1
|
Bourgeois NM, Wei L, Kaushansky A, Aitchison JD. Exploiting Host Kinases to Combat Dengue Virus Infection and Disease. Antiviral Res 2025:106172. [PMID: 40348023 DOI: 10.1016/j.antiviral.2025.106172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/03/2025] [Accepted: 04/23/2025] [Indexed: 05/14/2025]
Abstract
The burden of dengue on human health has dramatically increased in recent years, underscoring the urgent need for effective therapeutic interventions. Despite decades of research since the discovery of the dengue virus, no specific antiviral treatments are available and strategies to reliably prevent severe disease remain limited. Direct-acting antivirals against dengue are under active investigation but have shown limited efficacy to date. An underappreciated Achille's heal of the virus is its dependence on host factors for infection and pathogenesis, each of which presents a potential avenue for therapeutic intervention. We and others have demonstrated that dengue virus relies on multiple host kinases, some of which are already targeted by clinically approved inhibitors. These offer drug repurposing opportunities for host-directed dengue treatment. Here, we summarize findings on the role of kinases in dengue infection and disease and highlight potential kinase targets for the development of innovative host-directed therapeutics.
Collapse
Affiliation(s)
- Natasha M Bourgeois
- Department of Global Health, University of Washington, Seattle WA 98195, USA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle WA 98109, USA
| | - Ling Wei
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle WA 98109, USA
| | - Alexis Kaushansky
- Department of Global Health, University of Washington, Seattle WA 98195, USA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle WA 98109, USA.
| | - John D Aitchison
- Department of Global Health, University of Washington, Seattle WA 98195, USA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle WA 98109, USA.
| |
Collapse
|
2
|
Keshri V, Ahmad F, Singh SK. Flavivirus-NS1 triggers the Type-I interferon response through miR-145-5p mediated regulation of scavenger receptor class B1 in human cerebral microvascular endothelial cells. Int J Biol Macromol 2025; 306:141622. [PMID: 40043994 DOI: 10.1016/j.ijbiomac.2025.141622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 02/11/2025] [Accepted: 02/27/2025] [Indexed: 05/03/2025]
Abstract
Flavivirus non-structural protein 1 (NS1) is a highly conserved secreted protein that plays a crucial role in host-virus interaction during virus pathogenesis. Flavivirus-NS1 modulates the host's cellular and immunological responses. We explored miR-145-5p mediated expression of type I interferon (IFN) in flavivirus-NS1 triggered human cerebral microvascular endothelial cells (hCMEC/D3 cells) through scavenger receptor class B 1 (SR-B1). SR-B1 is an important lipoprotein receptor involved in cholesterol transport and lipid homeostasis. The increased expression of miR-145-5p in flavivirus-NS1 exposed hCMEC/D3 cells was reported using TaqMan-based quantitative PCR assay. The miR-145-5p mediated regulation of SR-B1 was validated by overexpression and knockdown of miR-145-5p in hCMEC/D3 cells. The increased expression of miR-145-5p led to the suppressed expression of SR-B1, which induced the expression of type I IFN - α/β. The protein expression patterns of SR-B1 and IFN- α/β were studied by immunoblotting. This study demonstrates miR-145-5p mediated type I IFN signaling by suppressing the SR-B1 expression through bystander effects of flavivirus-NS1 in human cerebral microvascular endothelial cells.
Collapse
Affiliation(s)
- Vishal Keshri
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, U.P., India
| | - Faiyaz Ahmad
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, U.P., India
| | - Sunit K Singh
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, U.P., India; Dr. B R Ambedkar Center for Biomedical Research (ACBR), University of Delhi, New Delhi 110007, India; Delhi School of Public Health (DSPH), University of Delhi, Delhi 110007, India.
| |
Collapse
|
3
|
Diep NT, Giang NT, Diu NTT, Nam NM, Khanh LV, Quang HV, Hang NT, Mao CV, Son HV, Hieu NL, Linh PT, Sklan EH, Toan NL, Tong HV. Complement receptor type 1 and 2 (CR1 and CR2) gene polymorphisms and plasma protein levels are associated with the Dengue disease severity. Sci Rep 2023; 13:17377. [PMID: 37833411 PMCID: PMC10575961 DOI: 10.1038/s41598-023-44512-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023] Open
Abstract
The pathological outcome of dengue disease results from complex interactions between dengue virus (DENV) and host genetics and immune response. Complement receptor types 1 and 2 (CR1 and CR2) mediate complement activation through the alternative pathway. This study investigated the possible association of genetic polymorphisms and plasma levels of CR1 and CR2 with dengue disease. A total of 267 dengue patients and 133 healthy controls were recruited for this study. CR1 and CR2 gene polymorphisms were analyzed by Sanger sequencing, while plasma CR1 and CR2 levels were measured by ELISA. The frequency of the CR1 minor allele rs6691117G was lower in dengue patients and those with severe dengue compared to healthy controls. Plasma CR1 and CR2 levels were decreased in dengue patients compared to healthy controls (P < 0.0001) and were associated with platelet counts. CR1 levels were lower in dengue patients with warning signs (DWS) compared to those without DWS, while CR2 levels were decreased according to the severity of the disease and after 5 days (T1) and 8 days (T2) of follow-up. CR2 levels were decreased in dengue patients positive for anti-DENV IgG and IgM and patients with bleeding and could discriminate DWS and SD from dengue fever patients (AUC = 0.66). In conclusion, this study revealed a reduction in CR2 levels in dengue patients and that the CR1 SNP rs6691117A/G is associated with the dengue severity. The correlation of CR2 levels with platelet counts suggests that CR2 could be an additional biomarker for the prognosis of severe dengue disease.
Collapse
Affiliation(s)
- Nguy Thi Diep
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
- Hanoi Nephrology Hospital, Hanoi, Vietnam
| | - Ngo Truong Giang
- Department of Biology and Medical Genetics, Vietnam Military Medical University, Hanoi, Vietnam
| | - Nguyen Thi Thuy Diu
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, 222 Phung Hung, Ha Dong, Hanoi, Vietnam
| | - Nguyen Minh Nam
- 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam
| | - Le Van Khanh
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, 222 Phung Hung, Ha Dong, Hanoi, Vietnam
| | - Ha Van Quang
- 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam
| | - Ngo Thu Hang
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
| | - Can Van Mao
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
| | - Ho Van Son
- 175 Military Hospital, Ho Cho Minh City, Vietnam
| | - Nguyen Lan Hieu
- Hanoi Medical University Hospital, Hanoi Medical University, Hanoi, Vietnam
| | | | - Ella H Sklan
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, 69978, Tel Aviv, Israel
| | - Nguyen Linh Toan
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
| | - Hoang Van Tong
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam.
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, 222 Phung Hung, Ha Dong, Hanoi, Vietnam.
| |
Collapse
|
4
|
Costa KB, Garcia BCC, Costa MLB, Pena YG, Figueiredo EAB, Ottoni MHF, Santos JD, de Oliveira Ottone V, de Oliveira DB, Rocha-Vieira E. Association between Anti-DENV IgM Serum Prevalence and CD11b Expression by Classical Monocytes in Obesity. Viruses 2023; 15:234. [PMID: 36680274 PMCID: PMC9865527 DOI: 10.3390/v15010234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Dengue and obesity are currently highly prevalent conditions worldwide and the association between these two conditions may result in greater risk for DENV infection and disease severity. In this study the association between obesity and recent, inapparent dengue was investigated. Serum DENV IgM and NS1 were evaluated in 49 adult volunteers (15 lean and 34 individuals with obesity, according to body mass index), between September 2017 and June 2018. Adiposity, endocrine, metabolic, and immune data of the participants were also obtained. None of the study participants tested positive for the DENV NS1 antigen. DENV IgM was detected in 33.3% of the lean individuals, and in 44.1% of those with obesity; the presence of DENV IgM was not associated with body mass index (OR = 1.32, 95% CI = 0.59-2.98, p = 0.48). However, body fat index was higher in obese individuals who had recent inapparent dengue (14.7 ± 3.1 versus 12.7 ± 2.1 kg/m2, p = 0.04), as was the expression of CD11b by classical (CD14++CD16-) monocytes (1103.0 ± 311.3 versus 720.3 ± 281.1 mean fluoresce intensity). Our findings suggest an association between adiposity and recent inapparent dengue and the involvement of classical monocytes in this association.
Collapse
Affiliation(s)
- Karine Beatriz Costa
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinonha e Mucuri, Diamantina 39100-000, MG, Brazil
- Departamento de Medicina, Universidade Federal de Juiz de Fora, Governador Valadares 35010-180, MG, Brazil
- Laboratory of Exercise Biology and Immunometabolism, Centro Integrado de Pós-Graduação e Pesquisa em Saúde, Universidade Federal dos Vales do Jequitinonha e Mucuri, Diamantina 39100-000, MG, Brazil
| | - Bruna Caroline Chaves Garcia
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinonha e Mucuri, Diamantina 39100-000, MG, Brazil
- Laboratory of Exercise Biology and Immunometabolism, Centro Integrado de Pós-Graduação e Pesquisa em Saúde, Universidade Federal dos Vales do Jequitinonha e Mucuri, Diamantina 39100-000, MG, Brazil
| | - Marina Luiza Baêta Costa
- Laboratory of Exercise Biology and Immunometabolism, Centro Integrado de Pós-Graduação e Pesquisa em Saúde, Universidade Federal dos Vales do Jequitinonha e Mucuri, Diamantina 39100-000, MG, Brazil
| | - Yara Gomes Pena
- Laboratory of Exercise Biology and Immunometabolism, Centro Integrado de Pós-Graduação e Pesquisa em Saúde, Universidade Federal dos Vales do Jequitinonha e Mucuri, Diamantina 39100-000, MG, Brazil
| | - Eduardo Augusto Barbosa Figueiredo
- Laboratory of Exercise Biology and Immunometabolism, Centro Integrado de Pós-Graduação e Pesquisa em Saúde, Universidade Federal dos Vales do Jequitinonha e Mucuri, Diamantina 39100-000, MG, Brazil
| | - Marcelo Henrique Fernandes Ottoni
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinonha e Mucuri, Diamantina 39100-000, MG, Brazil
| | - Juliane Duarte Santos
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinonha e Mucuri, Diamantina 39100-000, MG, Brazil
| | - Vinícius de Oliveira Ottone
- Laboratory of Exercise Biology and Immunometabolism, Centro Integrado de Pós-Graduação e Pesquisa em Saúde, Universidade Federal dos Vales do Jequitinonha e Mucuri, Diamantina 39100-000, MG, Brazil
| | - Danilo Bretas de Oliveira
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinonha e Mucuri, Diamantina 39100-000, MG, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinonha e Mucuri, Diamantina 39100-000, MG, Brazil
| | - Etel Rocha-Vieira
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinonha e Mucuri, Diamantina 39100-000, MG, Brazil
- Laboratory of Exercise Biology and Immunometabolism, Centro Integrado de Pós-Graduação e Pesquisa em Saúde, Universidade Federal dos Vales do Jequitinonha e Mucuri, Diamantina 39100-000, MG, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinonha e Mucuri, Diamantina 39100-000, MG, Brazil
| |
Collapse
|
5
|
Byrne AB, Talarico LB. Role of the complement system in antibody-dependent enhancement of flavivirus infections. Int J Infect Dis 2020; 103:404-411. [PMID: 33352325 DOI: 10.1016/j.ijid.2020.12.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 11/26/2022] Open
Abstract
Flavivirus infections have increased dramatically in the last decades in tropical and subtropical regions of the world. Antibody-dependent enhancement of dengue virus infections has been one of the main hypotheses to explain severity of disease and one of the major challenges to safe and effective vaccine development. In the presence of cross-reactive sub-neutralizing concentrations of anti-dengue antibodies, immune complexes can amplify viral infection in mononuclear phagocytic cells, triggering a cytokine cascade and activating the complement system that leads to severe disease. The complement system comprises a family of plasma and cellular surface proteins that recognize pathogen associated molecular patterns, modified ligands and immune complexes, interacting in a regulated manner and forming an enzymatic cascade. Pathogenic as well as protective effects of complement have been reported in flavivirus infections. This review provides updated knowledge on complement activation during flavivirus infection, including antiviral effects of complement and its regulation, as well as mechanisms of complement evasion and dysregulation of complement activity during viral infection leading to pathogenesis. Particularly, insights into classical pathway activation and its protective role on antibody-dependent enhancement of flavivirus infections are highlighted.
Collapse
Affiliation(s)
- Alana B Byrne
- Laboratorio de Investigaciones Infectológicas y Biología Molecular, Unidad de Infectología, Departamento de Medicina, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires 1425, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1425, Argentina.
| | - Laura B Talarico
- Laboratorio de Investigaciones Infectológicas y Biología Molecular, Unidad de Infectología, Departamento de Medicina, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires 1425, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1425, Argentina.
| |
Collapse
|
6
|
Tanabe ISB, Santos EC, Tanabe ELL, Souza SJM, Santos FEF, Taniele-Silva J, Ferro JFG, Lima MC, Moura AA, Anderson L, Bassi ÊJ. Cytokines and chemokines triggered by Chikungunya virus infection in human patients during the very early acute phase. Trans R Soc Trop Med Hyg 2020; 113:730-733. [PMID: 31365117 DOI: 10.1093/trstmh/trz065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/08/2019] [Accepted: 06/25/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The immune response against the Chikungunya virus (CHIKV) during the very early acute phase is not fully elucidated. Therefore we explored the cytokine and chemokine profile triggered by CHIKV in infected patients. METHODS Cytokines, chemokines and C5a anaphylatoxin were analysed in serum from CHIKV-infected patients during the viraemic phase (mean 2.97±1.27 d after illness onset) compared with a healthy group. RESULTS CHIKV-infected patients had a significant increase of interferon-α (IFN-α), interleukin-6 (IL-6), interleukin-8 (CXCL8/IL-8), interleukin-10 (IL-10), interferon-γ (IFN-γ), monokine induced by interferon-γ (CXCL9/MIG), monocyte chemoattractant protein-1 (CCL2/MCP-1), interferon-γ-induced protein-10 (CXCL10/IP-10) and complement C5a anaphylatoxin. CONCLUSIONS The very early acute immune response triggered against CHIKV leads to an increase in pro-inflammatory immune mediators such as IFN-γ and its induced chemokines, and a high level of C5a anaphylatoxin as a result of complement activation.
Collapse
Affiliation(s)
- Ithallo S B Tanabe
- IMUNOREG-Grupo de Pesquisa em Regulação da Resposta Imune, Laboratório de Pesquisas em Virologia e Imunologia, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
| | - Elane C Santos
- IMUNOREG-Grupo de Pesquisa em Regulação da Resposta Imune, Laboratório de Pesquisas em Virologia e Imunologia, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
| | - Eloiza L L Tanabe
- IMUNOREG-Grupo de Pesquisa em Regulação da Resposta Imune, Laboratório de Pesquisas em Virologia e Imunologia, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
| | - Stephannie J M Souza
- IMUNOREG-Grupo de Pesquisa em Regulação da Resposta Imune, Laboratório de Pesquisas em Virologia e Imunologia, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
| | - Fabio E F Santos
- IMUNOREG-Grupo de Pesquisa em Regulação da Resposta Imune, Laboratório de Pesquisas em Virologia e Imunologia, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
| | - Jamile Taniele-Silva
- IMUNOREG-Grupo de Pesquisa em Regulação da Resposta Imune, Laboratório de Pesquisas em Virologia e Imunologia, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
| | - Jean F G Ferro
- Laboratório Central de Saúde Pública de Alagoas, Maceió, Alagoas, Brazil
| | - Magliones C Lima
- Laboratório Central de Saúde Pública de Alagoas, Maceió, Alagoas, Brazil
| | - Adriana A Moura
- Faculdade de Medicina, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
| | - Leticia Anderson
- IMUNOREG-Grupo de Pesquisa em Regulação da Resposta Imune, Laboratório de Pesquisas em Virologia e Imunologia, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil.,Centro Universitário CESMAC, Maceió, Alagoas, Brazil
| | - Ênio J Bassi
- IMUNOREG-Grupo de Pesquisa em Regulação da Resposta Imune, Laboratório de Pesquisas em Virologia e Imunologia, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
| |
Collapse
|
7
|
Lukácsi S, Mácsik-Valent B, Nagy-Baló Z, Kovács KG, Kliment K, Bajtay Z, Erdei A. Utilization of complement receptors in immune cell-microbe interaction. FEBS Lett 2020; 594:2695-2713. [PMID: 31989596 DOI: 10.1002/1873-3468.13743] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/19/2022]
Abstract
The complement system is a major humoral component of immunity and is essential for the fast elimination of pathogens invading the body. In addition to its indispensable role in innate immunity, the complement system is also involved in pathogen clearance during the effector phase of adaptive immunity. The fastest way of killing the invader is lysis by the membrane attack complex, which is formed by the terminal components of the complement cascade. Not all pathogens are lysed however and, if opsonized by a variety of molecules, they undergo phagocytosis and disposal inside immune cells. The most important complement-derived opsonins are C1q, the first component of the classical pathway, MBL, the initiator of the lectin pathway and C3-derived activation fragments, including C3b, iC3b and C3d, which all serve as ligands for their corresponding receptors. In this review, we discuss how complement receptors are utilized by various immune cells to tackle invading microbes, or by pathogens to evade host response.
Collapse
Affiliation(s)
- Szilvia Lukácsi
- MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary
| | | | - Zsuzsa Nagy-Baló
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | - Kristóf G Kovács
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | | | - Zsuzsa Bajtay
- MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary.,Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | - Anna Erdei
- MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary.,Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
8
|
Yu J, Murthy V, Liu SL. Relating GPI-Anchored Ly6 Proteins uPAR and CD59 to Viral Infection. Viruses 2019; 11:E1060. [PMID: 31739586 PMCID: PMC6893729 DOI: 10.3390/v11111060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/10/2019] [Accepted: 11/12/2019] [Indexed: 12/30/2022] Open
Abstract
The Ly6 (lymphocyte antigen-6)/uPAR (urokinase-type plasminogen activator receptor) superfamily protein is a group of molecules that share limited sequence homology but conserved three-fingered structures. Despite diverse cellular functions, such as in regulating host immunity, cell adhesion, and migration, the physiological roles of these factors in vivo remain poorly characterized. Notably, increasing research has focused on the interplays between Ly6/uPAR proteins and viral pathogens, the results of which have provided new insight into viral entry and virus-host interactions. While LY6E (lymphocyte antigen 6 family member E), one key member of the Ly6E/uPAR-family proteins, has been extensively studied, other members have not been well characterized. Here, we summarize current knowledge of Ly6/uPAR proteins related to viral infection, with a focus on uPAR and CD59. Our goal is to provide an up-to-date view of the Ly6/uPAR-family proteins and associated virus-host interaction and viral pathogenesis.
Collapse
Affiliation(s)
- Jingyou Yu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA; (J.Y.); (V.M.)
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Vaibhav Murthy
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA; (J.Y.); (V.M.)
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA; (J.Y.); (V.M.)
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
9
|
O'Donnell KL, Meberg B, Schiltz J, Nilles ML, Bradley DS. Zika Virus-Specific IgY Results Are Therapeutic Following a Lethal Zika Virus Challenge without Inducing Antibody-Dependent Enhancement. Viruses 2019; 11:E301. [PMID: 30917523 PMCID: PMC6466411 DOI: 10.3390/v11030301] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 11/16/2022] Open
Abstract
The Zika virus (ZIKV) is a newly emerged pathogen in the Western hemisphere. It was declared a global health emergency by the World Health Organization in 2016. There have been 223,477 confirmed cases, including 3720 congenital syndrome cases since 2015. ZIKV infection symptoms range from asymptomatic to Gullain⁻Barré syndrome and extensive neuropathology in infected fetuses. Passive and active vaccines have been unsuccessful in the protection from or the treatment of flaviviral infections due to antibody-dependent enhancement (ADE). ADE causes an increased viral load due to an increased monocyte opsonization by non-neutralizing, low-avidity antibodies from a previous dengue virus (DENV) infection or from a previous exposure to ZIKV. We have previously demonstrated that polyclonal avian IgY generated against whole-killed DENV-2 ameliorates DENV infection in mice while not inducing ADE. This is likely due to the inability of the Fc portion of IgY to bind to mammalian Fc receptors. We have shown here that ZIKV oligoclonal IgY is able to neutralize the virus in vitro and in IFNAR-/- mice. The concentration of ZIKV-specific IgY yielding 50% neutralization (NT50) was 25 µg/mL. The exposure of the ZIKV, prior to culture with ZIKV-specific IgY or 4G2 flavivirus-enveloped IgG, demonstrated that the ZIKV-specific IgY does not induce ADE. ZIKV IgY was protective in vivo when administered following a lethal ZIKV challenge in 3-week-old IFNAR-/- mice. We propose polyclonal ZIKV-specific IgY may provide a viable passive immunotherapy for a ZIKV infection without inducing ADE.
Collapse
Affiliation(s)
- Kyle L O'Donnell
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58202-9037, USA.
| | - Bernadette Meberg
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58202-9037, USA.
| | - James Schiltz
- Avianax, LLC, Grand Forks, North Dakota, ND 58202, USA.
| | - Matthew L Nilles
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58202-9037, USA.
| | - David S Bradley
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58202-9037, USA.
| |
Collapse
|
10
|
Supramaniam A, Lui H, Bellette BM, Rudd PA, Herrero LJ. How myeloid cells contribute to the pathogenesis of prominent emerging zoonotic diseases. J Gen Virol 2018; 99:953-969. [DOI: 10.1099/jgv.0.001024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Aroon Supramaniam
- 1Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, Australia
| | - Hayman Lui
- 2School of Medicine, Griffith University, Gold Coast Campus, Southport, QLD, Australia
| | | | - Penny A. Rudd
- 1Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, Australia
| | - Lara J. Herrero
- 1Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, Australia
- 2School of Medicine, Griffith University, Gold Coast Campus, Southport, QLD, Australia
| |
Collapse
|
11
|
Kuadkitkan A, Wikan N, Smith DR. Induced pluripotent stem cells: A new addition to the virologists armamentarium. J Virol Methods 2017; 235:191-195. [PMID: 27544025 DOI: 10.1016/j.jviromet.2016.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/23/2016] [Accepted: 03/23/2016] [Indexed: 12/01/2022]
Abstract
A significant amount of our understanding of the molecular events occurring during viral replication has originated from studies utilizing cell lines. These cell lines are normally obtained by the culture of samples from spontaneously occurring tumors or are derived by genetic manipulation of primary cells. The genetic events inducing immortalization and/or transformation to allow continual passage in culture can have profound effects resulting in a marked loss of cell type fidelity. The development of induced pluripotent stem cells (iPSCs) has revolutionized the field of developmental biology and is ushering in an era of personalized medicine for a wide range of inherited genetic diseases. Previously, development of iPSCs required dedicated facilities as well as highly detailed technical knowledge. The pace of development in this field however has been so rapid, that iPSCs are moving into an era of "off the shelf" use, whereby the use and manipulation of these cells is well within the ability of the majority of laboratories with standard tissue culture facilities. The introduction of iPSCs to studies in the field of virology is still in its infancy, and so far has been largely confined to viruses that are difficult to propagate in other experimental systems, but it is likely that this technology will become a standard methodology in the virologists armamentarium.
Collapse
Affiliation(s)
- Atichat Kuadkitkan
- Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand
| | - Nitwara Wikan
- Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand
| | - Duncan R Smith
- Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand; Center for Emerging and Neglected Infectious Diseases, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
12
|
Fink AL, Williams KL, Harris E, Alvine TD, Henderson T, Schiltz J, Nilles ML, Bradley DS. Dengue virus specific IgY provides protection following lethal dengue virus challenge and is neutralizing in the absence of inducing antibody dependent enhancement. PLoS Negl Trop Dis 2017; 11:e0005721. [PMID: 28686617 PMCID: PMC5517069 DOI: 10.1371/journal.pntd.0005721] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 07/19/2017] [Accepted: 06/16/2017] [Indexed: 12/25/2022] Open
Abstract
Dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) are severe disease manifestations that can occur following sequential infection with different dengue virus serotypes (DENV1-4). At present, there are no licensed therapies to treat DENV-induced disease. DHF and DSS are thought to be mediated by serotype cross-reactive antibodies that facilitate antibody-dependent enhancement (ADE) by binding to viral antigens and then Fcγ receptors (FcγR) on target myeloid cells. Using genetically engineered DENV-specific antibodies, it has been shown that the interaction between the Fc portion of serotype cross-reactive antibodies and FcγR is required to induce ADE. Additionally, it was demonstrated that these antibodies were as neutralizing as their non-modified variants, were incapable of inducing ADE, and were therapeutic following a lethal, antibody-enhanced infection. Therefore, we hypothesized that avian IgY, which do not interact with mammalian FcγR, would provide a novel therapy for DENV-induced disease. We demonstrate here that goose-derived anti-DENV2 IgY neutralized DENV2 and did not induce ADE in vitro. Anti-DENV2 IgY was also protective in vivo when administered 24 hours following a lethal DENV2 infection. We were also able to demonstrate via epitope mapping that both full-length and alternatively spliced anti-DENV2 IgY recognized different epitopes, including epitopes that have not been previously identified. These observations provide evidence for the potential therapeutic applications of goose-derived anti-DENV2 IgY.
Collapse
Affiliation(s)
- Ashley L. Fink
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- * E-mail:
| | - Katherine L. Williams
- Division of Infectious Disease and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Eva Harris
- Division of Infectious Disease and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Travis D. Alvine
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Thomas Henderson
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - James Schiltz
- Avianax, LLC, Grand Forks, North Dakota, United States of America
| | - Matthew L. Nilles
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - David S. Bradley
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| |
Collapse
|
13
|
Xiong L, Yamasaki S, Chen H, Shi L, Mo Z. Intracellular Growth and Morphological Characteristics of Legionella pneumophila during Invasion and Proliferation in Different Cells. Biol Pharm Bull 2017; 40:1035-1042. [PMID: 28674246 DOI: 10.1248/bpb.b17-00033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Various studies have been made to attempt to study the interaction between Legionella pneumophila and the host cells. In this research, we successfully constructed a L. pneumophila mutant strain that stably expressed high levels of green fluorescent protein and used this strain to evaluate the adherence, invasion and proliferation of L. pneumophila in association with several cell lines, including seven cell lines [human macrophage-like cell lines (U937, THP-1), murine macrophage-like cell lines (J774.1A, Raw264.7), human bronchial epithelial cell lines (16HBE, Beas-2B) and human cerrical cancer cell line (HeLa)] which have been used as the host models of L. pneumophila, and two breast carcinoma cell lines (MCF-7 and MDA-MB-231). Our results showed that the two newly tested cell lines are able to support the intracellular proliferation of L. pneumophila, and there were some morphological variations during the invasion and intracellular replication of L. pneumophila in different cell lines. These results can help us find out the common and special patterns of invasion and proliferation of L. pneumophila within different hosts. This is conducive to our knowledge on the relationship and interaction between bacteria and host.
Collapse
Affiliation(s)
- Lina Xiong
- School of Food Science and Technology, South China University of Technology
| | - Shinji Yamasaki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| | - Hongsheng Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University
| | - Lei Shi
- School of Food Science and Technology, South China University of Technology.,Jinan University
| | - Ziyao Mo
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University
| |
Collapse
|
14
|
Source and Purity of Dengue-Viral Preparations Impact Requirement for Enhancing Antibody to Induce Elevated IL-1β Secretion: A Primary Human Monocyte Model. PLoS One 2015; 10:e0136708. [PMID: 26301593 PMCID: PMC4547738 DOI: 10.1371/journal.pone.0136708] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 08/07/2015] [Indexed: 12/30/2022] Open
Abstract
Dengue virus is a major global health threat and can lead to life-threatening hemorrhagic complications due to immune activation and cytokine production. Cross-reactive antibodies to an earlier dengue virus infection are a recognized risk factor for severe disease. These antibodies bind heterologous dengue serotypes and enhance infection into Fc-receptor-bearing cells, a process known as antibody-dependent enhancement of infection. One crucial cytokine seen elevated in severe dengue patients is IL-1β, a potent inflammatory cytokine matured by the inflammasome. We used a highly-physiologic system by studying antibody-dependent enhancement of IL-1β in primary human monocytes with anti-dengue human monoclonal antibodies isolated from patients. Antibody-enhancement increased viral replication in primary human monocytes inoculated with supernatant harvested from Vero cells infected with dengue virus serotype 2 (DENV-2) 16681. Surprisingly, IL-1β secretion induced by infectious supernatant harvested from two independent Vero cell lines was not enhanced by antibody. Secretion of multiple other inflammatory cytokines was also independent of antibody signaling. However, IL-1β secretion did require NLRP3 and caspase-1 activity. Immunodepletion of dengue virions from the infectious supernatant confirmed that virus was not the main IL-1β-inducing agent, suggesting that a supernatant component(s) not associated with the virion induced IL-1β production. We excluded RNA, DNA, contaminating LPS, viral NS1 protein, complement, and cytokines. In contrast, purified Vero-derived DENV-2 16681 exhibited antibody-enhancement of both infection and IL-1β induction. Furthermore, C6/36 mosquito cells did not produce such an inflammatory component, as crude supernatant harvested from insect cells infected with DENV-2 16681 induced antibody-dependent IL-1β secretion. This study indicates that Vero cells infected with DENV-2 16681 may produce inflammatory components during dengue virus propagation that mask the virus-specific immune response. Thus, the choice of host cell and viral purity should be carefully considered, while insect-derived virus represents a system that elicits antibody-dependent cytokine responses to dengue virus with fewer confounding issues.
Collapse
|