, Centre Hospitalier Universitaire de Dijon, Dijon, France
| | - Antonio Vitobello
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| |
Collapse
|
13
|
Dutta UR, Bhattacherjee A, Bahal A, Posanapally LP, Lone KA, Bathula S, Dalal A. Cytogenomic Characterization of a Novel de novo Balanced Reciprocal Translocation t(1;12) by Genome Sequencing Leading to Fusion Gene Formation of EYA3/EFCAB4b. Mol Syndromol 2022; 13:370-380. [PMID: 36588754 PMCID: PMC9801327 DOI: 10.1159/000522011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 01/17/2022] [Indexed: 01/04/2023] Open
Abstract
Introduction The accurate detection of breakpoint regions of disease-associated chromosomal rearrangements helps understand the molecular mechanisms and identify the risks involved with disrupted genes. Methods In this study, a girl with growth retardation is characterized using positional cloning and genome sequencing. The techniques include fluorescence in situ hybridization (FISH) with paint (WCP) and bacterial-artificial chromosomes (BAC) probes, PCR, real-time PCR, and short and long-read sequencing. Results The translocation was identified by GTG banding and confirmed by WCP FISH. Microarray ruled out the involvement of other copy number variations except for 6 homozygous regions which are not disease-causing variants. Fine mapping with FISH showed split signals with BAC clone RP11-312A3. Genome sequencing of short-read with an average 30× depth and long-read sequencing technology with a 3.8× coverage identified both breakpoints, confirmed by Sanger sequencing, that showed microhomology. The breakpoint at 1p and 12p regions disrupted EYA3 and EFCAB4B genes. Expression analysis of EYA3 showed a 7-fold increase, suggesting the formation of a fusion gene with EFCAB4B. EYA3 is involved in skeleton development, and EFCAB4B plays a role in calcium metabolism, which may be relevant for the patient's phenotype. Conclusion The systematic application of genome techniques to translocations and their advantages is discussed.
Collapse
Affiliation(s)
- Usha R. Dutta
- Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Amrita Bhattacherjee
- Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Ashish Bahal
- Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Laxmi P. Posanapally
- Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | | | - Siddardha Bathula
- Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Ashwin Dalal
- Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| |
Collapse
|
14
|
Zou Y, Luo J, Tang Z, Fu S. Variations of wheat ( Triticum aestivum L.) chromosomes caused by the 5A chromosomes with complex cytological structure. FRONTIERS IN PLANT SCIENCE 2022; 13:992934. [PMID: 36105696 PMCID: PMC9465395 DOI: 10.3389/fpls.2022.992934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
To study the effects of structural alterations of chromosomes caused by tandem repeats on the meiotic recombination, the wheat (Triticum aestivum L.) 5A chromosomes with different structure from ten wheat cultivars were used to investigate their meiotic recombination using non-denaturing fluorescence in situ hybridization (ND-FISH) technology. Fifteen cross combinations were carried out and they were divided into seven F1 categories. The structural difference between the intercalary regions of the long arms of the two 5A chromosomes (5AL) in the F1 categories III, VI, and VII was greater than that in the categories I and II, subsequently, the recombination frequencies in the distal regions of the 5AL arm in the progenies from the three categories were significantly lower than that from the categories I and II. For the two 5A chromosomes in the F1 categories VI and VII, the structural differences in the distal regions of both of the two arms were greater than that in the categories IV and V. So, the recombination frequencies in the intercalary region of the 5AL arm in the progeny from the categories IV and V were higher than that in the progeny from the categories VI and VII. The breakage of 5A chromosome together with the 5A translocations and the breakage of some other chromosomes were observed in the progeny from the F1 categories V, VI, and VII. These chromosomal variations were not observed in the progenies from the other four F1 categories. In conclusion, the smaller structural difference between the 5A chromosomes in distal regions of the two arms resulted in a higher recombination frequency in interstitial region and vice versa. The 5A chromosome with complex cytological structure can be used to induce genetic variations of wheat genome.
Collapse
Affiliation(s)
- Yang Zou
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Provincial Key Laboratory for Plant Genetics and Breeding, Chengdu, China
| | - Jie Luo
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Provincial Key Laboratory for Plant Genetics and Breeding, Chengdu, China
| | - Zongxiang Tang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Provincial Key Laboratory for Plant Genetics and Breeding, Chengdu, China
| | - Shulan Fu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Provincial Key Laboratory for Plant Genetics and Breeding, Chengdu, China
| |
Collapse
|
15
|
Severov V, Tsvetkov V, Barinov N, Babenko V, Klinov D, Pozmogova G. Spontaneous DNA Synapsis by Forming Noncanonical Intermolecular Structures. Polymers (Basel) 2022; 14:polym14102118. [PMID: 35632001 PMCID: PMC9144187 DOI: 10.3390/polym14102118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/14/2022] [Accepted: 05/20/2022] [Indexed: 01/27/2023] Open
Abstract
We report the spontaneous formation of DNA-DNA junctions in solution in the absence of proteins visualised using atomic force microscopy. The synapsis position fits with potential G-quadruplex (G4) sites. In contrast to the Holliday structure, these conjugates have an affinity for G4 antibodies. Molecular modelling was used to elucidate the possible G4/IM-synaptic complex structures. Our results indicate a new role of the intermolecular noncanonical structures in chromatin architecture and genomic rearrangement.
Collapse
Affiliation(s)
- Viacheslav Severov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya Str. 1a, 119435 Moscow, Russia; (N.B.); (V.B.); (D.K.); (G.P.)
- Correspondence: (V.S.); (V.T.)
| | - Vladimir Tsvetkov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya Str. 1a, 119435 Moscow, Russia; (N.B.); (V.B.); (D.K.); (G.P.)
- Institute of Biodesign and Complex System Modeling, I.M. Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia
- A.V. Topchiev Institute of Petrochemical Synthesis, Leninsky prospect Str. 29, 119991 Moscow, Russia
- Correspondence: (V.S.); (V.T.)
| | - Nikolay Barinov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya Str. 1a, 119435 Moscow, Russia; (N.B.); (V.B.); (D.K.); (G.P.)
| | - Vladislav Babenko
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya Str. 1a, 119435 Moscow, Russia; (N.B.); (V.B.); (D.K.); (G.P.)
| | - Dmitry Klinov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya Str. 1a, 119435 Moscow, Russia; (N.B.); (V.B.); (D.K.); (G.P.)
- Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya str.6, 117198 Moscow, Russia
| | - Galina Pozmogova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya Str. 1a, 119435 Moscow, Russia; (N.B.); (V.B.); (D.K.); (G.P.)
| |
Collapse
|
16
|
Kołomański M, Szyda J, Frąszczak M, Mielczarek M. DNA sequence features underlying large-scale duplications and deletions in human. J Appl Genet 2022; 63:527-533. [PMID: 35590085 PMCID: PMC9365719 DOI: 10.1007/s13353-022-00704-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/22/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022]
Abstract
Copy number variants (CNVs) may cover up to 12% of the whole genome and have substantial impact on phenotypes. We used 5867 duplications and 33,181 deletions available from the 1000 Genomes Project to characterise genomic regions vulnerable to CNV formation and to identify sequence features characteristic for those regions. The GC content for deletions was lower and for duplications was higher than for randomly selected regions. In regions flanking deletions and downstream of duplications, content was higher than in the random sequences, but upstream of duplication content was lower. In duplications and downstream of deletion regions, the percentage of low-complexity sequences was not different from the randomised data. In deletions and upstream of CNVs, it was higher, while for downstream of duplications, it was lower as compared to random sequences. The majority of CNVs intersected with genic regions — mainly with introns. GC content may be associated with CNV formation and CNVs, especially duplications are initiated in low-complexity regions. Moreover, CNVs located or overlapped with introns indicate their role in shaping intron variability. Genic CNV regions were enriched in many essential biological processes such as cell adhesion, synaptic transmission, transport, cytoskeleton organization, immune response and metabolic mechanisms, which indicates that these large-scaled variants play important biological roles.
Collapse
Affiliation(s)
- Mateusz Kołomański
- Biostatistics Group, Department of Genetics, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Joanna Szyda
- Biostatistics Group, Department of Genetics, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Magdalena Frąszczak
- Biostatistics Group, Department of Genetics, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Magda Mielczarek
- Biostatistics Group, Department of Genetics, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland.
| |
Collapse
|
17
|
DMD exon 2 duplication due to a complex genomic rearrangement is associated with a somatic mosaicism. Neuromuscul Disord 2021; 32:263-269. [DOI: 10.1016/j.nmd.2021.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/24/2021] [Accepted: 12/13/2021] [Indexed: 12/23/2022]
|
18
|
Williams MS, Basma NJ, Amaral FMR, Williams G, Weightman JP, Breitwieser W, Nelson L, Taylor SS, Wiseman DH, Somervaille TCP. Targeted nanopore sequencing for the identification of ABCB1 promoter translocations in cancer. BMC Cancer 2020; 20:1075. [PMID: 33167906 PMCID: PMC7654162 DOI: 10.1186/s12885-020-07571-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/26/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Resistance to chemotherapy is the most common cause of treatment failure in acute myeloid leukemia (AML) and the drug efflux pump ABCB1 is a critical mediator. Recent studies have identified promoter translocations as common drivers of high ABCB1 expression in recurrent, chemotherapy-treated high-grade serous ovarian cancer (HGSC) and breast cancer. These fusions place ABCB1 under the control of a strong promoter while leaving its open reading frame intact. The mechanisms controlling high ABCB1 expression in AML are largely unknown. We therefore established an experimental system and analysis pipeline to determine whether promoter translocations account for high ABCB1 expression in cases of relapsed human AML. METHODS The human AML cell line THP-1 was used to create a model of chemotherapy resistance in which ABCB1 expression was driven by a promoter fusion. The THP-1 model was used to establish a targeted nanopore long-read sequencing approach that was then applied to cases of ABCB1high HGSC and AML. H3K27Ac ChIP sequencing was used to assess the activity of native promoters in cases of ABCB1high AML. RESULTS Prolonged in vitro daunorubicin exposure induced activating ABCB1 promoter translocations in human THP-1 AML cells, similar to those recently described in recurrent high-grade serous ovarian and breast cancers. Targeted nanopore sequencing proved an efficient method for identifying ABCB1 structural variants in THP-1 AML cells and HGSC; the promoter translocations identified in HGSC were both previously described and novel. In contrast, activating ABCB1 promoter translocations were not identified in ABCB1high AML; instead H3K27Ac ChIP sequencing demonstrated active native promoters in all cases studied. CONCLUSIONS Despite frequent high level expression of ABCB1 in relapsed primary AML we found no evidence of ABCB1 translocations and instead confirmed high-level activity of native ABCB1 promoters, consistent with endogenous regulation.
Collapse
Affiliation(s)
- Mark S Williams
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, Oglesby Cancer Research Building, The University of Manchester, Manchester, M20 4GJ, UK.
| | - Naseer J Basma
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, Oglesby Cancer Research Building, The University of Manchester, Manchester, M20 4GJ, UK
| | - Fabio M R Amaral
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, Oglesby Cancer Research Building, The University of Manchester, Manchester, M20 4GJ, UK
| | - Gillian Williams
- Molecular Biology Core Facility, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Cheshire, SK10 4TG, UK
| | - John P Weightman
- Molecular Biology Core Facility, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Cheshire, SK10 4TG, UK
| | - Wolfgang Breitwieser
- Molecular Biology Core Facility, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Cheshire, SK10 4TG, UK
| | - Louisa Nelson
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, Oglesby Cancer Research Building, The University of Manchester, Manchester, M20 4GJ, UK
| | - Stephen S Taylor
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, Oglesby Cancer Research Building, The University of Manchester, Manchester, M20 4GJ, UK
| | - Daniel H Wiseman
- Epigenetics of Haematopoiesis Group, Oglesby Cancer Research Building, The University of Manchester, Manchester, M20 4GJ, UK
| | - Tim C P Somervaille
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, Oglesby Cancer Research Building, The University of Manchester, Manchester, M20 4GJ, UK.
| |
Collapse
|
19
|
Xu Z, Wang X, Zhang Z, An Q, Wen Y, Wang D, Liu X, Li Z, Lyu S, Li L, Wang E, Ru B, Xu Z, Huang Y. Copy number variation of CADM2 gene revealed its association with growth traits across Chinese Capra hircus (goat) populations. Gene 2020; 741:144519. [PMID: 32126252 DOI: 10.1016/j.gene.2020.144519] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 12/15/2022]
Abstract
Copy number variations (CNVs) are the wide structural variations ranging from 50 bp to several Mb at genome which can affect gene expression and further impacting growth and development traits of livestock. Comparing with single nucleotide polymorphisms (SNPs), CNVs can better explain the genetic and phenotypic diversity, are increasingly important in biological research. As a member of immunoglobulin super-family, cell adhesion molecule 2 (CADM2) plays a vital role in cancer development and metabolic regulation. Here, we tested the CNV of CADM2 gene in 443 goats across five breeds (Guizhou white goat, GZW; Guizhou black goat, GZB; Africa Nubian goat, AN; Boer goat × Huai goat, BH; Boer goat, BG) and detected its association with phenotypic traits. Subsequently, we analyzed the CADM2 gene expression level in different tissues of NB goats (n = 3, Nubian × Black) and the transcriptional expression in lung is much higher than others. The results showed that the CNV of CADM2 has a significant association with withers height and body length in GZB goat (P < 0.01), in which individuals with type of deletion were superior to those with duplication or normal type in term of body hight and body length (P < 0.01). In summary, this study confirmed the association between CNV of CADM2 gene and growth traits, and our research data indicated the CADM2-CNV may considered as a prospective candidate for the molecular marker-assisted selection breeding of goat growth traits, which conducived to accelerating the genetic amelioration in Chinese goats.
Collapse
Affiliation(s)
- Zijie Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Xianwei Wang
- Henan Provincial Animal Husbandry General Station, Zhengzhou, Henan 450008, People's Republic of China
| | - Zijing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, People's Republic of China
| | - Qingming An
- College of Agriculture and Forestry Engineering, Tongren University, Tongren, Guizhou 554300, People's Republic of China
| | - Yifan Wen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Dahui Wang
- College of Agriculture and Forestry Engineering, Tongren University, Tongren, Guizhou 554300, People's Republic of China
| | - Xian Liu
- Henan Provincial Animal Husbandry General Station, Zhengzhou, Henan 450008, People's Republic of China
| | - Zhiming Li
- Henan Provincial Animal Husbandry General Station, Zhengzhou, Henan 450008, People's Republic of China
| | - Shijie Lyu
- College of Agriculture and Forestry Engineering, Tongren University, Tongren, Guizhou 554300, People's Republic of China
| | - Lijuan Li
- Guizhou University of Engineering Science, Institute of Bijie Test Area, Bijie, Guizhou 551700, People's Republic of China
| | - Eryao Wang
- College of Agriculture and Forestry Engineering, Tongren University, Tongren, Guizhou 554300, People's Republic of China
| | - Baorui Ru
- Henan Provincial Animal Husbandry General Station, Zhengzhou, Henan 450008, People's Republic of China
| | - Zejun Xu
- Henan Provincial Animal Husbandry General Station, Zhengzhou, Henan 450008, People's Republic of China
| | - Yongzhen Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| |
Collapse
|
20
|
From R-Loops to G-Quadruplexes: Emerging New Threats for the Replication Fork. Int J Mol Sci 2020; 21:ijms21041506. [PMID: 32098397 PMCID: PMC7073102 DOI: 10.3390/ijms21041506] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 12/12/2022] Open
Abstract
Replicating the entire genome is one of the most complex tasks for all organisms. Research carried out in the last few years has provided us with a clearer picture on how cells preserve genomic information from the numerous insults that may endanger its stability. Different DNA repair pathways, coping with exogenous or endogenous threat, have been dissected at the molecular level. More recently, there has been an increasing interest towards intrinsic obstacles to genome replication, paving the way to a novel view on genomic stability. Indeed, in some cases, the movement of the replication fork can be hindered by the presence of stable DNA: RNA hybrids (R-loops), the folding of G-rich sequences into G-quadruplex structures (G4s) or repetitive elements present at Common Fragile Sites (CFS). Although differing in their nature and in the way they affect the replication fork, all of these obstacles are a source of replication stress. Replication stress is one of the main hallmarks of cancer and its prevention is becoming increasingly important as a target for future chemotherapeutics. Here we will try to summarize how these three obstacles are generated and how the cells handle replication stress upon their encounter. Finally, we will consider their role in cancer and their exploitation in current chemotherapeutic approaches.
Collapse
|
21
|
Li S, Lu H, Wang Z, Hu Q, Wang H, Xiang R, Chiba T, Wu X. ERCC1/XPF Is Important for Repair of DNA Double-Strand Breaks Containing Secondary Structures. iScience 2019; 16:63-78. [PMID: 31153042 PMCID: PMC6543133 DOI: 10.1016/j.isci.2019.05.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/02/2019] [Accepted: 05/10/2019] [Indexed: 12/15/2022] Open
Abstract
The structure-specific endonuclease ERCC1/XPF plays an important role in nucleotide excision repair and interstrand cross-link repair. In this study, we identified new functions of ERCC1/XPF in DNA double-strand break (DSB) repair. We found that the conserved function of ERCC1/XPF to remove non-homologous sequences at DSBs is a rate-limiting step for homologous recombination in mammalian cells, and more importantly, we uncovered an indispensable role of ERCC1/XPF in repair of DSBs containing DNA secondary structures, including the structure-prone AT-rich DNA sequences derived from common fragile sites and G-quadruplexes (G4s). We also demonstrated a synthetic lethal interaction of XPF with DNA translocase FANCM that is involved in removing DNA secondary structures. Furthermore, inactivation of XPF sensitizes FANCM-deficient cells to G4-interacting compounds. These results suggest an important function of ERCC1/XPF in protecting DNA secondary structures and provide a rationale for targeted treatment of FANCM-deficient tumors through inhibition of XPF.
Collapse
Affiliation(s)
- Shibo Li
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hongyan Lu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Zi Wang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; Biomedical Gerontology Laboratory, Department of Health Science and Social Welfare, School of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa 359-1192, Japan
| | - Qing Hu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hongjun Wang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rong Xiang
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Takuya Chiba
- Biomedical Gerontology Laboratory, Department of Health Science and Social Welfare, School of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa 359-1192, Japan
| | - Xiaohua Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
22
|
Abstract
Transposable elements (TEs) are low-complexity elements (e.g., LINEs, SINEs, SVAs, and HERVs) that make up to two-thirds of the human genome. There is mounting evidence that TEs play an essential role in molecular functions that influence genomic plasticity and gene expression regulation. With the advent of next-generation sequencing approaches, our understanding of the relationship between TEs and psychiatric disorders will greatly improve. In this chapter, the Authors comprehensively summarize the state-of the-art of TE research in animal models and humans supporting a framework in which TEs play a functional role in mechanisms affecting a variety of behaviors, including neurodevelopmental, neuropsychiatric, and neurodegenerative disorders. Finally, the Authors discuss recent therapeutic applications raised from the increasing experimental evidence on TE functional mechanisms.
Collapse
Affiliation(s)
- G Guffanti
- McLean Hospital - Harvard Medical School, Belmont, MA, USA.
| | - A Bartlett
- Department of Psychology, University of Massachusetts, Boston, Boston, MA, USA
| | - P DeCrescenzo
- McLean Hospital - Harvard Medical School, Belmont, MA, USA
| | - F Macciardi
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA
| | - R Hunter
- Department of Psychology, University of Massachusetts, Boston, Boston, MA, USA
| |
Collapse
|
23
|
Extreme clustering of type-1 NF1 deletion breakpoints co-locating with G-quadruplex forming sequences. Hum Genet 2018; 137:511-520. [PMID: 29992513 DOI: 10.1007/s00439-018-1904-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/05/2018] [Indexed: 01/02/2023]
Abstract
The breakpoints of type-1 NF1 deletions encompassing 1.4-Mb are located within NF1-REPa and NF1-REPc, which exhibit a complex structure comprising different segmental duplications in direct and inverted orientation. Here, we systematically assessed the proportion of type-1 NF1 deletions caused by nonallelic homologous recombination (NAHR) and those mediated by other mutational mechanisms. To this end, we analyzed 236 unselected type-1 deletions and observed that 179 of them (75.8%) had breakpoints located within the NAHR hotspot PRS2, whereas 39 deletions (16.5%) had breakpoints located within PRS1. Sixteen deletions exhibited breakpoints located outside of these NAHR hotspots but were also mediated by NAHR. Taken together, the breakpoints of 234 (99.2%) of the 236 type-1 NF1 deletions were mediated by NAHR. Thus, NF1-REPa and NF1-REPc are strongly predisposed to recurrent NAHR, the main mechanism underlying type-1 NF1 deletions. We also observed a non-random overlap between type-1 NF1-deletion breakpoints and G-quadruplex forming sequences (GQs) as well as regions flanking PRDM9A binding-sites. These findings imply that GQs and PRDM9A binding-sites contribute to the clustering of type-1 deletion breakpoints. The co-location of both types of sequence was at its highest within PRS2, indicative of their synergistic contribution to the greatly increased NAHR activity within this hotspot.
Collapse
|
24
|
dos Santos A, Campagnari F, Krepischi ACV, Ribeiro Câmara MDL, de Arruda Brasil RDCE, Vieira L, Vianna-Morgante AM, Otto PA, Pearson PL, Rosenberg C. Insight into the mechanisms and consequences of recurrent telomere capture associated with a sub-telomeric deletion. Chromosome Res 2018; 26:191-198. [DOI: 10.1007/s10577-018-9578-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 11/28/2022]
|
25
|
Roy SS, Mukherjee AK, Chowdhury S. Insights about genome function from spatial organization of the genome. Hum Genomics 2018; 12:8. [PMID: 29458419 PMCID: PMC5819253 DOI: 10.1186/s40246-018-0140-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/11/2018] [Indexed: 03/04/2023] Open
Abstract
Over the last 15 years, development of chromosome conformation capture (3C) and its subsequent high-throughput variants in conjunction with the fast development of sequencing technology has allowed investigators to generate large volumes of data giving insights into the spatial three-dimensional (3D) architecture of the genome. This huge data has been analyzed and validated using various statistical, mathematical, genomics, and biophysical tools in order to examine the chromosomal interaction patterns, understand the organization of the chromosome, and find out functional implications of the interactions. This review summarizes the data generated by several large-scale high-throughput chromosome conformation capture studies and the functional implications obtained from the data analyses. We also discuss emerging results on factors (both CCCTC binding factor (CTCF) related and CTCF independent) that could contribute to looping interactions.
Collapse
Affiliation(s)
- Shuvra Shekhar Roy
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - Ananda Kishore Mukherjee
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India.,Academy of Scientific and Innovative Research, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - Shantanu Chowdhury
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India. .,Academy of Scientific and Innovative Research, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India.
| |
Collapse
|
26
|
Poulet-Benedetti J, Valton AL, Prioleau MN. [G-quadruplex: key controllers of human genome duplication]. Med Sci (Paris) 2017; 33:1063-1070. [PMID: 29261494 DOI: 10.1051/medsci/20173312013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The correct duplication of the human genome is under the control of a spatiotemporal program that determines where and when replication forks start. This regulation thus mainly operates on replication start sites named replication origins. During the S-phase, about 50 000 origins fire in one human cell. However, the normal or perturbed progression of replication forks also strongly impacts on replication. Recently, several studies have put forward the role of a noncanonical DNA structure, the G-quadruplex, in the control of genome duplication. In this review, we describe the major impact of this structure on starting points and on the progression of replication forks.
Collapse
Affiliation(s)
- Jérémy Poulet-Benedetti
- Institut Jacques Monod, CNRS UMR7592, université Paris Diderot, Équipe labellisée ARC (Association pour la recherche sur le cancer), 75013 Paris, France
| | - Anne-Laure Valton
- Howard Hughes Medical Institute, Program in systems biology, Department of biochemistry and molecular pharmacology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605-0103, États-Unis
| | - Marie-Noëlle Prioleau
- Institut Jacques Monod, CNRS UMR7592, université Paris Diderot, Équipe labellisée ARC (Association pour la recherche sur le cancer), 75013 Paris, France
| |
Collapse
|
27
|
Abstract
The instability of microsatellite DNA repeats is responsible for at least 40 neurodegenerative diseases. Recently, Mirkin and co-workers presented a novel mechanism for microsatellite expansions based on break-induced replication (BIR) at sites of microsatellite-induced replication stalling and fork collapse. The BIR model aims to explain single-step, large expansions of CAG/CTG trinucleotide repeats in dividing cells. BIR has been characterized extensively in Saccharomyces cerevisiae as a mechanism to repair broken DNA replication forks (single-ended DSBs) and degraded telomeric DNA. However, the structural footprints of BIR-like DSB repair have been recognized in human genomic instability and tied to the etiology of diverse developmental diseases; thus, the implications of the paper by Kim et al. (Kim JC, Harris ST, Dinter T, Shah KA, et al., Nat Struct Mol Biol 24: 55-60) extend beyond trinucleotide repeat expansion in yeast and microsatellite instability in human neurological disorders. Significantly, insight into BIR-like repair can explain certain pathways of complex genome rearrangements (CGRs) initiated at non-B form microsatellite DNA in human cancers.
Collapse
Affiliation(s)
- Michael Leffak
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| |
Collapse
|
28
|
Sekridova AV, Varizhuk AM, Tatarinova ON, Severov VV, Barinov NA, Smirnov IP, Lazarev VN, Klinov DV, Pozmogova GE. Conformational polymorphysm of G-rich fragments of DNA Alu-repeats. I. Noncanonical structures. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2017. [DOI: 10.1134/s1990750817010097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Sekridova AV, Varizhuk AM, Tatarinova ON, Severov VV, Barinov NA, Smirnov IP, Lazarev VN, Klinov DV, Pozmogova GE. [Conformational polymorphysm of G-rich fragments of DNA ALU-repeats. I. Potential noncanonical structures]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2017; 62:535-543. [PMID: 27797328 DOI: 10.18097/pbmc20166205535] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this paper, we report results of systematic studies of conformational polymorphism of G-rich DNA fragments from Alu repeats. Alu retrotransposones are primate-specific short interspersed elements. Using the Alu sequence from the prooncogen bcl2 intron and the consensus AluSx sequence as representative examples, we determined characteristic Alu sites that are capable of adopting G-quadruplex (GQ) conformations (i.e., potential quadruplex sites - PQSAlu), and demonstrated by bioinformatics methods that those sites are Alu-specific in the human genome. Genomic frequencies of PQSAlu were assessed (~1/10000 b.p.). The sites were found to be characteristic of young (active) Alu families (Alu-Y). A recombinant DNA sequence bearing the Alu element from the human bcl2 gene (304 b.p.) and its PQS-mutant (Alu-PQS) were constructed. The formation of noncanonical structures in Alubcl2 dsDNA and the absence of such structures in the case of Alu-PQS were shown using DMS-footprinting and AFM microscopy. Expression vectors bearing wild-type and mutant Alu insertions in the promoter regions were obtained, and the effects of these insertions on the expression of the reporter gene in НЕК293 and HeLa cell lines were compared. Our findings on the spatial organization of Alu repeats may provide insight into the mechanisms of genomic rearrangements which underlie many oncological and neurodegenerative diseases.
Collapse
Affiliation(s)
- A V Sekridova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - A M Varizhuk
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - O N Tatarinova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - V V Severov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - N A Barinov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - I P Smirnov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - V N Lazarev
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - D V Klinov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - G E Pozmogova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| |
Collapse
|
30
|
Valton AL, Prioleau MN. G-Quadruplexes in DNA Replication: A Problem or a Necessity? Trends Genet 2016; 32:697-706. [DOI: 10.1016/j.tig.2016.09.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/01/2016] [Indexed: 10/21/2022]
|
31
|
Marczok S, Bortz B, Wang C, Pospisil H. Comprehensive Analysis of Genome Rearrangements in Eight Human Malignant Tumor Tissues. PLoS One 2016; 11:e0158995. [PMID: 27391163 PMCID: PMC4938598 DOI: 10.1371/journal.pone.0158995] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 06/25/2016] [Indexed: 11/19/2022] Open
Abstract
Carcinogenesis is a complex multifactorial, multistage process, but the precise mechanisms are not well understood. In this study, we performed a genome-wide analysis of the copy number variation (CNV), breakpoint region (BPR) and fragile sites in 2,737 tumor samples from eight tumor entities and in 432 normal samples. CNV detection and BPR identification revealed that BPRs tended to accumulate in specific genomic regions in tumor samples whereas being dispersed genome-wide in the normal samples. Hotspots were observed, at which segments with similar alteration in copy number were overlapped along with BPRs adjacently clustered. Evaluation of BPR occurrence frequency showed that at least one was detected in about and more than 15% of samples for each tumor entity while BPRs were maximal in 12% of the normal samples. 127 of 2,716 tumor-relevant BPRs (termed 'common BPRs') exhibited also a noticeable occurrence frequency in the normal samples. Colocalization assessment identified 20,077 CNV-affecting genes and 169 of these being known tumor-related genes. The most noteworthy genes are KIAA0513 important for immunologic, synaptic and apoptotic signal pathways, intergenic non-coding RNA RP11-115C21.2 possibly acting as oncogene or tumor suppressor by changing the structure of chromatin, and ADAM32 likely importance in cancer cell proliferation and progression by ectodomain-shedding of diverse growth factors, and the well-known tumor suppressor gene p53. The BPR distributions indicate that CNV mutations are likely non-random in tumor genomes. The marked recurrence of BPRs at specific regions supports common progression mechanisms in tumors. The presence of hotspots together with common BPRs, despite its small group size, imply a relation between fragile sites and cancer-gene alteration. Our data further suggest that both protein-coding and non-coding genes possessing a range of biological functions might play a causative or functional role in tumor biology. This research enhances our understanding of the mechanisms for tumorigenesis and progression.
Collapse
Affiliation(s)
- Stefanie Marczok
- University of Applied Sciences Wildau, High Performance Computing in Life Sciences, Institute for Applied Biosciences, Wildau, Germany
| | - Birgit Bortz
- University of Applied Sciences Wildau, High Performance Computing in Life Sciences, Institute for Applied Biosciences, Wildau, Germany
| | - Chong Wang
- University of Applied Sciences Wildau, High Performance Computing in Life Sciences, Institute for Applied Biosciences, Wildau, Germany
| | - Heike Pospisil
- University of Applied Sciences Wildau, High Performance Computing in Life Sciences, Institute for Applied Biosciences, Wildau, Germany
- * E-mail:
| |
Collapse
|
32
|
Getting Ready for the Dance: FANCJ Irons Out DNA Wrinkles. Genes (Basel) 2016; 7:genes7070031. [PMID: 27376332 PMCID: PMC4962001 DOI: 10.3390/genes7070031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/13/2016] [Accepted: 06/27/2016] [Indexed: 12/21/2022] Open
Abstract
Mounting evidence indicates that alternate DNA structures, which deviate from normal double helical DNA, form in vivo and influence cellular processes such as replication and transcription. However, our understanding of how the cellular machinery deals with unusual DNA structures such as G-quadruplexes (G4), triplexes, or hairpins is only beginning to emerge. New advances in the field implicate a direct role of the Fanconi Anemia Group J (FANCJ) helicase, which is linked to a hereditary chromosomal instability disorder and important for cancer suppression, in replication past unusual DNA obstacles. This work sets the stage for significant progress in dissecting the molecular mechanisms whereby replication perturbation by abnormal DNA structures leads to genomic instability. In this review, we focus on FANCJ and its role to enable efficient DNA replication when the fork encounters vastly abundant naturally occurring DNA obstacles, which may have implications for targeting rapidly dividing cancer cells.
Collapse
|
33
|
Rocha LC, Mittelmann A, Houben A, Techio VH. Fragile sites of 45S rDNA of Lolium multiflorum are not hotspots for chromosomal breakages induced by X-ray. Mol Biol Rep 2016; 43:659-65. [PMID: 27174104 DOI: 10.1007/s11033-016-4003-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/04/2016] [Indexed: 01/24/2023]
Abstract
Sites of 45S rDNA of Lolium are regions denominated fragile sites (FSs), constituting regions slightly stained with DAPI due to increased DNA unpacking in metaphasic chromosomes. Considered to be fragile regions in the genome, the FSs might be more responsive to induced breaks and result in chromosomal fragments and rearrangements, unless repairing mechanisms such as recombination or de novo telomere formation play a role at the break site of the DNA. Thus, this study aimed at investigating if SFs from Lolium are hotspots for the occurrence of breakages induced by X-ray and if they are regions favorable to synthesize new telomeres, using Hordeum vulgare as a comparative model. Lolium multiflorum and H. vulgare seedlings were irradiated with 20 and 50 Gy X-ray and evaluated one day following the irradiation and at 7-days intervals for a 28-days period, using FISH technique with 45S rDNA and Arabidopsis-type telomere probes in order to investigate the presence of chromosomal breakages and new telomere formation. H. vulgare did not survive after a few days of irradiation due to the increased rate of abnormalities. L. multiflorum also exhibited chromosomal abnormalities following the exposure, yet over the 28-days trial it had a decrease in the chromosomal damage rate and formation of de novo telomere has not been detected along this time. Despite being considered to be fragile regions in the genome, the 45S rDNA sites of Lolium are not hotspots to chromosomal breakages after the induction of breakages.
Collapse
Affiliation(s)
- Laiane Corsini Rocha
- Department of Biology, Federal University of Lavras - UFLA, Lavras, Minas Gerais, Brazil
| | - Andrea Mittelmann
- Embrapa Dairy Cattle/Embrapa Temperate Agriculture, Juiz de Fora/Pelotas, Minas Gerais State/Rio Grande do Sul State, Brazil
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, 06466, StadtSeeland, Germany.
| | - Vânia Helena Techio
- Department of Biology, Federal University of Lavras - UFLA, Lavras, Minas Gerais, Brazil.
| |
Collapse
|
34
|
Carvalho CMB, Lupski JR. Mechanisms underlying structural variant formation in genomic disorders. Nat Rev Genet 2016; 17:224-38. [PMID: 26924765 DOI: 10.1038/nrg.2015.25] [Citation(s) in RCA: 488] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With the recent burst of technological developments in genomics, and the clinical implementation of genome-wide assays, our understanding of the molecular basis of genomic disorders, specifically the contribution of structural variation to disease burden, is evolving quickly. Ongoing studies have revealed a ubiquitous role for genome architecture in the formation of structural variants at a given locus, both in DNA recombination-based processes and in replication-based processes. These reports showcase the influence of repeat sequences on genomic stability and structural variant complexity and also highlight the tremendous plasticity and dynamic nature of our genome in evolution, health and disease susceptibility.
Collapse
Affiliation(s)
- Claudia M B Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.,Centro de Pesquisas René Rachou - FIOCRUZ, Belo Horizonte, MG 30190-002, Brazil
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Texas Children's Hospital, Houston, Texas 77030, USA
| |
Collapse
|
35
|
Conover HN, Argueso JL. Contrasting mechanisms of de novo copy number mutagenesis suggest the existence of different classes of environmental copy number mutagens. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:3-9. [PMID: 26247157 DOI: 10.1002/em.21967] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 07/05/2015] [Accepted: 07/07/2015] [Indexed: 05/23/2023]
Abstract
While gene copy number variations (CNVs) are abundant in the human genome, and often are associated with disease consequences, the mutagenic pathways and environmental exposures that cause these large structural mutations are understudied relative to conventional nucleotide substitutions in DNA. The members of the environmental mutagenesis community are currently seeking to remedy this deficiency, and there is a renewed interest in the development of mutagenicity assays to identify and characterize compounds that may induce de novo CNVs in humans. To achieve this goal, it is critically important to acknowledge that CNVs exist in two very distinct classes: nonrecurrent and recurrent CNVs. The goal of this commentary is to emphasize the deep contrasts that exist between the proposed pathways that lead to these two mutation classes. Nonrecurrent de novo CNVs originate primarily in mitotic cells through replication-dependent DNA repair pathways that involve microhomologies (<10 bp), and are detected at higher frequency in children of older fathers. In contrast, recurrent de novo CNVs are most often formed in meiotic cells through homologous recombination between nonallelic large low-copy repeats (>10,000 bp), without an associated paternal age effect. Given the biological differences between the two CNV classes, it is our belief that nonrecurrent and recurrent CN mutagens will probably differ substantially in their modes of action. Therefore, each CNV class may require their own uniquely designed assays, so that we as a field may succeed in uncovering the broadest possible spectrum of environmental CN mutagens.
Collapse
Affiliation(s)
- Hailey N Conover
- Department of Environmental and Radiological Health Sciences, Cell and Molecular Biology Graduate Program, Institute for Genome Architecture and Function, Colorado State University, Fort Collins, Colorado
| | - Juan Lucas Argueso
- Department of Environmental and Radiological Health Sciences, Cell and Molecular Biology Graduate Program, Institute for Genome Architecture and Function, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
36
|
Weckselblatt B, Rudd MK. Human Structural Variation: Mechanisms of Chromosome Rearrangements. Trends Genet 2015; 31:587-599. [PMID: 26209074 PMCID: PMC4600437 DOI: 10.1016/j.tig.2015.05.010] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 01/05/2023]
Abstract
Chromosome structural variation (SV) is a normal part of variation in the human genome, but some classes of SV can cause neurodevelopmental disorders. Analysis of the DNA sequence at SV breakpoints can reveal mutational mechanisms and risk factors for chromosome rearrangement. Large-scale SV breakpoint studies have become possible recently owing to advances in next-generation sequencing (NGS) including whole-genome sequencing (WGS). These findings have shed light on complex forms of SV such as triplications, inverted duplications, insertional translocations, and chromothripsis. Sequence-level breakpoint data resolve SV structure and determine how genes are disrupted, fused, and/or misregulated by breakpoints. Recent improvements in breakpoint sequencing have also revealed non-allelic homologous recombination (NAHR) between paralogous long interspersed nuclear element (LINE) or human endogenous retrovirus (HERV) repeats as a cause of deletions, duplications, and translocations. This review covers the genomic organization of simple and complex constitutional SVs, as well as the molecular mechanisms of their formation.
Collapse
Affiliation(s)
- Brooke Weckselblatt
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - M Katharine Rudd
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
37
|
Weckselblatt B, Hermetz KE, Rudd MK. Unbalanced translocations arise from diverse mutational mechanisms including chromothripsis. Genome Res 2015; 25:937-47. [PMID: 26070663 PMCID: PMC4484391 DOI: 10.1101/gr.191247.115] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/15/2015] [Indexed: 12/17/2022]
Abstract
Unbalanced translocations are a relatively common type of copy number variation and a major contributor to neurodevelopmental disorders. We analyzed the breakpoints of 57 unique unbalanced translocations to investigate the mechanisms of how they form. Fifty-one are simple unbalanced translocations between two different chromosome ends, and six rearrangements have more than three breakpoints involving two to five chromosomes. Sequencing 37 breakpoint junctions revealed that simple translocations have between 0 and 4 base pairs (bp) of microhomology (n = 26), short inserted sequences (n = 8), or paralogous repeats (n = 3) at the junctions, indicating that translocations do not arise primarily from nonallelic homologous recombination but instead form most often via nonhomologous end joining or microhomology-mediated break-induced replication. Three simple translocations fuse genes that are predicted to produce in-frame transcripts of SIRPG-WWOX, SMOC2-PROX1, and PIEZO2-MTA1, which may lead to gain of function. Three complex translocations have inversions, insertions, and multiple breakpoint junctions between only two chromosomes. Whole-genome sequencing and fluorescence in situ hybridization analysis of two de novo translocations revealed at least 18 and 33 breakpoints involving five different chromosomes. Breakpoint sequencing of one maternally inherited translocation involving four chromosomes uncovered multiple breakpoints with inversions and insertions. All of these breakpoint junctions had 0-4 bp of microhomology consistent with chromothripsis, and both de novo events occurred on paternal alleles. Together with other studies, these data suggest that germline chromothripsis arises in the paternal genome and may be transmitted maternally. Breakpoint sequencing of our large collection of chromosome rearrangements provides a comprehensive analysis of the molecular mechanisms behind translocation formation.
Collapse
Affiliation(s)
- Brooke Weckselblatt
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Karen E Hermetz
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - M Katharine Rudd
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| |
Collapse
|
38
|
Guilherme RS, Hermetz KE, Varela PT, Perez ABA, Meloni VA, Rudd MK, Kulikowski LD, Melaragno MI. Terminal 18q deletions are stabilized by neotelomeres. Mol Cytogenet 2015; 8:32. [PMID: 25969696 PMCID: PMC4427916 DOI: 10.1186/s13039-015-0135-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/14/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND All human chromosomes are capped by tandem repeat (TTAGGG)n sequences that protect them against end-to-end fusion and are essential to chromosomal replication and integrity. Therefore, after a chromosomal breakage, the deleted chromosomes must be stabilized by retaining the telomere or acquiring a new cap, by telomere healing or telomere capture. There are few reports with molecular approaches on the mechanisms involved in stabilization of 18q terminal deletions. RESULTS In this study we analyzed nine patients with 18q terminal deletion identified by G-banding and genomic array. FISH using PNA probe revealed telomeric signals in all deleted chromosomes tested. We fine-mapped breakpoints with customized arrays and sequenced six terminal deletion junctions. In all six deleted chromosomes sequenced, telomeric sequences were found directly attached to the breakpoints. Little or no microhomology was found at the breakpoints and none of the breaks sequenced were located in low copy repeat (LCR) regions, though repetitive elements were found around the breakpoints in five patients. One patient presented a more complex rearrangement with two deleted segments and an addition of 17 base pairs (bp). CONCLUSIONS We found that all six deleted chromosomes sequenced were probably stabilized by the healing mechanism leading to a neotelomere formation.
Collapse
Affiliation(s)
- Roberta Santos Guilherme
- Department of Morphology and Genetics, Universidade Federal de São Paulo, Rua Botucatu 740, CEP 04023-900, São Paulo, Brazil
| | - Karen E Hermetz
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street Northeast, GA 30322, Atlanta, USA
| | - Patrícia Teixeira Varela
- Department of Biophysics, Universidade Federal de São Paulo, Rua Três de Maio 100, CEP 04023-900, São Paulo, Brazil
| | - Ana Beatriz Alvarez Perez
- Department of Morphology and Genetics, Universidade Federal de São Paulo, Rua Botucatu 740, CEP 04023-900, São Paulo, Brazil
| | - Vera Ayres Meloni
- Department of Morphology and Genetics, Universidade Federal de São Paulo, Rua Botucatu 740, CEP 04023-900, São Paulo, Brazil
| | - M Katharine Rudd
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street Northeast, GA 30322, Atlanta, USA
| | - Leslie Domenici Kulikowski
- Department of Pathology, Laboratório de Citogenômica, Universidade de São Paulo, Avenida Dr. Enéas Carvalho de Aguiar 255, CEP 05403-000, São Paulo, Brazil
| | - Maria Isabel Melaragno
- Department of Morphology and Genetics, Universidade Federal de São Paulo, Rua Botucatu 740, CEP 04023-900, São Paulo, Brazil
| |
Collapse
|
39
|
Thys RG, Lehman CE, Pierce LCT, Wang YH. DNA secondary structure at chromosomal fragile sites in human disease. Curr Genomics 2015; 16:60-70. [PMID: 25937814 PMCID: PMC4412965 DOI: 10.2174/1389202916666150114223205] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/09/2015] [Accepted: 01/14/2015] [Indexed: 11/22/2022] Open
Abstract
DNA has the ability to form a variety of secondary structures that can interfere with normal cellular processes, and many of these structures have been associated with neurological diseases and cancer. Secondary structure-forming sequences are often found at chromosomal fragile sites, which are hotspots for sister chromatid exchange, chromosomal translocations, and deletions. Structures formed at fragile sites can lead to instability by disrupting normal cellular processes such as DNA replication and transcription. The instability caused by disruption of replication and transcription can lead to DNA breakage, resulting in gene rearrangements and deletions that cause disease. In this review, we discuss the role of DNA secondary structure at fragile sites in human disease.
Collapse
Affiliation(s)
- Ryan G Thys
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | - Christine E Lehman
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | - Yuh-Hwa Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| |
Collapse
|
40
|
Brečević L, Rinčić M, Krsnik Ž, Sedmak G, Hamid AB, Kosyakova N, Galić I, Liehr T, Borovečki F. Association of new deletion/duplication region at chromosome 1p21 with intellectual disability, severe speech deficit and autism spectrum disorder-like behavior: an all-in approach to solving the DPYD enigma. Transl Neurosci 2015; 6:59-86. [PMID: 28123791 PMCID: PMC4936614 DOI: 10.1515/tnsci-2015-0007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/29/2014] [Indexed: 12/14/2022] Open
Abstract
We describe an as yet unreported neocentric small supernumerary marker chromosome (sSMC) derived from chromosome 1p21.3p21.2. It was present in 80% of the lymphocytes in a male patient with intellectual disability, severe speech deficit, mild dysmorphic features, and hyperactivity with elements of autism spectrum disorder (ASD). Several important neurodevelopmental genes are affected by the 3.56 Mb copy number gain of 1p21.3p21.2, which may be considered reciprocal in gene content to the recently recognized 1p21.3 microdeletion syndrome. Both 1p21.3 deletions and the presented duplication display overlapping symptoms, fitting the same disorder category. Contribution of coding and non-coding genes to the phenotype is discussed in the light of cellular and intercellular homeostasis disequilibrium. In line with this the presented 1p21.3p21.2 copy number gain correlated to 1p21.3 microdeletion syndrome verifies the hypothesis of a cumulative effect of the number of deregulated genes - homeostasis disequilibrium leading to overlapping phenotypes between microdeletion and microduplication syndromes. Although miR-137 appears to be the major player in the 1p21.3p21.2 region, deregulation of the DPYD (dihydropyrimidine dehydrogenase) gene may potentially affect neighboring genes underlying the overlapping symptoms present in both the copy number loss and copy number gain of 1p21. Namely, the all-in approach revealed that DPYD is a complex gene whose expression is epigenetically regulated by long non-coding RNAs (lncRNAs) within the locus. Furthermore, the long interspersed nuclear element-1 (LINE-1) L1MC1 transposon inserted in DPYD intronic transcript 1 (DPYD-IT1) lncRNA with its parasites, TcMAR-Tigger5b and pair of Alu repeats appears to be the “weakest link” within the DPYD gene liable to break. Identification of the precise mechanism through which DPYD is epigenetically regulated, and underlying reasons why exactly the break (FRA1E) happens, will consequently pave the way toward preventing severe toxicity to the antineoplastic drug 5-fluorouracil (5-FU) and development of the causative therapy for the dihydropyrimidine dehydrogenase deficiency.
Collapse
Affiliation(s)
- Lukrecija Brečević
- Croatian Institute for Brain Research, University of Zagreb Medical School, Šalata 12, 10000 Zagreb, Croatia
- Department for Functional Genomics, Center for Translational and Clinical Research, University of Zagreb Medical School, University Hospital Center Zagreb, Šalata 2, 10000 Zagreb, Croatia
- E-mail: ;
| | - Martina Rinčić
- Croatian Institute for Brain Research, University of Zagreb Medical School, Šalata 12, 10000 Zagreb, Croatia
- Department for Functional Genomics, Center for Translational and Clinical Research, University of Zagreb Medical School, University Hospital Center Zagreb, Šalata 2, 10000 Zagreb, Croatia
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, 07743 Jena, Germany
| | - Željka Krsnik
- Croatian Institute for Brain Research, University of Zagreb Medical School, Šalata 12, 10000 Zagreb, Croatia
| | - Goran Sedmak
- Croatian Institute for Brain Research, University of Zagreb Medical School, Šalata 12, 10000 Zagreb, Croatia
| | - Ahmed B. Hamid
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, 07743 Jena, Germany
| | - Nadezda Kosyakova
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, 07743 Jena, Germany
| | - Ivan Galić
- Center for Rehabilitation Stančić, Stančić bb, 10370 Stančić, Croatia
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, 07743 Jena, Germany
| | - Fran Borovečki
- Department for Functional Genomics, Center for Translational and Clinical Research, University of Zagreb Medical School, University Hospital Center Zagreb, Šalata 2, 10000 Zagreb, Croatia
| |
Collapse
|
41
|
Next-generation sequencing of duplication CNVs reveals that most are tandem and some create fusion genes at breakpoints. Am J Hum Genet 2015; 96:208-20. [PMID: 25640679 DOI: 10.1016/j.ajhg.2014.12.017] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/15/2014] [Indexed: 11/23/2022] Open
Abstract
Interpreting the genomic and phenotypic consequences of copy-number variation (CNV) is essential to understanding the etiology of genetic disorders. Whereas deletion CNVs lead obviously to haploinsufficiency, duplications might cause disease through triplosensitivity, gene disruption, or gene fusion at breakpoints. The mutational spectrum of duplications has been studied at certain loci, and in some cases these copy-number gains are complex chromosome rearrangements involving triplications and/or inversions. However, the organization of clinically relevant duplications throughout the genome has yet to be investigated on a large scale. Here we fine-mapped 184 germline duplications (14.7 kb-25.3 Mb; median 532 kb) ascertained from individuals referred for diagnostic cytogenetics testing. We performed next-generation sequencing (NGS) and whole-genome sequencing (WGS) to sequence 130 breakpoints from 112 subjects with 119 CNVs and found that most (83%) were tandem duplications in direct orientation. The remainder were triplications embedded within duplications (8.4%), adjacent duplications (4.2%), insertional translocations (2.5%), or other complex rearrangements (1.7%). Moreover, we predicted six in-frame fusion genes at sequenced duplication breakpoints; four gene fusions were formed by tandem duplications, one by two interconnected duplications, and one by duplication inserted at another locus. These unique fusion genes could be related to clinical phenotypes and warrant further study. Although most duplications are positioned head-to-tail adjacent to the original locus, those that are inverted, triplicated, or inserted can disrupt or fuse genes in a manner that might not be predicted by conventional copy-number assays. Therefore, interpreting the genetic consequences of duplication CNVs requires breakpoint-level analysis.
Collapse
|
42
|
Wei D, Husby J, Neidle S. Flexibility and structural conservation in a c-KIT G-quadruplex. Nucleic Acids Res 2014; 43:629-44. [PMID: 25452341 PMCID: PMC4288176 DOI: 10.1093/nar/gku1282] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A quadruplex sequence from the promoter region of the c-KIT gene forms a stable quadruplex, as characterized by crystallographic and NMR methods. Two new crystal structures are reported here, together with molecular dynamics simulation studies on these quadruplex crystal structures and an NMR structure. The new crystal structures, each in a distinct space group and lattice packing arrangement, together with the existing structures, demonstrate that the c-KIT quadruplex fold does not change with differing environments, suggesting that quadruplex topological dynamism is not a general phenomenon. The single and dinucleotide loops in these structures show a high degree of conformational flexibility within the three crystal forms and the NMR ensemble, with no evidence of clustering to particular conformers. This is in accord with the findings of high loop flexibility from the molecular dynamics studies. It is suggested that intramolecular quadruplexes can be grouped into two broad classes (i) those with at least one single-nucleotide loop, often showing singular topologies even though loops are highly flexible, and (ii) with all loops comprising at least two nucleotides, leading to topological dynamism. The loops can have more stable and less dynamic base-stacked secondary structures.
Collapse
Affiliation(s)
- Dengguo Wei
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Jarmila Husby
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Stephen Neidle
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK
| |
Collapse
|
43
|
Castillo Bosch P, Segura-Bayona S, Koole W, van Heteren JT, Dewar JM, Tijsterman M, Knipscheer P. FANCJ promotes DNA synthesis through G-quadruplex structures. EMBO J 2014; 33:2521-33. [PMID: 25193968 PMCID: PMC4282361 DOI: 10.15252/embj.201488663] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Our genome contains many G-rich sequences, which have the propensity to fold into stable secondary DNA structures called G4 or G-quadruplex structures. These structures have been implicated in cellular processes such as gene regulation and telomere maintenance. However, G4 sequences are prone to mutations particularly upon replication stress or in the absence of specific helicases. To investigate how G-quadruplex structures are resolved during DNA replication, we developed a model system using ssDNA templates and Xenopus egg extracts that recapitulates eukaryotic G4 replication. Here, we show that G-quadruplex structures form a barrier for DNA replication. Nascent strand synthesis is blocked at one or two nucleotides from the G4. After transient stalling, G-quadruplexes are efficiently unwound and replicated. In contrast, depletion of the FANCJ/BRIP1 helicase causes persistent replication stalling at G-quadruplex structures, demonstrating a vital role for this helicase in resolving these structures. FANCJ performs this function independently of the classical Fanconi anemia pathway. These data provide evidence that the G4 sequence instability in FANCJ−/− cells and Fancj/dog1 deficient C. elegans is caused by replication stalling at G-quadruplexes.
Collapse
Affiliation(s)
- Pau Castillo Bosch
- Hubrecht Institute-KNAW, University Medical Center Utrecht & Cancer GenomiCs Netherlands, Utrecht, The Netherlands
| | - Sandra Segura-Bayona
- Hubrecht Institute-KNAW, University Medical Center Utrecht & Cancer GenomiCs Netherlands, Utrecht, The Netherlands
| | - Wouter Koole
- Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | - Puck Knipscheer
- Hubrecht Institute-KNAW, University Medical Center Utrecht & Cancer GenomiCs Netherlands, Utrecht, The Netherlands
| |
Collapse
|