1
|
Balakrishnan KA, Haesemeyer M. Markov models bridge behavioral strategies and circuit principles facilitating thermoregulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.17.643749. [PMID: 40166317 PMCID: PMC11957002 DOI: 10.1101/2025.03.17.643749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Behavioral thermoregulation is critical for survival across animals, including endothermic mammals. However, we do not understand how neural circuits control navigation towards preferred temperatures. Zebrafish exclusively regulate body temperature via behavior, making them ideal for studying thermal navigation. Here, we combine behavioral analysis, machine learning and calcium imaging to understand how larval zebrafish seek out preferred temperatures within thermal gradients. By developing a stimulus-controlled Markov model of thermal navigation we find that hot avoidance largely relies on the modulation of individual swim decisions. The avoidance of cold temperatures, a particular challenge in ectotherms, however relies on a deliberate strategy combining gradient alignment and directed reversals. Calcium imaging identified neurons within the medulla encoding thermal stimuli that form a place-code like representation of the gradient. Our findings establish a key link between neural activity and thermoregulatory behavior, elucidating the neural basis of how animals seek out preferred temperatures.
Collapse
Affiliation(s)
- Kaarthik Abhinav Balakrishnan
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, OH, USA
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Martin Haesemeyer
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
2
|
Elfadadny MR, Furukawa M, Nozaki R, Kawato S, Koiwai K, Kondo H, Hirono I. Effect of organic selenium on performance and gill transcriptome of whiteleg shrimp Penaeus vannamei. Mol Biol Rep 2024; 52:48. [PMID: 39671073 DOI: 10.1007/s11033-024-10147-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 12/03/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND Shrimp gill health is an indicator of their overall health and environmental stress, as gills are in direct contact with the external environment. Organic selenium (OS), known for its high bioavailability and antioxidant properties, potentially enhances shrimp growth, survival, and immune responses. This study investigated the physiological features through comprehensive gill gene expression profiling and growth parameters by incorporating OS into Penaeus vannamei diets. METHODS AND RESULTS Two OS-containing products, AlkoSel (AS) and SelPlex (SL), were supplied to the diet of P. vannamei (0.90 ± 0.05 g body weight, 4.54 ± 0.5 cm length) at a dose of 0.4 mg Se kg- 1 ration in the final feed. Three groups were organized: an AS-fed group, an SL-fed group, and a control (C) group without additives. After a one-month feeding trial, performance indices (PI) were assessed and RNA-Seq analysis was conducted. The PI revealed that both OS products had similar growth-stimulating effects, with no significant differences between the two groups. However, both groups showed significant improvement compared to the C-group. The P. vannamei gill transcriptome was strongly impacted by the two OS products, with several KEGG pathways implicated in their metabolic mechanisms. Pathways related to energy metabolism, carbohydrate metabolism, lipid metabolism, non-specific immunity, and antioxidative responses were significant in regulating the addition of AS and SL to P. vannamei diets. CONCLUSIONS While SL had some higher additive effects on the gene expression profile than AS, OS from either product is an essential micronutrient that promotes growth, normal metabolic activities, and good gill health in P. vannamei during the early feeding period.
Collapse
Affiliation(s)
- Medhat R Elfadadny
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Damanhur University, Damanhur, Egypt
| | - Miho Furukawa
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Reiko Nozaki
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Satoshi Kawato
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Keiichiro Koiwai
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Hidehiro Kondo
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Ikuo Hirono
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan.
| |
Collapse
|
3
|
Yang C, Fan H, Ge L, Ma Q, Jiang M, Wen H. Comparative analysis of quantitative phosphoproteomics between two tilapias ( Oreochromis niloticus and Oreochromis aureus) under low-temperature stress. PeerJ 2023; 11:e15599. [PMID: 37456864 PMCID: PMC10340112 DOI: 10.7717/peerj.15599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/30/2023] [Indexed: 07/18/2023] Open
Abstract
As an important farmed fish, tilapia has poor tolerance to low-temperatures. At the same time, different tilapia strains have apparent differences in low-temperature tolerance. In this study, using the iTRAQ method, the phosphorylated proteomics of two tilapia strains (Oreochromis niloticus and Oreochromis aureus) with different tolerances to low-temperature stress were quantitatively and comparatively analyzed, to clarify the physiological mechanism of tilapia's response to low-temperature stress. Through the GO and IPR analyses of differentially phosphorylated proteins, a number of similarities in physiological activities and regulatory effects were found between the two tilapias in response to low-temperature stress. Many differentially phosphorylated proteins are mainly involved in lipid metabolism, cell proliferation and apoptosis. However, the difference in endurance of low temperature of these two tilapias might be related to the differences in categories, expression and modification level of genetic products which were involved in the aforementioned physiological processes. And meanwhile, the enrichment results of KEGG showed the changes of multiple immune-related and growth-related phosphorylated proteins in the cytokine-cytokine receptor interaction pathway in O. aureus are more prominent. Furthermore, the significantly enriched pathway of carbohydrate digestion and absorption in O. niloticus may indicate that low-temperature stress exerts a more severe impact on energy metabolism. The relative results would help elucidating the molecular mechanism by which tilapia responds to low-temperature stress, and developing culture of tilapia species.
Collapse
Affiliation(s)
- Changgeng Yang
- Life Science & Technology School, Lingnan Normal University, Zhanjiang, China
| | - Hua Fan
- Life Science & Technology School, Lingnan Normal University, Zhanjiang, China
| | - Liya Ge
- Life Science & Technology School, Lingnan Normal University, Zhanjiang, China
| | - Qian Ma
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Ming Jiang
- Fish Nutrition and Feed Division, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Hua Wen
- Fish Nutrition and Feed Division, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| |
Collapse
|
4
|
Fuentes‐Pardo AP, Farrell ED, Pettersson ME, Sprehn CG, Andersson L. The genomic basis and environmental correlates of local adaptation in the Atlantic horse mackerel ( Trachurus trachurus). Evol Appl 2023; 16:1201-1219. [PMID: 37360028 PMCID: PMC10286234 DOI: 10.1111/eva.13559] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 04/21/2023] [Accepted: 05/07/2023] [Indexed: 06/28/2023] Open
Abstract
Understanding how populations adapt to their environment is increasingly important to prevent biodiversity loss due to overexploitation and climate change. Here we studied the population structure and genetic basis of local adaptation of Atlantic horse mackerel, a commercially and ecologically important marine fish that has one of the widest distributions in the eastern Atlantic. We analyzed whole-genome sequencing and environmental data of samples collected from the North Sea to North Africa and the western Mediterranean Sea. Our genomic approach indicated low population structure with a major split between the Mediterranean Sea and the Atlantic Ocean and between locations north and south of mid-Portugal. Populations from the North Sea are the most genetically distinct in the Atlantic. We discovered that most population structure patterns are driven by a few highly differentiated putatively adaptive loci. Seven loci discriminate the North Sea, two the Mediterranean Sea, and a large putative inversion (9.9 Mb) on chromosome 21 underlines the north-south divide and distinguishes North Africa. A genome-environment association analysis indicates that mean seawater temperature and temperature range, or factors correlated to them, are likely the main environmental drivers of local adaptation. Our genomic data broadly support the current stock divisions, but highlight areas of potential mixing, which require further investigation. Moreover, we demonstrate that as few as 17 highly informative SNPs can genetically discriminate the North Sea and North African samples from neighboring populations. Our study highlights the importance of both, life history and climate-related selective pressures in shaping population structure patterns in marine fish. It also supports that chromosomal rearrangements play a key role in local adaptation with gene flow. This study provides the basis for more accurate delineation of the horse mackerel stocks and paves the way for improving stock assessments.
Collapse
Affiliation(s)
| | - Edward D. Farrell
- EDF Scientific LimitedCorkIreland
- Killybegs Fishermen's OrganisationDonegalIreland
| | - Mats E. Pettersson
- Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
| | - C. Grace Sprehn
- Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
| | - Leif Andersson
- Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
- Department of Veterinary Integrative BiosciencesTexas A&M UniversityCollege StationTexasUSA
| |
Collapse
|
5
|
Zeng LF, Lee J, Lim G, Yang YF, Lin RL, Yin SJ, Wang W, Park YD. Characterization and tissue expression analysis of mitochondrial creatine kinases (types I and II) from Pelodiscus sinensis. J Biomol Struct Dyn 2023; 41:1388-1402. [PMID: 34939522 DOI: 10.1080/07391102.2021.2020168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The aim of this study was to characterize the functions of the mitochondrial creatine kinases in the Chinese soft-shelled turtle Pelodiscus sinensis (PSCK-MT1 and PSCK-MT2) to characterize function in relation to hibernation. Computational prediction via molecular dynamics simulations showed that PSCK-MT1 had stronger kinase- and creatine-binding affinity than PSCK-MT2. We measured PSCK-MT1 and PSCK-MT2 levels in the myocardium, liver, spleen, lung, kidney, and ovary of P. sinensis before and after hibernation and found that the expression of these enzymes was the most significantly upregulated in the ovary. We enumerated the ovarian follicles and evaluated the physiological indices of P. sinensis and discovered that fat was the main form of energy storage in P. sinensis. Moreover, both PSCK-MTs promoted follicular development during hibernation. Immunohistochemistry was used to study follicular development and revealed that both PSCK-MTs were expressed primarily in the follicular fluid and granulosa layer before and after hibernation. We found that PSCK-MT1 and PSCK-MT2 could play important roles in ovarian follicular development under hibernation. Hence, both PSCK-MTs probably function effectively under the conditions of low temperature and oxygen during hibernation. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Li-Fang Zeng
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, PR China
| | - Jinhyuk Lee
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.,Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Korea
| | - Gyutae Lim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.,Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Korea
| | - Yu-Fei Yang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, PR China
| | - Run-Lan Lin
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, PR China
| | - Shang-Jun Yin
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, PR China
| | - Wei Wang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, PR China
| | - Yong-Doo Park
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, PR China.,Skin Diseases Research Center, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, PR China.,Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, PR China
| |
Collapse
|
6
|
Pirri F, Ometto L, Fuselli S, Fernandes FAN, Ancona L, Perta N, Di Marino D, Le Bohec C, Zane L, Trucchi E. Selection-driven adaptation to the extreme Antarctic environment in the Emperor penguin. Heredity (Edinb) 2022; 129:317-326. [PMID: 36207436 PMCID: PMC9708836 DOI: 10.1038/s41437-022-00564-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 01/20/2023] Open
Abstract
The eco-evolutionary history of penguins is characterised by shifting from temperate to cold environments. Breeding in Antarctica, the Emperor penguin appears as an extreme outcome of this process, with unique features related to insulation, heat production and energy management. However, whether this species actually diverged from a less cold-adapted ancestor, more ecologically similar to its sister species, the King penguin, is still an open question. As the Antarctic colonisation likely resulted in vast changes in selective pressure experienced by the Emperor penguin, the relative quantification of the genomic signatures of selection, unique to each sister species, could answer this question. Applying phylogeny-based selection tests on 7651 orthologous genes, we identified a more pervasive selection shift in the Emperor penguin than in the King penguin, supporting the hypothesis that its extreme cold adaptation is a derived state. Furthermore, among candidate genes under selection, four (TRPM8, LEPR, CRB1, and SFI1) were identified before in other cold-adapted homeotherms, like the woolly Mammoth, while other 161 genes can be assigned to biological functions relevant to cold adaptation identified in previous studies. Location and structural effects of TRPM8 substitutions in Emperor and King penguin lineages support their functional role with putative divergent effects on thermal adaptation. We conclude that extreme cold adaptation in the Emperor penguin largely involved unique genetic options which, however, affect metabolic and physiological traits common to other cold-adapted homeotherms.
Collapse
Affiliation(s)
- Federica Pirri
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
- Department of Biology, University of Padova, Padova, Italy
| | - Lino Ometto
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Silvia Fuselli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Flávia A N Fernandes
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000, Strasbourg, France
| | - Lorena Ancona
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Nunzio Perta
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Daniele Di Marino
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Céline Le Bohec
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000, Strasbourg, France
- Département de Biologie Polaire, Centre Scientifique de Monaco, Monaco, Monaco
| | - Lorenzo Zane
- Department of Biology, University of Padova, Padova, Italy
| | - Emiliano Trucchi
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy.
| |
Collapse
|
7
|
Abstract
The rapid growth in genomic techniques provides the potential to transform how we protect, manage, and conserve marine life. Further, solutions to boost the resilience of marine species to climate change and other disturbances that characterize the Anthropocene require transformative approaches, made more effective if guided by genomic data. Although genetic techniques have been employed in marine conservation for decades and the availability of genomic data is rapidly expanding, widespread application still lags behind other data types. This Essay reviews how genetics and genomics have been utilized in management initiatives for ocean conservation and restoration, highlights success stories, and presents a pathway forward to enhance the uptake of genomic data for protecting our oceans.
Collapse
Affiliation(s)
- Madeleine J. H. van Oppen
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| | - Melinda A. Coleman
- Department of Primary Industries, NSW Fisheries, National Marine Science Centre, Coffs Harbour, New South Wales, Australia
| |
Collapse
|
8
|
Suo N, Wu Y, Zhou Z, He Q, Bai H, Lin H, Ke Q, Xu P. Genome-Wide Association and Expression Analysis Revealed the Candidate Variants and Molecular Underpinnings of Cold-Stress Response in Large Yellow Croaker. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:927-941. [PMID: 35971020 DOI: 10.1007/s10126-022-10155-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Large yellow croaker (Larimichthys crocea) is one of the most economically important fish in China. Recently, global climate change has caused more and more intense and extreme low temperature weathers, resulting in huge losses to the large yellow croaker industry. Therefore, it is essential to understand the mechanisms of low-temperature tolerance in large yellow croaker. Here, we conducted an integrative analysis of genome-wide association study (GWAS) and transcriptome analysis to identify candidate variants and reveal the molecular underpinning of cold-stress response in large yellow croaker. A total of 8 significant single nucleotide polymorphisms (SNPs) loci on 6 chromosomes were identified in the GWAS analysis, and 5764 (gill) and 3588 (liver) differentially expressed genes (DEGs) were detected in cold-stressed large yellow croaker, respectively. Further comparative and functional analysis of the candidate genes and DEGs highlighted the importance of pathways/genes related to immune response, cellular stress response, lipid transport, and metabolism in the cold-stress response of large yellow croaker. Our results provide insights into the cold tolerance of large yellow croaker and contribute to genomic-based selection for low-temperature-resistant large yellow croaker.
Collapse
Affiliation(s)
- Ning Suo
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Yidi Wu
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Zhixiong Zhou
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Qian He
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Huaqiang Bai
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Huanling Lin
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Qiaozhen Ke
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352130, China
| | - Peng Xu
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352130, China.
| |
Collapse
|
9
|
Hu J, Zhao H, Wang G, Sun Y, Wang L. Energy consumption and intestinal microbiome disorders of yellow catfish (Pelteobagrus fulvidraco) under cold stress. Front Physiol 2022; 13:985046. [PMID: 36176772 PMCID: PMC9513240 DOI: 10.3389/fphys.2022.985046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
The yellow catfish (P. fulvidraco), as one of the economically-relevant freshwater fish found in China, cannot tolerate cold stress. Understanding the physiological and biochemical mechanisms under cold stress may provide insights for improving yellow catfish management in the cold. Therefore, we investigated the metabolic and intestinal microbiota changes in cold stress in response to induced cold stress. We found that cold stress in yellow catfish lead to a significant increase in the consumption of glucose and triglycerides, as well as increased use of cholesterol as an alternate energy source. Moreover, cold stress also activated several significant biological processes in the fish such as thermogenesis, oxidative phosphorylation, the spliceosome machinery, RNA transport, protein processing that occurs in the ER, and purine and pyrimidine metabolism pathways involved in energy production. On the other hand, many other mechanisms like insulin resistance, starch and sucrose metabolism, and the glyoxylate and dicarboxylate metabolic pathways that also served as energy production pathways were weakened. Furthermore, organic acids and their derivatives as well as the lipids and lipid-like molecules were mainly altered in cold stress; prenol lipids, steroids, and their derivatives were significantly upregulated, while fatty acyls and glycerophospholipids were significantly downregulated. Transcriptomic and metabolomic integrated analysis data revealed that carbohydrate metabolism, lipid metabolism, amino acid metabolism, and nucleotide metabolism were involved in cold stress resistance. In addition, the intestinal microbiota abundance was also reduce and the pathogenic bacteria of plesiomonas was rapidly appreciation, which suggesting that cold stress also impaired intestinal health. This research study could offer insights into winter management or the development of feed to promote cold resistance in yellow catfish.
Collapse
Affiliation(s)
- Junru Hu
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- *Correspondence: Junru Hu, ; Lei Wang,
| | - Hongxia Zhao
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Guoxia Wang
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yuping Sun
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Lei Wang
- Key Laboratory of Ecology and Environment Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, China
- Institute of Modern Aquaculture Science and Engineering, South China Normal University, Guangzhou, China
- *Correspondence: Junru Hu, ; Lei Wang,
| |
Collapse
|
10
|
Ferreira JM, Félix L, Jorge S, Monteiro SM, Olsson IAS, Valentim AM. Anesthesia Overdose Versus Rapid Cooling for Euthanasia of Adult Zebrafish. Zebrafish 2022; 19:148-159. [PMID: 35759370 DOI: 10.1089/zeb.2022.0001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The rapid increase in zebrafish use needs to be accompanied by research into the refinement of procedures. The European (EU) Directive lists three possible euthanasia methods for fish: anesthetic overdose, electrical stunning, and concussion. However, for small fish such as zebrafish, concussion and electrical stunning are difficult to perform, leaving anesthetic overdose as the most used method. Our aim was to test the efficacy and side effects of anesthesia overdose using different anesthetics and the rapid cooling method to euthanize adult zebrafish. Adult mixed-sex AB zebrafish were randomly assigned to: 250 mg/L MS222; 20 mg/L propofol +100 mg/L lidocaine; 6 mg/L etomidate; 50 mg/L clove oil; and rapid cooling (water at 2°C-4°C). Two minutes after opercular movement ceased, animals were transferred into clean water for 20 min and recovery assessed, or decapitated and used for biochemical analysis of the gills, muscle, liver, and brain; for the histological analysis of the gills and muscle; or for the assessment of cortisol levels. No animal recovered; rapid cooling was the quickest and etomidate overdose was the slowest method to cease the opercular movements. There were no major differences between euthanasia methods regarding the biochemical or histological data. Cortisol levels were higher in the rapid cooling group, but only when compared with the propofol/lidocaine group. The use of a physical method of euthanasia, such as rapid cooling, is essential when chemicals, such as anesthetics, may interfere with postmortem analyses. Although anesthetic overdose can be used without major effects on the analyses conducted in this work, rapid cooling can be another option with the advantage of being simple to administer, easily available, affordable, and very quick; this decreases the potential duration of suffering, being more humane. Therefore, a change in EU legislation should be considered to include additional humane options for euthanasia, such as rapid cooling, for zebrafish and other small tropical fish.
Collapse
Affiliation(s)
- Jorge M Ferreira
- Laboratory Animal Science Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Luís Félix
- Laboratory Animal Science Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Centro de Investigação e de Tecnologias Agroambientais e Biológicas (CITAB), Universidade de Trás-os-Monte e Alto Douro, Vila Real, Portugal
| | - Sara Jorge
- Laboratory Animal Science Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Sandra M Monteiro
- Centro de Investigação e de Tecnologias Agroambientais e Biológicas (CITAB), Universidade de Trás-os-Monte e Alto Douro, Vila Real, Portugal
- Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, Universidade de Trás-os-Monte e Alto Douro, Vila Real, Portugal
| | - I Anna S Olsson
- Laboratory Animal Science Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Ana M Valentim
- Laboratory Animal Science Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Centro de Investigação e de Tecnologias Agroambientais e Biológicas (CITAB), Universidade de Trás-os-Monte e Alto Douro, Vila Real, Portugal
| |
Collapse
|
11
|
Leyden C, Brüggemann T, Debinski F, Simacek CA, Dehmelt FA, Arrenberg AB. Efficacy of Tricaine (MS-222) and Hypothermia as Anesthetic Agents for Blocking Sensorimotor Responses in Larval Zebrafish. Front Vet Sci 2022; 9:864573. [PMID: 35419446 PMCID: PMC8996001 DOI: 10.3389/fvets.2022.864573] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/28/2022] [Indexed: 12/12/2022] Open
Abstract
Tricaine, or MS-222, is the most commonly used chemical anesthetic in zebrafish research. It is thought to act via blocking voltage-gated sodium channels, though its mechanism of action, particularly at the neuronal level, is not yet fully understood. Here, we first characterized the effects of tricaine on both body balance and touch responses in freely swimming animals, before determining its effect on the neural activity underlying the optokinetic response at the level of motion perception, sensorimotor signaling and the generation of behavior in immobilized animals. We found that the standard dose for larvae (168 mg/L) induced loss of righting reflex within 30 seconds, which then recovered within 3 minutes. Optokinetic behavior recovered within 15 minutes. Calcium imaging showed that tricaine interferes with optokinetic behavior by interruption of the signals between the pretectum and hindbrain. The motion sensitivity indices of identified sensory neurons were unchanged in larvae exposed to tricaine, though fewer such neurons were detected, leaving a small population of active sensory neurons. We then compared tricaine with gradual cooling, a potential non-chemical alternative method of anesthesia. While neuronal tuning appeared to be affected in a similar manner during gradual cooling, gradual cooling induced a surge in calcium levels in both the pretectum and hindbrain. This calcium surge, alongside a drop in heartrate, is potentially associated with harmful changes in physiology and suggests that tricaine is a better anesthetic agent than gradual cooling for zebrafish laboratory research.
Collapse
Affiliation(s)
- Claire Leyden
- Werner Reichardt Centre for Integrative Neuroscience and Institute for Neurobiology, University of Tuebingen, Tuebingen, Germany.,Graduate Training Centre of Neuroscience, University of Tuebingen, Tuebingen, Germany
| | - Timo Brüggemann
- Werner Reichardt Centre for Integrative Neuroscience and Institute for Neurobiology, University of Tuebingen, Tuebingen, Germany
| | - Florentyna Debinski
- Werner Reichardt Centre for Integrative Neuroscience and Institute for Neurobiology, University of Tuebingen, Tuebingen, Germany
| | - Clara A Simacek
- Werner Reichardt Centre for Integrative Neuroscience and Institute for Neurobiology, University of Tuebingen, Tuebingen, Germany
| | - Florian A Dehmelt
- Werner Reichardt Centre for Integrative Neuroscience and Institute for Neurobiology, University of Tuebingen, Tuebingen, Germany
| | - Aristides B Arrenberg
- Werner Reichardt Centre for Integrative Neuroscience and Institute for Neurobiology, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
12
|
Ishara J, Buzera A, Mushagalusa GN, Hammam ARA, Munga J, Karanja P, Kinyuru J. Nutraceutical potential of mushroom bioactive metabolites and their food functionality. J Food Biochem 2021; 46:e14025. [PMID: 34888869 DOI: 10.1111/jfbc.14025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/08/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022]
Abstract
Numerous mushroom bioactive metabolites, including polysaccharides, eritadenine, lignin, chitosan, mevinolin, and astrakurkurone have been studied in life-threatening conditions and diseases such as diabetes, cardiovascular, hypertension, cancer, DNA damage, hypercholesterolemia, and obesity attempting to identify natural therapies. These bioactive metabolites have shown potential as antiviral and immune system strengthener natural agents through diverse cellular and physiological pathways modulation with no toxicity evidence, widely available, and inexpensive. In light of the emerging literature, this paper compiles the most recent information describing the molecular mechanisms that underlie the nutraceutical potentials of these mushroom metabolites suggesting their effectiveness if combined with existing drug therapies while discussing the food functionality of mushrooms. The findings raise hope that these mushroom bioactive metabolites may be utilized as natural therapies considering their therapeutic potential while anticipating further research designing clinical trials and developing new drug therapies while encouraging their consumption as a natural adjuvant in preventing and controlling life-threatening conditions and diseases. PRACTICAL APPLICATIONS: Diabetes, cardiovascular, hypertension, cancer, DNA damage, hypercholesterolemia, and obesity are among the world's largest life-threatening conditions and diseases. Several mushroom bioactive compounds, including polysaccharides, eritadenine, lignin, chitosan, mevinolin, and astrakurkurone have been found potential in tackling these diseases through diverse cellular and physiological pathways modulation with no toxicity evidence, suggesting their use as nutraceutical foods in preventing and controlling these life-threatening conditions and diseases.
Collapse
Affiliation(s)
- Jackson Ishara
- Department of Food Science and Technology, Université Evangélique en Afrique, Bukavu, D.R. Congo.,Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Ariel Buzera
- Department of Food Science and Technology, Université Evangélique en Afrique, Bukavu, D.R. Congo.,Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Gustave N Mushagalusa
- Department of Food Science and Technology, Université Evangélique en Afrique, Bukavu, D.R. Congo
| | - Ahmed R A Hammam
- Dairy and Food Science Department, South Dakota State University, Brookings, South Dakota, USA
| | - Judith Munga
- Department Food Nutrition and Dietetics, Kenyatta University, Nairobi, Kenya
| | - Paul Karanja
- Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - John Kinyuru
- Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| |
Collapse
|
13
|
Gou N, Ji H, Wu W, Zhong M, Zhang B. Transcriptional response to cold and fasting acclimation in Onychostoma macrolepis during the overwintering stage. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2021; 40:100901. [PMID: 34418784 DOI: 10.1016/j.cbd.2021.100901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
In this study, we investigated the transcriptome responses of the liver of Onychostoma macrolepis in by RNA sequencing. The sampling process involved three groups: 1G (0 week, 10 °C), 2G (12 weeks, 0 °C) and 3G (24 weeks, 10 °C). The body weight, viscera index, hepatopancreas index and intraperitoneal fat index of O. macrolepis showed a decreasing trend with the prolonging of overwintering time. The crude fat contents of whole fish, muscle and liver in O. macrolepis after overwintering were significantly lower than those of the fish before overwintering (p < 0.05). In 1G versus 2G group, 2G versus 3G group and 1G versus 3G group, the differently expressed genes (DEGs) were 4630, 3976 and 2311, respectively. These results indicated that different stages of overwintering period had significant effects on gene expression of O. macrolepis, and the influence degree gradually decreased with the extension of overwintering period. The results of Gene ontology (GO) enrichment showed that these DEGs were mainly related to metabolism and immunity, and most of them were down-regulated. In this study, the KEGG pathway classification results showed that signal transduction was the most representative. In addition, KOG enrichment results showed that many DEGs associated with lipid transport and metabolism were down-regulated during the overwintering period. These observations suggested that slowing metabolism and delaying immunity may be the strategies for overwintering adaptation of O. macrolepis.
Collapse
Affiliation(s)
- Nina Gou
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; Shaanxi Institute of Zoology, Xi'an 710032, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Wenyi Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Mingzhi Zhong
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Binxin Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
14
|
Guo R, He M, Zhang X, Ji X, Wei Y, Zhang QL, Zhang Q. Genome-Wide Transcriptional Changes of Rhodosporidium kratochvilovae at Low Temperature. Front Microbiol 2021; 12:727105. [PMID: 34603256 PMCID: PMC8481953 DOI: 10.3389/fmicb.2021.727105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/26/2021] [Indexed: 12/20/2022] Open
Abstract
Rhodosporidium kratochvilovae strain YM25235 is a cold-adapted oleaginous yeast strain that can grow at 15°C. It is capable of producing polyunsaturated fatty acids. Here, we used the Nanopore Platform to first assemble the R. kratochvilovae strain YM25235 genome into a 23.71 Mb size containing 46 scaffolds and 8,472 predicted genes. To explore the molecular mechanism behind the low temperature response of R. kratochvilovae strain YM25235, we analyzed the RNA transcriptomic data from low temperature (15°C) and normal temperature (30°C) groups using the next-generation deep sequencing technology (RNA-seq). We identified 1,300 differentially expressed genes (DEGs) by comparing the cultures grown at low temperature (15°C) and normal temperature (30°C) transcriptome libraries, including 553 significantly upregulated and 747 significantly downregulated DEGs. Gene ontology and pathway enrichment analysis revealed that DEGs were primarily related to metabolic processes, cellular processes, cellular organelles, and catalytic activity, whereas the overrepresented pathways included the MAPK signaling pathway, metabolic pathways, and amino sugar and nucleotide sugar metabolism. We validated the RNA-seq results by detecting the expression of 15 DEGs using qPCR. This study provides valuable information on the low temperature response of R. kratochvilovae strain YM25235 for further research and broadens our understanding for the response of R. kratochvilovae strain YM25235 to low temperature.
Collapse
Affiliation(s)
- Rui Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Meixia He
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiaoqing Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiuling Ji
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yunlin Wei
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Qi-Lin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Qi Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
15
|
Miao BB, Niu SF, Wu RX, Liang ZB, Tang BG, Zhai Y, Xu XQ. Gene Expression Profile and Co-Expression Network of Pearl Gentian Grouper under Cold Stress by Integrating Illumina and PacBio Sequences. Animals (Basel) 2021; 11:ani11061745. [PMID: 34208015 PMCID: PMC8230743 DOI: 10.3390/ani11061745] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary In this study, we investigated the liver transcriptomic responses of pearl gentian grouper towards cold stress. Some cold-related key genes and biological pathways were screened, of which energy-related metabolic pathways and genes had higher expression levels under cold stress. This suggested that energy homeostasis plays a crucial role in the physiological adjustments of pearl gentian grouper when exposed to the cold stress environment. Our results will expedite the understanding of different fishes adaptive mechanisms to profound environmental temperature changes and provide insights into the molecular breeding of cold-tolerant pearl gentian grouper varieties. Abstract Pearl gentian grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂) is a fish of high commercial value in the aquaculture industry in Asia. However, this hybrid fish is not cold-tolerant, and its molecular regulation mechanism underlying cold stress remains largely elusive. This study thus investigated the liver transcriptomic responses of pearl gentian grouper by comparing the gene expression of cold stress groups (20, 15, 12, and 12 °C for 6 h) with that of control group (25 °C) using PacBio SMRT-Seq and Illumina RNA-Seq technologies. In SMRT-Seq analysis, a total of 11,033 full-length transcripts were generated and used as reference sequences for further RNA-Seq analysis. In RNA-Seq analysis, 3271 differentially expressed genes (DEGs), two low-temperature specific modules (tan and blue modules), and two significantly expressed gene sets (profiles 0 and 19) were screened by differential expression analysis, weighted gene co-expression networks analysis (WGCNA), and short time-series expression miner (STEM), respectively. The intersection of the above analyses further revealed some key genes, such as PCK, ALDOB, FBP, G6pC, CPT1A, PPARα, SOCS3, PPP1CC, CYP2J, HMGCR, CDKN1B, and GADD45Bc. These genes were significantly enriched in carbohydrate metabolism, lipid metabolism, signal transduction, and endocrine system pathways. All these pathways were linked to biological functions relevant to cold adaptation, such as energy metabolism, stress-induced cell membrane changes, and transduction of stress signals. Taken together, our study explores an overall and complex regulation network of the functional genes in the liver of pearl gentian grouper, which could benefit the species in preventing damage caused by cold stress.
Collapse
Affiliation(s)
- Ben-Ben Miao
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (B.-B.M.); (S.-F.N.); (Z.-B.L.); (B.-G.T.); (Y.Z.); (X.-Q.X.)
| | - Su-Fang Niu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (B.-B.M.); (S.-F.N.); (Z.-B.L.); (B.-G.T.); (Y.Z.); (X.-Q.X.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
| | - Ren-Xie Wu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (B.-B.M.); (S.-F.N.); (Z.-B.L.); (B.-G.T.); (Y.Z.); (X.-Q.X.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
- Correspondence:
| | - Zhen-Bang Liang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (B.-B.M.); (S.-F.N.); (Z.-B.L.); (B.-G.T.); (Y.Z.); (X.-Q.X.)
| | - Bao-Gui Tang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (B.-B.M.); (S.-F.N.); (Z.-B.L.); (B.-G.T.); (Y.Z.); (X.-Q.X.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
| | - Yun Zhai
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (B.-B.M.); (S.-F.N.); (Z.-B.L.); (B.-G.T.); (Y.Z.); (X.-Q.X.)
| | - Xue-Qi Xu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (B.-B.M.); (S.-F.N.); (Z.-B.L.); (B.-G.T.); (Y.Z.); (X.-Q.X.)
| |
Collapse
|
16
|
Klugah-Brown B, Jiang C, Agoalikum E, Zhou X, Zou L, Yu Q, Becker B, Biswal B. Common abnormality of gray matter integrity in substance use disorder and obsessive-compulsive disorder: A comparative voxel-based meta-analysis. Hum Brain Mapp 2021; 42:3871-3886. [PMID: 34105832 PMCID: PMC8288096 DOI: 10.1002/hbm.25471] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 12/28/2022] Open
Abstract
The objective of the current study is to determine robust transdiagnostic brain structural markers for compulsivity by capitalizing on the increasing number of case‐control studies examining gray matter volume (GMV) alterations in substance use disorders (SUD) and obsessive‐compulsive disorder (OCD). Voxel‐based meta‐analysis within the individual disorders and conjunction analysis were employed to reveal common GMV alterations between SUDs and OCD. Meta‐analytic coordinates and signed brain volumetric maps determining directed (reduced/increased) GMV alterations between the disorder groups and controls served as the primary outcome. The separate meta‐analysis demonstrated that SUD and OCD patients exhibited widespread GMV reductions in frontocortical regions including prefrontal, cingulate, and insular. Conjunction analysis revealed that the left inferior frontal gyrus (IFG) consistently exhibited decreased GMV across all disorders. Functional characterization suggests that the IFG represents a core hub in the cognitive control network and exhibits bidirectional (Granger) causal interactions with the striatum. Only OCD showed increased GMV in the dorsal striatum with higher changes being associated with more severe OCD symptomatology. Together the findings demonstrate robustly decreased GMV across the disorders in the left IFG, suggesting a transdiagnostic brain structural marker. The functional characterization as a key hub in the cognitive control network and casual interactions with the striatum suggest that deficits in inhibitory control mechanisms may promote compulsivity and loss of control that characterize both disorders.
Collapse
Affiliation(s)
- Benjamin Klugah-Brown
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Chenyang Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Elijah Agoalikum
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xinqi Zhou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Liye Zou
- Exercise & Mental Health Laboratory, School of Psychology, Shenzhen University, Shenzhen, China
| | - Qian Yu
- Exercise & Mental Health Laboratory, School of Psychology, Shenzhen University, Shenzhen, China
| | - Benjamin Becker
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Bharat Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| |
Collapse
|
17
|
Cahill T, da Silveira WA, Renaud L, Williamson T, Wang H, Chung D, Overton I, Chan SSL, Hardiman G. Induced Torpor as a Countermeasure for Low Dose Radiation Exposure in a Zebrafish Model. Cells 2021; 10:906. [PMID: 33920039 PMCID: PMC8071006 DOI: 10.3390/cells10040906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/07/2021] [Accepted: 04/11/2021] [Indexed: 12/15/2022] Open
Abstract
The development of the Artemis programme with the goal of returning to the moon is spurring technology advances that will eventually take humans to Mars and herald a new era of interplanetary space travel. However, long-term space travel poses unique challenges including exposure to ionising radiation from galactic cosmic rays and potential solar particle events, exposure to microgravity and specific nutritional challenges arising from earth independent exploration. Ionising radiation is one of the major obstacles facing future space travel as it can generate oxidative stress and directly damage cellular structures such as DNA, in turn causing genomic instability, telomere shortening, extracellular-matrix remodelling and persistent inflammation. In the gastrointestinal tract (GIT) this can lead to leaky gut syndrome, perforations and motility issues, which impact GIT functionality and affect nutritional status. While current countermeasures such as shielding from the spacecraft can attenuate harmful biological effects, they produce harmful secondary particles that contribute to radiation exposure. We hypothesised that induction of a torpor-like state would confer a radioprotective effect given the evidence that hibernation extends survival times in irradiated squirrels compared to active controls. To test this hypothesis, a torpor-like state was induced in zebrafish using melatonin treatment and reduced temperature, and radiation exposure was administered twice over the course of 10 days. The protective effects of induced-torpor were assessed via RNA sequencing and qPCR of mRNA extracted from the GIT. Pathway and network analysis were performed on the transcriptomic data to characterise the genomic signatures in radiation, torpor and torpor + radiation groups. Phenotypic analyses revealed that melatonin and reduced temperature successfully induced a torpor-like state in zebrafish as shown by decreased metabolism and activity levels. Genomic analyses indicated that low dose radiation caused DNA damage and oxidative stress triggering a stress response, including steroidal signalling and changes to metabolism, and cell cycle arrest. Torpor attenuated the stress response through an increase in pro-survival signals, reduced oxidative stress via the oxygen effect and detection and removal of misfolded proteins. This proof-of-concept model provides compelling initial evidence for utilizing an induced torpor-like state as a potential countermeasure for radiation exposure.
Collapse
Affiliation(s)
- Thomas Cahill
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.); (H.W.)
| | - Willian Abraham da Silveira
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.); (H.W.)
| | - Ludivine Renaud
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Tucker Williamson
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA; (T.W.); (S.S.L.C.)
| | - Hao Wang
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.); (H.W.)
| | - Dongjun Chung
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA;
| | - Ian Overton
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK;
| | - Sherine S. L. Chan
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA; (T.W.); (S.S.L.C.)
| | - Gary Hardiman
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.); (H.W.)
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
18
|
Nonnis S, Angiulli E, Maffioli E, Frabetti F, Negri A, Cioni C, Alleva E, Romeo V, Tedeschi G, Toni M. Acute environmental temperature variation affects brain protein expression, anxiety and explorative behaviour in adult zebrafish. Sci Rep 2021; 11:2521. [PMID: 33510219 PMCID: PMC7843641 DOI: 10.1038/s41598-021-81804-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 01/08/2021] [Indexed: 12/11/2022] Open
Abstract
This study investigated the effect of 4-d acute thermal treatments at 18 °C, 26 °C (control) and 34 °C on the nervous system of adult zebrafish (Danio rerio) using a multidisciplinary approach based on behavioural tests and brain proteomic analysis. The behavioural variations induced by thermal treatment were investigated using five different tests, the novel tank diving, light and dark preference, social preference, mirror biting, and Y-Maze tests, which are standard paradigms specifically tailored for zebrafish to assess their anxiety-like behaviour, boldness, social preference, aggressiveness, and explorative behaviour, respectively. Proteomic data revealed that several proteins involved in energy metabolism, messenger RNA translation, protein synthesis, folding and degradation, cytoskeleton organisation and synaptic vesiculation are regulated differently at extreme temperatures. The results showed that anxiety-like behaviours increase in zebrafish at 18 °C compared to those at 26 °C or 34 °C, whereas anxiety-related protein signalling pathways are downregulated. Moreover, treatments at both 18 °C and 34 °C affect the exploratory behaviour that appears not to be modulated by past experiences, suggesting the impairment of fish cognitive abilities. This study is the continuation of our previous work on the effect of 21-d chronic treatment at the same constant temperature level and will enable the comparison of acute and chronic treatment effects on the nervous system function in adult zebrafish.
Collapse
Affiliation(s)
- S Nonnis
- Department of Veterinary Medicine, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy.,CRC "Innovation for Well-Beeing and Environment" (I-WE), Università degli Studi di Milano, Milano, Italy
| | - E Angiulli
- Department of Biology and Biotechnology ''Charles Darwin", Sapienza University, Via Alfonso Borelli 50, 00161, Rome, Italy
| | - E Maffioli
- Department of Veterinary Medicine, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy. .,CIMAINA, Università degli Studi di Milano, Milano, Italy.
| | - F Frabetti
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - A Negri
- Department of Veterinary Medicine, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy.,CIMAINA, Università degli Studi di Milano, Milano, Italy
| | - C Cioni
- Department of Biology and Biotechnology ''Charles Darwin", Sapienza University, Via Alfonso Borelli 50, 00161, Rome, Italy
| | - E Alleva
- Center for Behavioural Sciences and Mental Health, IstitutoSuperiore di Sanità, Rome, Italy
| | - V Romeo
- Department of Veterinary Medicine, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy
| | - G Tedeschi
- Department of Veterinary Medicine, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy.,CRC "Innovation for Well-Beeing and Environment" (I-WE), Università degli Studi di Milano, Milano, Italy.,CIMAINA, Università degli Studi di Milano, Milano, Italy
| | - M Toni
- Department of Biology and Biotechnology ''Charles Darwin", Sapienza University, Via Alfonso Borelli 50, 00161, Rome, Italy.
| |
Collapse
|
19
|
Targeted mutagenesis in the olive flounder (Paralichthys olivaceus) using the CRISPR/Cas9 system with electroporation. Biologia (Bratisl) 2021. [DOI: 10.2478/s11756-020-00677-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Stanford BC, Clake DJ, Morris MR, Rogers SM. The power and limitations of gene expression pathway analyses toward predicting population response to environmental stressors. Evol Appl 2020; 13:1166-1182. [PMID: 32684953 PMCID: PMC7359838 DOI: 10.1111/eva.12935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/16/2022] Open
Abstract
Rapid environmental changes impact the global distribution and abundance of species, highlighting the urgency to understand and predict how populations will respond. The analysis of differentially expressed genes has elucidated areas of the genome involved in adaptive divergence to past and present environmental change. Such studies however have been hampered by large numbers of differentially expressed genes and limited knowledge of how these genes work in conjunction with each other. Recent methods (broadly termed "pathway analyses") have emerged that aim to group genes that behave in a coordinated fashion to a factor of interest. These methods aid in functional annotation and uncovering biological pathways, thereby collapsing complex datasets into more manageable units, providing more nuanced understandings of both the organism-level effects of modified gene expression, and the targets of adaptive divergence. Here, we reanalyze a dataset that investigated temperature-induced changes in gene expression in marine-adapted and freshwater-adapted threespine stickleback (Gasterosteus aculeatus), using Weighted Gene Co-expression Network Analysis (WGCNA) with PANTHER Gene Ontology (GO)-Slim overrepresentation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Six modules exhibited a conserved response and six a divergent response between marine and freshwater stickleback when acclimated to 7°C or 22°C. One divergent module showed freshwater-specific response to temperature, and the remaining divergent modules showed differences in height of reaction norms. PPARAa, a transcription factor that regulates fatty acid metabolism and has been implicated in adaptive divergence, was located in a module that had higher expression at 7°C and in freshwater stickleback. This updated methodology revealed patterns that were not found in the original publication. Although such methods hold promise toward predicting population response to environmental stressors, many limitations remain, particularly with regard to module expression representation, database resources, and cross-database integration.
Collapse
Affiliation(s)
| | - Danielle J. Clake
- Department of Biological SciencesUniversity of CalgaryCalgaryABCanada
| | | | - Sean M. Rogers
- Department of Biological SciencesUniversity of CalgaryCalgaryABCanada
- Bamfield Marine Sciences CentreBamfieldBCCanada
| |
Collapse
|
21
|
Sun A, Xu K, Liu H, Li H, Shi Y, Zhu X, Liang T, Li X, Cao X, Ji Y, Jiang T, Xu C, Liu X. The evolution of zebrafish RAG2 protein is required for adapting to the elevated body temperature of the higher endothermic vertebrates. Sci Rep 2020; 10:4126. [PMID: 32139788 PMCID: PMC7057966 DOI: 10.1038/s41598-020-61019-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/19/2020] [Indexed: 11/21/2022] Open
Abstract
The recombination activating gene (RAG or RAG1/RAG2 complex)-mediated adaptive immune system is a hallmark of jawed vertebrates. It has been reported that RAG originated in invertebrates. However, whether RAG further evolved once it arose in jawed vertebrates remains largely unknown. Here, we found that zebrafish RAG (zRAG) had a lower activity than mouse RAG (mRAG). Intriguingly, the attenuated stability of zebrafish RAG2 (zRAG2), but not zebrafish RAG1, caused the reduced V(D)J recombination efficiency compared to mRAG at 37 °C which are the body temperature of most endotherms except birds. Importantly, the lower temperature 28 °C, which is the best temperature for zebrafish growth, made the recombination efficiency of zRAG similar to that of mRAG by improving the stability of zRAG2. Consistent with the prementioned observation, the V(D)J recombination of Rag2KI/KI mice, which zRAG2 was substituted for mRAG2, was also severely impaired. Unexpectedly, Rag2KI/KI mice developed cachexia syndromes accompanied by premature death. Taken together, our findings illustrate that the evolution of zebrafish RAG2 protein is required for adapting to the elevated body temperature of the higher endothermic vertebrates.
Collapse
Affiliation(s)
- Ao Sun
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ke Xu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Haifeng Liu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hua Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yaohuang Shi
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiaoyan Zhu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Tao Liang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xinyue Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xianxia Cao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yanhong Ji
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, 710061, China
| | - Taijiao Jiang
- Center of System Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Chenqi Xu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiaolong Liu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
22
|
Li J, Dedloff MR, Stevens K, Maney L, Prochaska M, Hongay CF, Wallace KN. A novel group of secretory cells regulates development of the immature intestinal stem cell niche through repression of the main signaling pathways driving proliferation. Dev Biol 2019; 456:47-62. [PMID: 31398318 DOI: 10.1016/j.ydbio.2019.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/23/2019] [Accepted: 08/05/2019] [Indexed: 12/12/2022]
Abstract
The intestinal epithelium has constant turnover throughout the life of the organ, with apoptosis of cells at the tips of folds or villi releasing cells into the lumen. Due to constant turnover, epithelial cells need to be constantly replaced. Epithelial cells are supplied by stem cell niches that form at the base of the interfold space (zebrafish) and crypts (birds and mammals). Within the adult stem cell niche of mammals, secretory cells such as Paneth and goblet cells play a role in modulation of proliferation and stem cell activity, producing asymmetric divisions. Progeny of asymmetric divisions move up the fold or villi, giving rise to all of the epithelial cell types. Although much is known about function and organization of the adult intestinal stem cell niche, less is understood about regulation within the immature stem cell compartment. Following smooth muscle formation, the intestinal epithelium folds and proliferation becomes restricted to the interfold base. Symmetric divisions continue in the developing interfold niche until stem cell progeny begin asymmetric divisions, producing progeny that migrate up the developing folds. Proliferative progeny from the developing stem cell niche begin migrating out of the niche during the third week post-embryogenesis (zebrafish) or during the postnatal period (mammals). Regulation and organization of epithelial proliferation in the immature stem cell niche may be regulated by signals comparable to the adult niche. Here we identify a novel subset of secretory cells associated with the developing stem cell niche that receive Notch signaling (referred to as NRSCs). Inhibition of the embryonic NRSCs between 74 hpf to 120 hpf increases epithelial proliferation as well as EGF and IGF signaling. Inhibition of post-embryonic NRSCs (6 hpf to 12 dpf) also increases epithelial proliferation and expression level of Wnt target genes. We conclude that NRSCs play a role in modulation of epithelial proliferation through repression of signaling pathways that drive proliferation during both embryogenesis and the post embryonic period.
Collapse
Affiliation(s)
- Jianlong Li
- Department of Biology, Clarkson University, Potsdam, NY, USA
| | | | - Katrina Stevens
- Department of Biology, Clarkson University, Potsdam, NY, USA
| | - Lea Maney
- Department of Biology, Clarkson University, Potsdam, NY, USA
| | | | - Cintia F Hongay
- Department of Biology, Clarkson University, Potsdam, NY, USA
| | | |
Collapse
|
23
|
Chen K, Li X, Song G, Zhou T, Long Y, Li Q, Zhong S, Cui Z. Deficiency in the membrane protein Tmbim3a/Grinaa initiates cold-induced ER stress and cell death by activating an intrinsic apoptotic pathway in zebrafish. J Biol Chem 2019; 294:11445-11457. [PMID: 31171717 DOI: 10.1074/jbc.ra119.007813] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/31/2019] [Indexed: 12/27/2022] Open
Abstract
Most members of the family of proteins containing a transmembrane BAX inhibitor motif (TMBIM) have anti-apoptotic activity, but their in vivo functions and intracellular mechanisms remain obscure. Here, we report that zebrafish Tmbim3a/Grinaa functions in the prevention of cold-induced endoplasmic reticulum (ER) stress and apoptosis. Using a gene-trapping approach, we obtained a mutant zebrafish line in which the expression of the tmbim3a/grinaa gene is disrupted by a Tol2 transposon insertion. Homozygous tmbim3a/grinaa mutant larvae exhibited time-dependently increased mortality and apoptosis under cold exposure (at 16 °C). Mechanistically, using immunofluorescence, fluorescence-based assessments of intracellular/mitochondrial Ca2+ levels, mitochondrial membrane potential measurements, and Ca2+-ATPase assays, we found that cold exposure suppresses sarcoplasmic/ER Ca2+-ATPase (SERCA) activity and induces the unfolded protein response (UPR) and ER stress. We also found that the cold-induced ER stress is increased in homozygous tmbim3a/grinaa mutant embryos. The cold-stress hypersensitivity of the tmbim3a/grinaa mutants was tightly associated with disrupted intracellular Ca2+ homeostasis, followed by mitochondrial Ca2+ overload and cytochrome c release, leading to the activation of caspase 9- and caspase-3-mediated intrinsic apoptotic pathways. Treatment of zebrafish larvae with the intracellular Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetate-acetoxymethyl ester (BAPTA-AM) or with 2-aminoethoxydiphenyl borate (2-APB), an inhibitor of the calcium-releasing protein inositol 1,4,5-trisphosphate receptor (IP3R), alleviated cold-induced cell death. Together, these findings unveil a key role of Tmbim3a/Grinaa in relieving cold-induced ER stress and in protecting cells against caspase 9- and caspase 3-mediated apoptosis during zebrafish development.
Collapse
Affiliation(s)
- Kai Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Hubei, Wuhan 430072, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xixi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Hubei, Wuhan 430072, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guili Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Hubei, Wuhan 430072, China
| | - Tong Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Hubei, Wuhan 430072, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Long
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Hubei, Wuhan 430072, China
| | - Qing Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Hubei, Wuhan 430072, China
| | - Shan Zhong
- Department of Genetics, Wuhan University, Wuhan, Hubei 430071, China
| | - Zongbin Cui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Hubei, Wuhan 430072, China .,Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
24
|
Nie M, Tan X, Lu Y, Wu Z, Li J, Xu D, Zhang P, You F. Network of microRNA-transcriptional factor-mRNA in cold response of turbot Scophthalmus maximus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:583-597. [PMID: 30790148 DOI: 10.1007/s10695-019-00611-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 01/21/2019] [Indexed: 05/19/2023]
Abstract
The aim of this study is to understand fish cold-tolerant mechanism. We analyzed the transcriptional reactions to the cold condition in turbot Scophthalmus maximus by using RNA-seq and microRNA (miRNA)-seq. Meio-gynogenetic diploid turbots were treated at 0 °C to distinguish the cold-tolerant (CT) and cold-sensitive (CS) groups. The results showed that there were quite different responses at both mRNA and miRNA levels, with more up-regulated mRNAs (1069 vs. 194) and less down-regulated miRNAs (4 vs. 1) in CT versus CS relative to the control group. The network of miRNA-transcription factor-mRNA, regulating turbot different response to cold stress, was constructed, which involved in cell cycle, component of cell membrane, signal transduction, and circadian rhythm pathways. The above information demonstrates mechanisms by which cold tolerance is increased in fish.
Collapse
Affiliation(s)
- Miaomiao Nie
- CAS Key Laboratory of Experimental Marine Biology, National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 10049, People's Republic of China
| | - Xungang Tan
- CAS Key Laboratory of Experimental Marine Biology, National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, People's Republic of China
| | - Yunliang Lu
- CAS Key Laboratory of Experimental Marine Biology, National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, People's Republic of China
| | - Zhihao Wu
- CAS Key Laboratory of Experimental Marine Biology, National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, People's Republic of China
| | - Jun Li
- CAS Key Laboratory of Experimental Marine Biology, National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, People's Republic of China
| | - Dongdong Xu
- Key Lab of Mariculture and Enhancement of Zhejiang Province, Marine Fishery Institute of Zhejiang Province, Zhoushan, 316100, Zhejiang Province, People's Republic of China
| | - Peijun Zhang
- CAS Key Laboratory of Experimental Marine Biology, National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, People's Republic of China
| | - Feng You
- CAS Key Laboratory of Experimental Marine Biology, National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, People's Republic of China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, People's Republic of China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
25
|
Healy TM, Schulte PM. Patterns of alternative splicing in response to cold acclimation in fish. ACTA ACUST UNITED AC 2019; 222:jeb.193516. [PMID: 30692167 DOI: 10.1242/jeb.193516] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/23/2019] [Indexed: 12/26/2022]
Abstract
Phenotypic plasticity is an important aspect of an organism's response to environmental change that often requires the modulation of gene expression. These changes in gene expression can be quantitative, as a result of increases or decreases in the amounts of specific transcripts, or qualitative, as a result of the expression of alternative transcripts from the same gene (e.g. via alternative splicing of pre-mRNAs). Although the role of quantitative changes in gene expression in phenotypic plasticity is well known, relatively few studies have examined the role of qualitative changes. Here, we use skeletal muscle RNA-seq data from Atlantic killifish (Fundulus heteroclitus), threespine stickleback (Gasterosteus aculeatus) and zebrafish (Danio rerio) to investigate the extent of qualitative changes in gene expression in response to cold acclimation. Fewer genes demonstrated alternative splicing than differential expression as a result of cold acclimation; however, differences in splicing were detected for 426 to 866 genes depending on species, indicating that large numbers of qualitative changes in gene expression are associated with cold acclimation. Many of these alternatively spliced genes were also differentially expressed, and there was functional enrichment for involvement in muscle contraction among the genes demonstrating qualitative changes in response to cold acclimation. Additionally, there was a common group of 29 genes with cold-acclimation-mediated changes in splicing in all three species, suggesting that there may be a set of genes with expression patterns that respond qualitatively to prolonged exposure to cold temperatures across fishes.
Collapse
Affiliation(s)
- Timothy M Healy
- The University of British Columbia, Department of Zoology, 6270 University Boulevard, Vancouver, British Columbia, Canada V6T 1Z4
| | - Patricia M Schulte
- The University of British Columbia, Department of Zoology, 6270 University Boulevard, Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|
26
|
Lu DL, Ma Q, Wang J, Li LY, Han SL, Limbu SM, Li DL, Chen LQ, Zhang ML, Du ZY. Fasting enhances cold resistance in fish through stimulating lipid catabolism and autophagy. J Physiol 2019; 597:1585-1603. [PMID: 30615194 DOI: 10.1113/jp277091] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/02/2019] [Indexed: 02/06/2023] Open
Abstract
KEY POINTS In a cold environment, mammals increase their food intake while fish decrease or stop feeding. However, the physiological value of fasting during cold resistance in fish is currently unknown. Fasting for more than 48 h enhanced acute cold resistance in zebrafish, which correlated with lipid catabolism and cell damage attenuation. Lipid catabolism and autophagy were necessary for cold resistance in fish and the inhibition of mitochondrial fatty acid β-oxidation or autophagy weakened the fasting-induced cold resistance. Repression of mechanistic target of rapamycin (mTOR) signalling pathway by rapamycin largely mimicked the beneficial effects of fasting in promoting cold resistance, suggesting mTOR signalling may be involved in the fasting-induced cold resistance in fish. Our study demonstrates that fasting may be a protective strategy for fish to survive under cold stress. ABSTRACT In cold environments, most homeothermic animals increase their food intake to supply more energy to maintain body temperature, whereas most poikilothermic animals such as fishes decrease or even stop feeding under cold stress. However, the physiological value of fasting during cold resistance in poikilotherms has not been explained. Here, we show that moderate fasting largely enhanced cold resistance in fish. By using pharmacological (fenofibrate, mildronate, chloroquine and rapamycin) and nutritional approaches (fatty acids diets and amino acids diets) in wild-type or specific gene knock-out zebrafish models (carnitine palmitoyltransferase-1b-deficient strain, CPT1b-/- , or autophagy-related protein 12-deficient strain, ATG12-/- ), we verified that fasting-stimulated lipid catabolism and autophagy played essential roles in the improved cold resistance. Moreover, suppression of the mechanistic target of rapamycin (mTOR) pathway by using rapamycin mostly mimicked the beneficial effects of fasting in promoting cold resistance as either the physiological phenotype or transcriptomic pattern. However, these beneficial effects were largely reduced when the mTOR pathway was activated through high dietary leucine supplementation. We conclude that fasting helps fish to resist cold stress by modulating lipid catabolism and autophagy, which correlates with the mTOR signalling pathway. Therefore, fasting can act as a protective strategy of fish in resisting coldness.
Collapse
Affiliation(s)
- Dong-Liang Lu
- LANEH, School of Life Sciences, East China Normal University, Shanghai, P. R. China
| | - Qiang Ma
- LANEH, School of Life Sciences, East China Normal University, Shanghai, P. R. China
| | - Jing Wang
- LANEH, School of Life Sciences, East China Normal University, Shanghai, P. R. China
| | - Ling-Yu Li
- LANEH, School of Life Sciences, East China Normal University, Shanghai, P. R. China
| | - Si-Lan Han
- LANEH, School of Life Sciences, East China Normal University, Shanghai, P. R. China
| | - Samwel Mchele Limbu
- LANEH, School of Life Sciences, East China Normal University, Shanghai, P. R. China.,Department of Aquatic Sciences and Fisheries Technology, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Dong-Liang Li
- LANEH, School of Life Sciences, East China Normal University, Shanghai, P. R. China
| | - Li-Qiao Chen
- LANEH, School of Life Sciences, East China Normal University, Shanghai, P. R. China
| | - Mei-Ling Zhang
- LANEH, School of Life Sciences, East China Normal University, Shanghai, P. R. China
| | - Zhen-Yu Du
- LANEH, School of Life Sciences, East China Normal University, Shanghai, P. R. China
| |
Collapse
|
27
|
Zhou T, Gui L, Liu M, Li W, Hu P, Duarte DFC, Niu H, Chen L. Transcriptomic responses to low temperature stress in the Nile tilapia, Oreochromis niloticus. FISH & SHELLFISH IMMUNOLOGY 2019; 84:1145-1156. [PMID: 30408600 DOI: 10.1016/j.fsi.2018.10.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/03/2018] [Accepted: 10/07/2018] [Indexed: 06/08/2023]
Abstract
The Nile tilapia, Oreochromis niloticus, is a species of high economic value and extensively cultured. The limited stress tolerance of this species to a low temperature usually leads to mass mortality and great loss. Nevertheless, there is limited information on the molecular mechanisms underlying the susceptibility to low temperature in the tilapia. In this study, tilapia was treated at 28 °C to a lethal temperature of 8 °C by a gradual decrement. Transcriptomic response of the immune organ, kidney, in tilapia was characterized using RNA-seq. In total, 2191 genes were annotated for significant expression, which were mainly associated with metabolism and immunity. Pathway analysis showed that immune-related pathways of phagosome and cell adhesion molecules (CAMs) pathway were significantly down-regulated under low temperature. Moreover, ferroptosis, a significantly changed pathway involved in tissue damage and acute renal failure, is reported here for the first time. The levels of serum parameters associated with kidney damage such as urea and uric acid (UA) increased significantly under low temperature. The immunofluorescence staining of the kidney showed that cell apoptosis occurred at low temperature. The results of the present study indicate that exposure to low temperature can cause kidney disfunction and down-regulate the immune-related pathway in the kidney of tilapia. This study provides new insight into the mechanism of kidney damage in fish under low temperature.
Collapse
Affiliation(s)
- Tao Zhou
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Lang Gui
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Mingli Liu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Wenhao Li
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Peng Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Daniel F C Duarte
- Faculty of Sciences and Technology, University of Algarve, Faro, Portugal
| | - Hongbo Niu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Liangbiao Chen
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
28
|
Rakshit A, Khatua K, Shanbhag V, Comba P, Datta A. Cu 2+ selective chelators relieve copper-induced oxidative stress in vivo. Chem Sci 2018; 9:7916-7930. [PMID: 30450181 PMCID: PMC6202919 DOI: 10.1039/c8sc04041a] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 09/29/2018] [Indexed: 02/06/2023] Open
Abstract
Copper ions are essential for biological function yet are severely detrimental when present in excess. At the molecular level, copper ions catalyze the production of hydroxyl radicals that can irreversibly alter essential bio-molecules. Hence, selective copper chelators that can remove excess copper ions and alleviate oxidative stress will help assuage copper-overload diseases. However, most currently available chelators are non-specific leading to multiple undesirable side-effects. The challenge is to build chelators that can bind to copper ions with high affinity but leave the levels of essential metal ions unaltered. Here we report the design and development of redox-state selective Cu ion chelators that have 108 times higher conditional stability constants toward Cu2+ compared to both Cu+ and other biologically relevant metal ions. This unique selectivity allows the specific removal of Cu2+ ions that would be available only under pathophysiological metal overload and oxidative stress conditions and provides access to effective removal of the aberrant redox-cycling Cu ion pool without affecting the essential non-redox cycling Cu+ labile pool. We have shown that the chelators provide distinct protection against copper-induced oxidative stress in vitro and in live cells via selective Cu2+ ion chelation. Notably, the chelators afford significant reduction in Cu-induced oxidative damage in Atp7a-/- Menkes disease model cells that have endogenously high levels of Cu ions. Finally, in vivo testing of our chelators in a live zebrafish larval model demonstrate their protective properties against copper-induced oxidative stress.
Collapse
Affiliation(s)
- Ananya Rakshit
- Department of Chemical Sciences , Tata Institute of Fundamental Research , 1 Homi Bhabha Road, Colaba , Mumbai-400005 , India .
| | - Kaustav Khatua
- Department of Chemical Sciences , Tata Institute of Fundamental Research , 1 Homi Bhabha Road, Colaba , Mumbai-400005 , India .
| | - Vinit Shanbhag
- Department of Biochemistry , Christopher S. Bond Life Science Center , University of Missouri , Columbia , USA
| | - Peter Comba
- Universität Heidelberg , Anorganisch-Chemisches Institut , Interdisciplinary Center for Scientific Computing , INF 270 , D-69120 Heidelberg , Germany
| | - Ankona Datta
- Department of Chemical Sciences , Tata Institute of Fundamental Research , 1 Homi Bhabha Road, Colaba , Mumbai-400005 , India .
| |
Collapse
|
29
|
Moghadam HK, Johnsen H, Robinson N, Andersen Ø, H Jørgensen E, Johnsen HK, Bæhr VJ, Tveiten H. Impacts of Early Life Stress on the Methylome and Transcriptome of Atlantic Salmon. Sci Rep 2017; 7:5023. [PMID: 28694447 PMCID: PMC5504078 DOI: 10.1038/s41598-017-05222-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 05/25/2017] [Indexed: 11/09/2022] Open
Abstract
Exposure to environmental stressors during early-life stages can change the rate and timing of various developmental processes. Epigenetic marks affecting transcriptional regulation can be altered by such environmental stimuli. To assess how stress might affect the methylome and transcriptome in salmon, fish were treated using cold-shock and air-exposure from the eye-stage until start-feeding. The fish were either stressed prior to hatching (E), post-hatching (PH), pre- and post-hatching (EPH) or not stressed (CO). Assessing transcriptional abundances just prior to start feeding, E and PH individuals were found to have modified the expression of thousands of genes, many with important functions in developmental processes. The EPH individuals however, showed expression similar to those of CO, suggesting an adaptive response to extended periods of stress. The methylome of stressed individuals differed from that of the CO, suggesting the importance of environment in shaping methylation signatures. Through integration of methylation with transcription, we identified bases with potential regulatory functions, some 10s of kb away from the targeted genes. We then followed fish growth for an additional year. Individuals in EPH showed superior growth compared to other treatment groups, highlighting how stress can potentially have long-lasting effects on an organism's ability to adapt to environmental perturbations.
Collapse
Affiliation(s)
| | - Hanne Johnsen
- Nofima AS, Muninbakken 9-13, NO-9291, Tromsø, Norway
| | - Nicholas Robinson
- Nofima AS, Osloveien 1, NO-1433, Ås, Norway.,Sustainable Aquaculture Laboratory - Temperate and Tropical (SALTT), School of BioSciences, The University of Melbourne, Parkville, Vic. 3010, Australia
| | - Øivind Andersen
- Nofima AS, Osloveien 1, NO-1433, Ås, Norway.,Department of Animal and Aquaculture Sciences, Norwegian University of Life Sciences (NMBU), NO-1430, Ås, Norway
| | - Even H Jørgensen
- Department of Arctic & Marine Biology, University of Tromsø, NO-9037, Tromsø, Norway
| | - Helge K Johnsen
- Norwegian College of Fishery Science, BFE, University of Tromsø, NO-9037, Tromsø, Norway
| | - Vegar J Bæhr
- Department of Arctic & Marine Biology, University of Tromsø, NO-9037, Tromsø, Norway
| | - Helge Tveiten
- Nofima AS, Muninbakken 9-13, NO-9291, Tromsø, Norway
| |
Collapse
|
30
|
Huang W, Ren C, Li H, Huo D, Wang Y, Jiang X, Tian Y, Luo P, Chen T, Hu C. Transcriptomic analyses on muscle tissues of Litopenaeus vannamei provide the first profile insight into the response to low temperature stress. PLoS One 2017; 12:e0178604. [PMID: 28575089 PMCID: PMC5456072 DOI: 10.1371/journal.pone.0178604] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/16/2017] [Indexed: 01/31/2023] Open
Abstract
The Pacific white shrimp (Litopenaeus vannamei) is an important cultured crustacean species worldwide. However, little is known about the molecular mechanism of this species involved in the response to cold stress. In this study, four separate RNA-Seq libraries of L. vannamei were generated from 13°C stress and control temperature. Total 29,662 of Unigenes and overall of 19,619 annotated genes were obtained. Three comparisons were carried out among the four libraries, in which 72 of the top 20% of differentially-expressed genes were obtained, 15 GO and 5 KEGG temperature-sensitive pathways were fished out. Catalytic activity (GO: 0003824) and Metabolic pathways (ko01100) were the most annotated GO and KEGG pathways in response to cold stress, respectively. In addition, Calcium, MAPK cascade, Transcription factor and Serine/threonine-protein kinase signal pathway were picked out and clustered. Serine/threonine-protein kinase signal pathway might play more important roles in cold adaptation, while other three signal pathway were not widely transcribed. Our results had summarized the differentially-expressed genes and suggested the major important signaling pathways and related genes. These findings provide the first profile insight into the molecular basis of L. vannamei response to cold stress.
Collapse
Affiliation(s)
- Wen Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, Guangdong, China
| | - Chunhua Ren
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, Guangdong, China
| | - Hongmei Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Da Huo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Yanhong Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Xiao Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Yushun Tian
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Peng Luo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, Guangdong, China
- * E-mail: (CH); (TC)
| | - Chaoqun Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, Guangdong, China
- * E-mail: (CH); (TC)
| |
Collapse
|
31
|
Healy TM, Bryant HJ, Schulte PM. Mitochondrial genotype and phenotypic plasticity of gene expression in response to cold acclimation in killifish. Mol Ecol 2017; 26:814-830. [DOI: 10.1111/mec.13945] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 11/11/2016] [Accepted: 11/16/2016] [Indexed: 01/07/2023]
Affiliation(s)
- Timothy M. Healy
- Department of Zoology; The University of British Columbia; 6270 University Blvd Vancouver BC Canada V6T 1Z4
| | - Heather J. Bryant
- Department of Zoology; The University of British Columbia; 6270 University Blvd Vancouver BC Canada V6T 1Z4
| | - Patricia M. Schulte
- Department of Zoology; The University of British Columbia; 6270 University Blvd Vancouver BC Canada V6T 1Z4
| |
Collapse
|
32
|
Hung IC, Hsiao YC, Sun HS, Chen TM, Lee SJ. MicroRNAs regulate gene plasticity during cold shock in zebrafish larvae. BMC Genomics 2016; 17:922. [PMID: 27846817 PMCID: PMC5111229 DOI: 10.1186/s12864-016-3239-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 11/01/2016] [Indexed: 12/19/2022] Open
Abstract
Background MicroRNAs (miRNAs) are critical regulators responding to acute environmental stresses in both plants and animals. By modulating gene expression, miRNAs either restore or reconstitute a new expression program to enhance cell tolerance to stresses. Cold shock is one of the stresses that can induce acute physiological responses and transcriptional changes in aquatic creatures. Previous genomic studies have revealed many cold-affected genes in fish larvae and adults, however, the role of miRNAs in acute cold response is still ambiguous. To elucidate the regulatory roles of miRNAs in the cold-inducible responses, we performed small RNA-seq and RNA-seq analyses and found potential cold regulatory miRNAs and genes. We further investigated their interactions and involvements in cold tolerance. Results Small RNA-seq and RNA-seq identified 29 up-/26 down-regulated miRNAs and 908 up-/468 down-regulated genes, respectively, in responding to cold shock for 4 h at 18 °C. miRNA and transcriptomic analyses showed these miRNAs and mRNAs are involved in similar biological processes and pathways. Gene ontology enrichment analyses revealed the cold-induced genes were enriched in pathways, including melanogenesis, GnRH pathway, circadian rhythm, etc. We were particularly interested in the changes in circadian clock genes that affect daily metabolism. The enrichment of circadian clock genes was also observed in previous fish cold acclimation studies, but have not been characterized. To characterize the functional roles of circadian clock genes in cold tolerance, we individually overexpressed selected clock genes in zebrafish larvae and found one of the core clock genes per2 resulted in better recovery from cold shock. In addition, we validated the interaction of per2 with its associate miRNA, dre-mir-29b, which is also cold-inducible. It suggests the transcription of per2 can be modulated by miRNA upon cold shock. Conclusions Collectively, our observations suggest that miRNAs are fine turners for regulating genomic plasticity against cold shock. We further showed that the fine tuning of core clock gene per2 via its associated miRNA, dre-mir-29b, can enhance the cold tolerance of zebrafish larvae. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3239-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- I-Chen Hung
- Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Yu-Chuan Hsiao
- Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - H Sunny Sun
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, 70456, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70456, Taiwan
| | - Tsung-Ming Chen
- Department and Graduate Institute of Aquaculture, National Kaohsiung Marine University, Kaohsiung 81157, Taiwan.
| | - Shyh-Jye Lee
- Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan. .,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, 10617, Taiwan. .,Center for Biotechnology, National Taiwan University, Taipei, 10617, Taiwan. .,Center for Systems Biology, Taipei, 10617, Taiwan.
| |
Collapse
|
33
|
Wu CL, Li BY, Wu JL, Hui CF. Mechanism and Aquaculture Application of Teleost Enzymes Adapted at Low Temperature. MARINE ENZYMES BIOTECHNOLOGY: PRODUCTION AND INDUSTRIAL APPLICATIONS, PART II - MARINE ORGANISMS PRODUCING ENZYMES 2016; 79:117-136. [DOI: 10.1016/bs.afnr.2016.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
34
|
Gracheva EO, Bagriantsev SN. Evolutionary adaptation to thermosensation. Curr Opin Neurobiol 2015; 34:67-73. [PMID: 25698346 DOI: 10.1016/j.conb.2015.01.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 01/28/2015] [Accepted: 01/30/2015] [Indexed: 01/31/2023]
Abstract
Organisms continuously evolve to adapt to changing environmental conditions. Chief among these are daily and seasonal temperature fluctuations. Relatively small in terms of real physical values, temperature fluctuations of just a few degrees can profoundly affect organismal functions. In vertebrates, temperature is detected by primary afferents of somatosensory neurons, which express thermo-gated ion channels. Most of our knowledge about temperature receptors comes from seminal studies in mice and rats. Recent work uncovered thermosensory mechanisms in other vertebrates, shedding light onto the diversity of thermosensory adaptations. Here, we summarize molecular mechanisms of thermosensation in different species and discuss the need to use the standard laboratory rodents and non-standard species side-by-side in order to understand fundamental principles of somatosensation.
Collapse
Affiliation(s)
- Elena O Gracheva
- Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Sviatoslav N Bagriantsev
- Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
35
|
Hu P, Liu M, Zhang D, Wang J, Niu H, Liu Y, Wu Z, Han B, Zhai W, Shen Y, Chen L. Global identification of the genetic networks and cis-regulatory elements of the cold response in zebrafish. Nucleic Acids Res 2015; 43:9198-213. [PMID: 26227973 PMCID: PMC4627065 DOI: 10.1093/nar/gkv780] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 07/20/2015] [Indexed: 12/17/2022] Open
Abstract
The transcriptional programs of ectothermic teleosts are directly influenced by water temperature. However, the cis- and trans-factors governing cold responses are not well characterized. We profiled transcriptional changes in eight zebrafish tissues exposed to mildly and severely cold temperatures using RNA-Seq. A total of 1943 differentially expressed genes (DEGs) were identified, from which 34 clusters representing distinct tissue and temperature response expression patterns were derived using the k-means fuzzy clustering algorithm. The promoter regions of the clustered DEGs that demonstrated strong co-regulation were analysed for enriched cis-regulatory elements with a motif discovery program, DREME. Seventeen motifs, ten known and seven novel, were identified, which covered 23% of the DEGs. Two motifs predicted to be the binding sites for the transcription factors Bcl6 and Jun, respectively, were chosen for experimental verification, and they demonstrated the expected cold-induced and cold-repressed patterns of gene regulation. Protein interaction modeling of the network components followed by experimental validation suggested that Jun physically interacts with Bcl6 and might be a hub factor that orchestrates the cold response in zebrafish. Thus, the methodology used and the regulatory networks uncovered in this study provide a foundation for exploring the mechanisms of cold adaptation in teleosts.
Collapse
Affiliation(s)
- Peng Hu
- Key Laboratory of Aquacultural Resources and Utilization, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Mingli Liu
- Key Laboratory of Aquacultural Resources and Utilization, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Dong Zhang
- Key Laboratory of Aquacultural Resources and Utilization, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Jinfeng Wang
- Key Laboratory of Aquacultural Resources and Utilization, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Hongbo Niu
- Key Laboratory of Aquacultural Resources and Utilization, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Yimeng Liu
- Key Laboratory of Aquacultural Resources and Utilization, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Zhichao Wu
- Key Laboratory of Aquacultural Resources and Utilization, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Bingshe Han
- Key Laboratory of Aquacultural Resources and Utilization, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Wanying Zhai
- Key Laboratory of Aquacultural Resources and Utilization, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Yu Shen
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Liangbiao Chen
- Key Laboratory of Aquacultural Resources and Utilization, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|