1
|
Song N, Wu J. NaWRKY70 is a key regulator of Nicotiana attenuata resistance to Alternaria alternata through regulation of phytohormones and phytoalexins biosynthesis. THE NEW PHYTOLOGIST 2024; 242:1289-1306. [PMID: 38426573 DOI: 10.1111/nph.19647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
Jasmonate (JA) and abscisic acid (ABA) are two major phytohormones involved in pathogen resistance. However, how their biosynthesis is regulated is not well understood. We silenced NaWRKY70 in wild tobacco Nicotiana attenuata and determined its role in regulating genes involved in the production of JA, ABA and the phytoalexin capsidiol in response to the fungal pathogen Alternaria alternata using techniques including electrophoretic mobility shift, chromatin immunoprecipitation, transient overexpression and virus-induced gene silencing. Silencing NaWRKY70 dramatically reduced both basal and A. alternata-induced jasmonoyl-isoleucine (JA-Ile) and ABA. Further evidence showed that NaWRKY70 directly binds to the W-boxes of the promoters of NaAOS and NaJAR4 (JA biosynthesis), NaNCED1 and NaXD1-like (ABA biosynthesis), and NaMPK4 (ABA signaling) to activate their expression, while binding but repressing the expression of NaCYP707A4-like3 (ABA degradation). Additionally, NaWRKY70 regulates capsidiol production through its key enzyme genes NaEASs and NaEAHs, and interacts with its regulator NaERF2-like to enhance their expression, whereas ABA negatively regulates capsidiol biosynthesis. Our results highlight the key role of NaWRKY70 in controlling both JA-Ile and ABA production, as well as capsidiol production, thus providing new insight into the defense mechanism of plant resistance to A. alternata.
Collapse
Affiliation(s)
- Na Song
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jinsong Wu
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
2
|
Song N, Wu J. Synergistic induction of phytoalexins in Nicotiana attenuata by jasmonate and ethylene signaling mediated by NaWRKY70. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1063-1080. [PMID: 37870145 PMCID: PMC10837013 DOI: 10.1093/jxb/erad415] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/21/2023] [Indexed: 10/24/2023]
Abstract
Production of the phytoalexins scopoletin and scopolin is regulated by jasmonate (JA) and ethylene signaling in Nicotiana species in response to Alternaria alternata, the necrotrophic fungal pathogen that causes brown spot disease. However, how these two signaling pathways are coordinated to control this process remains unclear. In this study, we found that the levels of these two phytoalexins and transcripts of their key enzyme gene, feruloyl-CoA 6'-hydroxylase 1 (NaF6'H1), were synergistically induced in Nicotiana attenuata by co-treatment with methyl jasmonate (MeJA) and ethephon. By combination of RNA sequencing and virus-induced gene silencing, we identified a WRKY transcription factor, NaWRKY70, which had a similar expression pattern to NaF6'H1 and was responsible for A. alternata-induced NaF6'H1 expression. Further evidence from stable transformed plants with RNA interference, knock out and overexpression of NaWRKY70 demonstrated that it is a key player in the synergistic induction of phytoalexins and plant resistance to A. alternata. Electrophoretic mobility shift, chromatin immunoprecipitation-quantitative PCR, and dual-luciferase assays revealed that NaWRKY70 can bind directly to the NaF6'H1 promoter and activate its expression. Furthermore, the key regulator of the ethylene pathway, NaEIN3-like1, can directly bind to the NaWRKY70 promoter and activate its expression. Meanwhile, NaMYC2s, important JA pathway transcription factors, also indirectly regulate the expression of NaWRKY70 and NaF6'H1 to control scopoletin and scopolin production. Our data reveal that these phytoalexins are synergistically induced by JA and ethylene signaling during A. alternata infection, which is largely mediated by NaWRKY70, thus providing new insights into the defense responses against A. alternata in Nicotiana species.
Collapse
Affiliation(s)
- Na Song
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Science, Beijing 10049, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jinsong Wu
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
3
|
Zhou Y, Yang Z, Liu J, Li X, Wang X, Dai C, Zhang T, Carrión VJ, Wei Z, Cao F, Delgado-Baquerizo M, Li X. Crop rotation and native microbiome inoculation restore soil capacity to suppress a root disease. Nat Commun 2023; 14:8126. [PMID: 38065941 PMCID: PMC10709580 DOI: 10.1038/s41467-023-43926-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
It is widely known that some soils have strong levels of disease suppression and prevent the establishment of pathogens in the rhizosphere of plants. However, what soils are better suppressing disease, and how management can help us to boost disease suppression remain unclear. Here, we used field, greenhouse and laboratory experiments to investigate the effect of management (monocropping and rotation) on the capacity of rhizosphere microbiomes in suppressing peanut root rot disease. Compared with crop rotations, monocropping resulted in microbial assemblies that were less effective in suppressing root rot diseases. Further, the depletion of key rhizosphere taxa in monocropping, which were at a disadvantage in the competition for limited exudates resources, reduced capacity to protect plants against pathogen invasion. However, the supplementation of depleted strains restored rhizosphere resistance to pathogen. Taken together, our findings highlight the role of native soil microbes in fighting disease and supporting plant health, and indicate the potential of using microbial inocula to regenerate the natural capacity of soil to fight disease.
Collapse
Affiliation(s)
- Yanyan Zhou
- State Key Laboratory of Tree Genetics and Breeding, College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhen Yang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Jinguang Liu
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xudong Li
- State Key Laboratory of Tree Genetics and Breeding, College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Xingxiang Wang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- Ecological Experimental Station of Red Soil, Chinese Academy of Sciences, Yingtan, 335211, China
| | - Chuanchao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Taolin Zhang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- Ecological Experimental Station of Red Soil, Chinese Academy of Sciences, Yingtan, 335211, China
| | - Víctor J Carrión
- Departamento de Microbiología, Facultad de Ciencias, Campus Universitario de Teatinos s/n, Universidad de Málaga, 29010, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM) UMA-CSIC, 29010, Málaga, Spain
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
| | - Zhong Wei
- College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fuliang Cao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain
| | - Xiaogang Li
- State Key Laboratory of Tree Genetics and Breeding, College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, China.
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
4
|
Pradhan M, Baldwin IT, Pandey SP. Argonaute7 (AGO7) optimizes arbuscular mycorrhizal fungal associations and enhances competitive growth in Nicotiana attenuata. THE NEW PHYTOLOGIST 2023; 240:382-398. [PMID: 37532924 DOI: 10.1111/nph.19155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/02/2023] [Indexed: 08/04/2023]
Abstract
Plants interact with arbuscular mycorrhizal fungi (AMF) and in doing so, change transcript levels of many miRNAs and their targets. However, the identity of an Argonaute (AGO) that modulates this interaction remains unknown, including in Nicotiana attenuata. We examined how the silencing of NaAGO1/2/4/7/and 10 by RNAi influenced plant-competitive ability under low-P conditions when they interact with AMF. Furthermore, the roles of seven miRNAs, predicted to regulate signaling and phosphate homeostasis, were evaluated by transient overexpression. Only NaAGO7 silencing by RNAi (irAGO7) significantly reduced the competitive ability under P-limited conditions, without changes in leaf or root development, or juvenile-to-adult phase transitions. In plants growing competitively in the glasshouse, irAGO7 roots were over-colonized with AMF, but they accumulated significantly less phosphate and the expression of their AMF-specific transporters was deregulated. Furthermore, the AMF-induced miRNA levels were inversely regulated with the abundance of their target transcripts. miRNA overexpression consistently decreased plant fitness, with four of seven-tested miRNAs reducing mycorrhization rates, and two increasing mycorrhization rates. Overexpression of Na-miR473 and Na-miRNA-PN59 downregulated targets in GA, ethylene, and fatty acid metabolism pathways. We infer that AGO7 optimizes competitive ability and colonization by regulating miRNA levels and signaling pathways during a plant's interaction with AMF.
Collapse
Affiliation(s)
- Maitree Pradhan
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Shree P Pandey
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| |
Collapse
|
5
|
Fusarium spp. associated with Chenopodium quinoa crops in Colombia. Sci Rep 2022; 12:20841. [PMID: 36460698 PMCID: PMC9718861 DOI: 10.1038/s41598-022-24908-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
Quinoa is a plant commonly-resistance to adverse biotic and abiotic factors. However, this crop can be affected by phytopathogenic fungi. There is a lack of knowledge about the fungi associated with quinoa plants in Colombia. Through morphological and molecular identification in this study were identified four Fusarium species associated with quinoa crops: Fusarium oxysporum, Fusarium graminearum, Fusarium equiseti, and Fusarium culmorum. For this, we collected samples of panicles, leaf tissue, root tissue, and soil for isolation of different isolates of Fusarium. We performed a pathogenicity test of the fungi strains, under greenhouse conditions to evaluate the pathogenicity in seedlings of the Piartal cultivar with two inoculation methods. First inoculating the stem through a nodal wound or second inoculating the abaxial face with a brush. The results indicate the presence of four species with both molecular markers, phylogenetically distributed in these groups. The four species turned out to be pathogenic but with different degrees of virulence with significant differences between F. graminearum and F. oxysporum depending on the inoculation method. This is the first report on the presence of Fusarium species isolated from Quinoa in Colombia.
Collapse
|
6
|
Li Z, Bai X, Jiao S, Li Y, Li P, Yang Y, Zhang H, Wei G. A simplified synthetic community rescues Astragalus mongholicus from root rot disease by activating plant-induced systemic resistance. MICROBIOME 2021; 9:217. [PMID: 34732249 PMCID: PMC8567675 DOI: 10.1186/s40168-021-01169-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/26/2021] [Indexed: 05/19/2023]
Abstract
BACKGROUND Plant health and growth are negatively affected by pathogen invasion; however, plants can dynamically modulate their rhizosphere microbiome and adapt to such biotic stresses. Although plant-recruited protective microbes can be assembled into synthetic communities for application in the control of plant disease, rhizosphere microbial communities commonly contain some taxa at low abundance. The roles of low-abundance microbes in synthetic communities remain unclear; it is also unclear whether all the microbes enriched by plants can enhance host adaptation to the environment. Here, we assembled a synthetic community with a disease resistance function based on differential analysis of root-associated bacterial community composition. We further simplified the synthetic community and investigated the roles of low-abundance bacteria in the control of Astragalus mongholicus root rot disease by a simple synthetic community. RESULTS Fusarium oxysporum infection reduced bacterial Shannon diversity and significantly affected the bacterial community composition in the rhizosphere and roots of Astragalus mongholicus. Under fungal pathogen challenge, Astragalus mongholicus recruited some beneficial bacteria such as Stenotrophomonas, Achromobacter, Pseudomonas, and Flavobacterium to the rhizosphere and roots. We constructed a disease-resistant bacterial community containing 10 high- and three low-abundance bacteria enriched in diseased roots. After the joint selection of plants and pathogens, the complex synthetic community was further simplified into a four-species community composed of three high-abundance bacteria (Stenotrophomonas sp., Rhizobium sp., Ochrobactrum sp.) and one low-abundance bacterium (Advenella sp.). Notably, a simple community containing these four strains and a thirteen-species community had similar effects on the control root rot disease. Furthermore, the simple community protected plants via a synergistic effect of highly abundant bacteria inhibiting fungal pathogen growth and less abundant bacteria activating plant-induced systemic resistance. CONCLUSIONS Our findings suggest that bacteria with low abundance play an important role in synthetic communities and that only a few bacterial taxa enriched in diseased roots are associated with disease resistance. Therefore, the construction and simplification of synthetic communities found in the present study could be a strategy employed by plants to adapt to environmental stress. Video abstract.
Collapse
Affiliation(s)
- Zhefei Li
- State key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Xiaoli Bai
- State key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shuo Jiao
- State key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yanmei Li
- State key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Peirong Li
- State key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yan Yang
- State key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hui Zhang
- State key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Gehong Wei
- State key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
7
|
Pradhan M, Rocha C, Halitschke R, Baldwin IT, Pandey SP. microRNA390 modulates Nicotiana attenuata's tolerance response to Manduca sexta herbivory. PLANT DIRECT 2021; 5:e350. [PMID: 34622121 PMCID: PMC8482963 DOI: 10.1002/pld3.350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
miR390 is a highly conserved miRNA in plant lineages known to function in growth and development processes, such as lateral root development, and in responses to salt and metal stress. In the ecological model species, Nicotiana attenuata, miR390's biological function remains unknown, which we explore here with a gain-of-function analysis with plants over-expressing (OE-) N. attenuata miR390 (Na-miR390) in glasshouse and natural environments. OEmiR390 plants showed normal developmental processes, including lateral root formation or reproductive output, in plants grown under standard conditions in the glasshouse. OEmiR390 plants did not have dramatically altered interactions with arbuscular mycorrhizal fungi (AMF), Fusarium pathogens, or herbivores. However, Na-miR390 regulated the plant's tolerance of herbivory. Caterpillar feeding elicits the accumulation of a suite of phytohormones, including auxin and jasmonates, which further regulate host-tolerance. The increase in Na-miR390 abundance reduces the accumulation of auxin but does not influence levels of other phytohormones including jasmonates (JA, JA-Ile), salicylic acid (SA), and abscisic acid (ABA). Na-miR390 overexpression reduces reproductive output, quantified as capsule production, when plants are attacked by herbivores. Exogenous auxin treatments of herbivore-attacked plants restored capsule production to wild-type levels. During herbivory, Na-miR390 transcript abundances are increased; its overexpression reduces the abundances of auxin biosynthesizing YUCCA and ARF (mainly ARF4) transcripts during herbivory. Furthermore, the accumulation of auxin-regulated phenolamide secondary metabolites (caffeoylputrescine, dicaffeoylspermidine) is also reduced. In N. attenuata, miR390 functions in modulating tolerance responses of herbivore-attacked plants.
Collapse
Affiliation(s)
- Maitree Pradhan
- Department of Molecular Ecology Max Planck Institute for Chemical Ecology Jena Germany
| | - Catarina Rocha
- Department of Molecular Ecology Max Planck Institute for Chemical Ecology Jena Germany
| | - Rayko Halitschke
- Department of Molecular Ecology Max Planck Institute for Chemical Ecology Jena Germany
| | - Ian T Baldwin
- Department of Molecular Ecology Max Planck Institute for Chemical Ecology Jena Germany
| | - Shree P Pandey
- Department of Molecular Ecology Max Planck Institute for Chemical Ecology Jena Germany
| |
Collapse
|
8
|
Yin M, Song N, Chen S, Wu J. NaKTI2, a Kunitz trypsin inhibitor transcriptionally regulated by NaWRKY3 and NaWRKY6, is required for herbivore resistance in Nicotiana attenuata. PLANT CELL REPORTS 2021; 40:97-109. [PMID: 33048182 DOI: 10.1007/s00299-020-02616-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
KEY MESSAGE Here, we reported that a pathogen- and herbivore-induced Kunitz trypsin inhibitor gene, NaKTI2, is required for herbivore resistance, and transcriptionally regulated mainly by NaWRKY3 and NaWRKY6 but not Jasmonate signaling. Plant protease inhibitor (PI) occurs widely in plant species, and is considered as an important part of plant defense arsenal against herbivores. Transcriptome analysis of Nicotiana attenuata leaves revealed that a Kunitz trypsin inhibitor gene, NaKTI2, was highly elicited after inoculation of Alternaria alternata (tobacco pathotype). However, the roles of NaKTI2 in pathogen- and herbivore resistance and its regulation were unclear. NaKTI2 had typical domains of Kunitz trypsin inhibitors and exhibited a high level of trypsin protease inhibitor activities when transiently over-expressed. The transcripts of NaKTI2 could be induced by A. alternata and Spodoptera litura oral secretions (OS). Silencing NaKTI2 via virus-induced gene silencing technique has no influence on lesion diameters developed on N. attenuata leaves after A. alternata inoculation, but S. litura larvae gained more mass and had higher survivorship on NaKTI2-silenced plants. Meanwhile, the expression of NaPI, a PI gene essential for herbivore resistance previously identified in N. attenuata, was not affected in NaKTI2-silenced plants. Unlike NaPI, which was predominantly regulated by jasmonate (JA) signaling, OS-elicited NaKTI2 transcripts were only slightly reduced in JA-deficient plants, but were dramatically decreased in NaWRKY3- and NaWRKY6- silenced plants, respectively. Further electromobility shift assays indicated that NaWRKY3 and NaWRKY6 could directly bind to the promoter regions of NaKTI2 in vitro. Taken together, our results demonstrate that in addition to NaPI, NaKTI2, a pathogen- and herbivore-induced Kunitz trypsin inhibitor gene, is also required for herbivore resistance, and mainly regulated by NaWRKY3 and NaWRKY6.
Collapse
Affiliation(s)
- Min Yin
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- School of Life Science, Biocontrol Engineering Research Center of Crop Disease & Pest, Yunnan University, Kunming, 650091, China
| | - Na Song
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Science, Beijing, 10049, China
| | - Suiyun Chen
- School of Life Science, Biocontrol Engineering Research Center of Crop Disease & Pest, Yunnan University, Kunming, 650091, China
| | - Jinsong Wu
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
9
|
Pradhan M, Pandey P, Baldwin IT, Pandey SP. Argonaute4 Modulates Resistance to Fusarium brachygibbosum Infection by Regulating Jasmonic Acid Signaling. PLANT PHYSIOLOGY 2020; 184:1128-1152. [PMID: 32723807 PMCID: PMC7536687 DOI: 10.1104/pp.20.00171] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/14/2020] [Indexed: 05/06/2023]
Abstract
Argonautes (AGOs) associate with noncoding RNAs to regulate gene expression during development and stress adaptation. Their role in plant immunity against hemibiotrophic fungal infection remains poorly understood. Here, we explore the function of AGOs in the interaction of wild tobacco (Nicotiana attenuata) with a naturally occurring hemibiotrophic pathogen, Fusarium brachygibbosum Among all AGOs, only transcripts of AGO4 were elicited after fungal infection. The disease progressed more rapidly in AGO4-silenced (irAGO4) plants than in wild type, and small RNA (smRNA) profiling revealed that 24-nucleotide smRNA accumulation was severely abrogated in irAGO4 plants. Unique microRNAs (miRNAs: 130 conserved and 208 novel, including 11 canonical miRNA sequence variants known as "isomiRs") were identified in infected plants; silencing of AGO4 strongly changed miRNA accumulation dynamics. Time-course studies revealed that infection increased accumulation of abscisic acid, jasmonates, and salicylic acid in wild type; in irAGO4 plants, infection accumulated lower jasmonate levels and lower transcripts of jasmonic acid (JA) biosynthesis genes. Treating irAGO4 plants with JA, methyl jasmonate, or cis-(+)-12-oxo-phytodienoic acid restored wild-type levels of resistance. Silencing expression of RNA-directed RNA polymerases RdR1 and RdR2 (but not RdR3) and Dicer-like3 (DCL3, but not DCL2 or DCL4) increased susceptibility to F brachygibbosum The relevance of AGO4, RdR1, RdR2, and DCL3 in a natural setting was revealed when plants individually silenced in their expression (and their binary combinations) were planted in a diseased field plot in the Great Basin Desert of Utah. These plants were more susceptible to infection and accumulated lower JA levels than wild type. We infer that AGO4-dependent smRNAs play a central role in modulating JA biogenesis and signaling during hemibiotrophic fungal infections.
Collapse
Affiliation(s)
- Maitree Pradhan
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Priyanka Pandey
- National Institute of Biomedical Genomics, Kalyani, 741251 West Bengal, India
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Shree P Pandey
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| |
Collapse
|
10
|
Song N, Ma L, Wang W, Sun H, Wang L, Baldwin IT, Wu J. An ERF2-like transcription factor regulates production of the defense sesquiterpene capsidiol upon Alternaria alternata infection. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5895-5908. [PMID: 31294452 PMCID: PMC6812721 DOI: 10.1093/jxb/erz327] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/05/2019] [Indexed: 05/22/2023]
Abstract
Capsidiol is a sesquiterpenoid phytoalexin produced in Nicotiana and Capsicum species in response to pathogen attack. Whether capsidiol plays a defensive role and how its biosynthesis is regulated in the wild tobacco Nicotiana attenuata when the plant is attacked by Alternaria alternata (tobacco pathotype), a notorious necrotrophic fungus causing brown spot disease, are unknown. Transcriptome analysis indicated that a metabolic switch to sesquiterpene biosynthesis occurred in young leaves of N. attenuata after A. alternata inoculation: many genes leading to sesquiterpene production were strongly up-regulated, including the capsidiol biosynthetic genes 5-epi-aristolochene synthase (EAS) and 5-epi-aristolochene hydroxylase (EAH). Consistently, the level of capsidiol was increased dramatically in young leaves after fungal inoculation, from not detectable in mock control to 50.68±3.10 µg g-1 fresh leaf at 3 d post-inoculation. Capsidiol-reduced or capsidiol-depleted plants, which were generated by silencing EAHs or EASs by virus-induced gene silencing, were more susceptible to the fungus. In addition, this sesquiterpene when purified from infected plants exhibited strong anti-fungal activities against A. alternata in vitro. Furthermore, an ERF2-like transcription factor was found to positively regulate capsidiol production and plant resistance through the direct transactivation of a capsidiol biosynthetic gene, EAS12. Taken together, our results demonstrate that capsidiol, a phytoalexin highly accumulated in N. attenuata plants in response to A. alternata infection, plays an important role in pathogen resistance independent of jasmonate and ethylene signaling pathways, and its biosynthesis is transcriptionally regulated by an ERF2-like transcription factor.
Collapse
Affiliation(s)
- Na Song
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Science, Beijing, China
| | - Lan Ma
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Weiguang Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources of State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming, China
| | - Huanhuan Sun
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Lei Wang
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Jinsong Wu
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
11
|
Santhanam R, Menezes RC, Grabe V, Li D, Baldwin IT, Groten K. A suite of complementary biocontrol traits allows a native consortium of root-associated bacteria to protect their host plant from a fungal sudden-wilt disease. Mol Ecol 2019; 28:1154-1169. [PMID: 30633416 DOI: 10.1111/mec.15012] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 01/05/2023]
Abstract
The beneficial effects of plant--bacterial interactions in controlling plant pests have been extensively studied with single bacterial isolates. However, in nature, bacteria interact with plants in multitaxa consortia, systems which remain poorly understood. Previously, we demonstrated that a consortium of five native bacterial isolates protected their host plant Nicotiana attenuata from a sudden wilt disease. Here we explore the mechanisms behind the protection effect against the native pathosystem. Three members of the consortium, Pseudomonas azotoformans A70, P. frederiksbergensis A176 and Arthrobacter nitroguajacolicus E46, form biofilms when grown individually in vitro, and the amount of biofilm increased synergistically in the five-membered consortium, including two Bacillus species, B. megaterium and B. mojavensis. Fluorescence in situ hybridization and scanning electron microscopy in planta imaging techniques confirmed biofilm formation and revealed locally distinct distributions of the five bacterial strains colonizing different areas on the plant-root surface. One of the five isolates, K1 B. mojavensis produces the antifungal compound surfactin, under in vitro and in vivo conditions, clearly inhibiting fungal growth. Furthermore, isolates A70 and A176 produce siderophores under in vitro conditions. Based on these results we infer that the consortium of five bacterial isolates protects its host against fungal phytopathogens via complementary traits. The study should encourage researchers to create synthetic communities from native strains of different genera to improve bioprotection against wilting diseases.
Collapse
Affiliation(s)
- Rakesh Santhanam
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Riya C Menezes
- Research Group Mass Spectrometry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Veit Grabe
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Dapeng Li
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Karin Groten
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
12
|
McGale E, Diezel C, Schuman MC, Baldwin IT. Cry1Ac production is costly for native plants attacked by non-Cry1Ac-targeted herbivores in the field. THE NEW PHYTOLOGIST 2018; 219:714-727. [PMID: 29754424 DOI: 10.1111/nph.15207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/29/2018] [Indexed: 05/11/2023]
Abstract
Plants are the primary producers in most terrestrial ecosystems and have complex defense systems to protect their produce. Defense-deficient, high-yielding agricultural monocultures attract abundant nonhuman consumers, but are alternatively defended through pesticide application and genetic engineering to produce insecticidal proteins such as Cry1Ac (Bacillus thuringiensis). These approaches alter the balance between yield protection and maximization but have been poorly contextualized to known yield-defense trade-offs in wild plants. The native plant Nicotiana attenuata was used to compare yield benefits of plants transformed to be defenseless to those with a full suite of naturally evolved defenses, or additionally transformed to ectopically produce Cry1Ac. An insecticide treatment allowed us to examine yield under different herbivore loads in N. attenuata's native habitat. Cry1Ac, herbivore damage, and growth parameters were monitored throughout the season. Biomass and reproductive correlates were measured at season end. Non-Cry1Ac-targeted herbivores dominated on noninsecticide-treated plants, and increased the yield drag of Cry1Ac-producing plants in comparison with endogenously defended or undefended plants. Insecticide-sprayed Cry1Ac-producing plants lagged less in stalk height, shoot biomass, and flower production. In direct comparison with the endogenous defenses of a native plant, Cry1Ac production did not provide yield benefits for plants under observed herbivore loads in a field study.
Collapse
Affiliation(s)
- Erica McGale
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Jena, 07745, Thüringen, Germany
| | - Celia Diezel
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Jena, 07745, Thüringen, Germany
| | - Meredith C Schuman
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Jena, 07745, Thüringen, Germany
| | - Ian T Baldwin
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Jena, 07745, Thüringen, Germany
| |
Collapse
|
13
|
Xu Z, Song N, Ma L, Fang D, Wu J. NaPDR1 and NaPDR1-like are essential for the resistance of Nicotiana attenuata against fungal pathogen Alternaria alternata. PLANT DIVERSITY 2018; 40:68-73. [PMID: 30159544 PMCID: PMC6091937 DOI: 10.1016/j.pld.2018.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 05/18/2023]
Abstract
Pleiotropic drug resistance (PDR) transporters are widely distributed membrane proteins catalyzing the export or import of a diverse array of molecules, and are involved in many plant responses to biotic and abiotic stresses. However, it is unclear whether PDRs are involved in Nicotiana attenuata resistance to the necrotic fungal pathogen Alternaria alternata. In this study, transcriptional levels of both NaPDR1 and NaPDR1-like were highly induced in N. attenuata leaves after A. alternata inoculation. Interestingly, silencing NaPDR1 or NaPDR1-like individually had little effect on N. attenuata resistance to A. alternata; however, when both genes were co-silenced plants became highly susceptible to the fungus, which was associated with elevated JA and ethylene responses. Neither NaPDR1 nor NaPDR1-like was significantly elicited by exogenous treatment with methyl jasmonate (MeJA), whereas both were highly induced by ethylene. The elicitation levels of both genes by A. alternata were significantly reduced in plants with impaired JA or ethylene signaling pathways. Thus, we conclude that both NaPDR1 and NaPDR1-like function redundantly to confer resistance against A. alternata in N. attenuata, and the elicitation of the transcripts of both genes by the fungus is partially dependent on ethylene and jasmonate signaling.
Collapse
Affiliation(s)
- Zhen Xu
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Research and Development of Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, 650201, Kunming, China
- College of Life Science, University of Yunnan, Kunming, 650091, China
| | - Na Song
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Research and Development of Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, 650201, Kunming, China
| | - Lan Ma
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Research and Development of Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, 650201, Kunming, China
| | - Dunhuang Fang
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, China
- Corresponding author. Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, China.
| | - Jinsong Wu
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Research and Development of Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, 650201, Kunming, China
- Corresponding author. Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Research and Development of Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, 650201, Kunming, China. Fax: +86 0 871 65238769.
| |
Collapse
|
14
|
Kim DY, Kadam A, Shinde S, Saratale RG, Patra J, Ghodake G. Recent developments in nanotechnology transforming the agricultural sector: a transition replete with opportunities. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:849-864. [PMID: 29065236 DOI: 10.1002/jsfa.8749] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/12/2017] [Accepted: 10/16/2017] [Indexed: 05/23/2023]
Abstract
The applications and benefits of nanotechnology in the agricultural sector have attracted considerable attention, particularly in the invention of unique nanopesticides and nanofertilisers. The contemporary developments in nanotechnology are acknowledged and the most significant opportunities awaiting the agriculture sector from the recent scientific and technical literature are addressed. This review discusses the significance of recent trends in nanomaterial-based sensors available for the sustainable management of agricultural soil, as well as the role of nanotechnology in detection and protection against plant pathogens, and for food quality and safety. Novel nanosensors have been reported for primary applications in improving crop practices, food quality, and packaging methods, thus will change the agricultural sector for potentially better and healthier food products. Nanotechnology is well-known to play a significant role in the effective management of phytopathogens, nutrient utilisation, controlled release of pesticides, and fertilisers. Research and scientific gaps to be overcome and fundamental questions have been addressed to fuel active development and application of nanotechnology. Together, nanoscience, nanoengineering, and nanotechnology offer a plethora of opportunities, proving a viable alternative in the agriculture and food processing sector, by providing a novel and advanced solutions. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dae-Young Kim
- Department of Biological and Environmental Science, College of Life Science and Biotechnology, Dongguk University-Seoul, Gyeonggi-do, Republic of Korea
| | - Avinash Kadam
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Gyeonggi-do, Republic of Korea
| | - Surendra Shinde
- Department of Biological and Environmental Science, College of Life Science and Biotechnology, Dongguk University-Seoul, Gyeonggi-do, Republic of Korea
| | - Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Gyeonggi-do, Republic of Korea
| | - Jayanta Patra
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Gyeonggi-do, Republic of Korea
| | - Gajanan Ghodake
- Department of Biological and Environmental Science, College of Life Science and Biotechnology, Dongguk University-Seoul, Gyeonggi-do, Republic of Korea
| |
Collapse
|
15
|
Luu VT, Weinhold A, Ullah C, Dressel S, Schoettner M, Gase K, Gaquerel E, Xu S, Baldwin IT. O-Acyl Sugars Protect a Wild Tobacco from Both Native Fungal Pathogens and a Specialist Herbivore. PLANT PHYSIOLOGY 2017; 174:370-386. [PMID: 28275149 PMCID: PMC5411141 DOI: 10.1104/pp.16.01904] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/06/2017] [Indexed: 05/04/2023]
Abstract
O-Acyl sugars (O-AS) are abundant trichome-specific metabolites that function as indirect defenses against herbivores of the wild tobacco Nicotiana attenuata; whether they also function as generalized direct defenses against herbivores and pathogens remains unknown. We characterized natural variation in O-AS among 26 accessions and examined their influence on two native fungal pathogens, Fusarium brachygibbosum U4 and Alternaria sp. U10, and the specialist herbivore Manduca sexta At least 15 different O-AS structures belonging to three classes were found in N. attenuata leaves. A 3-fold quantitative variation in total leaf O-AS was found among the natural accessions. Experiments with natural accessions and crosses between high- and low-O-AS accessions revealed that total O-AS levels were associated with resistance against herbivores and pathogens. Removing O-AS from the leaf surface increased M. sexta growth rate and plant fungal susceptibility. O-AS supplementation in artificial diets and germination medium reduced M. sexta growth and fungal spore germination, respectively. Finally, silencing the expression of a putative branched-chain α-ketoacid dehydrogenase E1 β-subunit-encoding gene (NaBCKDE1B) in the trichomes reduced total leaf O-AS by 20% to 30% and increased susceptibility to Fusarium pathogens. We conclude that O-AS function as direct defenses to protect plants from attack by both native pathogenic fungi and a specialist herbivore and infer that their diversification is likely shaped by the functional interactions among these biotic stresses.
Collapse
Affiliation(s)
- Van Thi Luu
- Department of Molecular Ecology (V.T.L., S.D., M.S., K.G., S.X., I.T.B.) and Department of Biochemistry (C.U.), Max Planck Institute for Chemical Ecology, Jena 07745, Germany
- Department of Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research, Leipzig 04103, Germany (A.W); and
- Centre for Organismal Studies, University of Heidelberg, Heidelberg 69120, Germany (E.G.)
| | - Alexander Weinhold
- Department of Molecular Ecology (V.T.L., S.D., M.S., K.G., S.X., I.T.B.) and Department of Biochemistry (C.U.), Max Planck Institute for Chemical Ecology, Jena 07745, Germany
- Department of Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research, Leipzig 04103, Germany (A.W); and
- Centre for Organismal Studies, University of Heidelberg, Heidelberg 69120, Germany (E.G.)
| | - Chhana Ullah
- Department of Molecular Ecology (V.T.L., S.D., M.S., K.G., S.X., I.T.B.) and Department of Biochemistry (C.U.), Max Planck Institute for Chemical Ecology, Jena 07745, Germany
- Department of Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research, Leipzig 04103, Germany (A.W); and
- Centre for Organismal Studies, University of Heidelberg, Heidelberg 69120, Germany (E.G.)
| | - Stefanie Dressel
- Department of Molecular Ecology (V.T.L., S.D., M.S., K.G., S.X., I.T.B.) and Department of Biochemistry (C.U.), Max Planck Institute for Chemical Ecology, Jena 07745, Germany
- Department of Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research, Leipzig 04103, Germany (A.W); and
- Centre for Organismal Studies, University of Heidelberg, Heidelberg 69120, Germany (E.G.)
| | - Matthias Schoettner
- Department of Molecular Ecology (V.T.L., S.D., M.S., K.G., S.X., I.T.B.) and Department of Biochemistry (C.U.), Max Planck Institute for Chemical Ecology, Jena 07745, Germany
- Department of Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research, Leipzig 04103, Germany (A.W); and
- Centre for Organismal Studies, University of Heidelberg, Heidelberg 69120, Germany (E.G.)
| | - Klaus Gase
- Department of Molecular Ecology (V.T.L., S.D., M.S., K.G., S.X., I.T.B.) and Department of Biochemistry (C.U.), Max Planck Institute for Chemical Ecology, Jena 07745, Germany
- Department of Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research, Leipzig 04103, Germany (A.W); and
- Centre for Organismal Studies, University of Heidelberg, Heidelberg 69120, Germany (E.G.)
| | - Emmanuel Gaquerel
- Department of Molecular Ecology (V.T.L., S.D., M.S., K.G., S.X., I.T.B.) and Department of Biochemistry (C.U.), Max Planck Institute for Chemical Ecology, Jena 07745, Germany
- Department of Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research, Leipzig 04103, Germany (A.W); and
- Centre for Organismal Studies, University of Heidelberg, Heidelberg 69120, Germany (E.G.)
| | - Shuqing Xu
- Department of Molecular Ecology (V.T.L., S.D., M.S., K.G., S.X., I.T.B.) and Department of Biochemistry (C.U.), Max Planck Institute for Chemical Ecology, Jena 07745, Germany
- Department of Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research, Leipzig 04103, Germany (A.W); and
- Centre for Organismal Studies, University of Heidelberg, Heidelberg 69120, Germany (E.G.)
| | - Ian T Baldwin
- Department of Molecular Ecology (V.T.L., S.D., M.S., K.G., S.X., I.T.B.) and Department of Biochemistry (C.U.), Max Planck Institute for Chemical Ecology, Jena 07745, Germany;
- Department of Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research, Leipzig 04103, Germany (A.W); and
- Centre for Organismal Studies, University of Heidelberg, Heidelberg 69120, Germany (E.G.)
| |
Collapse
|
16
|
van der Walt AJ, Johnson RM, Cowan DA, Seely M, Ramond JB. Unique Microbial Phylotypes in Namib Desert Dune and Gravel Plain Fairy Circle Soils. Appl Environ Microbiol 2016; 82:4592-4601. [PMID: 27208111 PMCID: PMC4984285 DOI: 10.1128/aem.00844-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/16/2016] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED Fairy circles (FCs) are barren circular patches of soil surrounded by grass species. Their origin is poorly understood. FCs feature in both the gravel plains and the dune fields of the Namib Desert. While a substantial number of hypotheses to explain the origin and/or maintenance of fairy circles have been presented, none are completely consistent with either their properties or their distribution. In this study, we investigated the hypothesis that FC formation in dunes and gravel plains is due to microbial phytopathogenesis. Surface soils from five gravel plain and five dune FCs, together with control soil samples, were analyzed using high-throughput sequencing of bacterial/archaeal (16S rRNA gene) and fungal (internal transcribed spacer [ITS] region) phylogenetic markers. Our analyses showed that gravel plain and dune FC microbial communities are phylogenetically distinct and that FC communities differ from those of adjacent vegetated soils. Furthermore, various soil physicochemical properties, particularly the pH, the Ca, P, Na, and SO4 contents, the soil particle size, and the percentage of carbon, significantly influenced the compositions of dune and gravel plain FC microbial communities, but none were found to segregate FC and vegetated soil communities. Nevertheless, 9 bacterial, 1 archaeal, and 57 fungal phylotypes were identified as FC specific, since they were present within the gravel plain and dune FC soils only, not in the vegetated soils. Some of these FC-specific phylotypes were assigned to taxa known to harbor phytopathogenic microorganisms. This suggests that these FC-specific microbial taxa may be involved in the formation and/or maintenance of Namib Desert FCs. IMPORTANCE Fairy circles (FCs) are mysterious barren circular patches of soil found within a grass matrix in the dune fields and gravel plains of the Namib Desert. Various hypotheses attempting to explain this phenomenon have been proposed. To date, however, none have been successful in fully explaining the etiology of FCs, particularly since gravel plain FCs have been largely ignored. In this study, we investigated the hypothesis that microorganisms could be involved in the FC phenomenon through phytopathogenesis. We show that the microbial communities in FC and control vegetated soil samples were significantly different. Furthermore, we detected 67 FC-specific microbial phylotypes, i.e., phylotypes present solely in both gravel plain and dune FC soils, some of which were closely related to known phytopathogens. Our results, therefore, demonstrate that microorganisms may play a role in the formation and/or maintenance of Namib Desert FCs, possibly via phytopathogenic activities.
Collapse
Affiliation(s)
- Andries J van der Walt
- Centre for Microbial Ecology and Genomics (CMEG), Genomics Research Institute, Department of Genetics, University of Pretoria, Pretoria, South Africa
| | - Riegardt M Johnson
- Centre for Microbial Ecology and Genomics (CMEG), Genomics Research Institute, Department of Genetics, University of Pretoria, Pretoria, South Africa
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics (CMEG), Genomics Research Institute, Department of Genetics, University of Pretoria, Pretoria, South Africa
| | - Mary Seely
- Gobabeb Research and Training Centre, Walvis Bay, Namibia
- School of Animal, Plant and Environmental Sciences (AP&ES), University of the Witwatersrand, Johannesburg, South Africa
| | - Jean-Baptiste Ramond
- Centre for Microbial Ecology and Genomics (CMEG), Genomics Research Institute, Department of Genetics, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
17
|
Simpson BS, Bulone V, Semple SJ, Booker GW, McKinnon RA, Weinstein P. Arid awakening: new opportunities for Australian plant natural product research. RANGELAND JOURNAL 2016. [DOI: 10.1071/rj16004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The importance of plants and other natural reserves as sources for biologically important compounds, particularly for application in food and medicine, is undeniable. Herein we provide a historical context of the major scientific research programs conducted in Australia that have been aimed at discovering novel bioactive natural products from terrestrial plants. Generally speaking, the main approaches used to guide the discovery of novel bioactive compounds from natural resources have included random, ethnobotanical and chemotaxonomic strategies. Previous Australian plant natural product research campaigns appear to have lacked the use of a fourth strategy with equally high potential, namely the ecologically guided approach. In addition, many large studies have sampled plant material predominantly from tropical regions of Australia, even though arid and semi-arid zones make up 70% of mainland Australia. Therefore, plants growing in arid zone environments, which are exposed to different external stressors (e.g. low rainfall, high ultraviolet exposure) compared with tropical flora, remain an untapped reservoir of potentially novel bioactive compounds. Research of Australian arid zone plants that is ecologically guided creates a new opportunity for the discovery of novel bioactive compounds from plants (and potentially other biota) for application in health care, food and agricultural industries.
Collapse
|
18
|
Santhanam R, Luu VT, Weinhold A, Goldberg J, Oh Y, Baldwin IT. Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. Proc Natl Acad Sci U S A 2015; 112:E5013-20. [PMID: 26305938 PMCID: PMC4568709 DOI: 10.1073/pnas.1505765112] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plants maintain microbial associations whose functions remain largely unknown. For the past 15 y, we have planted the annual postfire tobacco Nicotiana attenuata into an experimental field plot in the plant's native habitat, and for the last 8 y the number of plants dying from a sudden wilt disease has increased, leading to crop failure. Inadvertently we had recapitulated the common agricultural dilemma of pathogen buildup associated with continuous cropping for this native plant. Plants suffered sudden tissue collapse and black roots, symptoms similar to a Fusarium-Alternaria disease complex, recently characterized in a nearby native population and developed into an in vitro pathosystem for N. attenuata. With this in vitro disease system, different protection strategies (fungicide and inoculations with native root-associated bacterial and fungal isolates), together with a biochar soil amendment, were tested further in the field. A field trial with more than 900 plants in two field plots revealed that inoculation with a mixture of native bacterial isolates significantly reduced disease incidence and mortality in the infected field plot without influencing growth, herbivore resistance, or 32 defense and signaling metabolites known to mediate resistance against native herbivores. Tests in a subsequent year revealed that a core consortium of five bacteria was essential for disease reduction. This consortium, but not individual members of the root-associated bacteria community which this plant normally recruits during germination from native seed banks, provides enduring resistance against fungal diseases, demonstrating that native plants develop opportunistic mutualisms with prokaryotes that solve context-dependent ecological problems.
Collapse
Affiliation(s)
- Rakesh Santhanam
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | - Van Thi Luu
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | - Arne Weinhold
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | - Jay Goldberg
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | - Youngjoo Oh
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| |
Collapse
|
19
|
Luu VT, Schuck S, Kim SG, Weinhold A, Baldwin IT. Jasmonic acid signalling mediates resistance of the wild tobacco Nicotiana attenuata to its native Fusarium, but not Alternaria, fungal pathogens. PLANT, CELL & ENVIRONMENT 2015; 38:572-84. [PMID: 25053145 DOI: 10.1111/pce.12416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/04/2014] [Accepted: 07/14/2014] [Indexed: 06/03/2023]
Abstract
We recently characterized a highly dynamic fungal disease outbreak in native populations of Nicotiana attenuata in the southwestern United States. Here, we explore how phytohormone signalling contributes to the observed disease dynamics. Single inoculation with three native Fusarium and Alternaria fungal pathogens, isolated from diseased plants growing in native populations, resulted in disease symptoms characteristic for each pathogen species. While Alternaria sp.-infected plants displayed fewer symptoms and recovered, Fusarium spp.-infected plants became chlorotic and frequently spontaneously wilted. Jasmonic acid (JA) and salicylic acid (SA) levels were differentially induced after Fusarium or Alternaria infection. Transgenic N. attenuata lines silenced in JA production or JA conjugation to isoleucine (JA-Ile), but not in JA perception, were highly susceptible to infection by F. brachygibbosum Utah 4, indicating that products derived from the JA-Ile biosynthetic pathway, but not their perception, is associated with increased Fusarium resistance. Infection assays using ov-nahG plants which were silenced in pathogen-induced SA accumulations revealed that SA may increase N. attenuata's resistance to Fusarium infection but not to Alternaria. Taken together, we propose that the dynamics of fungal disease symptoms among plants in native populations may be explained by a complex interplay of phytohormone responses to attack by multiple pathogens.
Collapse
Affiliation(s)
- Van Thi Luu
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | | | | | | | | |
Collapse
|
20
|
Garnica M, da Cunha MO, Portugal R, Maiolino A, Colombo AL, Nucci M. Risk factors for invasive fusariosis in patients with acute myeloid leukemia and in hematopoietic cell transplant recipients. Clin Infect Dis 2014; 60:875-80. [PMID: 25425628 DOI: 10.1093/cid/ciu947] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Risk factors for invasive fusariosis (IF) have not been characterized. We attempted to identify risk factors for IF in a prospective cohort of hematologic patients treated in 8 centers in Brazil. METHODS Patients with (cases) and without (controls) proven or probable IF diagnosed in a cohort of patients with acute myeloid leukemia (AML) or myelodysplasia (MDS), and in allogeneic hematopoietic cell transplant (HCT) recipients (early, until day 40; late, after day 40 posttransplant) were compared by univariate Cox regression analysis. RESULTS Among 237 induction remission courses of AML/MDS and 663 HCTs (345 allogeneic and 318 autologous), 25 cases of IF were diagnosed. In the AML/MDS cohort, active smoking (hazard ratio [HR], 9.11 [95% confidence interval {CI}, 2.04-40.71]) was associated with IF. Variables associated with IF in the early phase of allogeneic HCT were receipt of antithymocyte globulin (HR, 22.77 [95% CI, 4.85-101.34]), hyperglycemia (HR, 5.17 [95% CI, 1.40-19.11]), center 7 (HR, 5.15 [95% CI, 1.66-15.97]), and AML (HR, 4.38 [95% CI, 1.39-13.81]), and in the late phase were nonmyeloablative conditioning regimen (HR, 35.08 [95% CI, 3.90-315.27]), grade III/IV graft-vs-host disease (HR, 16.50 [95% CI, 2.67-102.28]), and previous invasive mold disease (HR, 10.65 [95% CI, 1.19-95.39]). CONCLUSIONS Attempts to reduce the risk of IF may include smoking cessation, aggressive control of hyperglycemia, and the use of a mold-active agent as prophylaxis in patients receiving nonmyeloablative HCT or ATG in the conditioning regimen. Future research should further explore smoking and other prehospital variables as risks for IF.
Collapse
Affiliation(s)
- Marcia Garnica
- Department of Internal Medicine, University Hospital, Universidade Federal do Rio de Janeiro
| | | | - Rodrigo Portugal
- Department of Internal Medicine, University Hospital, Universidade Federal do Rio de Janeiro
| | - Angelo Maiolino
- Department of Internal Medicine, University Hospital, Universidade Federal do Rio de Janeiro
| | - Arnaldo L Colombo
- Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
| | - Marcio Nucci
- Department of Internal Medicine, University Hospital, Universidade Federal do Rio de Janeiro
| |
Collapse
|