1
|
Zhang Y, Wang L, Zeng J, Shen W. Research advances in polyphenols from Chinese herbal medicine for the prevention and treatment of chronic obstructive pulmonary disease: a review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03945-y. [PMID: 40035820 DOI: 10.1007/s00210-025-03945-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 02/17/2025] [Indexed: 03/06/2025]
Abstract
Chronic obstructive pulmonary disease (COPD) is a global health problem due to its high death and morbidity worldwide, which is characterized by an incompletely reversible limitation in airflow that is not fully reversible. Unfortunately, Western medical treatments are unable to reverse the progressive decline in lung function. Importantly, polyphenolic compounds isolated from Chinese herbal medicine exhibited therapeutic/interventional effects on COPD in preclinical studies. This review systematically analyzed the pathogenesis of COPD, such as inflammation, oxidative stress, protease/antiprotease imbalance, aging, cell death, and dysbiosis of gut microbiota. Moreover, this review summarized the regulatory mechanisms of natural polyphenolic compounds for the treatment of COPD. Several studies have demonstrated that natural polyphenolic compounds have therapeutic effects on COPD by regulating various biological processes, such as anti-inflammatory, reduction of oxidative damage, anti-cell death, and inhibition of airway hyperglycemia. Mechanistically, this review found that the promising effects of natural polyphenolic compounds on COPD were mainly achieved through modulating the NF-κB and MAPK inflammatory pathways, the Nrf2 oxidative stress pathway, and the SIRT1/PGC-1α lung injury pathway. Furthermore, this review analyzed the efficacy and safety of natural polyphenolic compounds for the treatment of COPD in clinical trials, and discussed their challenges and future development directions. In conclusion, this review combined the latest literature to illustrate the various pathogenesis and interrelationships of COPD in the form of graphs, texts, and tables, and sorted out the functional role and mechanisms of natural polyphenols in treating COPD, with a view to providing new ideas and plans for the in-depth research on COPD and the systemic treatment of COPD with Chinese herbal medicine.
Collapse
Affiliation(s)
- Yang Zhang
- Department of General Practice Medicine, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dianmian Avenue, Wuhua District, Kunming, 650101, China
| | - Lijuan Wang
- Department of Nuclear Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China
| | - Jinyi Zeng
- Department of General Practice Medicine, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dianmian Avenue, Wuhua District, Kunming, 650101, China
| | - Wen Shen
- Department of General Practice Medicine, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dianmian Avenue, Wuhua District, Kunming, 650101, China.
| |
Collapse
|
2
|
Cui J, Lin L, Hao F, Shi Z, Gao Y, Yang T, Yang C, Wu X, Gao R, Ru Y, Li F, Xiao C, Gao Y, Wang Y. Comprehensive review of the traditional uses and the potential benefits of epimedium folium. Front Pharmacol 2024; 15:1415265. [PMID: 39323630 PMCID: PMC11422139 DOI: 10.3389/fphar.2024.1415265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/20/2024] [Indexed: 09/27/2024] Open
Abstract
Epimedium Folium has been extensively utilized for medicinal purposes in China for a significant period. This review undertakes a comprehensive examination of literature pertaining to Epimedium and its metabolites over the past decade, drawing from databases such as PubMed. Through meticulous organization and synthesis of pertinent research findings, including disease models, pharmacological effects, and related aspects, this narrative review sheds light on the principal pharmacological activities and associated mechanisms of Epimedium in safeguarding the reproductive system, promoting bone health, mitigating inflammation, and combating tumors and viral infections. Consequently, this review contributes to a more profound comprehension of the recent advances in Epimedium research.
Collapse
Affiliation(s)
- Jialu Cui
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Lin
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Feiran Hao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhuo Shi
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yehui Gao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tingyu Yang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chunqi Yang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiangjun Wu
- School of Pharmacy, Henan University, Kaifeng, China
| | - Rong Gao
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yi Ru
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Fangyang Li
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Chengrong Xiao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yue Gao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yuguang Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
3
|
Guo J, Zhang QY, Xu L, Li M, Sun QY. Icariin ameliorates LPS-induced acute lung injury in mice via complement C5a-C5aR1 and TLR4 signaling pathways. Int Immunopharmacol 2024; 131:111802. [PMID: 38467082 DOI: 10.1016/j.intimp.2024.111802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/22/2024] [Accepted: 03/02/2024] [Indexed: 03/13/2024]
Abstract
Acute lung injury (ALI) is an acute respiratory-related progressive disorder, which lacks specific pharmacotherapy. Icariin (ICA) has been shown to be effective in treating ALI. However, the targets and pharmacological mechanisms underlying the effects of ICA in the treatment of ALI are relatively lacking. Based on network pharmacology and molecular docking analyses, the gene functions and potential target pathways of ICA in the treatment of ALI were determined. In addition, the underlying mechanisms of ICA were verified by immunohistochemistry, immunofluorescence, quantitative Real-time PCR, and Western blot in LPS-induced ALI mice. The biological processes targeted by ICA in the treatment of ALI included the pathological changes, inflammatory response, and cell signal transduction. Network pharmacology, molecular docking, and in vivo experimental results revealed that ICA inhibited the complement C5a-C5aR1 axis, TLR4 mediated NF-κB, MAPK, and JAK2-STAT3 signaling pathways related gene and protein expressions, and decreased inflammatory cytokine, chemokine, adhesion molecule expressions, and mitochondrial apoptosis in LPS-induced ALI.
Collapse
Affiliation(s)
- Jing Guo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China; School of Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang 550025, China
| | - Qi-Yun Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Lin Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Min Li
- General Ward, Guizhou Provincial People's Hospital, Guiyang 550002, China.
| | - Qian-Yun Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China.
| |
Collapse
|
4
|
Jin F, Fan P, Wu Y, Yang Q, Li J, Liu H. Efficacy and Mechanisms of Natural Products as Therapeutic Interventions for Chronic Respiratory Diseases. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:57-88. [PMID: 38353634 DOI: 10.1142/s0192415x24500034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Chronic respiratory diseases are long-term conditions affecting the airways and other lung components that are characterized by a high prevalence, disability rate, and mortality rate. Further optimization of their treatment is required. Natural products, primarily extracted from organisms, possess specific molecular and structural formulas as well as distinct chemical and physical properties. These characteristics grant them the advantages of safety, gentleness, accessibility, and minimal side effects. The numerous advances in the use of natural products for treating chronic respiratory diseases have provided a steady source of motivation for new drug research and development. In this paper, we introduced the pathogenesis of chronic respiratory diseases and natural products. Furthermore, we classified natural products according to their mechanism for treating chronic respiratory diseases and describe the ways in which these products can alleviate the pathological symptoms. Simultaneously, we elaborate on the signal transduction pathways and biological impacts of natural products' targeting. Additionally, we present future prospects for natural products, considering their combination treatment approaches and administration methods. The significance of this review extends to both the research on preventing and treating chronic respiratory diseases, as well as the advancement of novel drug development in this field.
Collapse
Affiliation(s)
- Fanli Jin
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, P. R. China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases, Co-Constructed by Henan Province and Education Ministry of China Zhengzhou, P. R. China
| | - Pengbei Fan
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, P. R. China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases, Co-Constructed by Henan Province and Education Ministry of China Zhengzhou, P. R. China
| | - Yuanyuan Wu
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, P. R. China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases, Co-Constructed by Henan Province and Education Ministry of China Zhengzhou, P. R. China
| | - Qingzhen Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education School of Life Science and Technology, Xi'an Jiaotong University Xi'an, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC) Xi'an Jiaotong University, Xi'an, P. R. China
| | - Jiansheng Li
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, P. R. China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases, Co-Constructed by Henan Province and Education Ministry of China Zhengzhou, P. R. China
| | - Han Liu
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, P. R. China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases, Co-Constructed by Henan Province and Education Ministry of China Zhengzhou, P. R. China
| |
Collapse
|
5
|
Khezri MR, Nazari-Khanamiri F, Mohammadi T, Moloodsouri D, Ghasemnejad-Berenji M. Potential effects of icariin, the Epimedium-derived bioactive compound in the treatment of COVID-19: a hypothesis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:1019-1027. [PMID: 35657423 PMCID: PMC9163523 DOI: 10.1007/s00210-022-02262-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/28/2022] [Indexed: 11/01/2022]
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has affected the world's health systems for more than two years. This disease causes a high mortality rate followed by cytokine storm-induced oxidative stress and acute respiratory distress syndrome (ARDS). Therefore, many drugs have been considered with emphasis on their anti-inflammatory and antioxidant effects in controlling the consequences of SARS-CoV-2 infection. Icariin is a major bioactive pharmaceutical compound derived from Epimedium plants, which is known due to its anti-inflammatory and antioxidant effects. Additionally, the protective effects of icariin have been studied in different pathologies through modulating intracellular pathways. In addition to the potential effect of this compound on inflammation and oxidative stress caused by SARS-CoV-2 infection, it appears to interfere with intracellular pathways involved in viral entry into the cell. Therefore, this paper aims to review the molecular mechanisms of anti-inflammatory and antioxidant properties of icariin, and hypothesizes its potential to inhibit SARS-CoV-2 entry into host cells through modulating the intracellular pathways.
Collapse
Affiliation(s)
- Mohammad Rafi Khezri
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Fereshteh Nazari-Khanamiri
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Tooba Mohammadi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Donya Moloodsouri
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Morteza Ghasemnejad-Berenji
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran.
- Research Center for Experimental and Applied Pharmaceutical Sciences, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
6
|
Luo Z, Dong J, Wu J. Impact of Icariin and its derivatives on inflammatory diseases and relevant signaling pathways. Int Immunopharmacol 2022; 108:108861. [PMID: 35597118 DOI: 10.1016/j.intimp.2022.108861] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023]
Abstract
Herba Epimedii is a famous herb collected from China and Korea. It has been used for impotency, osteoporosis, and amnestic treatment for thousands of years. Icariin, a typical flavonoid compound isolated from Herba Epimedii, was reported as a potential anti-inflammatory drug. Icariside and icaritin are the two metabolites of icariin. Icariin and its metabolites have been used to treat a wide range of inflammatory diseases, such as atherosclerosis, Alzheimer's disease, depression, osteoarthritis, and asthma. They exert powerful suppression of proinflammatory signaling, such as NF-κB and MAPKs. More importantly, they can upregulate anti-inflammatory signaling, such as GR and Nrf2. In this study, we review the therapeutic effects and mechanisms of icariin and its metabolites in inflammatory diseases and provide novel insights into these potential anti-inflammatory drugs.
Collapse
Affiliation(s)
- Zhuyu Luo
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, PR China.
| | - Jinfeng Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, PR China.
| |
Collapse
|
7
|
Li LY, Zhang CT, Zhu FY, Zheng G, Liu YF, Liu K, Zhang CH, Zhang H. Potential Natural Small Molecular Compounds for the Treatment of Chronic Obstructive Pulmonary Disease: An Overview. Front Pharmacol 2022; 13:821941. [PMID: 35401201 PMCID: PMC8988065 DOI: 10.3389/fphar.2022.821941] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/02/2022] [Indexed: 12/20/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the major diseases threatening human life and health. According to the report released by the World Health Organization (WHO) in 2020, COPD has become the third leading cause of death in the world, featuring a sustainable growth of incidence rate as well as population age. The purpose of this review focuses on the advancement of bioactive natural compounds, such as baicalin, quercetin, resveratrol, and curcumin, which demonstrate promising therapeutic/interventional effects on CODP in vitro and in vivo. Information emphasizing on COPD was systematically collected from several authoritative internet databases including Web of Science, PubMed, Elsevier, Wiley Online Library, and Europe PMC, with a combination of keywords containing “COPD” and “natural small molecular compounds”. The new evidence indicated that these valuable molecules featured unique functions in the treatment of COPD through various biological processes such as anti-inflammatory, anti-oxidant, anti-apoptosis, and anti-airway fibrosis. Moreover, we found that the promising effects of these natural compounds on COPD were mainly achieved through JAK3/STAT3/NF-κB and MAPK inflammatory signaling pathways, Nrf2 oxidative stress signaling pathway, and TGF-β1/Smad 2/3 fibrosis signaling pathway, which referenced to multiple targets like TNF-α, IL-6, IL-8, TIMP-1, MMP, AKT, JAK3, IKK, PI3K, HO-1, MAPK, P38, ERK, etc. Current challenges and future directions in this promising field are also discussed at the end of this review. For the convenience of the readers, this review is divided into ten parts according to the structures of potential natural small molecular compounds. We hope that this review brings a quick look and provides some inspiration for the research of COPD.
Collapse
Affiliation(s)
- Liu-Ying Li
- Department of Heart Disease of Traditional Chinese Medicine, First People’s Hospital of Zigong City, Zigong, China
| | - Chuan-Tao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Feng-Ya Zhu
- Department of Heart Disease of Traditional Chinese Medicine, First People’s Hospital of Zigong City, Zigong, China
| | - Gang Zheng
- Department of Respiratory and Critical Care Medicine, First People’s Hospital of Zigong City, Zigong, China
| | - Yu-Fei Liu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Liu
- Department of Respiratory and Critical Care Medicine, First People’s Hospital of Zigong City, Zigong, China
| | - Chen-Hui Zhang
- Department of Combine Traditional Chinese and Western Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Chen-Hui Zhang, ; Hong Zhang,
| | - Hong Zhang
- Department of Combine Traditional Chinese and Western Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Chen-Hui Zhang, ; Hong Zhang,
| |
Collapse
|
8
|
Efficacy and safety of modified Bushen Yiqi formulas (MBYF) as an add-on to formoterol and budesonide in the management of COPD: study protocol for a multicentre, double-blind, placebo-controlled, parallel-group, randomized clinical trial: FB-MBYF Trial. Trials 2022; 23:143. [PMID: 35164853 PMCID: PMC8842909 DOI: 10.1186/s13063-022-06057-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 01/27/2022] [Indexed: 11/16/2022] Open
Abstract
Background Inhaled glucocorticoid corticosteroid (ICS), long-acting β2-adrenoceptor agonist (LABA), and other drugs have limited therapeutic effects on COPD with significant individual differences. Traditional Chinese medicine (TCM)-modified Bushen Yiqi formula (MBYF) demonstrates advantages in COPD management in China. This study aims to evaluate the efficacy and safety of MBYF as an add-on to budesonide/formoterol in COPD patients and confirm the related genes affecting the therapeutic effect in the treatment of COPD. Methods In this multicentre, randomised, double-blind, placebo-controlled, parallel-group study, eligible patients with COPD will randomly receive a 360-day placebo or MBYF as an adjuvant to budesonide/formoterol in a 1:1 ratio and be followed up with every 2 months. The primary outcomes will be the frequency, times, and severity of acute exacerbation of COPD (AECOPD), COPD assessment test (CAT) score, and pulmonary function tests (PFTs). The secondary outcomes will include the modified Medical Research Council (mMRC) dyspnoea scale, 6-min walking test (6MWT), BODE index, quantitative scores of syndromes classified in TCM, inflammation indices, and hypothalamic-pituitary-adrenaline (HPA) axis function. We will also test the genotype to determine the relationship between drugs and efficacy. All the data will be recorded in case report forms (CRFs) and analysed by SPSS V.20.0. Discussion A randomized clinical trial design to evaluate the efficacy and safety of MBYF in COPD is described. The results will provide evidence for the combination therapy of modern medicine and TCM medicine, and individual therapy for COPD.Trial registration. Trial registration ID: ChiCTR1900026124, Prospective registration. Supplementary Information The online version contains supplementary material available at 10.1186/s13063-022-06057-7.
Collapse
|
9
|
Sun Y, Pang B, Wang Y, Xiao J, Jiang D. Baohuoside I Inhibits the Proliferation of Hepatocellular Carcinoma Cells via Apoptosis Signaling and NF-kB Pathway. Chem Biodivers 2021; 18:e2100063. [PMID: 33904248 DOI: 10.1002/cbdv.202100063] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/09/2021] [Indexed: 11/09/2022]
Abstract
Baohuoside I is a flavonoid isolated from Epimedium koreanum Nakai and has many pharmacological activities. However, its role in liver cancer remains unclear. This study aimed to investigate the inhibitory effect of Baohuoside I on the Human Hepatocellular Carcinoma (HCC) cell lines QGY7703, and underlying mechanisms. QGY7703 cells were used as the model to assess the function of Baohuoside I in vitro. The effects of Baohuoside I on QGY7703 cells' growth, proliferation, and invasiveness were confirmed by CCK-8, lactate dehydrogenase release, and invasion assays. Cell apoptosis was analyzed by flow cytometry, and the levels of cleaved Caspase-3, Bax, and Bcl-2 were quantified by western blot. Western blot analysis, nuclear translocation of NF-κB, and Q-PCR were used to measure the expression of affected molecules. In QGY7703 cells, Baohuoside I induced the expression of molecules related to NF-κB pathway. The toxicity of Baohuoside I on QGY7703 cells was also confirmed in vivo, in a tumor model. Baohuoside I had a significant toxic effect on QGY7703 cells from a concentration of 10 μM. This compound significantly inhibited the proliferation of QGY7703 cells by inducing apoptosis and downregulating NF-κB signaling pathway. Thus, Baohuoside I is a novel candidate drug and opens new possibilities of clinical strategies for HCC treatment.
Collapse
Affiliation(s)
- Yunlong Sun
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, P. R. China
| | - Bo Pang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, P. R. China
| | - Yingzhe Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, P. R. China
| | - Jinglei Xiao
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, P. R. China
| | - Dacheng Jiang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, P. R. China
| |
Collapse
|
10
|
Hu L, Liu F, Li L, Zhang L, Yan C, Li Q, Qiu J, Dong J, Sun J, Zhang H. Effects of icariin on cell injury and glucocorticoid resistance in BEAS-2B cells exposed to cigarette smoke extract. Exp Ther Med 2020; 20:283-292. [PMID: 32550884 PMCID: PMC7296294 DOI: 10.3892/etm.2020.8702] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 02/11/2020] [Indexed: 12/12/2022] Open
Abstract
Glucocorticoids (GCs) exert a therapeutic effect in numerous chronic inflammatory diseases. However, chronic obstructive pulmonary disease (COPD) tends to be GC-resistant. Icariin, a major component of flavonoids isolated from Epimedium brevicornum Maxim (Berberidaceae), significantly relieves symptoms in patients with COPD. However, the mechanism of action remains unclear and further investigation is required to establish whether it may serve as an alternative or complementary therapy for COPD. The aim of the present study was to determine the effects of icariin in human bronchial epithelial cells exposed to cigarette smoke extract (CSE) and to determine whether icariin reverses GC resistance. The results revealed that icariin significantly increased the proliferation of CSE-exposed cells. Furthermore, icariin significantly increased protein expression of the anti-inflammatory factor interleukin (IL)-10 and significantly decreased protein expression of the pro-inflammatory factors IL-8 and tumor necrosis factor α. Icariin also attenuated the expression of the cellular matrix remodelling biomarkers matrix metallopeptidase 9 and tissue inhibitor of metalloproteinase 1, and decreased the production of reactive oxygen species (ROS). In addition, icariin regulated the expression of GC resistance-related factors, such as GC receptors, histone deacetylase 2, nuclear factor erythroid-2-related factor 2 and nuclear factor κ B. The results obtained in the present study suggested that icariin may decrease CSE-induced inflammation, airway remodelling and ROS production by mitigating GC resistance. In conclusion, icariin may potentially be used in combination with GCs to increase therapeutic efficacy and reduce GC resistance in COPD.
Collapse
Affiliation(s)
- Lingli Hu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Institute of Integrated Traditional Chinese and Western Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Feng Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Institute of Integrated Traditional Chinese and Western Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Lulu Li
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Institute of Integrated Traditional Chinese and Western Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Li Zhang
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Chen Yan
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Institute of Integrated Traditional Chinese and Western Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Qiuping Li
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Institute of Integrated Traditional Chinese and Western Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Jian Qiu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Institute of Integrated Traditional Chinese and Western Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Institute of Integrated Traditional Chinese and Western Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Jing Sun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Institute of Integrated Traditional Chinese and Western Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Hongying Zhang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Institute of Integrated Traditional Chinese and Western Medicine, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
11
|
Zhou J, Wang C, Wu J, Fukunaga A, Cheng Z, Wang J, Yamauchi A, Yodoi J, Tian H. Anti-Allergic and Anti-Inflammatory Effects and Molecular Mechanisms of Thioredoxin on Respiratory System Diseases. Antioxid Redox Signal 2020; 32:785-801. [PMID: 31884805 DOI: 10.1089/ars.2019.7807] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: The pathogenesis and progression of allergic inflammation in the respiratory system are closely linked to oxidative stress. Thioredoxin (TRX) is an essential redox balance regulator in organisms and is induced by various oxidative stress factors, including ultraviolet rays, radiation, oxidation, viral infections, ischemia reperfusion, and anticancer agents. Recent Advances: We demonstrated that systemic administration and transgenic overexpression of TRX is useful in a wide variety of in vivo inflammatory respiratory diseases models, such as viral pneumonia, interstitial lung disease, chronic obstructive pulmonary disease, asthma, acute respiratory distress syndrome, and obstructive sleep apnea syndrome, by removing reactive oxygen species, blocking production of inflammatory cytokines, inhibiting migration and activation of neutrophils and eosinophils, and regulating the cellular redox status. In addition, TRX's anti-inflammatory mechanism is different from the mechanisms associated with anti-inflammatory agents, such as glucocorticoids, which regulate the inflammatory reaction in association with suppressing immune responses. Critical Issues: Understanding the molecular mechanism of TRX is very helpful for understanding the role of TRX in respiratory diseases. In this review, we show the protective effect of TRX in various respiratory diseases. In addition, we discuss its anti-allergic and anti-inflammatory molecular mechanism in detail. Future Directions: The application of TRX may be useful for treating respiratory allergic inflammatory disorders. Antioxid. Redox Signal. 32, 785-801.
Collapse
Affiliation(s)
- JieDong Zhou
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, China
| | - CuiXue Wang
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, China
| | - JiaLin Wu
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, China
| | - Atsushi Fukunaga
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - ZuSheng Cheng
- Department of Radiology, Shaoxing Seventh People's Hospital, Shaoxing, China
| | - JinQuan Wang
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, China
| | - Akira Yamauchi
- Department of Breast Surgery, Nara Prefectural General Medical Center, Nara, Japan
| | - Junji Yodoi
- Laboratory of Infection and Prevention, Department of Biological Response, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Hai Tian
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, China.,Jiaozhimei Biotechnology (Shaoxing) Co., Ltd., Shaoxing, China
| |
Collapse
|
12
|
Zuo S, Zou W, Wu RM, Yang J, Fan JN, Zhao XK, Li HY. Icariin Alleviates IL-1β-Induced Matrix Degradation By Activating The Nrf2/ARE Pathway In Human Chondrocytes. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:3949-3961. [PMID: 31819369 PMCID: PMC6876636 DOI: 10.2147/dddt.s203094] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 10/29/2019] [Indexed: 12/20/2022]
Abstract
Objective Osteoarthritis (OA) is characterized by progressive matrix destruction of articular cartilage. This study aimed to investigate the potential antioxidative and chondroprotective effects and underlying mechanism of Icariin (ICA) in interleukin-1 beta (IL-1β)-induced extracellular matrix (ECM) degradation of OA cartilage. Methods Human chondrocyte cell line HC-A was treated with different doses of ICA, and then MTT assay and PI staining were used to estimate ICA-induced chondrocyte apoptosis. Intracellular ROS and superoxide dismutase (SOD) and glutathione peroxidase (GPX) were measured after treatment by IL-1β with or without ICA. The mRNA and protein expression levels of redox transcription factor Nrf2 and the downstream effector SOD-1, SOD-2, NQO-1 and HO-1 were assayed to explore the detailed mechanism by which ICA alleviates ECM degradation. Finally, to expound the role of Nrf2 in ICA-mediated chondroprotection, we specifically depleted Nrf2 in human chondrocytes and then pretreated them with ICA followed by IL-1β. Results ICA had no cytotoxic effects on human chondrocytes and 10−9 M was selected as the optimum concentration. ROS induced by IL-1β could drastically activate matrix-degrading proteases and ICA could significantly rescue the matrix degradation and excess ROS generation caused by IL-1β. We observed that ICA activated the Nrf2/ARE pathway, consequently upregulating the generation of GPX and SOD. Ablation of Nrf2 abrogated the chondroprotective and antioxidative effects of ICA in IL-1β-treated chondrocytes. Conclusion ICA alleviates IL-1β-induced matrix degradation and eliminates ROS by activating the Nrf2/ARE pathway.
Collapse
Affiliation(s)
- Shi Zuo
- Department of Hepatobiliary Surgery, The Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Wei Zou
- Department of Sports Medicine, The Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou, People's Republic of China.,Department of Orthopedics, The Fourth People's Hospital of Guiyang, Guizhou, People's Republic of China
| | - Rong-Min Wu
- Department of Ultrasonography, The Maternity Hospital of Guizhou, Guiyang, Guizhou, People's Republic of China
| | - Jing Yang
- Department of Infectious Disease, The Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Jian-Nan Fan
- Department of Sports Medicine, The Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Xue-Ke Zhao
- Department of Infectious Disease, The Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Hai-Yang Li
- Department of Hepatobiliary Surgery, The Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| |
Collapse
|
13
|
Hassanshahi M, Su YW, Khabbazi S, Fan CM, Tang Q, Wen X, Fan J, Chen KM, Xian CJ. Retracted: Icariin attenuates methotrexate chemotherapy-induced bone marrow microvascular damage and bone loss in rats. J Cell Physiol 2019; 234:16549-16561. [PMID: 30784063 DOI: 10.1002/jcp.28326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/20/2019] [Accepted: 01/24/2019] [Indexed: 01/24/2023]
Abstract
Methotrexate (MTX), a widely used antimetabolite in paediatric cancer to treatment, has been widely reported to cause bone loss and bone marrow (BM) microvascular (particularly sinusoids) damage. Investigations must now investigate how MTX-induced bone loss and microvasculature damage can be attenuated/prevented. In the present study, we examined the potency of icariin, an herbal flavonoid, in reducing bone loss and the dilation/damage of BM sinusoids in rats caused by MTX treatment. Groups of young rats were treated with five daily MTX injections (0.75 mg/kg) with and without icariin oral supplementation until Day 9 after the first MTX injection. Histological analyses showed a significant reduction in the bone volume/tissue volume (BV/TV) fraction (%) and trabecular number in the metaphysis trabecular bone of MTX-treated rats, but no significant changes in trabecular thickness and trabecular spacing. However, the BV/TV (%) and trabecular number were found to be significantly higher in MTX + icariin-treated rats than those of MTX alone-treated rats. Gene expression analyses showed that icariin treatment maintained expression of osteogenesis-related genes but suppressed the induction of adipogenesis-related genes in bones of MTX-treated rats. In addition, icariin treatment attenuated MTX-induced dilation of BM sinusoids and upregulated expression of endothelial cell marker CD31 in the metaphysis bone of icariin + MTX-treated rats. Furthermore, in vitro studies suggest that icariin treatment can potentially enhance the survival of cultured rat sinusoidal endothelial cells against cytotoxic effect of MTX and promote their migration and tube formation abilities, which is associated with enhanced production of nitric oxide.
Collapse
Affiliation(s)
- Mohammadhossein Hassanshahi
- School of Pharmacy and Medical Sciences, UniSA Cancer Research Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Yu-Wen Su
- School of Pharmacy and Medical Sciences, UniSA Cancer Research Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Samira Khabbazi
- School of Pharmacy and Medical Sciences, UniSA Cancer Research Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Chia-Ming Fan
- School of Pharmacy and Medical Sciences, UniSA Cancer Research Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Qian Tang
- School of Pharmacy and Medical Sciences, UniSA Cancer Research Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Xuesen Wen
- Institute of Pharmacognosy, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Jian Fan
- Department of Orthopedics, Tongji Hospital, Tongji University, Shanghai, China
| | - Ke-Ming Chen
- Institute of Orthopaedics, Lanzhou General Hospital of CPLA, Lanzhou, China
| | - Cory J Xian
- School of Pharmacy and Medical Sciences, UniSA Cancer Research Institute, University of South Australia, Adelaide, South Australia, Australia.,Department of Orthopedics, Tongji Hospital, Tongji University, Shanghai, China
| |
Collapse
|
14
|
Liu Y, Mi B, Lv H, Liu J, Xiong Y, Hu L, Xue H, Panayi AC, Liu G, Zhou W. Shared KEGG pathways of icariin-targeted genes and osteoarthritis. J Cell Biochem 2019; 120:7741-7750. [PMID: 30506715 DOI: 10.1002/jcb.28048] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/22/2018] [Indexed: 01/24/2023]
Abstract
The beneficial effects of icariin in the management of many diseases, such as chronic renal failure and heart failure, are well known. Icariin has also been shown to ameliorate osteoarthritis (OA) symptoms; however, the underlying mechanisms remain unclear. In this study, a bioinformatics analysis was performed to investigate the KEGG pathways of icariin-targeted genes involved in OA. Our study suggests that icariin plays a role in OA by regulating inflammatory cytokine production, insulin resistance, and cell survival through modulation of the NF-κB, MAPK, and Akt signaling pathways. Importantly, IKBKB, NFKBIA, MAPK8, MAPK9, and MAPK10 may be the hub genes affected by icariin when providing its beneficial effects on OA. In addition, we found that icariin decreases proinflammatory factors and inhibits chondrocyte apoptosis through suppression of the NF-κB pathway. Our study highlights a set of KEGG pathways that could explain the molecular mechanism of icariin's action on OA, suggesting that icariin could be considered as a promising therapeutic option for OA.
Collapse
Affiliation(s)
- Yi Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Huijuan Lv
- Department of Rheumatology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jing Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liangcong Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hang Xue
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Adriana C Panayi
- Department of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wu Zhou
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Yan N, Wen DS, Zhao YR, Xu SJ. Epimedium sagittatum inhibits TLR4/MD-2 mediated NF-κB signaling pathway with anti-inflammatory activity. Altern Ther Health Med 2018; 18:303. [PMID: 30424767 PMCID: PMC6234691 DOI: 10.1186/s12906-018-2363-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 10/25/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND Epimedium sagittatum (Sieb.et Zucc.) Maxim., Ying-Yang-Huo in Chinese has been used as a traditional Chinese medicine and is deemed to "reinforce the kidney Yang". Previous studies showed that E. sagittatum could modulate the immune system and treat some chronic disease such as rheumatic arthritis, cardiovascular diseases and osteoporosis. The aim of this study is to evaluate the anti-inflammatory effects of ethyl acetate extracts (YYHs) of E. sagittatum and its mechanisms of action. METHODS In order to explore the composition of YYHs, YYHs was analyzed using high performance liquid chromatography-mass spectrometry-mass spectrometry (HPLC-MS/MS) and in comparison with reference standards. Anti-inflammatory model was established in LPS-induced RAW264.7 cells. The levels of nitric oxide (NO) were measured with the Griess reagent. Production of tumor necrosis factor-alpha (TNF-α) and interleukin-2 (IL-2) were measured by enzyme-linked immunosorbent assays (ELISA). In addition, expression of p-p65 protein and TLR4/MD-2 complex was detected by western blots and flow cytometric, respectively. Nuclear factor kappa B (NF-κB) nuclear translocation was observed by fluorescence microscope. RESULTS A total of eight compounds were identified, of which icariside II was the most abundant compound. YYHs (12.5-50 μg/mL) had no obvious cytotoxic effect on cells, and remarkably inhibited LPS-induced production of NO, TNF-α and IL-2 with a dose-dependent manner. Additionally, YYHs up-regulated expression of p-p65 and TLR4/MD-2 complex. Further research showed that YYHs significantly suppressed NF-κB p65 nuclear translocation. CONCLUSION In brief, YYHs contributed to the inhibition of LPS-induced inflammatory response through the TLR4/MD-2-mediated NF-κB pathway and may be a potential choice to combat inflammation diseases. It includes a schema of pathways at the end of the paper.
Collapse
|
16
|
Baicalin Exerts Anti-Airway Inflammation and Anti-Remodelling Effects in Severe Stage Rat Model of Chronic Obstructive Pulmonary Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:7591348. [PMID: 30402133 PMCID: PMC6196890 DOI: 10.1155/2018/7591348] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 09/06/2018] [Indexed: 12/16/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a worldwide epidemic. Current approaches are disappointing due to limited improvement of the disease development. The present study established 36-week side stream cigarette smoke induced rat model of COPD with advanced stage feature and evaluted the effects of baicalin on the model. Fifty-four Sprague–Dawley rats were randomly divided into six groups including room air control, cigarette smoke exposure, baicalin (40 mg/kg, 80 mg/kg, and 160 mg/kg), and budesonide used as a positive control. Rats were exposed to cigarette smoke from 3R4F research cigarettes. Pulmonary function was evaluated and pathological changes were also observed. Cytokine level related to airway inflammation and remodelling in blood serum, bronchoalveolar lavage fluid, and lung tissue was determined. Blood gases and HPA axis function were also examined, and antioxidant levels were quantified. Results showed that, after treatment with baicalin, lung function was improved and histopathological changes were ameliorated. Baicalin also regulated proinflammatory and anti-inflammatory balance and also airway remodelling and anti-airway remodelling factors in blood serum, bronchoalveolar lavage fluid, and lung tissue. Antioxidant capacity was also increased after treatment with baicalin in COPD rat model. HPA axis function was improved in baicalin treated groups as compared to model group. Therefore, baicalin exerts lung function protection, proinflammatory and anti-inflammatory cytokine regulation, anti-airway remodelling, and antioxidant role in long term CS induced COPD model.
Collapse
|
17
|
Zhong S, Ge J, Yu JY. Icariin prevents cytokine-induced β-cell death by inhibiting NF-κB signaling. Exp Ther Med 2018; 16:2756-2762. [PMID: 30210617 DOI: 10.3892/etm.2018.6502] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/17/2018] [Indexed: 12/13/2022] Open
Abstract
The loss of insulin secretion in type I diabetes mellitus (T1DM) is caused by autoimmune-mediated destruction of insulin-producing pancreatic β-cells. Inflammatory cytokines and immune cell infiltration activate oxidative and endoplasmic reticulum (ER) stress, resulting in reduced β-cell viability. The current pharmacological agents used to control blood glucose have a limited effective duration and are accompanied by strong side effects. Blocking the inflammatory and immune responses that cause the β-cell damage has been investigated as a novel therapeutic approach to control T1DM. Icariin is a flavonoid component of Chinese medicinal herbs that has anti-inflammatory effects in vitro and in vivo. The results of the present study revealed that icariin abrogates the pro-apoptotic effect of inflammatory cytokines and significantly suppresses the activation of nuclear factor (NF)-κB in rat pancreatic β-cell lines. The present study may provide a basis for the potential use of icariin as a therapeutic agent for T1DM.
Collapse
Affiliation(s)
- Shao Zhong
- Department of Endocrinology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China.,Department of Endocrinology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Jing Ge
- Department of Endocrinology, Jiangsu Province Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Jiang-Yi Yu
- Department of Endocrinology, Jiangsu Province Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
18
|
Ren XS, Ding W, Yang XY. [Icariin alleviates lipid peroxidation after spinal cord injury in rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:711-715. [PMID: 29997094 PMCID: PMC6765710 DOI: 10.3969/j.issn.1673-4254.2018.06.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To assess the effects of intragastric administration of icariin on lipid peroxidation after spinal cord injury in rats. METHODS Seventy-two healthy adult male SD rats were randomized equally into icariin group, control group and sham-operated group. In the control and icariin groups, spinal cord injury was induced using modified Allen's method, and the rats in the sham-operated group underwent laminotomy without damaging the spinal cord. Immediately after the surgery, the rats in icariin group were subjected to intragastric administration of icariin (100 mg/kg), and those in the control and sham-operated groups received an equal volume of saline in the same manner once a day. At 24 h after the operation, malondialdehyde (MDA) content was detected using thiobarbituric acid method, superoxide dismutase (SOD) activity was measured with xanthine oxidase method, and the water content in the spinal cord was measured using dry-wet weight method. At 48 h after the operation, the ultrastructure of the spinal cord was observed with transmission electron microscopy and scored using Kaptanoglu scoring method. The motor function of the rats was assessed using BBB scoring at 7, 14, 21 and 28 days after the operation. RESULTS At 24 h after the operation, MDA content was significantly higher in the control group and icariin group than in the sham-operated group, and was significantly lower in icariin group than in the control group (P<0.05); SOD activity was significantly higher in icariin group than in the control group, and was both significantly lower than that in the sham-operated group (P<0.05). At 48 h after operation, the water content and ultrastructure score of the spinal cord were the highest in sham-operated group (P<0.05), and were significantly lower in icariin group than in the control group (P<0.05). At all the time points of measurement, the BBB scores were significantly lower in the control and icariin groups than in the sham-operated group (P<0.05), and were significantly higher in icariin group than in the control group (P<0.05). CONCLUSION Icariin can significantly reduce MDA content, increase SOD activity, and ameliorate lipid peroxidation, spinal cord edema, and histopathological damage of the spinal cord to improve motor function of rats with spinal cord injury.
Collapse
Affiliation(s)
- Xian-Sheng Ren
- Department of Orthopedics, Second Hospital of Jilin University, Changchun 130041, China. E-mail:
| | | | | |
Collapse
|
19
|
Xiang L, Li Y, Deng X, Kosanovic D, Schermuly RT, Li X. Natural plant products in treatment of pulmonary arterial hypertension. Pulm Circ 2018; 8:2045894018784033. [PMID: 29869936 PMCID: PMC6055327 DOI: 10.1177/2045894018784033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe disease characterized by
progressive remodeling of distal pulmonary arteries and persistent elevation of
pulmonary vascular resistance (PVR), which leads to right ventricular
dysfunction, heart failure, and eventually death. Although treatment
responsiveness for this disease is improving, it continues to be a
life-threatening condition. With the clinical efficacy of natural plant products
being fully confirmed by years of practice, more and more recognition and
attention have been obtained from the international pharmaceutical industry.
Moreover, studies over the past decades have demonstrated that drugs derived
from natural plants show unique advantages and broad application prospects in
PAH treatment, not to mention the historical application of Chinese traditional
medicine in cardiopulmonary diseases. In this review, we focus on summarizing
natural plant compounds with therapeutic properties in PAH, according to the
extracts, fractions, and pure compounds from plants into categories, hoping it
to be helpful for basic research and clinical application.
Collapse
Affiliation(s)
- Lili Xiang
- 1 Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Ying Li
- 2 Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China.,3 Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, China
| | - Xu Deng
- 4 Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Djuro Kosanovic
- 5 Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research, Giessen, Germany
| | - Ralph Theo Schermuly
- 5 Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research, Giessen, Germany
| | - Xiaohui Li
- 1 Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China.,3 Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, China
| |
Collapse
|
20
|
3,7-Bis(2-hydroxyethyl)icaritin, a potent inhibitor of phosphodiesterase-5, prevents monocrotaline-induced pulmonary arterial hypertension via NO/cGMP activation in rats. Eur J Pharmacol 2018; 829:102-111. [PMID: 29665366 DOI: 10.1016/j.ejphar.2018.04.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/10/2018] [Accepted: 04/13/2018] [Indexed: 12/22/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a chronic progressive disease which leads to elevated pulmonary arterial pressure and right heart failure. 3,7-Bis(2-hydroxyethyl)icaritin (ICT), an icariin derivatives, was reported to have potent inhibitory activity on phosphodiesterase type 5 (PDE5) which plays a crucial role in the pathogenesis of PAH. The present study was designed to investigate the effects of ICT on monocrotaline (MCT)-induced PAH rat model and reveal the underlying mechanism. MCT-induced PAH rat models were established with intragastric administration of ICT (10, 20, 40 mg/kg/d), Icariin (ICA) (40 mg/kg/d) and Sildenafil (25 mg/kg/d). The mean pulmonary arterial pressure (mPAP) and right ventricle hypertrophy index (RVHI) were measured. Pulmonary artery remodeling was assessed by H&E staining. Blood and lung tissue were collected to evaluate the level of endothelin 1 (ET-1), nitric oxide (NO), and cyclic guanosine monophosphate (cGMP). The expressions endothelial nitric oxide synthase (eNOS) and PDE5A in lung tissues were determined by Western blot analysis. The results showed that ICT reduced RVHI and mPAP, and reversed lung vascular remodeling in rats with MCT-induced PAH. ICT also reversed MCT-induced ET-1 elevation, NO and cGMP reduction in serum or lung tissue. Moreover, ICT administration significantly induced eNOS activation and PDE5A inhibition. ICT with lower dose had better effects than ICA. In summary, ICT is more effective in preventing MCT-induced PAH in rats via NO/cGMP activation compared with ICA. These findings demonstrate a novel mechanism of the action of ICT that may have value in prevention of PAH.
Collapse
|
21
|
Xia M, Xu H, Dai W, Zhu C, Wu L, Yan S, Ge X, Zhou W, Chen C, Dai Y. The role of HDAC2 in cigarette smoke-induced airway inflammation in a murine model of asthma and the effect of intervention with roxithromycin. J Asthma 2018; 55:337-344. [PMID: 28960099 DOI: 10.1080/02770903.2017.1337788] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 05/09/2017] [Accepted: 05/29/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND Cigarette smoke is well known to worsen asthma symptoms in asthmatic patients and to make them refractory to treatment, but the underling molecular mechanism is unclear. We hypothesized that cigarette smoke can reduce the expression of HDAC2 in asthma and the process was achieved by activating the PI3K-δ/Akt signaling pathway. We further hypothesized that roxithromycin (RXM) can alleviate the impacts by cigarette smoke. METHODS A murine model of asthma induced by ovalbumin (OVA) and cigarette smoke has been established. The infiltration of inflammatory cells and inflammatory factors was examined in this model. Finally, we evaluated the expression of HDAC2, Akt phosphorylation levels, and the effects of RXM treatment on the model described earlier. RESULTS Cigarette smoke exposure reduced HDAC2 protein expression by enhancing the phosphorylation of Akt in PI3K-δ/Akt signaling pathway. Furthermore, RMX reduced the airway inflammation and improved the level of expression of HDAC2 in the cigarette smoke-exposed asthma mice. CONCLUSIONS This study provides a novel insight into the mechanism of cigarette smoke exposure in asthma and the effects of RXM treatment on this condition. These results may be helpful for treating refractory asthma and emphasizing the need for a smoke-free environment for asthmatic patients.
Collapse
Affiliation(s)
- Mengling Xia
- a Department of Pulmonary Medicine , Hangzhou Hospital of Traditional Chinese Medicine , Hangzhou , China
- b Department of Pulmonary Medicine , the Second Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Hui Xu
- b Department of Pulmonary Medicine , the Second Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Wei Dai
- b Department of Pulmonary Medicine , the Second Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Cong Zhu
- b Department of Pulmonary Medicine , the Second Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Liqin Wu
- b Department of Pulmonary Medicine , the Second Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Sunshun Yan
- b Department of Pulmonary Medicine , the Second Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Xiangting Ge
- b Department of Pulmonary Medicine , the Second Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Wangfeng Zhou
- b Department of Pulmonary Medicine , the Second Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Cuicui Chen
- c Department of Pulmonary Medicine, Zhongshan Hospital , Fudan University , Shanghai , P.R. China
| | - Yuanrong Dai
- b Department of Pulmonary Medicine , the Second Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| |
Collapse
|
22
|
Dong J, Lu L, Le J, Yan C, Zhang H, Li L. Philosophical thinking of Chinese Traditional Medicine. TRADITIONAL MEDICINE AND MODERN MEDICINE 2018. [DOI: 10.1142/s2575900018100018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Traditional medicine is often an integration of ancient philosophy, clinical experiences, primitive knowledge of medicine, regional cultures and religious beliefs. Chinese Traditional Medicine (CTM) is the general appellation of all the traditional medicines of different ethnicities in China, which share great similarities of basic concept and philosophical basis, and conform to the development of empirical medicine, among which the medicine of Han ethnicity (Han medicine) is the most mature. The development of CTM is totally different from that of modern medicine, always revolving around the center of disease diagnosis and treatment, establishing the core theoretical system of Yin and Yang, Five Elements, Zang and Fu and Humoralism with the theoretical foundation of ancient Chinese philosophy, which represents the highest achievement of worldwide empirical medicine and philosophy form at that time. In general, the basic structure of CTM mainly consists of three parts as follows: the part that has already reached consensus with modern medicine, the part that is unconsciously ahead of modern medicine, and the part that needs to be reconsidered or abandoned.
Collapse
Affiliation(s)
- Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, P. R. China
- Institute of Theories and Application, The Academy of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| | - Linwei Lu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, P. R. China
- Institute of Theories and Application, The Academy of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| | - Jingjing Le
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, P. R. China
- Institute of Theories and Application, The Academy of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| | - Chen Yan
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, P. R. China
- Institute of Theories and Application, The Academy of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| | - Hongying Zhang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, P. R. China
- Institute of Theories and Application, The Academy of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| | - Lulu Li
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, P. R. China
- Institute of Theories and Application, The Academy of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| |
Collapse
|
23
|
Lee JW, Ryu HW, Park SY, Park HA, Kwon OK, Yuk HJ, Shrestha KK, Park M, Kim JH, Lee S, Oh SR, Ahn KS. Protective effects of neem (Azadirachta indica A. Juss.) leaf extract against cigarette smoke- and lipopolysaccharide-induced pulmonary inflammation. Int J Mol Med 2017; 40:1932-1940. [PMID: 29039495 DOI: 10.3892/ijmm.2017.3178] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 09/25/2017] [Indexed: 11/05/2022] Open
Abstract
Neem (Azadirachta indica A. Juss.) leaf has been reported to exert anti-inflammatory, antibacterial and antioxidant effects. The purpose of this study was to investigate the protective effects of neem leaf extract (NLE) against cigarette smoke (CS)- and lipopolysaccharide (LPS)-induced pulmonary inflammation. Treatment with NLE significantly attenuated the infiltration of inflammatory cells, such as neutrophils and macrophages in bronchoalveolar lavage fluid (BALF). NLE also reduced the production of reactive oxygen species and the activity of neutrophil elastase in BALF. Moreover, NLE attenuated the release of pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 in BALF. NLE inhibited the recruitment of inflammatory cells and the expression of monocyte chemoattractant protein-1 (MCP-1) in the lungs of mice with CS- and LPS-induced pulmonary inflammation. NLE also decreased the expression of inducible nitric oxide synthase (iNOS) in the lungs of the mice CS- and LPS-induced pulmonary inflammation. Furthermore, treatment with NLE significantly attenuated the activation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) in the lungs mice exposed to CS and LPS. NLE also inhibited the phosphorylation of nuclear factor (NF)-κB and inhibitor of NF-κB (IκB) in the lungs of mice expose to CS and LPS. These findings thus suggest that NLE has potential for use in the treatment of chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju‑si, Chungbuk 363‑883, Republic of Korea
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju‑si, Chungbuk 363‑883, Republic of Korea
| | - So-Yeon Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju‑si, Chungbuk 363‑883, Republic of Korea
| | - Hyun Ah Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju‑si, Chungbuk 363‑883, Republic of Korea
| | - Ok-Kyoung Kwon
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju‑si, Chungbuk 363‑883, Republic of Korea
| | - Heung Joo Yuk
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju‑si, Chungbuk 363‑883, Republic of Korea
| | - Krishna K Shrestha
- Ethnobotanical Society of Nepal (ESON), Central Department of Botany, Tribhuvan University, Kathmandu 44618, Nepal
| | - Minwoo Park
- SciTech Korea, Gangbuk-gu, Seoul 142-705, Republic of Korea
| | - Jung Hee Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju‑si, Chungbuk 363‑883, Republic of Korea
| | - Sangwoo Lee
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju‑si, Chungbuk 363‑883, Republic of Korea
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju‑si, Chungbuk 363‑883, Republic of Korea
| |
Collapse
|
24
|
Icariin Inhibits Pulmonary Hypertension Induced by Monocrotaline through Enhancement of NO/cGMP Signaling Pathway in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:7915415. [PMID: 27366192 PMCID: PMC4904099 DOI: 10.1155/2016/7915415] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 04/09/2016] [Accepted: 05/04/2016] [Indexed: 11/18/2022]
Abstract
It has been reported that icariin (ICA) increased contents of nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) by improving expression of endothelial nitric oxide synthase (eNOS) and inhibition of phosphodiesterase type 5 (PDE5). In addition, dysfunction of the NO/cGMP pathway may play a crucial role in the pathogenesis of pulmonary hypertension (PH). In this study, the potential protective effects of ICA on PH induced by monocrotaline (MCT, 50 mg/kg) singly subcutaneous injection were investigated and the possible mechanisms involved in NO/cGMP pathway were explored in male Sprague Dawley rats. The results showed that ICA (20, 40, and 80 mg/kg/d) treatment by intragastric administration could significantly ameliorate PH and upregulate the expression of eNOS gene and downregulate the expression of PDE5 gene in MCT-treated rats. Both ICA (40 mg/kg/d) and L-arginine (200 mg/kg/d), a precursor of NO as positive control, notably increased the contents of NO and cGMP in lung tissue homogenate, which were inversed by treatment with NG-nitro-L-arginine-methyl ester (L-NAME), a NOS inhibitor, and L-NAME-treatment could also inhibit the protective effects of ICA (40 mg/kg/d) on mean pulmonary artery pressure and artery remodeling and tends to inhibit right ventricle hypertrophy index. In summary, ICA is effective in protecting against MCT-induced PH in rats through enhancement of NO/cGMP signaling pathway in rats.
Collapse
|
25
|
Wei Z, Wang M, Hong M, Diao S, Liu A, Huang Y, Yu Q, Peng Z. Icariin exerts estrogen-like activity in ameliorating EAE via mediating estrogen receptor β, modulating HPA function and glucocorticoid receptor expression. Am J Transl Res 2016; 8:1910-8. [PMID: 27186315 PMCID: PMC4859920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/04/2016] [Indexed: 12/08/2022]
Abstract
BACKGROUND Estrogen exerts neuroprotective and anti-inflammatory effects in EAE and multiple sclerosis (MS), but its clinical application is hindered due to side effects and risk of tumor. Phytoestrogen structurally or functionally mimics estrogen with fewer side effects than endogenous estrogen. Icariin (ICA), an active component of Epimedium extracts, demonstrates estrogen-like neuroprotective effects. However, it is unclear whether ICA is effective in EAE and what are the underlying mechanisms. OBJECTIVE To determine the therapeutic effects of ICA in EAE and explore the possible mechanisms. METHODS C57BL/6 EAE mice were treated with Diethylstilbestrol, different dose of ICA and mid-dose ICA combined with ICI 182780. The clinical scores and serum Interleukin-17 (IL-17), Corticosterone (CORT) concentrations were then analyzed. Western blot were performed to investigate the expressions of glucocorticoid receptor (GR), estrogen receptor alpha (ERα) and ERβ in the cerebral white matter of EAE mice. RESULTS High dose ICA is equally effective in ameliorating neurological signs of EAE as estrogen. Estrogen and ICA has no effects on serum concentrations of IL-17 in EAE. While the CORT levels were decreased by ICA at mid or high doses, the expressions of GR, ERα and ERβ were up-regulated by estrogen or different doses of ICA in a dosedependent manner. Estrogen induced the elevation of ERα more markedly than ICA. In contrast, ICA at mid and high doses promoted ERβ more significantly than estrogen. CONCLUSION ICA exerts estrogen-like activity in ameliorating EAE via mediating ERβ, modulating HPA function and up-regulating the expression of GR in cerebral white matter. ICA may be a promising therapeutic option for MS.
Collapse
Affiliation(s)
- Zhisheng Wei
- Department of Neurology, School of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical UniversityGuangzhou 510080, People’s Republic of China
| | - Mengxia Wang
- Intensive Care Unit, Guangdong No. 2 Provincial People’s HospitalGuangzhou 510317, People’s Republic of China
| | - Mingfan Hong
- Department of Neurology, School of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical UniversityGuangzhou 510080, People’s Republic of China
| | - Shengpeng Diao
- Department of Neurology, School of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical UniversityGuangzhou 510080, People’s Republic of China
| | - Aiqun Liu
- Department of Neurology, School of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical UniversityGuangzhou 510080, People’s Republic of China
| | - Yeqing Huang
- Department of Neurology, School of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical UniversityGuangzhou 510080, People’s Republic of China
| | - Qingyun Yu
- Department of Neurology, School of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical UniversityGuangzhou 510080, People’s Republic of China
| | - Zhongxing Peng
- Department of Neurology, School of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical UniversityGuangzhou 510080, People’s Republic of China
| |
Collapse
|
26
|
Wei Z, Deng X, Hong M, Su Q, Liu A, Huang Y, Yu Q, Peng Z. Icariin has synergistic effects with methylprednisolone to ameliorate EAE via modulating HPA function, promoting anti-inflammatory and anti-apoptotic effects. Int J Clin Exp Med 2015; 8:20188-97. [PMID: 26884931 PMCID: PMC4723776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/12/2015] [Indexed: 12/08/2022]
Abstract
BACKGROUND High-dose methylprednisolone (MP) is a clinically recommended therapeutic regimen for Multiple Sclerosis (MS), whereas some dreadful complications induced by it remain inevitable. Studies implied that estrogens might play neuroprotective and anti-inflammatory roles in EAE and MS and promote glucocorticoid efficacy. Icariin (ICA), a primary active component of Epimedium extracts, also possesses neuroprotective and estrogen-like effects with less adverse complication than estrogen. However, rare study focuses ICA's effects on MS or EAE. OBJECTIVE Our purpose is to determine whether ICA has synergistic effects with MP in treating EAE and explore the possible mechanisms. METHODS C57BL/6 EAE mice were received different dose of ICA combined with MP and single MP treatment. Then, the clinical scores and serum Interleukin-17 (IL-17), Corticosterone (CORT), Adrenocorticotropic Hormone (ACTH) concentrations were analyzed. Western blot and Flow Cytometry were used to investigate the expression of glucocorticoid receptor (GR) and cell apoptosis. RESULTS ICA has cooperative effects with MP in decreasing serum IL-17 and CORT concentrations, up-regulating the expression of GR in cerebral white matter and attenuating the cell apoptosis in spinal cord, especially high-dose ICA combined with MP. CONCLUSION ICA has synergistic effects with MP to ameliorate EAE via modulating hypothalamic-pituitary-adrenal (HPA) function, promoting anti-inflammatory and anti-apoptotic effects. ICA could be considered as a promising therapeutic option for MS.
Collapse
Affiliation(s)
- Zhisheng Wei
- Department of Neurology, School of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical UniversityNo. 19 Nonglinxia Road, Guangzhou 510080, People’s Republic of China
| | - Xuemei Deng
- Department of Neurology, The Third Hospital of WuhanNo. 241 Peng Liuyang Road, Wuhan 430060, People’s Republic of China
| | - Mingfan Hong
- Department of Neurology, School of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical UniversityNo. 19 Nonglinxia Road, Guangzhou 510080, People’s Republic of China
| | - Quanxi Su
- Department of Neurology, School of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical UniversityNo. 19 Nonglinxia Road, Guangzhou 510080, People’s Republic of China
| | - Aiqun Liu
- Department of Neurology, School of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical UniversityNo. 19 Nonglinxia Road, Guangzhou 510080, People’s Republic of China
| | - Yeqing Huang
- Department of Neurology, School of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical UniversityNo. 19 Nonglinxia Road, Guangzhou 510080, People’s Republic of China
| | - Qingyun Yu
- Department of Neurology, School of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical UniversityNo. 19 Nonglinxia Road, Guangzhou 510080, People’s Republic of China
| | - Zhongxing Peng
- Department of Neurology, School of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical UniversityNo. 19 Nonglinxia Road, Guangzhou 510080, People’s Republic of China
| |
Collapse
|