1
|
He L, Zhang Y, Cao Q, Shan H, Zong J, Feng L, Jiang W, Wu P, Zhao J, Liu H, Jiang J. Hepatic Oxidative Stress and Cell Death Influenced by Dietary Lipid Levels in a Fresh Teleost. Antioxidants (Basel) 2024; 13:808. [PMID: 39061877 PMCID: PMC11273915 DOI: 10.3390/antiox13070808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Ferroptosis is a form of regulated cell death characterized by iron-dependent lipid peroxidation, affecting physiological and pathological processes. Fatty liver disease associated with metabolic dysfunction is a common pathological condition in aquaculture. However, the exact role and mechanism of ferroptosis in its pathogenesis and progression remains unclear. In this study, an experiment was conducted using different dietary lipid levels in the feeding of largemouth bass (Micropterus salmoides) for 11 weeks. The results revealed that the growth performance and whole-body protein content significantly increased with the elevation of dietary lipid levels up to 12%. The activities of antioxidant enzymes as well as the content of GSH (glutathione) in the liver initially increased but later declined as the lipid levels increased; the contents of MDA (malondialdehyde) and GSSG (oxidized glutathione) demonstrated an opposite trend. Moreover, elevating lipid levels in the diet significantly increased liver Fe2+ content, as well as the expressions of TF (Transferrin), TFR (Transferrin receptor), ACSL4 (acyl-CoA synthetase long-chain family member 4), LPCAT3 (lysophosphatidylcholine acyltransferase 3), and LOX12 (Lipoxygenase-12), while decreasing the expressions of GPX4 (glutathione peroxidase 4) and SLC7A11 (Solute carrier family 7 member 11). In conclusion, the optimal lipid level is 12.2%, determined by WG-based linear regression. Excess lipid-level diets can up-regulate the ACSL4/LPCAT3/LOX12 axis, induce hepatic oxidative stress and cell death through a ferroptotic-like program, and decrease growth performance.
Collapse
Affiliation(s)
- Lingjie He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (L.H.); (Y.Z.); (Q.C.); (H.S.); (J.Z.)
| | - Yupeng Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (L.H.); (Y.Z.); (Q.C.); (H.S.); (J.Z.)
| | - Quanquan Cao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (L.H.); (Y.Z.); (Q.C.); (H.S.); (J.Z.)
| | - Hongying Shan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (L.H.); (Y.Z.); (Q.C.); (H.S.); (J.Z.)
| | - Jiali Zong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (L.H.); (Y.Z.); (Q.C.); (H.S.); (J.Z.)
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.F.); (W.J.); (P.W.); (J.Z.)
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya’an 625014, China
| | - Weidan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.F.); (W.J.); (P.W.); (J.Z.)
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya’an 625014, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.F.); (W.J.); (P.W.); (J.Z.)
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya’an 625014, China
| | - Juan Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.F.); (W.J.); (P.W.); (J.Z.)
| | - Haifeng Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (L.H.); (Y.Z.); (Q.C.); (H.S.); (J.Z.)
| | - Jun Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (L.H.); (Y.Z.); (Q.C.); (H.S.); (J.Z.)
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya’an 625014, China
| |
Collapse
|
2
|
Wang S, Xu G, Zou J. Soluble non-starch polysaccharides in fish feed: implications for fish metabolism. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1-22. [PMID: 36219350 DOI: 10.1007/s10695-022-01131-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Because of their unique glycosidic bond structure, non-starch polysaccharides (NSP) are difficult for the stomach to break down. NSP can be classified as insoluble NSP (iNSP, fiber, lignin, etc.) and soluble NSP (sNSP, oligosaccharides, β-glucan, pectin, fermentable fiber, inulin, plant-derived polysaccharides, etc.). sNSP is viscous, fermentable, and soluble. Gut microbiota may catabolize sNSP, which can then control fish lipid, glucose, and protein metabolism and impact development rates. This review examined the most recent studies on the impacts of various forms of sNSP on the nutritional metabolism of various fish in order to comprehend the effects of sNSP on fish. According to certain investigations, sNSP can enhance fish development, boost the activity of digestive enzymes, reduce blood sugar and cholesterol, enhance the colonization of good gut flora, and modify fish nutrition metabolism. In-depth research on the mechanism of action is also lacking in most studies on the effects of sNSP on fish metabolism. It is necessary to have a deeper comprehension of the underlying processes by which sNSP induce host metabolism. This is crucial to address the main issue of the sensible use of carbohydrates in fish feed.
Collapse
Affiliation(s)
- Shaodan Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region On Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Guohuan Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| | - Jixing Zou
- Joint Laboratory of Guangdong Province and Hong Kong Region On Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Wang S, Zuo Z, Ye B, Zhang L, Cheng Y, Xie S, Zou J, Xu G. Microbiome-Metabolomic Analysis Reveals Beneficial Effects of Dietary Kelp Resistant Starch on Intestinal Functions of Hybrid Snakeheads ( Channa maculata ♀ × Channa argus ♂). Antioxidants (Basel) 2023; 12:1631. [PMID: 37627626 PMCID: PMC10451247 DOI: 10.3390/antiox12081631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/23/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
The benefits of resistant starch on hypoglycemia, obesity prevention, antioxidant status and the alleviation of metabolic syndrome have received considerable attention. In this study, we explored how dietary kelp resistant starch (KRS) enhances intestinal morphology and function through a microbiome-metabolomic analysis. Hybrid snakeheads (initial weight: 11.4 ± 0.15 g) were fed experimental diets for 60 days. Fish were fed a basic wheat starch diet and the KRS diet. Dietary KRS improved intestinal morphology and enhanced intestinal antioxidant and digestive capabilities, as evidenced by decreased intestinal damage and upregulated intestinal biochemical markers. The microbiome analysis showed that KRS administration elevated the proportion of butyrate-producing bacteria and the abundance of beneficial bacteria that increases insulin sensitivity. Furthermore, significant alterations in metabolic profiles were observed to mainly associate with the amino acid metabolism (particularly arginine production), the metabolism of cofactors and vitamins, fat metabolism, glutathione metabolism, and the biosynthesis of other secondary metabolites. Additionally, alterations in intestinal microbiota composition were significantly associated with metabolites. Collectively, changes in intestinal microbiota and metabolite profiles produced by the replacement of common starch with dietary KRS appears to play an important role in the development of intestinal metabolism, thus leading to improved intestinal function and homeostasis.
Collapse
Affiliation(s)
- Shaodan Wang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.W.); (L.Z.); (Y.C.)
| | - Zhiheng Zuo
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (B.Y.); (S.X.)
| | - Bin Ye
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (B.Y.); (S.X.)
| | - Li Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.W.); (L.Z.); (Y.C.)
| | - Yanbo Cheng
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.W.); (L.Z.); (Y.C.)
| | - Shaolin Xie
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (B.Y.); (S.X.)
| | - Jixing Zou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (B.Y.); (S.X.)
| | - Guohuan Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.W.); (L.Z.); (Y.C.)
| |
Collapse
|
4
|
Soengas JL. Integration of Nutrient Sensing in Fish Hypothalamus. Front Neurosci 2021; 15:653928. [PMID: 33716662 PMCID: PMC7953060 DOI: 10.3389/fnins.2021.653928] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
The knowledge regarding hypothalamic integration of metabolic and endocrine signaling resulting in regulation of food intake is scarce in fish. Available studies pointed to a network in which the activation of the nutrient-sensing (glucose, fatty acid, and amino acid) systems would result in AMP-activated protein kinase (AMPK) inhibition and activation of protein kinase B (Akt) and mechanistic target of rapamycin (mTOR). Changes in these signaling pathways would control phosphorylation of transcription factors cAMP response-element binding protein (CREB), forkhead box01 (FoxO1), and brain homeobox transcription factor (BSX) leading to food intake inhibition through changes in the expression of neuropeptide Y (NPY), agouti-related peptide (AgRP), pro-opio melanocortin (POMC), and cocaine and amphetamine-related transcript (CART). The present mini-review summarizes information on the topic and identifies gaps for future research.
Collapse
Affiliation(s)
- José L Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| |
Collapse
|
5
|
Rasal KD, Iquebal MA, Dixit S, Vasam M, Raza M, Sahoo L, Jaiswal S, Nandi S, Mahapatra KD, Rasal A, Udit UK, Meher PK, Murmu K, Angadi UB, Rai A, Kumar D, Sundaray JK. Revealing Alteration in the Hepatic Glucose Metabolism of Genetically Improved Carp, Jayanti Rohu Labeo rohita Fed a High Carbohydrate Diet Using Transcriptome Sequencing. Int J Mol Sci 2020; 21:E8180. [PMID: 33142948 PMCID: PMC7662834 DOI: 10.3390/ijms21218180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 01/25/2023] Open
Abstract
Although feed cost is the greatest concern in aquaculture, the inclusion of carbohydrates in the fish diet, and their assimilation, are still not well understood in aquaculture species. We identified molecular events that occur due to the inclusion of high carbohydrate levels in the diets of genetically improved 'Jayanti rohu' Labeo rohita. To reveal transcriptional changes in the liver of rohu, a feeding experiment was conducted with three doses of gelatinized starch (20% (control), 40%, and 60%). Transcriptome sequencing revealed totals of 15,232 (4464 up- and 4343 down-regulated) and 15,360 (4478 up- and 4171 down-regulated) differentially expressed genes. Up-regulated transcripts associated with glucose metabolisms, such as hexokinase, PHK, glycogen synthase and PGK, were found in fish fed diets with high starch levels. Interestingly, a de novo lipogenesis mechanism was found to be enriched in the livers of treated fish due to up-regulated transcripts such as FAS, ACCα, and PPARγ. The insulin signaling pathways with enriched PPAR and mTOR were identified by Kyoto Encyclopedia of Genes and Genome (KEGG) as a result of high carbohydrates. This work revealed for the first time the atypical regulation transcripts associated with glucose metabolism and lipogenesis in the livers of Jayanti rohu due to the inclusion of high carbohydrate levels in the diet. This study also encourages the exploration of early nutritional programming for enhancing glucose efficiency in carp species, for sustainable and cost-effective aquaculture production.
Collapse
Affiliation(s)
- Kiran D. Rasal
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751 002, India; (K.D.R.); (S.D.); (M.V.); (L.S.); (S.N.); (K.D.M.); (A.R.); (U.K.U.); (P.K.M.); (K.M.)
| | - Mir Asif Iquebal
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, PUSA, New Delhi 110012, India; (M.A.I.); (M.R.); (S.J.); (U.A.); (A.R.); (D.K.)
| | - Sangita Dixit
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751 002, India; (K.D.R.); (S.D.); (M.V.); (L.S.); (S.N.); (K.D.M.); (A.R.); (U.K.U.); (P.K.M.); (K.M.)
| | - Manohar Vasam
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751 002, India; (K.D.R.); (S.D.); (M.V.); (L.S.); (S.N.); (K.D.M.); (A.R.); (U.K.U.); (P.K.M.); (K.M.)
| | - Mustafa Raza
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, PUSA, New Delhi 110012, India; (M.A.I.); (M.R.); (S.J.); (U.A.); (A.R.); (D.K.)
| | - Lakshman Sahoo
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751 002, India; (K.D.R.); (S.D.); (M.V.); (L.S.); (S.N.); (K.D.M.); (A.R.); (U.K.U.); (P.K.M.); (K.M.)
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, PUSA, New Delhi 110012, India; (M.A.I.); (M.R.); (S.J.); (U.A.); (A.R.); (D.K.)
| | - Samiran Nandi
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751 002, India; (K.D.R.); (S.D.); (M.V.); (L.S.); (S.N.); (K.D.M.); (A.R.); (U.K.U.); (P.K.M.); (K.M.)
| | - Kanta Das Mahapatra
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751 002, India; (K.D.R.); (S.D.); (M.V.); (L.S.); (S.N.); (K.D.M.); (A.R.); (U.K.U.); (P.K.M.); (K.M.)
| | - Avinash Rasal
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751 002, India; (K.D.R.); (S.D.); (M.V.); (L.S.); (S.N.); (K.D.M.); (A.R.); (U.K.U.); (P.K.M.); (K.M.)
| | - Uday Kumar Udit
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751 002, India; (K.D.R.); (S.D.); (M.V.); (L.S.); (S.N.); (K.D.M.); (A.R.); (U.K.U.); (P.K.M.); (K.M.)
| | - Prem Kumar Meher
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751 002, India; (K.D.R.); (S.D.); (M.V.); (L.S.); (S.N.); (K.D.M.); (A.R.); (U.K.U.); (P.K.M.); (K.M.)
| | - Khuntia Murmu
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751 002, India; (K.D.R.); (S.D.); (M.V.); (L.S.); (S.N.); (K.D.M.); (A.R.); (U.K.U.); (P.K.M.); (K.M.)
| | - UB Angadi
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, PUSA, New Delhi 110012, India; (M.A.I.); (M.R.); (S.J.); (U.A.); (A.R.); (D.K.)
| | - Anil Rai
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, PUSA, New Delhi 110012, India; (M.A.I.); (M.R.); (S.J.); (U.A.); (A.R.); (D.K.)
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, PUSA, New Delhi 110012, India; (M.A.I.); (M.R.); (S.J.); (U.A.); (A.R.); (D.K.)
| | - Jitendra Kumar Sundaray
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751 002, India; (K.D.R.); (S.D.); (M.V.); (L.S.); (S.N.); (K.D.M.); (A.R.); (U.K.U.); (P.K.M.); (K.M.)
| |
Collapse
|
6
|
Huang CC, Sun J, Ji H, Kaneko G, Xie XD, Chang ZG, Deng W. Systemic effect of dietary lipid levels and α-lipoic acid supplementation on nutritional metabolism in zebrafish (Danio rerio): focusing on the transcriptional level. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1631-1644. [PMID: 32651854 DOI: 10.1007/s10695-020-00795-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/11/2020] [Indexed: 06/11/2023]
Abstract
Considering the excessive lipid accumulation status caused by the increased dietary lipid intake in farmed fish, this study aimed to investigate the systemic effect of dietary lipid levels and α-lipoic acid supplementation on nutritional metabolism in zebrafish. A total of 540 male zebrafish (0.17 g) were fed with normal (CT) and high lipid level (HL) diets for 6 weeks, then fed on 1000 mg/kg α-lipoic acid supplementation diets for the second 6 weeks. HL diets did not affect whole fish protein content, but increased ASNS expression (P < 0.05). Dietary α-lipoic acid increased whole fish protein content, and decreased the expressions of protein catabolism-related genes in muscle of high lipid level groups (P < 0.05). Furthermore, HL diets increased the whole fish lipid content and the expressions of gluconeogenesis and lipogenesis-related genes (P < 0.05), and α-lipoic acid counteracted these effects and decreased the whole fish triglyceride and cholesterol contents and expressions of lipogenesis-related genes, with the enhanced expressions of lipolytic genes, especially in high lipid groups (P < 0.05). HL diets did not affect hepatocyte mitochondrial quantity or the mRNA expressions of mitochondrial biogenesis and electron transport chain-related genes; they were significantly increased by dietary α-lipoic acid (P < 0.05). These results indicated that high dietary lipid promotes lipid accumulation, while α-lipoic acid increases protein content in association of enhanced lipid catabolism. Thus, dietary α-lipoic acid supplementation could reduce lipid accumulation under high lipid, which provides a promising new approach in solving the problem of lipid accumulation in farmed fish.
Collapse
Affiliation(s)
- Chen-Cui Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Jian Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Gen Kaneko
- School of Arts and Sciences, University of Houston-Victoria, 3007, North Ben Wilson, Victoria, TX, 77901, USA
| | - Xing-da Xie
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Zhi-Guang Chang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Wei Deng
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
7
|
Early feeding with hyperglucidic diet during fry stage exerts long-term positive effects on nutrient metabolism and growth performance in adult tilapia ( Oreochromis niloticus). J Nutr Sci 2020; 9:e41. [PMID: 32983425 PMCID: PMC7503184 DOI: 10.1017/jns.2020.34] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022] Open
Abstract
The present study aimed to investigate nutritional programming of carbohydrate metabolism in Nile tilapia. Early nutritional intervention stimulus was achieved by feeding fry with high-protein/low-carbohydrate (HP/LC) or low-protein/high-carbohydrate (LP/HC) diet since first feeding for 4 weeks, and the effect of nutritional stimulus on carbohydrate and its related metabolism was evaluated through the adult stage. Our findings indicated that at week 1, LP/HC diet-fed fry had lower levels of mRNA for genes coding gluconeogenesis and amino acid catabolism and higher levels of hk2 (P < 0⋅05). As expected, in adult tilapia, although LP/HC diet-fed fish had poorer growth (end of stimulus), the fish showed compensatory growth. There were permanent effects of early high-carbohydrate (HC) intake on several parameters, including (1) modulating hepatic composition, (2) increased muscle glycogen, (3) lower levels of enzymes involved in amino acid catabolism and (4) higher levels of glycolytic enzymes in glycolysis. Finally, HP/LC diet- and LP/HC diet-fed fish were challenged with different dietary carbohydrate levels. Irrespective of challenging diets, the early HC stimulus had significant effects on adult tilapia by (1) promoting utilisation of glucose, which had protein-sparing effects for better growth, (2) inducting lipogenesis and (3) decreasing amino acid catabolism. Taken together, for the first time, we demonstrated that early HC feeding was effective for positive nutritional programming of metabolism in Nile tilapia (an omnivorous fish). It led to the improvement of growth performance in adult fish associated with early feeding, which is linked to a better ability to use glucose, to induce lipogenesis, and to suppress amino acid catabolism.
Collapse
|
8
|
Abstract
Barramundi (Lates calcarifer) are a highly valued aquaculture species, and, as obligate carnivores, they have a demonstrated preference for dietary protein over lipid or starch to fuel energetic growth demands. In order to investigate how carnivorous fish regulate nutritional cues, we examined the metabolic effects of feeding two isoenergetic diets that contained different proportions of digestible protein or starch energy. Fish fed a high proportion of dietary starch energy had a higher proportion of liver SFA, but showed no change in plasma glucose levels, and few changes in the expression of genes regulating key hepatic metabolic pathways. Decreased activation of the mammalian target of rapamycin growth signalling cascade was consistent with decreased growth performance values. The fractional synthetic rate (lipogenesis), measured by TAG 2H-enrichment using 2H NMR, was significantly higher in barramundi fed with the starch diet compared with the protein diet (0·6 (se 0·1) v. 0·4 (se 0·1) % per d, respectively). Hepatic TAG-bound glycerol synthetic rates were much higher than other closely related fish such as sea bass, but were not significantly different (starch, 2·8 (se 0·3) v. protein, 3·4 (se 0·3) % per d), highlighting the role of glycerol as a metabolic intermediary and high TAG-FA cycling in barramundi. Overall, dietary starch significantly increased hepatic TAG through increased lipogenesis. Compared with other fish, barramundi possess a unique mechanism to metabolise dietary carbohydrates and this knowledge may define ways to improve performance of advanced formulated feeds.
Collapse
|
9
|
Zhou YL, Guo JL, Tang RJ, Ma HJ, Chen YJ, Lin SM. High dietary lipid level alters the growth, hepatic metabolism enzyme, and anti-oxidative capacity in juvenile largemouth bass Micropterus salmoides. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:125-134. [PMID: 31522360 DOI: 10.1007/s10695-019-00705-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
The present study was conducted to investigate the effects of high dietary lipid levels on growth, metabolism, antioxidant capacity, and immune responses of largemouth bass. Fish (initial body weight 13.38 ± 0.11 g) were fed three isonitrogenous semi-purified diets containing 5%, 10%, and 20% lipid, respectively. The results indicated that fish fed 10% lipid diet showed significantly better final body weight, specific growth rate (SGR), protein efficiency ratio (PER), and feed conversion ratio (FCR) compared with that fed 5% lipid diet. Meanwhile, fish fed 20% lipid diet had a significantly higher viscera ratio (VR), hepatosomatic index (HSI), intraperitoneal fat ratio (IPF), and liver lipid content than those fed the other diets. Higher alanine aminotransferase (ALT) and aspartate transaminase (AST) activities, total cholesterol (TC), triglyceride (TG), free fatty acids (FFA), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) contents, and LDL-C/HDL-C value in plasma were recorded in fish fed 20% lipid diet, while higher insulin contents were obtained in fish fed 5% lipid diet. In addition, the highest carnitine palmitoyltransferase I (CPT1), AMP-activated protein kinase (AMPK), fructose-1,6-bisphosphatase (FBPase), and phosphoenolpyruvate carboxykinase (PEPCK) activities in the liver were also observed in fish fed 20% lipid diet. However, fish fed 20% lipid diet had a significantly lower superoxide dismutase (SOD) and catalase (CAT) activities and higher MDA contents in liver than those fed the other diets. The higher nitric oxide (NO) contents and inducible nitric oxide synthase (iNOS) activity in liver were recorded in fish fed 10% lipid diet. Moreover, the alkaline phosphatase (ALP), inducible nitric oxide synthase (iNOS) and lysozyme activities, and nitric oxide (NO) contents in plasma were higher in fish fed the 10% diets than the other groups. In conclusion, high dietary lipid levels could suppress growth performance and liver anti-oxidative capacity, and reduce immune responses of largemouth bass.
Collapse
Affiliation(s)
- Yue-Lang Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Animal Science and Technology, Southwest University, Chongqing, 400715, People's Republic of China
| | - Jia-Ling Guo
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Animal Science and Technology, Southwest University, Chongqing, 400715, People's Republic of China
| | - Ren-Jun Tang
- Liangping District Agriculture Commission, Chongqing, 400020, People's Republic of China
| | - Hui-Jia Ma
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Animal Science and Technology, Southwest University, Chongqing, 400715, People's Republic of China
| | - Yong-Jun Chen
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Animal Science and Technology, Southwest University, Chongqing, 400715, People's Republic of China
| | - Shi-Mei Lin
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Animal Science and Technology, Southwest University, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
10
|
Song Y, Alami-Durante H, Skiba-Cassy S, Marandel L, Panserat S. Higher glycolytic capacities in muscle of carnivorous rainbow trout juveniles after high dietary carbohydrate stimulus at first feeding. Nutr Metab (Lond) 2019; 16:77. [PMID: 31728152 PMCID: PMC6842487 DOI: 10.1186/s12986-019-0408-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 10/29/2019] [Indexed: 12/21/2022] Open
Abstract
Background Rainbow trout is a “glucose-intolerant” carnivorous species. Using the metabolic programming strategy, we used early nutritional stimuli in order to modify carbohydrate utilization in trout juveniles. Method Fish were fed two diets during the first feeding, namely HP (no carbohydrate / high protein) diet and LP (high carbohydrate / low protein) diet. HP diet was used as the control diet and LP diet as an early stimulus diet. We also used another early stimulus with fish fed HP diet every other day during the first feeding (HP restriction feeding - HPR). After the first-feeding stage (4 weeks), all fish were subsequently subjected to a growth trial with a commercial diet followed by a challenge test with the LP diet (11 weeks). At the end of the first feeding stimulus and of the challenge test, we investigated growth performance, glucose metabolism-related parameters and global DNA CmCGG methylation in trout. Results LP and HPR dietary stimuli have been a success as shown by the direct modifications of growth performance and mRNA levels for glucose metabolism-related genes at the end of first feeding compared to alevins fed the HP diet. At the end of the challenge trial, no variation in growth performance and hepatic metabolism of LP-history and HPR-history in trout juveniles were observed. However, in muscle of trout juvenile subjected to LP diet at the first feeding, we found an up-regulation of mRNA levels of some glucose metabolism (glucose transport and glycolysis)-related genes and an increase of activities of important glycolysis-related enzymes (hexokinase, phosphofructokinase and pyruvate kinase). These observations are associated with a decrease in the content of glycogen compared to fish fed the HP diet. Moreover, global CmCGG DNA methylation in the muscle of fish with LP history was significantly lower than those fed the HP diet. Conclusion Dietary LP stimulus at first feeding could permanently modify glucose metabolism and global CmCGG DNA methylation level in muscle of trout juveniles, showing that the first feeding stage is efficient for programming the glucose metabolism in fish.
Collapse
Affiliation(s)
- Yan Song
- 1INRA, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France.,2Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130 China
| | - Hélène Alami-Durante
- 1INRA, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| | - Sandrine Skiba-Cassy
- 1INRA, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| | - Lucie Marandel
- 1INRA, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| | - Stephane Panserat
- 1INRA, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| |
Collapse
|
11
|
Functional differences between l- and d-carnitine in metabolic regulation evaluated using a low-carnitine Nile tilapia model. Br J Nutr 2019; 122:625-638. [PMID: 32124711 DOI: 10.1017/s000711451900148x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
l-Carnitine is essential for mitochondrial β-oxidation and has been used as a lipid-lowering feed additive in humans and farmed animals. d-Carnitine is an optical isomer of l-carnitine and dl-carnitine has been widely used in animal feeds. However, the functional differences between l- and d-carnitine are difficult to study because of the endogenous l-carnitine background. In the present study, we developed a low-carnitine Nile tilapia model by treating fish with a carnitine synthesis inhibitor, and used this model to investigate the functional differences between l- and d-carnitine in nutrient metabolism in fish. l- or d-carnitine (0·4 g/kg diet) was fed to the low-carnitine tilapia for 6 weeks. l-Carnitine feeding increased the acyl-carnitine concentration from 3522 to 10 822 ng/g and alleviated the lipid deposition from 15·89 to 11·97 % in the liver of low-carnitine tilapia. However, as compared with l-carnitine group, d-carnitine feeding reduced the acyl-carnitine concentration from 10 822 to 5482 ng/g, and increased lipid deposition from 11·97 to 20·21 % and the mRNA expression of the genes involved in β-oxidation and detoxification in the liver. d-Carnitine feeding also induced hepatic inflammation, oxidative stress and apoptosis. A metabolomic investigation further showed that d-carnitine feeding increased glycolysis, protein metabolism and activity of the tricarboxylic acid cycle and oxidative phosphorylation. Thus, l-carnitine can be physiologically utilised in fish, whereas d-carnitine is metabolised as a xenobiotic and induces lipotoxicity. d-Carnitine-fed fish demonstrates increases in peroxisomal β-oxidation, glycolysis and amino acid degradation to maintain energy homeostasis. Therefore, d-carnitine is not recommended for use in farmed animals.
Collapse
|
12
|
Rashidpour A, Silva-Marrero JI, Seguí L, Baanante IV, Metón I. Metformin counteracts glucose-dependent lipogenesis and impairs transdeamination in the liver of gilthead sea bream (Sparus aurata). Am J Physiol Regul Integr Comp Physiol 2019; 316:R265-R273. [DOI: 10.1152/ajpregu.00216.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Metformin is an antidiabetic drug with a major impact on regulating blood glucose levels by decreasing hepatic gluconeogenesis, but also by affecting other pathways, including glucose transport and energy/lipid metabolism. Carnivorous fish are considered glucose intolerant, as they exhibit poor ability in using dietary carbohydrates. To increase the current knowledge about the molecular mechanisms by which metformin can improve glucose homeostasis in carnivorous fish, we addressed the effect of intraperitoneal administration of metformin, in the presence or absence of a glucose load, on metabolic rate-limiting enzymes and lipogenic factors in the liver of gilthead sea bream ( Sparus aurata). Hyperglycemia markedly upregulated the expression of glycolytic enzymes (glucokinase and 6-phosphofructo-1-kinase, PFK1) 5 h following glucose administration, while at 24 h posttreatment, it increased isocitrate dehydrogenase (IDH) activity, a key enzyme of the tricarboxylic acid cycle, and the expression of lipogenic factors (PGC1β, Lpin1, and SREBP1). Metformin counteracted glucose-dependent effects, and downregulated glutamate dehydrogenase, alanine aminotransferase, and mammalian target of rapamycin 5 h posttreatment in the absence of a glucose load, leading to decreased long-term activity of PFK1 and IDH. The results of the present study suggest that hyperglycemia enhances lipogenesis in the liver of S. aurata and that metformin may exert specific metabolic effects in fish by decreasing hepatic transdeamination and suppressing the use of amino acids as gluconeogenic substrates. Our findings highlight the role of amino acid metabolism in the glucose-intolerant carnivorous fish model.
Collapse
Affiliation(s)
- Ania Rashidpour
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Jonás I. Silva-Marrero
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Lidia Seguí
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Isabel V. Baanante
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Isidoro Metón
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
13
|
Conde-Sieira M, Gesto M, Batista S, Linares F, Villanueva JLR, Míguez JM, Soengas JL, Valente LMP. Influence of vegetable diets on physiological and immune responses to thermal stress in Senegalese sole (Solea senegalensis). PLoS One 2018; 13:e0194353. [PMID: 29566022 PMCID: PMC5864020 DOI: 10.1371/journal.pone.0194353] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 03/01/2018] [Indexed: 12/29/2022] Open
Abstract
The substitution of fish resources as ingredients for aquafeeds by those based on vegetable sources is needed to ensure aquaculture sustainability in the future. It is known that Senegalese sole (Solea senegalensis) accepts high dietary content of plant ingredients without altering growth or flesh quality parameters. However, scarce information is available regarding the long-term impact of vegetable diets (combining the inclusion of both vegetable protein and oils) on the stress response and immunity of this fish species. This study aims to evaluate the concomitant effect of the extended use of vegetable protein-based diets with fish oil (FO) replacement (0, 50 or 100%) by vegetable oils (VO), on the response to acute (10 min) or prolonged (4 days) stress, induced by thermal shock. Plasma levels of cortisol, glucose and lactate as well as hepatic levels of glucose, glycogen and lactate were evaluated as primary and secondary responses to stress, 6 and 18 months after feeding the experimental diets (6 and 18 MAF). The brain monoaminergic activity in telencephalon and hypothalamus, and non-specific immune parameters were also evaluated. As expected, thermal shock induced an increase in values of plasma parameters related to stress, which was more evident in acute than in prolonged stress. Stress also affected lactate levels in the liver and the values of the alternative complement pathway-ACH50 in the plasma. Dietary substitution of FO induced an effect per se on some parameters such as decreased hepatic glucose and glycogen levels and peroxidase activity in plasma as well enhanced serotonergic activity in brain of non-stressed fish. The results obtained in some parameters indicate that there is an interaction between the use of vegetable diets with the physiological response to thermal stress, as is the case of the hepatic lactate, serotonergic neurotransmission in brain, and the activity of ACH50 in plasma. These results suggest that the inclusion of VO in plant protein based diets point to a slightly inhibited stress response, more evident for an acute than a prolonged stress.
Collapse
Affiliation(s)
- Marta Conde-Sieira
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Vigo, Spain
- * E-mail:
| | - Manuel Gesto
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Vigo, Spain
| | - Sónia Batista
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
- ICBAS, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Fátima Linares
- CIMA, Centro de Investigacións Mariñas, Vilanova de Arousa, Pontevedra, Spain
| | - José L. R. Villanueva
- IGAFA, Instituto Galego de formación en Acuicultura, Illa de Arousa, Pontevedra, Spain
| | - Jesús M. Míguez
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Vigo, Spain
| | - José L. Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Vigo, Spain
| | - Luísa M. P. Valente
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
- ICBAS, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
14
|
Li Y, Yu C, Li J, Zhang L, Gao F, Zhou G. Effects of dietary energy sources on early postmortem muscle metabolism of finishing pigs. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 30:1764-1772. [PMID: 28728385 PMCID: PMC5666181 DOI: 10.5713/ajas.17.0090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 04/26/2017] [Accepted: 05/22/2017] [Indexed: 11/27/2022]
Abstract
OBJECTIVE This study investigated the effects of different dietary energy sources on early postmortem muscle metabolism of finishing pigs. METHODS Seventy-two barrow (Duroc×Landrace×Yorkshire, DLY) pigs (65.0±2.0 kg) were allotted to three iso-energetic and iso-nitrogenous diets: A (44.1% starch, 5.9% crude fat, and 12.6% neutral detergent fibre [NDF]), B (37.6% starch, 9.5% crude fat, and 15.4% NDF) or C (30.9% starch, 14.3% crude fat, and 17.8% NDF). After the duration of 28-day feeding experiment, 24 pigs (eight per treatment) were slaughtered and the M. longissimus lumborum (LL) samples at 45 min postmortem were collected. RESULTS Compared with diet A, diet C resulted in greater adenosine triphosphate and decreased phosphocreatine (PCr) concentrations, greater activity of creatine kinase and reduced percentage bound activities of hexokinase (HK), and pyruvate kinase (PK) in LL muscles (p<0.05). Moreover, diet C decreased the phosphor-AKT level and increased the hydroxy-hypoxia-inducible factor-1α (HIF-1α) level, as well as decreased the bound protein expressions of HK II, PKM2, and lactate dehydrogenase A (p<0.05). CONCLUSION Diet C with the lowest level of starch and the highest levels of fat and NDF could enhance the PCr utilization and attenuate glycolysis early postmortem in LL muscle of finishing pigs.
Collapse
Affiliation(s)
- Yanjiao Li
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
- College of Animal Science and Technology, Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China
| | - Changning Yu
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaolong Li
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Guanghong Zhou
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
15
|
Short- and long-term metabolic responses to diets with different protein:carbohydrate ratios in Senegalese sole (Solea senegalensis, Kaup 1858). Br J Nutr 2017; 115:1896-910. [PMID: 27046056 DOI: 10.1017/s0007114516001057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Four isolipidic and isoenergetic diets with different protein:carbohydrate (CH) contents (48:38, 52:34, 56:30, 60:26) were fed to juvenile Senegalese sole (22·01 (sem 0·01) g) during 104 d. Oral glucose tolerance tests were performed at the beginning (4 d) and at the end (104 d) of the experiment to assess the effect of the dietary treatment on glucose tolerance. Samples of blood, liver and muscle of all dietary groups were also obtained at the initial and final phases of the trial at different postprandial times (0, 1, 5 and 10 h after feeding) in order to analyse glucose and NEFA in plasma, and metabolites and enzyme activities involved in glycogen metabolism, glycolysis, gluconeogenesis and lipogenesis pathways in liver and muscle. The results obtained in this study suggest a good glucose tolerance in Senegalese sole. This species tolerated important amounts of CH in the diet without showing any deleterious signs in terms of growth or any metabolic disorders. After 104 d of feeding diets with an important amount of CH (48:38 and 52:34), the control of glycaemia was maintained and even postprandial glucose levels in plasma were (in general) lower than at the beginning of the experiment. This reasonable tolerance to glucose is also reflected by an increased use of glucose through glycolysis in liver (indicated by glucokinase activity), and the absence of changes in lipogenic potential in the same tissue (indicated by ATP citrate lyase activity). No clear changes were induced in the muscle by the dietary treatments.
Collapse
|
16
|
Navarro-Guillén C, Yúfera M, Engrola S. Ghrelin in Senegalese sole (Solea senegalensis) post-larvae: Paracrine effects on food intake. Comp Biochem Physiol A Mol Integr Physiol 2017; 204:85-92. [DOI: 10.1016/j.cbpa.2016.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/13/2016] [Accepted: 11/08/2016] [Indexed: 01/18/2023]
|
17
|
Systemic regulation of L-carnitine in nutritional metabolism in zebrafish, Danio rerio. Sci Rep 2017; 7:40815. [PMID: 28102299 PMCID: PMC5244368 DOI: 10.1038/srep40815] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/12/2016] [Indexed: 12/26/2022] Open
Abstract
Excess fat accumulation has been observed widely in farmed fish; therefore, efficient lipid-lowering factors have obtained high attention in the current fish nutrition studies. Dietary L-carnitine can increase fatty acid β-oxidation in mammals, but has produced contradictory results in different fish species. To date, the mechanisms of metabolic regulation of L-carnitine in fish have not been fully determined. The present study used zebrafish to investigate the systemic regulation of nutrient metabolism by dietary L-carnitine supplementation. L-carnitine significantly decreased the lipid content in liver and muscle, accompanied by increased concentrations of total and free carnitine in tissues. Meanwhile, L-carnitine enhanced mitochondrial β-oxidation activities and the expression of carnitine palmitoyltransferase 1 mRNA significantly, whereas it depressed the mRNA expression of adipogenesis-related genes. In addition, L-carnitine caused higher glycogen deposition in the fasting state, and increased and decreased the mRNA expressions of gluconeogenesis-related and glycolysis-related genes, respectively. L-carnitine also increased the hepatic expression of mTOR in the feeding state. Taken together, dietary L-carnitine supplementation decreased lipid deposition by increasing mitochondrial fatty acid β-oxidation, and is likely to promote protein synthesis. However, the L-carnitine-enhanced lipid catabolism would cause a decrease in glucose utilization. Therefore, L-carnitine has comprehensive effects on nutrient metabolism in fish.
Collapse
|
18
|
Conde-Sieira M, Soengas JL. Nutrient Sensing Systems in Fish: Impact on Food Intake Regulation and Energy Homeostasis. Front Neurosci 2017; 10:603. [PMID: 28111540 PMCID: PMC5216673 DOI: 10.3389/fnins.2016.00603] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 12/19/2016] [Indexed: 12/27/2022] Open
Abstract
Evidence obtained in recent years in a few species, especially rainbow trout, supports the presence in fish of nutrient sensing mechanisms. Glucosensing capacity is present in central (hypothalamus and hindbrain) and peripheral [liver, Brockmann bodies (BB, main accumulation of pancreatic endocrine cells in several fish species), and intestine] locations whereas fatty acid sensors seem to be present in hypothalamus, liver and BB. Glucose and fatty acid sensing capacities relate to food intake regulation and metabolism in fish. Hypothalamus is as a signaling integratory center in a way that detection of increased levels of nutrients result in food intake inhibition through changes in the expression of anorexigenic and orexigenic neuropeptides. Moreover, central nutrient sensing modulates functions in the periphery since they elicit changes in hepatic metabolism as well as in hormone secretion to counter-regulate changes in nutrient levels detected in the CNS. At peripheral level, the direct nutrient detection in liver has a crucial role in homeostatic control of glucose and fatty acid whereas in BB and intestine nutrient sensing is probably involved in regulation of hormone secretion from endocrine cells.
Collapse
Affiliation(s)
- Marta Conde-Sieira
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo Vigo, Spain
| | - José L Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo Vigo, Spain
| |
Collapse
|
19
|
Otero-Rodiño C, Velasco C, Álvarez-Otero R, López-Patiño MA, Míguez JM, Soengas JL. Changes in the levels and phosphorylation status of Akt, AMPK, CREB, and FoxO1 in hypothalamus of rainbow trout under conditions of enhanced glucosensing activity. J Exp Biol 2017; 220:4410-4417. [DOI: 10.1242/jeb.165159] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/26/2017] [Indexed: 12/13/2022]
Abstract
There is no available information in fish about mechanisms linking glucosensing activation and changes in the expression of brain neuropeptides controlling food intake. Therefore, we assessed in rainbow trout hypothalamus the effects of raised levels of glucose on the levels and phosphorylation status of two transcription factors, FoxO1 and CREB, possibly involved in linking those processes. Moreover, we also aimed to assess the changes in the levels and phosphorylation status of two proteins possibly involved in the modulation of these transcription factors such as Akt and AMPK. Therefore, we evaluated in pools of hypothalamus incubated for 3h and 6h at 15 °C in modified Hanks’ medium containing 2, 4, or 8 mM D-glucose the response of parameters related to glucosensing mechanisms, neuropeptide expression, and levels and phosphorylation status of proteins of interest. The activation of hypothalamic glucosensing systems and the concomitant enhanced anorectic potential occurred in parallel with activation of Akt and inhibition of AMPK. The changes in these proteins would relate to neuropeptide expression through changes in the levels and phosphorylation status of transcription factors under their control, such as CREB and FoxO1, which displayed inhibitory (CREB) or activatory (FoxO1) responses to increased glucose.
Collapse
Affiliation(s)
- Cristina Otero-Rodiño
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Spain
| | - Cristina Velasco
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Spain
| | - Rosa Álvarez-Otero
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Spain
| | - Marcos A. López-Patiño
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Spain
| | - Jesús M. Míguez
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Spain
| | - José L. Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Spain
| |
Collapse
|
20
|
Bonacic K, Estévez A, Bellot O, Conde-Sieira M, Gisbert E, Morais S. Dietary Fatty Acid Metabolism is Affected More by Lipid Level than Source in Senegalese Sole Juveniles: Interactions for Optimal Dietary Formulation. Lipids 2015; 51:105-22. [PMID: 26563870 DOI: 10.1007/s11745-015-4089-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/19/2015] [Indexed: 01/17/2023]
Abstract
This study analyses the effects of dietary lipid level and source on lipid absorption and metabolism in Senegalese sole (Solea senegalensis). Juvenile fish were fed 4 experimental diets containing either 100 % fish oil (FO) or 25 % FO and 75 % vegetable oil (VO; rapeseed, linseed and soybean oils) at two lipid levels (~8 or ~18 %). Effects were assessed on fish performance, body proximate composition and lipid accumulation, activity of hepatic lipogenic and fatty acid oxidative enzymes and, finally, on the expression of genes related to lipid metabolism in liver and intestine, and to intestinal absorption, both pre- and postprandially. Increased dietary lipid level had no major effects on growth and feeding performance (FCR), although fish fed FO had marginally better growth. Nevertheless, diets induced significant changes in lipid accumulation and metabolism. Hepatic lipid deposits were higher in fish fed VO, associated to increased hepatic ATP citrate lyase activity and up-regulated carnitine palmitoyltransferase 1 (cpt1) mRNA levels post-prandially. However, lipid level had a larger effect on gene expression of metabolic (lipogenesis and β-oxidation) genes than lipid source, mostly at fasting. High dietary lipid level down-regulated fatty acid synthase expression in liver and intestine, and increased cpt1 mRNA in liver. Large lipid accumulations were observed in the enterocytes of fish fed high lipid diets. This was possibly a result of a poor capacity to adapt to high dietary lipid level, as most genes involved in intestinal absorption were not regulated in response to the diet.
Collapse
Affiliation(s)
- Kruno Bonacic
- IRTA, Centre de Sant Carles de la Ràpita (SCR), Ctra. Poble Nou km 5.5, 43540, Tarragona, Spain.
| | - Alicia Estévez
- IRTA, Centre de Sant Carles de la Ràpita (SCR), Ctra. Poble Nou km 5.5, 43540, Tarragona, Spain.
| | - Olga Bellot
- IRTA, Centre de Sant Carles de la Ràpita (SCR), Ctra. Poble Nou km 5.5, 43540, Tarragona, Spain.
| | - Marta Conde-Sieira
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, 289, 4050-123, Porto, Portugal.
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, 36310, Vigo, Spain.
| | - Enric Gisbert
- IRTA, Centre de Sant Carles de la Ràpita (SCR), Ctra. Poble Nou km 5.5, 43540, Tarragona, Spain.
| | - Sofia Morais
- IRTA, Centre de Sant Carles de la Ràpita (SCR), Ctra. Poble Nou km 5.5, 43540, Tarragona, Spain.
| |
Collapse
|