1
|
Rahadiani N, Stephanie M, Manatar AF, Krisnuhoni E. The Diagnostic Utility of cfDNA and ctDNA in Liquid Biopsies for Gastrointestinal Cancers over the Last Decade. Oncol Res Treat 2024; 48:125-141. [PMID: 39681095 DOI: 10.1159/000543030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024]
Abstract
BACKGROUND Cell-free DNA (cfDNA) is a fragmented DNA that is released into the blood through necrosis, apoptosis, phagocytosis, or active secretion. cfDNA includes a subclass called circulating tumor DNA (ctDNA) released from cancer cells and constitutes a varied proportion of the total cfDNA. Both cfDNA and ctDNA hold significant potential as diagnostic biomarkers in gastrointestinal cancers. SUMMARY cfDNA and ctDNA are promising diagnostic biomarkers for gastrointestinal cancers with varied diagnostic values in different types of cancers. cfDNA offers higher sensitivity that makes it more suitable for screening methods and constant monitoring, particularly in integration with conventional biomarkers or in a multimarker model. On the contrary, ctDNA gives a real-time picture of tumor genetics and is more suitable for definitive diagnosis due to its specificity for tumor-associated alterations. Different types of samples and methods of detection can influence sensitivity, and the amount of cfDNA is higher in serum but plasma is used for cfDNA analysis because it contains less cellular contamination. In summary, cfDNA is more sensitive than ctDNA, although they have comparable or slightly lower specificity. KEY MESSAGE Further studies are needed to create common guidelines, minimize the cost of analysis, and perform extensive clinical trials to demonstrate the utility of circulating cfDNA and ctDNA in the vast majority of gastrointestinal cancer stages. Therefore, with the advancement in these technologies, cfDNA and ctDNA will be highly beneficial and evolve cancer diagnostics and therapy.
Collapse
Affiliation(s)
- Nur Rahadiani
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Indonesia/Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Marini Stephanie
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Indonesia/Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Amelia Fossetta Manatar
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Indonesia/Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Ening Krisnuhoni
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Indonesia/Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| |
Collapse
|
2
|
Xu Y, Wang Z, Pei B, Wang J, Xue Y, Zhao G. DNA methylation markers in esophageal cancer. Front Genet 2024; 15:1354195. [PMID: 38774285 PMCID: PMC11106492 DOI: 10.3389/fgene.2024.1354195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/19/2024] [Indexed: 05/24/2024] Open
Abstract
Background Esophageal cancer (EC) is a prevalent malignancy characterized by a low 5-year survival rate, primarily attributed to delayed diagnosis and limited therapeutic options. Currently, early detection of EC heavily relies on endoscopy and pathological examination, which pose challenges due to their invasiveness and high costs, leading to low patient compliance. The detection of DNA methylation offers a non-endoscopic, cost-effective, and secure approach that holds promising prospects for early EC detection. Methods To identify improved methylation markers for early EC detection, we conducted a comprehensive review of relevant literature, summarized the performance of DNA methylation markers based on different input samples and analytical methods in EC early detection and screening. Findings This review reveals that blood cell free DNA methylation-based method is an effective non-invasive method for early detection of EC, although there is still a need to improve its sensitivity and specificity. Another highly sensitive and specific non-endoscopic approach for early detection of EC is the esophageal exfoliated cells based-DNA methylation analysis. However, while there are substantial studies in esophageal adenocarcinoma, further more validation is required in esophageal squamous cell carcinoma. Conclusion In conclusion, DNA methylation detection holds significant potential as an early detection and screening technology for EC.
Collapse
Affiliation(s)
- Yongle Xu
- Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Suzhou, China
| | - Zhenzhen Wang
- Department of Laboratory Medicine, Affiliated Xuzhou Maternity and Child Healthcare Hospital of Xuzhou Medical University, Xuzhou, China
| | - Bing Pei
- Department of Clinical Laboratory, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian, China
| | - Jie Wang
- Department of Spleen and Stomach Diseases, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - Ying Xue
- Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Suzhou, China
| | - Guodong Zhao
- Department of Spleen and Stomach Diseases, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
- Zhejiang University of Technology, Hangzhou, China
- ZJUT Yinhu Research Institute of Innovation and Entrepreneurship, Hangzhou, China
| |
Collapse
|
3
|
Saito-Koyama R, Tamai K, Yasuda J, Okamura Y, Yamazaki Y, Inoue C, Miki Y, Abe J, Oishi H, Sato I, Sasano H. Morphometric analysis of nuclear shape irregularity as a novel predictor of programmed death-ligand 1 expression in lung squamous cell carcinoma. Virchows Arch 2024; 484:609-620. [PMID: 37171482 DOI: 10.1007/s00428-023-03548-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 05/13/2023]
Abstract
Immune checkpoint inhibitor (ICI) therapy has been established as one of the key treatment strategies for lung squamous cell carcinoma (LUSQ). The status of programmed death-ligand 1 (PD-L1) in tumor cells and/or immune cells using immunohistochemistry has been primarily used as a surrogate marker for determining ICI treatment; however, when the tissues to be examined are small, false-negative results could be unavoidable due to the heterogeneity of PD-L1 immunoreactivity. To overcome this practical limitation, we attempted to explore the status of nuclear atypia evaluated using morphometry as a potential predictor of PD-L1 status in LUSQ. We correlated the parameters related to nuclear atypia with PD-L1 status using two different cohorts of LUSQ patients (95 cases from The Cancer Genome Atlas database and 30 cases from the Miyagi Cancer Center). Furthermore, we studied the gene mutation status to elucidate the genetic profile of PD-L1 predictable cases. The results revealed that nuclear atypia, especially morphometric parameters related to nuclear shape irregularity, including aspect ratio, circularity, roundness, and solidity, were all significantly associated with PD-L1 status. Additionally, LUSQ cases with high PD-L1 expression and pronounced nuclear atypia were significantly associated with C10orf71 and COL14A1 mutations compared with those with low PD-L1 expression and mild nuclear atypia. We demonstrated for the first time that nuclear shape irregularity could represent a novel predictor of PD-L1 expression in LUSQ. Including the morphometric parameters related to nuclear atypia in conjunction with PD-L1 status could help determine an effective ICI therapeutic strategy; however, further investigation is required.
Collapse
Affiliation(s)
- Ryoko Saito-Koyama
- Department of Pathology, Tohoku University School of Medicine, Miyagi, Japan.
- Department of Pathology, National Hospital Organization, Sendai Medical Center, 2-11-12 Miyagino, Miyagino-ku, Sendai, Miyagi, 983-8520, Japan.
| | - Keiichi Tamai
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Miyagi, Japan
| | - Jun Yasuda
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Miyagi, Japan
| | - Yasunobu Okamura
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Miyagi, Japan
| | - Yuto Yamazaki
- Department of Pathology, Tohoku University School of Medicine, Miyagi, Japan
| | - Chihiro Inoue
- Department of Pathology, Tohoku University School of Medicine, Miyagi, Japan
| | - Yasuhiro Miki
- Department of Pathology, Tohoku University School of Medicine, Miyagi, Japan
- Faculty of Medical Science & Welfare, Tohoku Bunka Gakuen University, Miyagi, Japan
| | - Jiro Abe
- Division of Thoracic Surgery, Miyagi Cancer Center, Miyagi, Japan
| | - Hisashi Oishi
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Miyagi, Japan
| | - Ikuro Sato
- Division of Pathology, Miyagi Cancer Center, Miyagi, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University School of Medicine, Miyagi, Japan
| |
Collapse
|
4
|
Liu Z, Xia G, Liang X, Li S, Gong Y, Li B, Deng J. Construction and testing of a risk prediction classifier for cardia carcinoma. Carcinogenesis 2023; 44:662-670. [PMID: 37624090 DOI: 10.1093/carcin/bgad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/19/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023] Open
Abstract
OBJECTIVES This research aimed to construct a prediction model for stages II and III cardia carcinoma (CC), and provide an effective preoperative evaluation tool for clinicians. METHODS CC mRNA expression matrix was obtained from Gene Expression Omnibus and The Cancer Genome Atlas databases. Non-negative matrix factorization was used to cluster data to obtain subgroup information, and weighted gene co-expression network analysis was used to uncover key modules linked to different subgroups. Gene-set enrichment analysis analyzed biological pathways of different subgroups. The related pathways of multiple modules were scrutinized with Kyoto Encyclopedia of Genes and Genomes. Key modules were manually annotated to screen CC-related genes. Subsequently, quantitative real-time polymerase chain reaction assessed CC-related gene expression in fresh tissues and paraffin samples, and Pearson correlation analysis was performed. A classification model was constructed and the predictive ability was evaluated by the receiver operating characteristic curve. RESULTS CC patients had four subgroups that were associated with brown, turquoise, red, and black modules, respectively. The CC-related modules were mainly associated with abnormal cell metabolism and inflammatory immune pathways. Then, 76 CC-elated genes were identified. Pearson correlation analysis presented that THBS4, COL14A1, DPYSL3, FGF7, and SVIL levels were relatively stable in fresh and paraffin tissues. The area under the curve of 5-gene combined prediction for staging was 0.8571, indicating good prediction ability. CONCLUSIONS The staging classifier for CC based on THBS4, COL14A1, DPYSL3, FGF7, and SVIL has a good predictive effect, which may provide effective guidance for whether CC patients need emergency surgery.
Collapse
Affiliation(s)
- Zhiqiang Liu
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China
- Department of Gastric Surgery, Anyang Tumor Hospital, Anyang City 455000, P.R. China
- Tianjin Medical University, Tianjin 300070, P.R. China
| | - Ganshu Xia
- Department of Gastric Surgery, Anyang Tumor Hospital, Anyang City 455000, P.R. China
| | - Xiaolong Liang
- Department of Gastric Surgery, Anyang Tumor Hospital, Anyang City 455000, P.R. China
| | - Shoumiao Li
- Department of Gastric Surgery, Anyang Tumor Hospital, Anyang City 455000, P.R. China
| | - Yanxin Gong
- Department of Gastric Surgery, Anyang Tumor Hospital, Anyang City 455000, P.R. China
| | - Baozhong Li
- Department of Gastric Surgery, Anyang Tumor Hospital, Anyang City 455000, P.R. China
| | - Jingyu Deng
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| |
Collapse
|
5
|
Yi Q, Zhao Y, Xia R, Wei Q, Chao F, Zhang R, Bian P, Lv L. TRIM29 hypermethylation drives esophageal cancer progression via suppression of ZNF750. Cell Death Discov 2023; 9:191. [PMID: 37365152 DOI: 10.1038/s41420-023-01491-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 06/06/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
Esophageal cancer (ESCA) is the seventh most frequent and deadly neoplasm. Due to the lack of early diagnosis and high invasion/metastasis, the prognosis of ESCA remains very poor. Herein, we identify skin-related signatures as the most deficient signatures in invasive ESCA, which are regulated by the transcription factor ZNF750. Of note, we find that TRIM29 level strongly correlated with the expression of many genes in the skin-related signatures, including ZNF750. TRIM29 is significantly down-regulated due to hypermethylation of its promoter in both ESCA and precancerous lesions compared to normal tissues. Low TRIM29 expression and high methylation levels of its promoter are associated with malignant progression and poor clinical outcomes in ESCA patients. Functionally, TRIM29 overexpression markedly hinders proliferation, migration, invasion, and epithelial-mesenchymal transition of esophageal cancer cells, whereas opposing results are observed when TRIM29 is silenced in vitro. In addition, TRIM29 inhibits metastasis in vivo. Mechanistically, TRIM29 downregulation suppresses the expression of the tumor suppressor ZNF750 by activating the STAT3 signaling pathway. Overall, our study demonstrates that TRIM29 expression and its promoter methylation status could be potential early diagnostic and prognostic markers. It highlights the role of the TRIM29-ZNF750 signaling axis in modulating tumorigenesis and metastasis of esophageal cancer.
Collapse
Affiliation(s)
- Qiyi Yi
- School of Basic Medical Sciences, Anhui Medical University, 230032, Hefei, Anhui, China
| | - Yujia Zhao
- School of Basic Medical Sciences, Anhui Medical University, 230032, Hefei, Anhui, China
- Department of education training, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Ran Xia
- Department of Cancer Epigenetics Program, Anhui Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230031, Hefei, Anhui, China
| | - Qinqin Wei
- School of Basic Medical Sciences, Anhui Medical University, 230032, Hefei, Anhui, China
| | - Fengmei Chao
- Department of Cancer Epigenetics Program, Anhui Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230031, Hefei, Anhui, China
| | - Rui Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui University of Chinese Medicine, 230031, Hefei, Anhui, China
| | - Po Bian
- School of Basic Medical Sciences, Anhui Medical University, 230032, Hefei, Anhui, China.
| | - Lei Lv
- Department of Cancer Epigenetics Program, Anhui Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230031, Hefei, Anhui, China.
| |
Collapse
|
6
|
Malvia S, Chintamani C, Sarin R, Dubey US, Saxena S, Bagadi SAR. ABERRANT EXPRESSION OF COL14A1, CELRS3, and CTHRC1 IN BREAST CANCER СELLS. Exp Oncol 2023; 45:28-43. [PMID: 37417284 DOI: 10.15407/exp-oncology.2023.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Collagens, which are the major components of the extracellular matrix involved in the regulation of tumor microenvironment, could be differentially expressed in breast cancer (BC) with different transcriptome profiling. AIM To analyze the transcript level expression of COL1A1, COL5A1, COL10A1, COL11A1, COL12A1, COL14A1, CTHRC1, and CELRS3 genes and the clinical relevance of their differential expression in BC. MATERIALS AND METHODS The transcript level expression of the genes was analyzed using the quantitative real-time PCR (qPCR) in tumor tissue of 60 BC patients. RESULTS Overexpression of COL1A1, COL5A1, COL10A1, COL11A1, COL12A1, CTHRC, and CELRS3 anddown-regulated expression of COL14A1 were observed. COL14A1 down-regulation was associated with aggressive, basal, and Her-2/neu BC subtypes (p = 0.031). Overexpression of CELSR3 was found to be associated with the older age of the patients (> 55 years, p = 0.049). Further analysis with the TCGA BC data set has shown a concordance in the differential expression of the above genes. Furthermore, overexpression of CTHRC1 was associated with poor overall survival (OS), particularly with poor prognosis (p = 0.00042) for the luminal BC subtype. On the other hand, CELSR3 overexpression was associated with mucinous tumors and poor prognosis in post-menopausal women. In silicotarget prediction identified several BC-associated miRNAs and members of miR-154, -515, and -10 families to perform a likely regulatory role in the above ECM genes. CONCLUSION The present study shows that the expression of COL14A1 and CTHRC1 may serve as potential biological markers for the detection of basal BC and the prognosis of survival for patients with the luminal subtype of BC.
Collapse
Affiliation(s)
- Shreshtha Malvia
- Tumor Biology Division, ICMR-National Institute of Pathology, New Delhi, 110029, India
| | | | - Ramesh Sarin
- Department of Surgery, Indraprastha Apollo Hospital, New Delhi, 110076, India
| | - Uma S Dubey
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Pilani, Rajasthan, 333031
| | - Sunita Saxena
- Consultant, Department of Health Research, New Delhi, 110001 & Ex-Director National Institute of Pathology-ICMR Safdarjang Hospital Campus
| | | |
Collapse
|
7
|
Kim MK, Lee JU, Lee SJ, Chang HS, Park JS, Park CS. The Role of Erythrocyte Membrane Protein Band 4.1-like 3 in Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2023; 24:10182. [PMID: 37373330 DOI: 10.3390/ijms241210182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Novel genetic and epigenetic factors involved in the development and prognosis of idiopathic pulmonary fibrosis (IPF) have been identified. We previously observed that erythrocyte membrane protein band 4.1-like 3 (EPB41L3) increased in the lung fibroblasts of IPF patients. Thus, we investigated the role of EPB41L3 in IPF by comparing the EPB41L3 mRNA and protein expression of lung fibroblast between patients with IPF and controls. We also investigated the regulation of epithelial-mesenchymal transition (EMT) in an epithelial cell line (A549) and fibroblast-to-myofibroblast transition (FMT) in a fibroblast cell line (MRC5) by overexpressing and silencing EPB41L3. EPB41L3 mRNA and protein levels, as measured using RT-PCR, real-time PCR, and Western blot, were significantly higher in fibroblasts derived from 14 IPF patients than in those from 10 controls. The mRNA and protein expression of EPB41L3 was upregulated during transforming growth factor-β-induced EMT and FMT. Overexpression of EPB41L3 in A549 cells using lenti-EPB41L3 transfection suppressed the mRNA and protein expression of N-cadherin and COL1A1. Treatment with EPB41L3 siRNA upregulated the mRNA and protein expression of N-cadherin. Overexpression of EPB41L3 in MRC5 cells using lenti-EPB41L3 transfection suppressed the mRNA and protein expression of fibronectin and α-SMA. Finally, treatment with EPB41L3 siRNA upregulated the mRNA and protein expression of FN1, COL1A1, and VIM. In conclusion, these data strongly support an inhibitory effect of EPB41L3 on the process of fibrosis and suggest the therapeutic potential of EPB41L3 as an anti-fibrotic mediator.
Collapse
Affiliation(s)
- Min Kyung Kim
- Department of Interdisciplinary, Program in Biomedical Science Major, Graduate School, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Jong-Uk Lee
- Department of Interdisciplinary, Program in Biomedical Science Major, Graduate School, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Sun Ju Lee
- Department of Interdisciplinary, Program in Biomedical Science Major, Graduate School, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Hun Soo Chang
- Department of Microbiology and BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan 31538, Republic of Korea
| | - Jong-Sook Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea
| | - Choon-Sik Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea
| |
Collapse
|
8
|
Yu Q, Xia N, Zhao Y, Jin H, Chen R, Ye F, Chen L, Xie Y, Wan K, Zhou J, Zhou D, Lv X. Genome-wide methylation profiling identify hypermethylated HOXL subclass genes as potential markers for esophageal squamous cell carcinoma detection. BMC Med Genomics 2022; 15:247. [PMID: 36447287 PMCID: PMC9706897 DOI: 10.1186/s12920-022-01401-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Numerous studies have revealed aberrant DNA methylation in esophageal squamous cell carcinoma (ESCC). However, they often focused on the partial genome, which resulted in an inadequate understanding of the shaped methylation features and the lack of available methylation markers for this disease. METHODS The current study investigated the methylation profiles between ESCC and paired normal samples using whole-genome bisulfite sequencing (WGBS) data and obtained a group of differentially methylated CpGs (DMC), differentially methylated regions (DMR), and differentially methylated genes (DMG). The DMGs were then verified in independent datasets and Sanger sequencing in our custom samples. Finally, we attempted to evaluate the performance of these genes as methylation markers for the classification of ESCC. RESULTS We obtained 438,558 DMCs, 15,462 DMRs, and 1568 DMGs. The four significantly enriched gene families of DMGs were CD molecules, NKL subclass, HOXL subclass, and Zinc finger C2H2-type. The HOXL subclass homeobox genes were observed extensively hypermethylated in ESCC. The HOXL-score estimated by HOXC10 and HOXD1 methylation, whose methylation status were then confirmed by sanger sequencing in our custom ESCC samples, showed good ability in discriminating ESCC from normal samples. CONCLUSIONS We observed widespread hypomethylation events in ESCC, and the hypermethylated HOXL subclass homeobox genes presented promising applications for the early detection of esophageal squamous cell carcinoma.
Collapse
Affiliation(s)
- Qiuning Yu
- grid.412633.10000 0004 1799 0733Otorhinolaryngology Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Namei Xia
- grid.412633.10000 0004 1799 0733Department of Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Yanteng Zhao
- grid.412633.10000 0004 1799 0733Department of Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Huifang Jin
- grid.412633.10000 0004 1799 0733Department of Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Renyin Chen
- grid.412633.10000 0004 1799 0733Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Fanglei Ye
- grid.412633.10000 0004 1799 0733Otorhinolaryngology Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Liyinghui Chen
- grid.412633.10000 0004 1799 0733Department of Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Ying Xie
- grid.412633.10000 0004 1799 0733Department of Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Kangkang Wan
- Wuhan Ammunition Life-tech Company, Ltd., Wuhan, Hubei China
| | - Jun Zhou
- Wuhan Ammunition Life-tech Company, Ltd., Wuhan, Hubei China
| | - Dihan Zhou
- Wuhan Ammunition Life-tech Company, Ltd., Wuhan, Hubei China
| | - Xianping Lv
- grid.412633.10000 0004 1799 0733Department of Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| |
Collapse
|
9
|
Iacob R, Mandea M, Iacob S, Pietrosanu C, Paul D, Hainarosie R, Gheorghe C. Liquid Biopsy in Squamous Cell Carcinoma of the Esophagus and of the Head and Neck. Front Med (Lausanne) 2022; 9:827297. [PMID: 35572996 PMCID: PMC9098838 DOI: 10.3389/fmed.2022.827297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Squamous cell carcinomas of the esophagus (ESCC) and of the head and neck (HNSCC) are two neoplasms that share common risk factors and have the same embryological origin, but a very different prognosis, the 5-year survival of HNSCC being almost double (40–50%) compared to the 5-year survival of ESCC (20%). Current guidelines emphasize the importance of screening for ESCC in patients diagnosed with head and neck cancers. A liquid biopsy is a novel tool for diagnosis, prognostic stratification, and personalized therapy. Liquid biopsy biomarkers for these two malignancies could help both their early detection, facilitate residual disease identification, and provide prognosis information. The present systematic review of the literature was aimed at describing the liquid biopsy biomarkers present in these two malignancies, with an emphasis on potential clinical applications.
Collapse
Affiliation(s)
- Razvan Iacob
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, Bucharest, Romania
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | - Matei Mandea
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
| | - Speranta Iacob
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, Bucharest, Romania
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | - Catalina Pietrosanu
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Professor Doctor Dorin Hociota Institute of Phonoaudiology and Functional ENT Surgery, Bucharest, Romania
| | - Doru Paul
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Razvan Hainarosie
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Professor Doctor Dorin Hociota Institute of Phonoaudiology and Functional ENT Surgery, Bucharest, Romania
- *Correspondence: Razvan Hainarosie
| | - Cristian Gheorghe
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, Bucharest, Romania
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| |
Collapse
|
10
|
Chen L, Zhu D, Huang J, Zhang H, Zhou G, Zhong X. Identification of Hub Genes Associated with COPD Through Integrated Bioinformatics Analysis. Int J Chron Obstruct Pulmon Dis 2022; 17:439-456. [PMID: 35273447 PMCID: PMC8901430 DOI: 10.2147/copd.s353765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/20/2022] [Indexed: 12/30/2022] Open
Affiliation(s)
- Lin Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Department of Respiratory and Critical Care Medicine, Liuzhou People’s Hospital, LiuZhou, Guangxi, People’s Republic of China
| | - Donglan Zhu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Jinfu Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Hui Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Guang Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Xiaoning Zhong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Correspondence: Xiaoning Zhong, Tel +86 13607881203, Fax +86 771-5356702, Email
| |
Collapse
|
11
|
Multi-omic characterization of genome-wide abnormal DNA methylation reveals diagnostic and prognostic markers for esophageal squamous-cell carcinoma. Signal Transduct Target Ther 2022; 7:53. [PMID: 35210398 PMCID: PMC8873499 DOI: 10.1038/s41392-022-00873-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/23/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023] Open
Abstract
This study investigates aberrant DNA methylations as potential diagnosis and prognosis markers for esophageal squamous-cell carcinoma (ESCC), which if diagnosed at advanced stages has <30% five-year survival rate. Comparing genome-wide methylation sites of 91 ESCC and matched adjacent normal tissues, we identified 35,577 differentially methylated CpG sites (DMCs) and characterized their distribution patterns. Integrating whole-genome DNA and RNA-sequencing data of the same samples, we found multiple dysregulated transcription factors and ESCC-specific genomic correlates of identified DMCs. Using featured DMCs, we developed a 12-marker diagnostic panel with high accuracy in our dataset and the TCGA ESCC dataset, and a 4-marker prognostic panel distinguishing high-risk patients. In-vitro experiments validated the functions of 4 marker host genes. Together these results provide additional evidence for the important roles of aberrant DNA methylations in ESCC development and progression. Our DMC-based diagnostic and prognostic panels have potential values for clinical care of ESCC, laying foundations for developing targeted methylation assays for future non-invasive cancer detection methods.
Collapse
|
12
|
Wang H, DeFina SM, Bajpai M, Yan Q, Yang L, Zhou Z. DNA methylation markers in esophageal cancer: an emerging tool for cancer surveillance and treatment. Am J Cancer Res 2021; 11:5644-5658. [PMID: 34873485 PMCID: PMC8640794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023] Open
Abstract
Esophageal carcinoma (EC) is one of the most pervasive cancers in the world, with upwards of 500,000 new diagnoses, annually. Despite its prominence, advancements in the detection and treatment of EC have been marginal over the past 30 years and the survival rate continues to stay below 20%. This is due to the uncommonly heterogeneous presentation of EC which presents unprecedented challenges in improving patient survival and quality of care. However, distinct epigenetic alterations to the DNA methylome may provide an avenue to drastically improve the detection and treatment of EC. Specifically, the creation of novel biomarker panels that consist of EC-specific methylation markers have shown promise as a potential alternative to the more invasive, contemporary diagnostic methods. Additionally, growing insight into the biological and clinical properties of EC-specific methylation patterns have opened a window of opportunity for enhanced treatment; of growing interest is the application of "DNMT inhibitors" - a class of drugs which inhibit excessive methylation and have been shown to re-sensitize chemoresistant tumors. Here we provide a comprehensive review of the current advancements in EC DNA methylation to underscore a potential approach to its detection and treatment.
Collapse
Affiliation(s)
- He Wang
- Department of Pathology, Yale School of Medicine, Yale UniversityNew Haven, Connecticut, United States
| | - Samuel M DeFina
- Department of Pathology, Yale School of Medicine, Yale UniversityNew Haven, Connecticut, United States
| | - Manisha Bajpai
- Department of Medicine-Gastroenterology and Hepatology, Rutgers-Robert Wood Johnson Medical School, Rutgers The State University of New JerseyNew Brunswick, NJ, United States
| | - Qin Yan
- Department of Pathology, Yale School of Medicine, Yale UniversityNew Haven, Connecticut, United States
| | - Lei Yang
- Department of Pathology, Yale School of Medicine, Yale UniversityNew Haven, Connecticut, United States
| | - Zhongren Zhou
- Department of Pathology & Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, Rutgers The State University of New JerseyNew Brunswick, NJ, United States
| |
Collapse
|
13
|
Xu J, Pan HW, Wang XQ, Chen KP. Status of diagnosis and treatment of esophageal cancer and non-coding RNA correlation research: a narrative review. Transl Cancer Res 2021; 10:4532-4552. [PMID: 35116309 PMCID: PMC8798506 DOI: 10.21037/tcr-21-687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/20/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To describe and discuss the progression of the non-coding RNA as biomarkers in early esophageal cancer. BACKGROUND Esophageal cancer without obvious symptoms during early stages is one of the most common cancers, the current clinical treatments offer possibilities of a cure, but the survival rates and the prognoses remain poor, it is a serious threat to human life and health. Most patients are usually diagnosed during terminal stages due to low sensitivity of esophageal cancer's early detection techniques. With the development of molecular biology, an increasing number of non-coding RNAs are found to be associated with the occurrence, development, and prognosis of esophageal cancer. Some of these have begun to be used in clinics and laboratories for diagnosis, treatment, and prognosis, with the goal of reducing mortality. METHODS The information for this paper was collected from a variety of sources, including a search of the keynote's references, a search for texts in college libraries, and discussions with experts in the field of esophageal cancer clinical treatment. CONCLUSIONS Non-coding RNA does play a regulatory role in the development of esophageal cancer, which can predict the occurrence or prognosis of tumors, and become a new class of tumor markers and therapeutic targets in clinical applications. In this review, we survey the recent developments in the incidence, diagnosis, and treatment of esophageal cancer, especially with new research progresses on non-coding RNA biomarkers in detail, and discuss its potential clinical applications.
Collapse
Affiliation(s)
- Jia Xu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Hui-Wen Pan
- Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Xue-Qi Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ke-Ping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
14
|
Patkar S, Heselmeyer-Haddad K, Auslander N, Hirsch D, Camps J, Bronder D, Brown M, Chen WD, Lokanga R, Wangsa D, Wangsa D, Hu Y, Lischka A, Braun R, Emons G, Ghadimi BM, Gaedcke J, Grade M, Montagna C, Lazebnik Y, Difilippantonio MJ, Habermann JK, Auer G, Ruppin E, Ried T. Hard wiring of normal tissue-specific chromosome-wide gene expression levels is an additional factor driving cancer type-specific aneuploidies. Genome Med 2021; 13:93. [PMID: 34034815 PMCID: PMC8147418 DOI: 10.1186/s13073-021-00905-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
Background Many carcinomas have recurrent chromosomal aneuploidies specific to the tissue of tumor origin. The reason for this specificity is not completely understood. Methods In this study, we looked at the frequency of chromosomal arm gains and losses in different cancer types from the The Cancer Genome Atlas (TCGA) and compared them to the mean gene expression of each chromosome arm in corresponding normal tissues of origin from the Genotype-Tissue Expression (GTEx) database, in addition to the distribution of tissue-specific oncogenes and tumor suppressors on different chromosome arms. Results This analysis revealed a complex picture of factors driving tumor karyotype evolution in which some recurrent chromosomal copy number reflect the chromosome arm-wide gene expression levels of the their normal tissue of tumor origin. Conclusions We conclude that the cancer type-specific distribution of chromosomal arm gains and losses is potentially “hardwiring” gene expression levels characteristic of the normal tissue of tumor origin, in addition to broadly modulating the expression of tissue-specific tumor driver genes. Supplementary Information The online version contains supplementary material available at 10.1186/s13073-021-00905-y.
Collapse
Affiliation(s)
- Sushant Patkar
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.,Department of Computer Science, University of Maryland, College Park, USA
| | - Kerstin Heselmeyer-Haddad
- Section of Cancer Genomics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Noam Auslander
- Department of Computer Science, University of Maryland, College Park, USA.,National Center for Biotechnology Information, NIH, Bethesda, MD, 20892, USA
| | - Daniela Hirsch
- Section of Cancer Genomics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Jordi Camps
- Gastrointestinal and Pancreatic Oncology Team, Institut D'Investigacions Biomèdiques August Pi i Sunyer, (IDIBAPS), Hospital Clínic of Barcelona, CIBEREHD, 08036, Barcelona, Spain
| | - Daniel Bronder
- Section of Cancer Genomics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Markus Brown
- Section of Cancer Genomics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Wei-Dong Chen
- Section of Cancer Genomics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Rachel Lokanga
- Section of Cancer Genomics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Darawalee Wangsa
- Section of Cancer Genomics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Danny Wangsa
- Section of Cancer Genomics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Yue Hu
- Section of Cancer Genomics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Annette Lischka
- Section of Cancer Genomics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.,Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University Medical Center Schleswig Holstein, Campus Lübeck, Lübeck, Germany
| | - Rüdiger Braun
- Section of Cancer Genomics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.,Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University Medical Center Schleswig Holstein, Campus Lübeck, Lübeck, Germany
| | - Georg Emons
- Section of Cancer Genomics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.,Department of General, Visceral and Pediatric Surgery, University Medical Center, Göttingen, Germany
| | - B Michael Ghadimi
- Department of General, Visceral and Pediatric Surgery, University Medical Center, Göttingen, Germany
| | - Jochen Gaedcke
- Department of General, Visceral and Pediatric Surgery, University Medical Center, Göttingen, Germany
| | - Marian Grade
- Department of General, Visceral and Pediatric Surgery, University Medical Center, Göttingen, Germany
| | - Cristina Montagna
- Department of Genetics and Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Michael J Difilippantonio
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Jens K Habermann
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University Medical Center Schleswig Holstein, Campus Lübeck, Lübeck, Germany
| | - Gert Auer
- Department of Oncology and Pathology, CancerCenter Karolinska, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Eytan Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Thomas Ried
- Section of Cancer Genomics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
15
|
Talukdar FR, Soares Lima SC, Khoueiry R, Laskar RS, Cuenin C, Sorroche BP, Boisson AC, Abedi-Ardekani B, Carreira C, Menya D, Dzamalala CP, Assefa M, Aseffa A, Miranda-Gonçalves V, Jerónimo C, Henrique RM, Shakeri R, Malekzadeh R, Gasmelseed N, Ellaithi M, Gangane N, Middleton DRS, Le Calvez-Kelm F, Ghantous A, Roux ML, Schüz J, McCormack V, Parker MI, Pinto LFR, Herceg Z. Genome-Wide DNA Methylation Profiling of Esophageal Squamous Cell Carcinoma from Global High-Incidence Regions Identifies Crucial Genes and Potential Cancer Markers. Cancer Res 2021; 81:2612-2624. [PMID: 33741694 DOI: 10.1158/0008-5472.can-20-3445] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/04/2021] [Accepted: 03/18/2021] [Indexed: 12/24/2022]
Abstract
Epigenetic mechanisms such as aberrant DNA methylation (DNAme) are known to drive esophageal squamous cell carcinoma (ESCC), yet they remain poorly understood. Here, we studied tumor-specific DNAme in ESCC cases from nine high-incidence countries of Africa, Asia, and South America. Infinium MethylationEPIC array was performed on 108 tumors and 51 normal tissues adjacent to the tumors (NAT) in the discovery phase, and targeted pyrosequencing was performed on 132 tumors and 36 NAT in the replication phase. Top genes for replication were prioritized by weighting methylation results using RNA-sequencing data from The Cancer Genome Atlas and GTEx and validated by qPCR. Methylome analysis comparing tumor and NAT identified 6,796 differentially methylated positions (DMP) and 866 differential methylated regions (DMR), with a 30% methylation (Δβ) difference. The majority of identified DMPs and DMRs were hypermethylated in tumors, particularly in promoters and gene-body regions of genes involved in transcription activation. The top three prioritized genes for replication, PAX9, SIM2, and THSD4, had similar methylation differences in the discovery and replication sets. These genes were exclusively expressed in normal esophageal tissues in GTEx and downregulated in tumors. The specificity and sensitivity of these DNAme events in discriminating tumors from NAT were assessed. Our study identified novel, robust, and crucial tumor-specific DNAme events in ESCC tumors across several high-incidence populations of the world. Methylome changes identified in this study may serve as potential targets for biomarker discovery and warrant further functional characterization. SIGNIFICANCE: This largest genome-wide DNA methylation study on ESCC from high-incidence populations of the world identifies functionally relevant and robust DNAme events that could serve as potential tumor-specific markers. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/10/2612/F1.large.jpg.
Collapse
Affiliation(s)
| | - Sheila C Soares Lima
- Department of Molecular Carcinogenesis, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | - Rita Khoueiry
- International Agency for Research on Cancer, Lyon, France
| | | | - Cyrille Cuenin
- International Agency for Research on Cancer, Lyon, France
| | - Bruna Pereira Sorroche
- International Agency for Research on Cancer, Lyon, France
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | | | | | | | | | | | | | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Vera Miranda-Gonçalves
- Department of Pathology and Cancer Biology and Epigenetics Group, Portuguese Oncology Institute of Porto and Biomedical Sciences Institute of University of Porto, Porto, Portugal
| | - Carmen Jerónimo
- Department of Pathology and Cancer Biology and Epigenetics Group, Portuguese Oncology Institute of Porto and Biomedical Sciences Institute of University of Porto, Porto, Portugal
| | - Rui M Henrique
- Department of Pathology and Cancer Biology and Epigenetics Group, Portuguese Oncology Institute of Porto and Biomedical Sciences Institute of University of Porto, Porto, Portugal
| | - Ramin Shakeri
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Malekzadeh
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nagla Gasmelseed
- Department of Molecular Biology, National Cancer Institute, University of Gezira, Gezira, Sudan
| | - Mona Ellaithi
- Department of Histopathology and Cytology, Al-Neelain University, Khartoum, Sudan
| | - Nitin Gangane
- Mahatma Gandhi Institute of Medical Sciences, Sevagram, India
| | | | | | - Akram Ghantous
- International Agency for Research on Cancer, Lyon, France
| | | | - Joachim Schüz
- International Agency for Research on Cancer, Lyon, France
| | | | - M Iqbal Parker
- Integrative Biomedical Sciences and IDM, University of Cape Town, Cape Town, South Africa
| | | | - Zdenko Herceg
- International Agency for Research on Cancer, Lyon, France.
| |
Collapse
|
16
|
Salta S, Macedo-Silva C, Miranda-Gonçalves V, Lopes N, Gigliano D, Guimarães R, Farinha M, Sousa O, Henrique R, Jerónimo C. A DNA methylation-based test for esophageal cancer detection. Biomark Res 2020; 8:68. [PMID: 33292587 PMCID: PMC7691099 DOI: 10.1186/s40364-020-00248-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022] Open
Abstract
Background Esophageal cancer (ECa) is the 7th most incident cancer and the 6th leading cause of cancer-related death. Most patients are diagnosed with locally advanced or metastatic disease, enduring poor survival. Biomarkers enabling early cancer detection may improve patient management, treatment effectiveness, and survival, are urgently needed. In this context, epigenetic-based biomarkers such as DNA methylation are potential candidates. Methods Herein, we sought to identify and validate DNA methylation-based biomarkers for early detection and prediction of response to therapy in ECa patients. Promoter methylation levels were assessed in a series of treatment-naïve ECa, post-neoadjuvant treatment ECa, and normal esophagus tissues, using quantitative methylation-specific PCR for COL14A1, GPX3, and ZNF569. Results ZNF569 methylation (ZNF569me) levels significantly differed between ECa and normal samples (p < 0.001). Moreover, COL14A1 methylation (COL14A1me) and GPX3 methylation (GPX3me) levels discriminated adenocarcinomas and squamous cell carcinomas, respectively, from normal samples (p = 0.002 and p = 0.009, respectively). COL14A1me & ZNF569me accurately identified adenocarcinomas (82.29%) whereas GPX3me & ZNF569me identified squamous cell carcinomas with 81.73% accuracy. Furthermore, ZNF569me and GPX3me levels significantly differed between normal and pre-treated ECa. Conclusion The biomarker potential of a specific panel of methylated genes for ECa was confirmed. These might prove useful for early detection and might allow for the identification of minimal residual disease after adjuvant therapy.
Collapse
Affiliation(s)
- Sofia Salta
- Cancer Biology & Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto, Rua Dr António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Catarina Macedo-Silva
- Cancer Biology & Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto, Rua Dr António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Vera Miranda-Gonçalves
- Cancer Biology & Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto, Rua Dr António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Nair Lopes
- Cancer Biology & Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto, Rua Dr António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Davide Gigliano
- Cancer Biology & Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto, Rua Dr António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, Porto, 4200-072, Portugal
| | - Rita Guimarães
- Cancer Biology & Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto, Rua Dr António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, Porto, 4200-072, Portugal
| | - Mónica Farinha
- Cancer Biology & Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto, Rua Dr António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, Porto, 4200-072, Portugal
| | - Olga Sousa
- Department of Radiation Oncology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, Porto, 4200-072, Portugal
| | - Rui Henrique
- Cancer Biology & Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto, Rua Dr António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, Porto, 4200-072, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar- University of Porto , Rua de Jorge Viterbo Ferreira, 228, Porto, 4050-313, Portugal
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto, Rua Dr António Bernardino de Almeida, 4200-072, Porto, Portugal. .,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar- University of Porto , Rua de Jorge Viterbo Ferreira, 228, Porto, 4050-313, Portugal.
| |
Collapse
|
17
|
Qin Y, Taylor W, Bamlet WR, Ravindran A, Buglioni A, Cao X, Foote PH, Slettedahl SW, Mahoney DW, Albert PS, Kim S, Hu N, Taylor PR, Etemadi A, Sotoudeh M, Malekzadeh R, Abnet CC, Smyrk TC, Katzka D, Topazian MD, Dawsey SM, Ahlquist D, Kisiel JB, Iyer PG. Methylated DNA Markers of Esophageal Squamous Cancer and Dysplasia: An International Study. Cancer Epidemiol Biomarkers Prev 2020; 29:2642-2650. [PMID: 32948633 DOI: 10.1158/1055-9965.epi-20-0616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/22/2020] [Accepted: 09/11/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Discovery of methylated DNA markers (MDM) of esophageal squamous cell carcinoma (ESCC) has sparked interest in assessing these markers in tissue. We evaluated MDMs in ESCC from three geographically and ethnically distinct populations, and explored the feasibility of assaying MDMs from DNA obtained by swallowed balloon devices. METHODS MDMs were assayed in ESCC and normal tissues obtained from the populations of United States, Iran, and China, and from exfoliative cytology specimens obtained by balloons in a Chinese population. Areas under the receiver operating curve (AUC) of MDMs discriminating ESCC from normal tissues were calculated. Random forest prediction models were built, trained on U.S. cases and controls, and calibrated to U.S.-only controls (model 1) and three-country controls (model 2). Statistical tests were used to assess the relationship between dysplasia and MDM levels in balloons. RESULTS Extracted DNA from 333 ESCC and 322 normal tissues was analyzed, in addition to archival DNA from 98 balloons. For ESCC, model 1 validated in Iranian and Chinese tissues with AUCs of 0.90 and 0.87, and model 2 yielded AUCs of 0.99, 0.96, and 0.94 in tissues from the United States, Iran, and China, respectively. In Chinese balloons, MDMs showed a statistically significant trend of increasing levels with increasing grades of dysplasia (P < 0.004). CONCLUSIONS MDMs accurately discriminate ESCC from normal esophagus in tissues obtained from high- and low-incidence countries. Preliminary data suggest that levels of MDMs assayed in DNA from swallowed balloon devices increase with dysplasia grade. Larger studies are needed to validate these results. IMPACT MDMs coupled with minimally invasive collection methods have the potential for worldwide application in ESCC screening.
Collapse
Affiliation(s)
- Yi Qin
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - William Taylor
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - William R Bamlet
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Adharsh Ravindran
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Alessia Buglioni
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Xiaoming Cao
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Patrick H Foote
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Seth W Slettedahl
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Douglas W Mahoney
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | | | - Sungduk Kim
- Biostatistics Branch, NCI, Rockville, Maryland
| | - Nan Hu
- Metabolic Epidemiology Branch, NCI, Rockville, Maryland
| | | | - Arash Etemadi
- Metabolic Epidemiology Branch, NCI, Rockville, Maryland.,Digestive Oncology Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Sotoudeh
- Digestive Oncology Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Malekzadeh
- Digestive Oncology Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Thomas C Smyrk
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - David Katzka
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Mark D Topazian
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | | | - David Ahlquist
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - John B Kisiel
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Prasad G Iyer
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
18
|
Wang J, Luo J, Sun Z, Sun F, Kong Z, Yu J. Identification of MTHFD2 as a novel prognosis biomarker in esophageal carcinoma patients based on transcriptomic data and methylation profiling. Medicine (Baltimore) 2020; 99:e22194. [PMID: 32925794 PMCID: PMC7489726 DOI: 10.1097/md.0000000000022194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
DNA methylation is an important epigenetic regulatory mechanism in esophageal carcinoma (EC) and is associated with genomic instability and carcinogenesis. In the present study, we aimed to identify tumor biomarkers for predicting prognosis of EC patients.We downloaded mRNA expression profiles and DNA methylation profiles associated with EC from the Gene Expression Omnibus database. Differentially expressed and differentially methylated genes between tumor tissues and adjacent normal tissue samples were identified. Functional enrichment analyses were performed, followed by the construction of protein-protein interaction networks. Data were validated based on methylation profiles from The Cancer Genome Atlas. Candidate genes were further verified according to survival analysis and Cox regression analysis.We uncovered multiple genes with differential expression or methylation in tumor samples compared with normal samples. After taking the intersection of 3 differential gene sets, we obtained a total of 232 overlapping genes. Functional enrichment analysis revealed that these genes are related to pathways such as "glutathione metabolism," "p53 signaling pathway," and "focal adhesion." Furthermore, 8 hub genes with inversed expression and methylation correlation were identified as candidate genes. The abnormal expression levels of MSN, PELI1, and MTHFD2 were correlated with overall survival times in EC patients (P < .05). Only MTHFD2 was significantly associated with a pathologic stage according to univariate analysis (P = .037) and multivariate analysis (P = .043).Our study identified several novel EC biomarkers with prognostic value by integrated analysis of transcriptomic data and methylation profiles. MTHFD2 could serve as an independent biomarker for predicting prognosis and pathological stages of EC.
Collapse
Affiliation(s)
- Jianlin Wang
- Department of Radiotherapy, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University
- Center for Medical Physics, Nanjing Medical University, Changzhou, Jiangsu Province, China
| | - Judong Luo
- Department of Radiotherapy, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University
| | - Zhiqiang Sun
- Department of Radiotherapy, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University
| | - Fei Sun
- Department of Radiotherapy, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University
| | - Ze Kong
- Department of Radiotherapy, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University
| | - Jingping Yu
- Department of Radiotherapy, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University
- Center for Medical Physics, Nanjing Medical University, Changzhou, Jiangsu Province, China
| |
Collapse
|
19
|
Guan X, Yao Y, Bao G, Wang Y, Zhang A, Zhong X. Diagnostic model of combined ceRNA and DNA methylation related genes in esophageal carcinoma. PeerJ 2020; 8:e8831. [PMID: 32266120 PMCID: PMC7120044 DOI: 10.7717/peerj.8831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/02/2020] [Indexed: 02/06/2023] Open
Abstract
Esophageal cancer is a common malignant tumor in the world, and the aim of this study was to screen key genes related to the development of esophageal cancer using a variety of bioinformatics analysis tools and analyze their biological functions. The data of esophageal squamous cell carcinoma from the Gene Expression Omnibus (GEO) were selected as the research object, processed and analyzed to screen differentially expressed microRNAs (miRNAs) and differential methylation genes. The competing endogenous RNAs (ceRNAs) interaction network of differentially expressed genes was constructed by bioinformatics tools DAVID, String, and Cytoscape. Biofunctional enrichment analysis was performed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). The expression of the screened genes and the survival of the patients were verified. By analyzing GSE59973 and GSE114110, we found three down-regulated and nine up-regulated miRNAs. The gene expression matrix of GSE120356 was calculated by Pearson correlation coefficient, and the 11696 pairs of ceRNA relation were determined. In the ceRNA network, 643 lncRNAs and 147 mRNAs showed methylation difference. Functional enrichment analysis showed that these differentially expressed genes were mainly concentrated in the FoxO signaling pathway and were involved in the corresponding cascade of calcineurin. By analyzing the clinical data in The Cancer Genome Atlas (TCGA) database, it was found that four lncRNAs had an important impact on the survival and prognosis of esophageal carcinoma patients. QRT-PCR was also conducted to identify the expression of the key lncRNAs (RNF217-AS1, HCP5, ZFPM2-AS1 and HCG22) in ESCC samples. The selected key genes can provide theoretical guidance for further research on the molecular mechanism of esophageal carcinoma and the screening of molecular markers.
Collapse
Affiliation(s)
- Xiaojiao Guan
- Department of Pathology, Second Affiliated Hospital, China Medical University, Shenyang, China
| | - Yao Yao
- Department of Thoracic Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Guangyao Bao
- Department of Thoracic Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yue Wang
- First Affiliated Hospital, China Medical University, Shenyang, China
| | - Aimeng Zhang
- First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xinwen Zhong
- Department of Thoracic Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
20
|
Specific DNA methylation markers in the diagnosis and prognosis of esophageal cancer. Aging (Albany NY) 2019; 11:11640-11658. [PMID: 31834866 PMCID: PMC6932928 DOI: 10.18632/aging.102569] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/23/2019] [Indexed: 12/14/2022]
Abstract
The early diagnosis and accurate prognosis prediction of esophageal cancer is an essential part of improving survival. However, these diseases lack effective and specific markers. A total of 1,744 samples of HumanMethylation450 data were integrated to identify and validate specific methylation markers for esophageal adenocarcinoma (EAC) and esophageal squamous cell carcinoma (ESCC) as well as for Barrett's esophagus (BE) using The Cancer Genome Atlas and the Gene Expression Omnibus. The diagnostic and prognostic methylation classifiers were constructed by moderated t-statistics and the least absolute shrinkage and selection operator method. The diagnostic methylation classifier using 12 CpG sites was constructed in training set (377 samples) that could effectively discriminate samples of BE, EAC, and ESCC from normal tissue (AUC = 0.992), which achieved highly predictive ability in both internal (187 samples, AUC = 0.990) and external validation (184 samples, AUC = 0.978). The prognostic methylation classifier with 3 CpG and 2 CpG sites for EAC and ESCC respectively, could accurately estimate the prognosis of an individual patient and improved the predictive ability of the tumor node metastasis staging system. Overall, our study systematically analyzed large-scale methylation data and provided promising markers for the diagnosis and prognosis of esophageal cancer.
Collapse
|
21
|
Khan T, Relitti N, Brindisi M, Magnano S, Zisterer D, Gemma S, Butini S, Campiani G. Autophagy modulators for the treatment of oral and esophageal squamous cell carcinomas. Med Res Rev 2019; 40:1002-1060. [PMID: 31742748 DOI: 10.1002/med.21646] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/16/2019] [Accepted: 11/08/2019] [Indexed: 02/06/2023]
Abstract
Oral squamous cell carcinomas (OSCC) and esophageal squamous cell carcinomas (ESCC) exhibit a survival rate of less than 60% and 40%, respectively. Late-stage diagnosis and lack of effective treatment strategies make both OSCC and ESCC a significant health burden. Autophagy, a lysosome-dependent catabolic process, involves the degradation of intracellular components to maintain cell homeostasis. Targeting autophagy has been highlighted as a feasible therapeutic strategy with clinical utility in cancer treatment, although its associated regulatory mechanisms remain elusive. The detection of relevant biomarkers in biological fluids has been anticipated to facilitate early diagnosis and/or prognosis for these tumors. In this context, recent studies have indicated the presence of specific proteins and small RNAs, detectable in circulating plasma and serum, as biomarkers. Interestingly, the interplay between biomarkers (eg, exosomal microRNAs) and autophagic processes could be exploited in the quest for targeted and more effective therapies for OSCC and ESCC. In this review, we give an overview of the available biomarkers and innovative targeted therapeutic strategies, including the application of autophagy modulators in OSCC and ESCC. Additionally, we provide a viewpoint on the state of the art and on future therapeutic perspectives combining the early detection of relevant biomarkers with drug discovery for the treatment of OSCC and ESCC.
Collapse
Affiliation(s)
- Tuhina Khan
- Department of Biotechnology, Chemistry, and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Nicola Relitti
- Department of Biotechnology, Chemistry, and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Margherita Brindisi
- Department of Pharmacy, Department of Excellence 2018-2022, University of Napoli Federico IL, Napoli, Italy
| | - Stefania Magnano
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin, Dublin 2, Ireland
| | - Daniela Zisterer
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin, Dublin 2, Ireland
| | - Sandra Gemma
- Department of Biotechnology, Chemistry, and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry, and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry, and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| |
Collapse
|
22
|
Yuan X, Piao L, Wang L, Han X, Zhuang M, Liu Z. Pivotal roles of protein 4.1B/DAL‑1, a FERM‑domain containing protein, in tumor progression (Review). Int J Oncol 2019; 55:979-987. [PMID: 31545421 DOI: 10.3892/ijo.2019.4877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/04/2019] [Indexed: 11/06/2022] Open
Abstract
Protein 4.1B/DAL‑1, encoded by erythrocyte membrane protein band 4.1‑like 3 (EPB41L3), belongs to the protein 4.1 superfamily, a group of proteins that share a conserved four.one‑ezrin‑radixin‑moesin (FERM) domain. Protein 4.1B/DAL‑1 serves a crucial role in cytoskeletal organization and a number of processes through multiple interactions with membrane proteins via its FERM, spectrin‑actin‑binding and C‑terminal domains. A number of studies have indicated that a loss of EPB41L3 expression is commonly observed in lung cancer, breast cancer, esophageal squamous cell carcinoma and meningiomas. DNA methylation and a loss of heterozygosity have been reported to contribute to the downregulation of EPB41L3. To date, the biological functions of protein 4.1B/DAL‑1 in carcinogenesis remain unknown. The present review summarizes the current understanding of the role of protein 4.1B/DAL‑1 in cancer and highlights its potential as a cancer diagnostic and prognostic biomarker in cancer therapeutics.
Collapse
Affiliation(s)
- Xiaofeng Yuan
- Department of Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Lianhua Piao
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou, Jiangsu 213001, P.R. China
| | - Luhui Wang
- Department of Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Xu Han
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Ming Zhuang
- Department of Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Zhiwei Liu
- Department of Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| |
Collapse
|
23
|
Zhang Z, Wiencke JK, Koestler DC, Salas LA, Christensen BC, Kelsey KT. Absence of an embryonic stem cell DNA methylation signature in human cancer. BMC Cancer 2019; 19:711. [PMID: 31324166 PMCID: PMC6642562 DOI: 10.1186/s12885-019-5932-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 07/12/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Differentiated cells that arise from stem cells in early development contain DNA methylation features that provide a memory trace of their fetal cell origin (FCO). The FCO signature was developed to estimate the proportion of cells in a mixture of cell types that are of fetal origin and are reminiscent of embryonic stem cell lineage. Here we implemented the FCO signature estimation method to compare the fraction of cells with the FCO signature in tumor tissues and their corresponding nontumor normal tissues. METHODS We applied our FCO algorithm to discovery data sets obtained from The Cancer Genome Atlas (TCGA) and replication data sets obtained from the Gene Expression Omnibus (GEO) data repository. Wilcoxon rank sum tests, linear regression models with adjustments for potential confounders and non-parametric randomization-based tests were used to test the association of FCO proportion between tumor tissues and nontumor normal tissues. P-values of < 0.05 were considered statistically significant. RESULTS Across 20 different tumor types we observed a consistently lower FCO signature in tumor tissues compared with nontumor normal tissues, with 18 observed to have significantly lower FCO fractions in tumor tissue (total n = 6,795 tumor, n = 922 nontumor, P < 0.05). We replicated our findings in 15 tumor types using data from independent subjects in 15 publicly available data sets (total n = 740 tumor, n = 424 nontumor, P < 0.05). CONCLUSIONS The results suggest that cancer development itself is substantially devoid of recapitulation of normal embryologic processes. Our results emphasize the distinction between DNA methylation in normal tightly regulated stem cell driven differentiation and cancer stem cell reprogramming that involves altered methylation in the service of great cell heterogeneity and plasticity.
Collapse
Affiliation(s)
- Ze Zhang
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI USA
| | - John K. Wiencke
- Department of Neurological Surgery, Institute for Human Genetics, University of California San Francisco, San Francisco, CA USA
| | - Devin C. Koestler
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS USA
| | - Lucas A. Salas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH USA
| | - Brock C. Christensen
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH USA
- Departments of Molecular and Systems Biology, and Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, NH USA
| | - Karl T. Kelsey
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI USA
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI USA
| |
Collapse
|
24
|
Yang W, Han Y, Zhao X, Duan L, Zhou W, Wang X, Shi G, Che Y, Zhang Y, Liu J, Zhang H, Zhao Q, Hong L, Fan D. Advances in prognostic biomarkers for esophageal cancer. Expert Rev Mol Diagn 2018; 19:109-119. [PMID: 30582379 DOI: 10.1080/14737159.2019.1563485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Wanli Yang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Yu Han
- Department of Otolaryngology, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Xinhui Zhao
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Lili Duan
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Wei Zhou
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Xiaoqian Wang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Gaokai Shi
- The First Brigade of Student, Air Force Military Medical University, Xi’an, China
| | - Yinggang Che
- The First Brigade of Student, Air Force Military Medical University, Xi’an, China
| | - Yujie Zhang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Jinqiang Liu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Hongwei Zhang
- Department of Digestive Surgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Qingchuan Zhao
- Department of Digestive Surgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Liu Hong
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, China
| |
Collapse
|
25
|
Talukdar FR, di Pietro M, Secrier M, Moehler M, Goepfert K, Lima SSC, Pinto LFR, Hendricks D, Parker MI, Herceg Z. Molecular landscape of esophageal cancer: implications for early detection and personalized therapy. Ann N Y Acad Sci 2018; 1434:342-359. [PMID: 29917250 DOI: 10.1111/nyas.13876] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/08/2018] [Accepted: 05/14/2018] [Indexed: 12/12/2022]
Abstract
Esophageal cancer (EC) is one of the most lethal cancers and a public health concern worldwide, owing to late diagnosis and lack of efficient treatment. Esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC) are main histopathological subtypes of EC that show striking differences in geographical distribution, possibly due to differences in exposure to risk factors and lifestyles. ESCC and EAC are distinct diseases in terms of cell of origin, epidemiology, and molecular architecture of tumor cells. Past efforts aimed at translating potential molecular candidates into clinical practice proved to be challenging, underscoring the need for identifying novel candidates for early diagnosis and therapy of EC. Several major international efforts have brought about important advances in identifying molecular landscapes of ESCC and EAC toward understanding molecular mechanisms and critical molecular events driving the progression and pathological features of the disease. In our review, we summarize recent advances in the areas of genomics and epigenomics of ESCC and EAC, their mutational signatures and immunotherapy. We also discuss implications of recent advances in characterizing the genome and epigenome of EC for the discovery of diagnostic/prognostic biomarkers and development of new targets for personalized treatment and prevention.
Collapse
Affiliation(s)
- Fazlur Rahman Talukdar
- Section of Mechanisms of Carcinogenesis, International Agency for Research on Cancer (WHO), Lyon, France
| | | | - Maria Secrier
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Markus Moehler
- First Department of Internal Medicine, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Katrin Goepfert
- First Department of Internal Medicine, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | | | | | - Denver Hendricks
- Division of Medical Biochemistry & Structural Biology, University of Cape Town, Cape Town, South Africa
| | - Mohamed Iqbal Parker
- Division of Medical Biochemistry & Structural Biology, University of Cape Town, Cape Town, South Africa
| | - Zdenko Herceg
- Section of Mechanisms of Carcinogenesis, International Agency for Research on Cancer (WHO), Lyon, France
| |
Collapse
|
26
|
Wang C, Pu W, Zhao D, Zhou Y, Lu T, Chen S, He Z, Feng X, Wang Y, Li C, Li S, Jin L, Guo S, Wang J, Wang M. Identification of Hyper-Methylated Tumor Suppressor Genes-Based Diagnostic Panel for Esophageal Squamous Cell Carcinoma (ESCC) in a Chinese Han Population. Front Genet 2018; 9:356. [PMID: 30233644 PMCID: PMC6133993 DOI: 10.3389/fgene.2018.00356] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/20/2018] [Indexed: 12/22/2022] Open
Abstract
DNA methylation-based biomarkers were suggested to be promising for early cancer diagnosis. However, DNA methylation-based biomarkers for esophageal squamous cell carcinoma (ESCC), especially in Chinese Han populations have not been identified and evaluated quantitatively. Candidate tumor suppressor genes (N = 65) were selected through literature searching and four public high-throughput DNA methylation microarray datasets including 136 samples totally were collected for initial confirmation. Targeted bisulfite sequencing was applied in an independent cohort of 94 pairs of ESCC and normal tissues from a Chinese Han population for eventual validation. We applied nine different classification algorithms for the prediction to evaluate to the prediction performance. ADHFE1, EOMES, SALL1 and TFPI2 were identified and validated in the ESCC samples from a Chinese Han population. All four candidate regions were validated to be significantly hyper-methylated in ESCC samples through Wilcoxon rank-sum test (ADHFE1, P = 1.7 × 10-3; EOMES, P = 2.9 × 10-9; SALL1, P = 3.9 × 10-7; TFPI2, p = 3.4 × 10-6). Logistic regression based prediction model shown a moderately ESCC classification performance (Sensitivity = 66%, Specificity = 87%, AUC = 0.81). Moreover, advanced classification method had better performances (random forest and naive Bayes). Interestingly, the diagnostic performance could be improved in non-alcohol use subgroup (AUC = 0.84). In conclusion, our data demonstrate the methylation panel of ADHFE1, EOMES, SALL1 and TFPI2 could be an effective methylation-based diagnostic assay for ESCC.
Collapse
Affiliation(s)
- Chenji Wang
- Department of Biochemistry and Molecular Biology, Medical College, Soochow University, Suzhou, China
| | - Weilin Pu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Dunmei Zhao
- Department of Biochemistry and Molecular Biology, Medical College, Soochow University, Suzhou, China
| | - Yinghui Zhou
- Department of Biochemistry and Molecular Biology, Medical College, Soochow University, Suzhou, China
| | - Ting Lu
- Department of Biochemistry and Molecular Biology, Medical College, Soochow University, Suzhou, China
| | - Sidi Chen
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhenglei He
- Department of Biochemistry and Molecular Biology, Medical College, Soochow University, Suzhou, China
| | - Xulong Feng
- Department of Biochemistry and Molecular Biology, Medical College, Soochow University, Suzhou, China
| | - Ying Wang
- Genesky Biotechnologies Inc., Shanghai, China
| | - Caihua Li
- Genesky Biotechnologies Inc., Shanghai, China
| | - Shilin Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Shicheng Guo
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, United States
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Minghua Wang
- Department of Biochemistry and Molecular Biology, Medical College, Soochow University, Suzhou, China
| |
Collapse
|
27
|
Tungekar A, Mandarthi S, Mandaviya PR, Gadekar VP, Tantry A, Kotian S, Reddy J, Prabha D, Bhat S, Sahay S, Mascarenhas R, Badkillaya RR, Nagasampige MK, Yelnadu M, Pawar H, Hebbar P, Kashyap MK. ESCC ATLAS: A population wide compendium of biomarkers for Esophageal Squamous Cell Carcinoma. Sci Rep 2018. [PMID: 30143675 DOI: 10.1038/s41598-018-30579-3,] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Esophageal cancer (EC) is the eighth most aggressive malignancy and its treatment remains a challenge due to the lack of biomarkers that can facilitate early detection. EC is identified in two major histological forms namely - Adenocarcinoma (EAC) and Squamous cell carcinoma (ESCC), each showing differences in the incidence among populations that are geographically separated. Hence the detection of potential drug target and biomarkers demands a population-centric understanding of the molecular and cellular mechanisms of EC. To provide an adequate impetus to the biomarker discovery for ESCC, which is the most prevalent esophageal cancer worldwide, here we have developed ESCC ATLAS, a manually curated database that integrates genetic, epigenetic, transcriptomic, and proteomic ESCC-related genes from the published literature. It consists of 3475 genes associated to molecular signatures such as, altered transcription (2600), altered translation (560), contain copy number variation/structural variations (233), SNPs (102), altered DNA methylation (82), Histone modifications (16) and miRNA based regulation (261). We provide a user-friendly web interface ( http://www.esccatlas.org , freely accessible for academic, non-profit users) that facilitates the exploration and the analysis of genes among different populations. We anticipate it to be a valuable resource for the population specific investigation and biomarker discovery for ESCC.
Collapse
Affiliation(s)
- Asna Tungekar
- Mbiomics, Manipal, Karnataka, India.,Manipal Life Sciences Center, Manipal University, Manipal, Karnataka, India
| | - Sumana Mandarthi
- Mbiomics, Manipal, Karnataka, India.,Department of Biochemistry, Kasturba Medical College, Manipal University, Manipal, Karnataka, India
| | - Pooja Rajendra Mandaviya
- Mbiomics, Manipal, Karnataka, India.,Manipal Life Sciences Center, Manipal University, Manipal, Karnataka, India
| | - Veerendra P Gadekar
- Mbiomics, Manipal, Karnataka, India.,Manipal Life Sciences Center, Manipal University, Manipal, Karnataka, India.,Institute for Theoretical Chemistry, University of Vienna, Währingerstrasse 17, 1090, Vienna, Austria
| | - Ananthajith Tantry
- Mbiomics, Manipal, Karnataka, India.,Manipal Center for Information Sciences, Manipal University, Manipal, Karnataka, India
| | - Sowmya Kotian
- Mbiomics, Manipal, Karnataka, India.,Manipal Life Sciences Center, Manipal University, Manipal, Karnataka, India
| | - Jyotshna Reddy
- Mbiomics, Manipal, Karnataka, India.,Manipal Life Sciences Center, Manipal University, Manipal, Karnataka, India
| | | | - Sushma Bhat
- Mbiomics, Manipal, Karnataka, India.,Manipal Life Sciences Center, Manipal University, Manipal, Karnataka, India
| | | | - Roshan Mascarenhas
- Mbiomics, Manipal, Karnataka, India.,Manipal Life Sciences Center, Manipal University, Manipal, Karnataka, India.,Newcastle University Medicine Malaysia, Johor Bahru, 79200, Malaysia
| | - Raghavendra Rao Badkillaya
- Mbiomics, Manipal, Karnataka, India.,Department of Biotechnology, Alva's college, Moodubidre, Karnataka, India
| | - Manoj Kumar Nagasampige
- Mbiomics, Manipal, Karnataka, India.,Department of Biotechnology, Sikkim Manipal University, Gangtok, Sikkim, 737102, India
| | - Mohan Yelnadu
- Mbiomics, Manipal, Karnataka, India.,Manipal Center for Information Sciences, Manipal University, Manipal, Karnataka, India.,Infosys Technologies Ltd, Bangalore, Karnataka, India.,Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Harsh Pawar
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Prashantha Hebbar
- Mbiomics, Manipal, Karnataka, India. .,Manipal Life Sciences Center, Manipal University, Manipal, Karnataka, India.
| | - Manoj Kumar Kashyap
- Mbiomics, Manipal, Karnataka, India. .,Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh 173229, India. .,School of Life and Allied Health Sciences, Glocal University, Saharanpur, Uttar Pradesh, 247001, India. .,Institute for Theoretical Chemistry, University of Vienna, Währingerstrasse 17, 1090, Vienna, Austria.
| |
Collapse
|
28
|
Tungekar A, Mandarthi S, Mandaviya PR, Gadekar VP, Tantry A, Kotian S, Reddy J, Prabha D, Bhat S, Sahay S, Mascarenhas R, Badkillaya RR, Nagasampige MK, Yelnadu M, Pawar H, Hebbar P, Kashyap MK. ESCC ATLAS: A population wide compendium of biomarkers for Esophageal Squamous Cell Carcinoma. Sci Rep 2018; 8:12715. [PMID: 30143675 PMCID: PMC6109081 DOI: 10.1038/s41598-018-30579-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 08/01/2018] [Indexed: 02/07/2023] Open
Abstract
Esophageal cancer (EC) is the eighth most aggressive malignancy and its treatment remains a challenge due to the lack of biomarkers that can facilitate early detection. EC is identified in two major histological forms namely - Adenocarcinoma (EAC) and Squamous cell carcinoma (ESCC), each showing differences in the incidence among populations that are geographically separated. Hence the detection of potential drug target and biomarkers demands a population-centric understanding of the molecular and cellular mechanisms of EC. To provide an adequate impetus to the biomarker discovery for ESCC, which is the most prevalent esophageal cancer worldwide, here we have developed ESCC ATLAS, a manually curated database that integrates genetic, epigenetic, transcriptomic, and proteomic ESCC-related genes from the published literature. It consists of 3475 genes associated to molecular signatures such as, altered transcription (2600), altered translation (560), contain copy number variation/structural variations (233), SNPs (102), altered DNA methylation (82), Histone modifications (16) and miRNA based regulation (261). We provide a user-friendly web interface ( http://www.esccatlas.org , freely accessible for academic, non-profit users) that facilitates the exploration and the analysis of genes among different populations. We anticipate it to be a valuable resource for the population specific investigation and biomarker discovery for ESCC.
Collapse
Affiliation(s)
- Asna Tungekar
- Mbiomics, Manipal, Karnataka, India
- Manipal Life Sciences Center, Manipal University, Manipal, Karnataka, India
| | - Sumana Mandarthi
- Mbiomics, Manipal, Karnataka, India
- Department of Biochemistry, Kasturba Medical College, Manipal University, Manipal, Karnataka, India
| | - Pooja Rajendra Mandaviya
- Mbiomics, Manipal, Karnataka, India
- Manipal Life Sciences Center, Manipal University, Manipal, Karnataka, India
| | - Veerendra P Gadekar
- Mbiomics, Manipal, Karnataka, India
- Manipal Life Sciences Center, Manipal University, Manipal, Karnataka, India
- Institute for Theoretical Chemistry, University of Vienna, Währingerstrasse 17, 1090, Vienna, Austria
| | - Ananthajith Tantry
- Mbiomics, Manipal, Karnataka, India
- Manipal Center for Information Sciences, Manipal University, Manipal, Karnataka, India
| | - Sowmya Kotian
- Mbiomics, Manipal, Karnataka, India
- Manipal Life Sciences Center, Manipal University, Manipal, Karnataka, India
| | - Jyotshna Reddy
- Mbiomics, Manipal, Karnataka, India
- Manipal Life Sciences Center, Manipal University, Manipal, Karnataka, India
| | | | - Sushma Bhat
- Mbiomics, Manipal, Karnataka, India
- Manipal Life Sciences Center, Manipal University, Manipal, Karnataka, India
| | | | - Roshan Mascarenhas
- Mbiomics, Manipal, Karnataka, India
- Manipal Life Sciences Center, Manipal University, Manipal, Karnataka, India
- Newcastle University Medicine Malaysia, Johor Bahru, 79200, Malaysia
| | - Raghavendra Rao Badkillaya
- Mbiomics, Manipal, Karnataka, India
- Department of Biotechnology, Alva's college, Moodubidre, Karnataka, India
| | - Manoj Kumar Nagasampige
- Mbiomics, Manipal, Karnataka, India
- Department of Biotechnology, Sikkim Manipal University, Gangtok, Sikkim, 737102, India
| | - Mohan Yelnadu
- Mbiomics, Manipal, Karnataka, India
- Manipal Center for Information Sciences, Manipal University, Manipal, Karnataka, India
- Infosys Technologies Ltd, Bangalore, Karnataka, India
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Harsh Pawar
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Prashantha Hebbar
- Mbiomics, Manipal, Karnataka, India.
- Manipal Life Sciences Center, Manipal University, Manipal, Karnataka, India.
| | - Manoj Kumar Kashyap
- Mbiomics, Manipal, Karnataka, India.
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh 173229, India.
- School of Life and Allied Health Sciences, Glocal University, Saharanpur, Uttar Pradesh, 247001, India.
- Institute for Theoretical Chemistry, University of Vienna, Währingerstrasse 17, 1090, Vienna, Austria.
| |
Collapse
|
29
|
Wang HQ, Yang CY, Wang SY, Wang T, Han JL, Wei K, Liu FC, Xu JD, Peng XZ, Wang JM. Cell-free plasma hypermethylated CASZ1, CDH13 and ING2 are promising biomarkers of esophageal cancer. J Biomed Res 2018; 32:424-433. [PMID: 30355852 PMCID: PMC6283827 DOI: 10.7555/jbr.32.20170065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Identifying sensitive and specific biomarkers for early detection of cancer is immensely imperative for early diagnosis and treatment and better clinical outcome of cancer patients. This study aimed to construct a specific DNA methylation pattern of cancer suppressor genes and explore the feasibility of applying cell-free DNA based methylation as a biomarker for early diagnosis of esophageal squamous cell carcinoma (ESCC). We recruited early stage ESCC patients from Yangzhong County, China. The Illumina Infinium 450K Methylation BeadChip was used to construct a genome-wide DNA methylation profile. Then, differentiated genes were selected for the validation study using the Sequenom MassARRAY platform. The frequency of methylation was compared between cancer tissues, matched cell-free DNAs and normal controls. The specific methylation profiles were constructed, and the sensitivity and specificity were calculated. Seven CG sites in three genes CASZ1, CDH13 and ING2 were significantly hypermethylated in ESCC as compared with normal controls. A significant correlation was found between the methylation of DNA extracted from cancer tissues and matched plasma cell-free DNA, either for individual CG site or for cumulative methylation analysis. The sensitivity and specificity reached 100% at an appropriate cut-point using these specific methylation biomarkers. This study revealed that aberrant DNA methylation is a promising biomarker for molecular diagnosis of esophageal cancer. Hypermethylation of CASZ1, CDH13 and ING2 detected in plasma cell-free DNA can be applied as a potential noninvasive biomarker for diagnosis of esophageal cancer.
Collapse
Affiliation(s)
- Huan-Qiang Wang
- Department of Public Health and Preventive Medicine, Kangda College of Nanjing Medical University, Lianyungang, Jiangsu 222000, China
| | - Cong-Ying Yang
- Department of Social Medicine and Health Education,School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Si-Yuan Wang
- Department of Clinical Medicine, Kangda College of Nanjing Medical University, Lianyungang, Jiangsu 222000, China
| | - Tian Wang
- Department of Public Health and Preventive Medicine, Kangda College of Nanjing Medical University, Lianyungang, Jiangsu 222000, China
| | - Jing-Ling Han
- Department of Public Health and Preventive Medicine, Kangda College of Nanjing Medical University, Lianyungang, Jiangsu 222000, China
| | - Kai Wei
- Department of Public Health and Preventive Medicine, Kangda College of Nanjing Medical University, Lianyungang, Jiangsu 222000, China
| | - Fu-Cun Liu
- Department of Public Health and Preventive Medicine, Kangda College of Nanjing Medical University, Lianyungang, Jiangsu 222000, China
| | - Ji-da Xu
- Department of Public Health and Preventive Medicine, Kangda College of Nanjing Medical University, Lianyungang, Jiangsu 222000, China
| | - Xian-Zhen Peng
- Department of Public Health and Preventive Medicine, Kangda College of Nanjing Medical University, Lianyungang, Jiangsu 222000, China.,Department of Epidemiology,, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jian-Ming Wang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
30
|
Zhu X, Wang J, Li L, Deng L, Wang J, Liu L, Zeng R, Wang Q, Zheng Y. GPX3 suppresses tumor migration and invasion via the FAK/AKT pathway in esophageal squamous cell carcinoma. Am J Transl Res 2018; 10:1908-1920. [PMID: 30018730 PMCID: PMC6038073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/25/2018] [Indexed: 06/08/2023]
Abstract
Although an increasing number of findings have proven that glutathione peroxidase 3 (GPX3) is methylated and down-regulated in various cancers, the underlying mechanism of its occurrence in esophageal squamous cell carcinoma (ESCC) remains unknown. In the present study, we found that the methylation rate in advanced cancers was significantly higher than that in early stage cancers by a methylation-specific polymerase chain reaction. Furthermore, the proliferation and migration capacities of KYSE-510 cells were inhibited after up-regulating GPX3 expression by GPX3 lentivirus transfection. As expected, the proliferation and migration capacities of KYSE-150 cells were promoted after down-regulating GPX3 expression with siRNA interfering. Moreover, we found that GPX3 might have deactivated the FAK/AKT signaling pathway to lower the expression of MMP-9 to suppress the migration and invasive capacities of KYSE-150 and KYSE-510 cells. Our findings suggested that GPX3 played a pivotal role in the suppression of carcinogenesis and progression in ESCC, and GPX3 has the potential as a novel biomarker in the diagnosis of ESCC.
Collapse
Affiliation(s)
- Xiongjie Zhu
- Department of Oncology, Zhujiang Hospital of Southern Medical UniversityGuangzhou 510282, China
| | - Jiale Wang
- Department of Oncology, Zhujiang Hospital of Southern Medical UniversityGuangzhou 510282, China
| | - Lihua Li
- Department of Oncology, Zhujiang Hospital of Southern Medical UniversityGuangzhou 510282, China
| | - Lian Deng
- Department of Oncology, Zhujiang Hospital of Southern Medical UniversityGuangzhou 510282, China
| | - Jinting Wang
- Department of Oncology, Zhujiang Hospital of Southern Medical UniversityGuangzhou 510282, China
| | - Lu Liu
- Department of Oncology, Zhujiang Hospital of Southern Medical UniversityGuangzhou 510282, China
| | - Rong Zeng
- Department of Oncology, Zhujiang Hospital of Southern Medical UniversityGuangzhou 510282, China
| | - Qien Wang
- Department of Radiology, Division of Radiobiology, The Ohio State University Wexner Medical CenterColumbus, OH, USA
| | - Yanfang Zheng
- Department of Oncology, Zhujiang Hospital of Southern Medical UniversityGuangzhou 510282, China
| |
Collapse
|
31
|
Zeng R, Liu Y, Jiang ZJ, Huang JP, Wang Y, Li XF, Xiong WB, Wu XC, Zhang JR, Wang QE, Zheng YF. EPB41L3 is a potential tumor suppressor gene and prognostic indicator in esophageal squamous cell carcinoma. Int J Oncol 2018; 52:1443-1454. [PMID: 29568917 PMCID: PMC5873871 DOI: 10.3892/ijo.2018.4316] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/15/2018] [Indexed: 02/06/2023] Open
Abstract
Although there have been reports about the role of erythrocyte membrane protein band 4.1 like 3 (EPB41L3) in several types of cancer, primarily in non-small-cell lung carcinoma, the molecular function and modulatory mechanisms of EPB41L3 remain unclear. In specific, the functional and clinical significance of EPB41L3 in esophageal squamous cell carcinoma (ESCC) has not been explored to date. In the present study, reduced EPB41L3 expression was demonstrated in ESCC cell lines and tissues, which was due to its high methylation rate. Ectopic expression of EPB41L3 in ESCC cells inhibited cell proliferation in vivo and in vitro. In addition, EPB41L3 overexpression induced apoptosis and G2/M cell cycle arrest by activating Caspase-3/8/9 and Cyclin-dependent kinase 1/Cyclin B1 signaling, respectively. Notably, patients with higher EPB41L3 expression had markedly higher overall survival rates compared with patients with lower EPB41L3 expression. In summary, the present results suggest that EPB41L3 may be a tumor suppressor gene in ESCC development, representing a potential therapeutic target and a prognostic indicator for ESCC.
Collapse
Affiliation(s)
- Rong Zeng
- Oncology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Yi Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Zhao-Jing Jiang
- Oncology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Jun-Peng Huang
- Department of Medical Oncology, Fujian Provincial Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Yu Wang
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Xu-Feng Li
- Oncology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Wei-Bin Xiong
- Oncology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Xiao-Cong Wu
- Oncology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Ji-Ren Zhang
- Oncology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Qi-En Wang
- Department of Radiology, Division of Radiobiology, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Yan-Fang Zheng
- Oncology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| |
Collapse
|
32
|
Kitchen MO, Bryan RT, Emes RD, Luscombe CJ, Cheng KK, Zeegers MP, James ND, Gommersall LM, Fryer AA. HumanMethylation450K Array-Identified Biomarkers Predict Tumour Recurrence/Progression at Initial Diagnosis of High-risk Non-muscle Invasive Bladder Cancer. BIOMARKERS IN CANCER 2018; 10:1179299X17751920. [PMID: 29343995 PMCID: PMC5764140 DOI: 10.1177/1179299x17751920] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 11/15/2017] [Indexed: 01/03/2023]
Abstract
Background: High-risk non-muscle invasive bladder cancer (HR-NMIBC) is a clinically unpredictable disease. Despite clinical risk estimation tools, many patients are undertreated with intra-vesical therapies alone, whereas others may be over-treated with early radical surgery. Molecular biomarkers, particularly DNA methylation, have been reported as predictive of tumour/patient outcomes in numerous solid organ and haematologic malignancies; however, there are few reports in HR-NMIBC and none using genome-wide array assessment. We therefore sought to identify novel DNA methylation markers of HR-NMIBC clinical outcomes that might predict tumour behaviour at initial diagnosis and help guide patient management. Patients and methods: A total of 21 primary initial diagnosis HR-NMIBC tumours were analysed by Illumina HumanMethylation450 BeadChip arrays and subsequently bisulphite Pyrosequencing. In all, 7 had not recurred at 1 year after resection and 14 had recurred and/or progressed despite intra-vesical BCG. A further independent cohort of 32 HR-NMIBC tumours (17 no recurrence and 15 recurrence and/or progression despite BCG) were also assessed by bisulphite Pyrosequencing. Results: Array analyses identified 206 CpG loci that segregated non-recurrent HR-NMIBC tumours from clinically more aggressive recurrence/progression tumours. Hypermethylation of CpG cg11850659 and hypomethylation of CpG cg01149192 in combination predicted HR-NMIBC recurrence and/or progression within 1 year of diagnosis with 83% sensitivity, 79% specificity, and 83% positive and 79% negative predictive values. Conclusions: This is the first genome-wide DNA methylation analysis of a unique HR-NMIBC tumour cohort encompassing known 1-year clinical outcomes. Our analyses identified potential novel epigenetic markers that could help guide individual patient management in this clinically unpredictable disease.
Collapse
Affiliation(s)
- Mark O Kitchen
- Institute for Science and Technology in Medicine, Keele University, London, UK.,Urology Department, University Hospitals of North Midlands NHS Trust, Stafford, UK
| | - Richard T Bryan
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Richard D Emes
- Advanced Data Analysis Centre, University of Nottingham, Nottingham, UK
| | | | - K K Cheng
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Maurice P Zeegers
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.,Department of Complex Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands.,NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands.,CAPHRI School for Public Health and Primary Care, Maastricht University Medical Centre, Maastricht, The Netherlands
| | | | - Lyndon M Gommersall
- Urology Department, University Hospitals of North Midlands NHS Trust, Stafford, UK
| | - Anthony A Fryer
- Institute for Science and Technology in Medicine, Keele University, London, UK
| |
Collapse
|
33
|
Pu W, Wang C, Chen S, Zhao D, Zhou Y, Ma Y, Wang Y, Li C, Huang Z, Jin L, Guo S, Wang J, Wang M. Targeted bisulfite sequencing identified a panel of DNA methylation-based biomarkers for esophageal squamous cell carcinoma (ESCC). Clin Epigenetics 2017; 9:129. [PMID: 29270239 PMCID: PMC5732523 DOI: 10.1186/s13148-017-0430-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 11/29/2017] [Indexed: 12/20/2022] Open
Abstract
Background DNA methylation has been implicated as a promising biomarker for precise cancer diagnosis. However, limited DNA methylation-based biomarkers have been described in esophageal squamous cell carcinoma (ESCC). Methods A high-throughput DNA methylation dataset (100 samples) of ESCC from The Cancer Genome Atlas (TCGA) project was analyzed and validated along with another independent dataset (12 samples) from the Gene Expression Omnibus (GEO) database. The methylation status of peripheral blood mononuclear cells and peripheral blood leukocytes from healthy controls was also utilized for biomarker selection. The candidate CpG sites as well as their adjacent regions were further validated in 94 pairs of ESCC tumor and adjacent normal tissues from the Chinese Han population using the targeted bisulfite sequencing method. Logistic regression and several machine learning methods were applied for evaluation of the diagnostic ability of our panel. Results In the discovery stage, five hyper-methylated CpG sites were selected as candidate biomarkers for further analysis as shown below: cg15830431, P = 2.20 × 10−4; cg19396867, P = 3.60 × 10−4; cg20655070, P = 3.60 × 10−4; cg26671652, P = 5.77 × 10−4; and cg27062795, P = 3.60 × 10−4. In the validation stage, the methylation status of both the five CpG sites and their adjacent genomic regions were tested. The diagnostic model based on the combination of these five genomic regions yielded a robust performance (sensitivity = 0.75, specificity = 0.88, AUC = 0.85). Eight statistical models along with five-fold cross-validation were further applied, in which the SVM model reached the best accuracy in both training and test dataset (accuracy = 0.82 and 0.80, respectively). In addition, subgroup analyses revealed a significant difference in diagnostic performance between the alcohol use and non-alcohol use subgroups. Conclusions Methylation profiles of the five genomic regions covering cg15830431 (STK3), cg19396867, cg20655070, cg26671652 (ZNF418), and cg27062795 (ZNF542) can be used for effective methylation-based testing for ESCC diagnosis. Electronic supplementary material The online version of this article (10.1186/s13148-017-0430-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Weilin Pu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chenji Wang
- Department of Biochemistry and Molecular Biology, Medical College, Soochow University, Suzhou, Jiangsu China
| | - Sidi Chen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Dunmei Zhao
- Department of Biochemistry and Molecular Biology, Medical College, Soochow University, Suzhou, Jiangsu China
| | - Yinghui Zhou
- Department of Biochemistry and Molecular Biology, Medical College, Soochow University, Suzhou, Jiangsu China
| | - Yanyun Ma
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Ying Wang
- Genesky Biotechnologies Inc., Shanghai, China
| | - Caihua Li
- Genesky Biotechnologies Inc., Shanghai, China
| | - Zebin Huang
- Genesky Biotechnologies Inc., Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Shicheng Guo
- Center for Human Genetics, Marshfield Clinic Research Foundation, 9500 Gilman Drive, MC0412, Marshfield, Wisconsin 54449 United States
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Minghua Wang
- Department of Biochemistry and Molecular Biology, Medical College, Soochow University, Suzhou, Jiangsu China
| |
Collapse
|
34
|
Murphy G, McCormack V, Abedi-Ardekani B, Arnold M, Camargo MC, Dar NA, Dawsey SM, Etemadi A, Fitzgerald RC, Fleischer DE, Freedman ND, Goldstein AM, Gopal S, Hashemian M, Hu N, Hyland PL, Kaimila B, Kamangar F, Malekzadeh R, Mathew CG, Menya D, Mulima G, Mwachiro MM, Mwasamwaja A, Pritchett N, Qiao YL, Ribeiro-Pinto LF, Ricciardone M, Schüz J, Sitas F, Taylor PR, Van Loon K, Wang SM, Wei WQ, Wild CP, Wu C, Abnet CC, Chanock SJ, Brennan P. International cancer seminars: a focus on esophageal squamous cell carcinoma. Ann Oncol 2017; 28:2086-2093. [PMID: 28911061 PMCID: PMC5834011 DOI: 10.1093/annonc/mdx279] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The International Agency for Research on Cancer (IARC) and the US National Cancer Institute (NCI) have initiated a series of cancer-focused seminars [Scelo G, Hofmann JN, Banks RE et al. International cancer seminars: a focus on kidney cancer. Ann Oncol 2016; 27(8): 1382-1385]. In this, the second seminar, IARC and NCI convened a workshop in order to examine the state of the current science on esophageal squamous cell carcinoma etiology, genetics, early detection, treatment, and palliation, was reviewed to identify the most critical open research questions. The results of these discussions were summarized by formulating a series of 'difficult questions', which should inform and prioritize future research efforts.
Collapse
Affiliation(s)
- G. Murphy
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda Maryland, USA
| | | | | | - M. Arnold
- Cancer Surveillance, International Agency for Research on Cancer, Lyon, France
| | - M. C. Camargo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda Maryland, USA
| | - N. A. Dar
- Department of Biochemistry, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, India
| | - S. M. Dawsey
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda Maryland, USA
| | - A. Etemadi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda Maryland, USA
| | - R. C. Fitzgerald
- MRC Cancer Unit, Hutchison-MRC Research Centre, University of Cambridge, Cambridge, UK
| | - D. E. Fleischer
- Department of Internal Medicine, Mayo Clinic, Scottsdale, Arizona, USA
| | - N. D. Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda Maryland, USA
| | - A. M. Goldstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda Maryland, USA
| | - S. Gopal
- University of North Carolina Project-Malawi, Lilongwe, Malawi
| | - M. Hashemian
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda Maryland, USA
- Digestive Oncology Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - N. Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda Maryland, USA
| | - P. L. Hyland
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda Maryland, USA
| | - B. Kaimila
- University of North Carolina Project-Malawi, Lilongwe, Malawi
| | - F. Kamangar
- Department of Public Health Analysis, School of Community Health and Policy, Morgan State University, Baltimore, Maryland, USA
| | - R. Malekzadeh
- Digestive Oncology Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - C. G. Mathew
- Department of Medical and Molecular Genetics, Kings College London
- Sydney Brenner Institute for Molecular Bioscience, University of Witwatersrand, Johannesburg, South Africa
| | - D. Menya
- School of Public Health, Moi University, Eldoret, Kenya
| | - G. Mulima
- University of North Carolina Project-Malawi, Lilongwe, Malawi
| | | | - A. Mwasamwaja
- Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - N. Pritchett
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda Maryland, USA
| | - Y.-L. Qiao
- Department of Etiology and Carcinogenesis & Department of Cancer Epidemiology, Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - L. F. Ribeiro-Pinto
- Molecular Carcinogenesis Program, Institute Nacional de Cancer, Sao Paulo, Brazil
| | - M. Ricciardone
- National Cancer Institute, Center for Global Health, National Institutes of Health, Bethesda, Maryland, USA
| | - J. Schüz
- Section of Environment and Radiation
| | - F. Sitas
- School of Public Health, University of Sydney, New South Wales, Australia
- School of Public Health & Community Medicine, University of New South Wales, Sydney, Australia
| | - P. R. Taylor
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda Maryland, USA
| | - K. Van Loon
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
| | - S.-M. Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda Maryland, USA
- Department of Etiology and Carcinogenesis & Department of Cancer Epidemiology, Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - W.-Q. Wei
- Department of Etiology and Carcinogenesis & Department of Cancer Epidemiology, Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - C. P. Wild
- Director's office, International Agency for Research on Cancer, Lyon, France
| | - C. Wu
- Department of Etiology and Carcinogenesis & Department of Cancer Epidemiology, Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - C. C. Abnet
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda Maryland, USA
| | - S. J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda Maryland, USA
| | | |
Collapse
|
35
|
Qing S, Tulake W, Ru M, Li X, Yuemaier R, Lidifu D, Rouzibilali A, Hasimu A, Yang Y, Rouziahong R, Upur H, Abudula A. Proteomic identification of potential biomarkers for cervical squamous cell carcinoma and human papillomavirus infection. Tumour Biol 2017; 39:1010428317697547. [PMID: 28443473 DOI: 10.1177/1010428317697547] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
It is known that high-risk human papillomavirus infection is the main etiological factor in cervical carcinogenesis. However, human papillomavirus screening is not sufficient for early diagnosis. In this study, we aimed to identify potential biomarkers common to cervical carcinoma and human papillomavirus infection by proteomics for human papillomavirus-based early diagnosis and prognosis. To this end, we collected 76 cases of fresh cervical tissues and 116 cases of paraffin-embedded tissue slices, diagnosed as cervical squamous cell carcinoma, cervical intraepithelial neoplasia II-III, or normal cervix from ethnic Uighur and Han women. Human papillomavirus infection by eight oncogenic human papillomavirus types was detected in tissue DNA samples using a quantitative polymerase chain reaction. The protein profile of cervical specimens from human papillomavirus 16-positive squamous cell carcinoma and human papillomavirus-negative normal controls was analyzed by proteomics and bioinformatics. The expression of candidate proteins was further determined by quantitative reverse transcriptase-polymerase chain reaction and immunohistochemistry. We identified 67 proteins that were differentially expressed in human papillomavirus 16-positive squamous cell carcinoma compared to normal cervix. The quantitative reverse transcriptase-polymerase chain reaction analysis verified the upregulation of ASAH1, PCBP2, DDX5, MCM5, TAGLN2, hnRNPA1, ENO1, TYPH, CYC, and MCM4 in squamous cell carcinoma compared to normal cervix ( p < 0.05). In addition, the transcription of PCBP2, MCM5, hnRNPA1, TYPH, and CYC was also significantly increased in cervical intraepithelial neoplasia II-III compared to normal cervix. Immunohistochemistry staining further confirmed the overexpression of PCBP2, hnRNPA1, ASAH1, and DDX5 in squamous cell carcinoma and cervical intraepithelial neoplasia II-III compared to normal controls ( p < 0.05). Our data suggest that the expression of ASAH1, PCBP2, DDX5, and hnRNPA1, and possibly MCM4, MCM5, CYC, ENO1, and TYPH, is upregulated during cervical carcinogenesis and potentially associated with human papillomavirus infection. Further validation studies of the profile will contribute to establishing auxiliary diagnostic markers for human papillomavirus-based cancer prognosis.
Collapse
Affiliation(s)
- Song Qing
- 1 Key Laboratory of Chinese Ministry of Education and Xinjiang Uighur Autonomous Region for High-Incident Diseases in Uighur Ethnic Population, Xinjiang Medical University, Urumqi, P.R. China.,2 Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, P.R. China
| | - Wuniqiemu Tulake
- 1 Key Laboratory of Chinese Ministry of Education and Xinjiang Uighur Autonomous Region for High-Incident Diseases in Uighur Ethnic Population, Xinjiang Medical University, Urumqi, P.R. China
| | - Mingfang Ru
- 3 Department of Gynecology, The Third Affiliated Hospital of Xinjiang Medical University, Urumqi, P.R. China
| | - Xiaohong Li
- 4 Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, P.R. China
| | - Reziwanguli Yuemaier
- 1 Key Laboratory of Chinese Ministry of Education and Xinjiang Uighur Autonomous Region for High-Incident Diseases in Uighur Ethnic Population, Xinjiang Medical University, Urumqi, P.R. China
| | - Dilare Lidifu
- 1 Key Laboratory of Chinese Ministry of Education and Xinjiang Uighur Autonomous Region for High-Incident Diseases in Uighur Ethnic Population, Xinjiang Medical University, Urumqi, P.R. China
| | - Aierken Rouzibilali
- 1 Key Laboratory of Chinese Ministry of Education and Xinjiang Uighur Autonomous Region for High-Incident Diseases in Uighur Ethnic Population, Xinjiang Medical University, Urumqi, P.R. China
| | - Axiangu Hasimu
- 1 Key Laboratory of Chinese Ministry of Education and Xinjiang Uighur Autonomous Region for High-Incident Diseases in Uighur Ethnic Population, Xinjiang Medical University, Urumqi, P.R. China
| | - Yun Yang
- 1 Key Laboratory of Chinese Ministry of Education and Xinjiang Uighur Autonomous Region for High-Incident Diseases in Uighur Ethnic Population, Xinjiang Medical University, Urumqi, P.R. China
| | - Reziya Rouziahong
- 1 Key Laboratory of Chinese Ministry of Education and Xinjiang Uighur Autonomous Region for High-Incident Diseases in Uighur Ethnic Population, Xinjiang Medical University, Urumqi, P.R. China
| | - Halmurat Upur
- 1 Key Laboratory of Chinese Ministry of Education and Xinjiang Uighur Autonomous Region for High-Incident Diseases in Uighur Ethnic Population, Xinjiang Medical University, Urumqi, P.R. China
| | - Abulizi Abudula
- 1 Key Laboratory of Chinese Ministry of Education and Xinjiang Uighur Autonomous Region for High-Incident Diseases in Uighur Ethnic Population, Xinjiang Medical University, Urumqi, P.R. China
| |
Collapse
|
36
|
Haque MH, Bhattacharjee R, Islam MN, Gopalan V, Nguyen NT, Lam AK, Shiddiky MJA. Colorimetric and electrochemical quantification of global DNA methylation using a methyl cytosine-specific antibody. Analyst 2017; 142:1900-1908. [PMID: 28516982 DOI: 10.1039/c7an00526a] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We report a simple colorimetric (naked-eye) and electrochemical method for the rapid, sensitive and specific quantification of global methylation levels using only 25 ng of input DNA. Our approach utilises a three-step strategy; (i) initial adsorption of the extracted, purified and denatured bisulfite-treated DNA on a screen-printed gold electrode (SPE-Au), (ii) immuno-recognition of methylated DNA using a horseradish peroxidase (HRP)-conjugated methylcytosine (HRP-5mC) antibody and (iii) subsequent colorimetric detection by the enzymatic oxidation of 3,3',5,5'-tetramethylbenzidin (TMB)/H2O2 which generated a blue-coloured product in the presence of methylated DNA and HRP-5mC immunocomplex. As TMB(ox) is electroactive, it also produces detectable amperometric current at +150 mV versus a Ag pseudo-reference electrode (electrochemical detection). The assay could successfully differentiate 5-aza-2'-deoxycytidine drug-treated and untreated Jurkat DNA samples. It showed good reproducibility (relative standard deviation (% RSD) = <5%, for n = 3) with fairly good sensitivity (as low as 5% difference in methylation levels) and specificity while analysing various levels of global DNA methylation in synthetic samples and cell lines. The method has also been tested for analysing the methylation level in fresh tissue samples collected from eight patients with oesophageal squamous cell carcinoma. We believe that this assay could be potentially useful as a low-cost alternative for genome-wide DNA methylation analysis in point-of-care applications.
Collapse
Affiliation(s)
- Md Hakimul Haque
- Cancer Molecular Pathology laboratory in Menzies Health Institute Queensland, Griffith University and School of Medicine, Gold Coast, QLD 4222, Australia.
| | | | | | | | | | | | | |
Collapse
|
37
|
Zhou JD, Lin J, Zhang TJ, Ma JC, Yang L, Wen XM, Guo H, Yang J, Deng ZQ, Qian J. GPX3 methylation in bone marrow predicts adverse prognosis and leukemia transformation in myelodysplastic syndrome. Cancer Med 2016; 6:267-274. [PMID: 27891827 PMCID: PMC5269561 DOI: 10.1002/cam4.984] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/11/2016] [Accepted: 11/07/2016] [Indexed: 02/06/2023] Open
Abstract
Epigenetic inactivation of GPX3 has been identified in various cancers including leukemia. Moreover, aberrant DNA methylation was also found as a dominant mechanism of disease progression in myelodysplastic syndrome (MDS). This study intended to explore GPX3 promoter methylation and its clinical relevance in 110 patients with MDS. GPX3 methylation was examined by real-time quantitative methylation-specific PCR (RQ-MSP) and bisulfite sequencing PCR (BSP). GPX3 methylation was identified in 15% (17/110) MDS patients, and significantly higher than controls, and lower than acute myeloid leukemia (AML) patients (P = 0.024 and 0.041). GPX3 methylated patients had older age and higher frequency of DNMT3A mutation (P = 0.015 and 0.066). Cases with GPX3 methylation showed significantly shorter overall survival (OS) time than those with GPX3 unmethylation analyzed with Kaplan-Meier analysis (P = 0.012). Moreover, Cox regression analysis revealed that GPX3 methylation might act as an independent prognostic indicator in MDS (HR = 1.847, P = 0.072). GPX3 methylation density was significantly increased during the progression from MDS to secondary acute myeloid leukemia (sAML) in three follow-up paired patients. Our study concludes that GPX3 methylation in bone marrow is associated with adverse prognosis and leukemia transformation in MDS.
Collapse
Affiliation(s)
- Jing-Dong Zhou
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jiang Lin
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ting-Juan Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ji-Chun Ma
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lei Yang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiang-Mei Wen
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hong Guo
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jing Yang
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhao-Qun Deng
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jun Qian
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
38
|
Hardy T, Mann DA. Epigenetics in liver disease: from biology to therapeutics. Gut 2016; 65:1895-1905. [PMID: 27624887 PMCID: PMC5099193 DOI: 10.1136/gutjnl-2015-311292] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 07/29/2016] [Accepted: 08/01/2016] [Indexed: 02/06/2023]
Abstract
Knowledge of the fundamental epigenetic mechanisms governing gene expression and cellular phenotype are sufficiently advanced that novel insights into the epigenetic control of chronic liver disease are now emerging. Hepatologists are in the process of shedding light on the roles played by DNA methylation, histone/chromatin modifications and non-coding RNAs in specific liver pathologies. Alongside these discoveries are advances in the technologies for the detection and quantification of epigenetic biomarkers, either directly from patient tissue or from body fluids. The premise for this review is to survey the recent advances in the field of liver epigenetics and to explore their potential for translation by industry and clinical hepatologists for the design of novel therapeutics and diagnostic/prognostic biomarkers. In particular, we present findings in the context of hepatocellular carcinoma, fibrosis and non-alcoholic fatty liver disease, where there is urgent unmet need for new clinical interventions and biomarkers.
Collapse
Affiliation(s)
- Timothy Hardy
- Fibrosis Laboratories, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK,Department of Gastroenterology and Hepatology, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Derek A Mann
- Fibrosis Laboratories, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
39
|
Quantitative DNA methylation analysis of selected genes in endometrial carcinogenesis. Taiwan J Obstet Gynecol 2016; 54:572-9. [PMID: 26522113 DOI: 10.1016/j.tjog.2015.08.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 06/09/2015] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Most endometrial carcinomas appear to develop from precursors (e.g., endometrial hyperplasia) that progress for several years. Patients who are ultimately diagnosed with carcinoma often present clinically with complaints of abnormal vaginal bleeding years before diagnosis, which offers an opportunity for early diagnosis and curative treatment. The analysis of DNA methylation may be used as a method for detecting endometrial cancer (EC). To test the potential clinical application of this method, we used quantitative methylation analysis of five genes in a full spectrum of endometrial lesions. MATERIALS AND METHODS This hospital-based, prospective, case-controlled study was conducted on 68 patients, which included patients who had a normal endometrium (n = 18), hyperplasia of the endometrium (n = 24), and EC (n = 26). Methylation levels of the following genes were determined by using real-time methylation-specific polymerase chain reaction (PCR) amplification: zinc finger protein 177 (ZNF177), collagen type XIV α1 (COL14A1), dihydropyrimidinase-like 4 (DPYSL4), homeobox A9 (HOXA9), transmembrane protein with epidermal growth factor-like and two follistatin-like domains 2 (TMEFF2). The methylation index (MI) cutoff values for the different diagnoses were determined to test the sensitivity and specificity of the method and to generate the receiver operating characteristic (ROC) curves. The Mann-Whitney U test was used to test between-group differences in the MI. RESULTS The MI of the five genes was significantly higher in EC than the MIs in specimens of hyperplasia of endometrium and normal appearance (p < 0.001). The ROC analysis demonstrated that the sensitivity, specificity, and accuracy for detecting EC were 92.3%, 94.4%, and 95.1%, respectively, for ZNF177; 92.3%, 94.4%, and 95.7%, respectively, for COL14A1; 80.8%, 94.4%, and 81.4%, respectively, for HOXA9; 65.4%, 94.4%, and 89.5%, respectively, for TMEFF2; and 61.5%, 94.4%, and 63.3%, respectively, for DPYSL4. The combined testing of ZNF177 and COL14A1 had the best specificity (100%), but compromised sensitivity (88.5%). CONCLUSION Promoter methylation of ZNF177, COL14A1, HOXA9, DPYSL4, and TMEFF2 genes is a frequent epigenetic event in EC. Furthermore, the epigenetic hypermethylation of TMEFF2 may be a valuable marker for identifying undetected EC within endometrial hyperplasia.
Collapse
|
40
|
Couch G, Redman JE, Wernisch L, Newton R, Malhotra S, Dawsey SM, Lao-Sirieix P, Fitzgerald RC. The Discovery and Validation of Biomarkers for the Diagnosis of Esophageal Squamous Dysplasia and Squamous Cell Carcinoma. Cancer Prev Res (Phila) 2016; 9:558-66. [PMID: 27072986 DOI: 10.1158/1940-6207.capr-15-0379] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/11/2016] [Indexed: 02/07/2023]
Abstract
The 5-year survival rate of esophageal cancer is less than 10% in developing countries, where more than 90% of these cancers are esophageal squamous cell carcinomas (ESCC). Endoscopic screening is undertaken in high incidence areas. Biomarker analysis could reduce the subjectivity associated with histologic assessment of dysplasia and thus improve diagnostic accuracy. The aims of this study were therefore to identify biomarkers for esophageal squamous dysplasia and carcinoma. A publicly available dataset was used to identify genes with differential expression in ESCC compared with normal esophagus. Each gene was ranked by a support vector machine separation score. Expression profiles were examined, before validation by qPCR and IHC. We found that 800 genes were overexpressed in ESCC compared with normal esophagus (P < 10(-5)). Of the top 50 genes, 33 were expressed in ESCC epithelium and not in normal esophagus epithelium or stroma using the Protein Atlas website. These were taken to qPCR validation, and 20 genes were significantly overexpressed in ESCC compared with normal esophagus (P < 0.05). TNFAIP3 and CHN1 showed differential expression with IHC. TNFAIP3 expression increased gradually through normal esophagus, mild, moderate and severe dysplasia, and SCC (P < 0.0001). CHN1 staining was rarely present in the top third of normal esophagus epithelium and extended progressively towards the surface in mild, moderate, and severe dysplasia, and SCC (P < 0.0001). Two novel promising biomarkers for ESCC were identified, TNFAIP3 and CHN1. CHN1 and TNFAIP3 may improve diagnostic accuracy of screening methods for ESCC. Cancer Prev Res; 9(7); 558-66. ©2016 AACR.
Collapse
Affiliation(s)
- George Couch
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - James E Redman
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Lorenz Wernisch
- MRC Biostatistics Unit, Robinson Way, Cambridge, United Kingdom
| | - Richard Newton
- MRC Biostatistics Unit, Robinson Way, Cambridge, United Kingdom
| | - Shalini Malhotra
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Sanford M Dawsey
- Division of Cancer Epidemiology & Genetics, NCI, Bethesda, Maryland
| | - Pierre Lao-Sirieix
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Rebecca C Fitzgerald
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
41
|
Zeng R, Huang JP, Li XF, Xiong WB, Wu G, Jiang ZJ, Song SJ, Li JQ, Zheng YF, Zhang JR. Epb41l3 suppresses esophageal squamous cell carcinoma invasion and inhibits MMP2 and MMP9 expression. Cell Biochem Funct 2016; 34:133-41. [PMID: 26916087 DOI: 10.1002/cbf.3170] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/20/2016] [Accepted: 01/20/2016] [Indexed: 01/21/2023]
Abstract
EPB41L3 may play a role as a metastasis suppressor by supporting regular arrangements of actin stress fibres and alleviating the increase in cell motility associated with enhanced metastatic potential. Downregulation of epb41l3 has been observed in many cancers, but the role of this gene in esophageal squamous cell carcinoma (ESCC) remains unclear. Our study aimed to determine the effect of epb41l3 on ESCC cell migration and invasion. We investigated epb41l3 protein expression in tumour and non-tumour tissues by immunohistochemical staining. Expression in the non-neoplastic human esophageal cell line Het-1a and four ESCC cell lines - Kyse150, Kyse510, Kyse450 and Caes17 - was assessed by quantitative Polymerase Chain Reaction (qPCR) and Western blotting. Furthermore, an EPB41L3 overexpression plasmid and EPB41L3-specific small interfering RNA were used to upregulate EPB41L3 expression in Kyse150 cells and to downregulate EPB41L3 expression in Kyse450 cells, respectively. Cell migration and invasion were evaluated by wound healing and transwell assays, respectively. The expression levels of p-AKT, matrix metalloproteinase (MMP)2 and MMP9 were evaluated. Expression of epb41l3 was significantly lower in tumour tissues than in non-tumour tissues and in ESCC cell lines compared with the Het-1a cell line. Kyse450 and Caes17 cells exhibited higher expression of epb41l3 than Kyse150 and Kyse510 cells. Overexpressing epb41l3 decreased Kyse150 cell migration and invasion, whereas EPB41L3-specific small interfering RNA silencing increased these functions in Kyse450 cells. Furthermore, overexpressing epb41l3 led to downregulation of MMP2 and MMP9 in Kyse150 and Kyse510 cells. Our findings reveal that EPB41L3 suppresses tumour cell invasion and inhibits MMP2 and MMP9 expression in ESCC cells.
Collapse
Affiliation(s)
- Rong Zeng
- Oncology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jun-Peng Huang
- Oncology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xu Feng Li
- Oncology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wei-Bin Xiong
- Oncology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Gang Wu
- Oncology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhao-Jing Jiang
- Oncology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shu-Jie Song
- Oncology Center, Yuhuangding Hospital, Medical College, Qingdao University, Yantai, Shandong, China
| | - Ji-Qiang Li
- Oncology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan-Fang Zheng
- Oncology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ji-Ren Zhang
- Oncology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
42
|
Singh V, Singh LC, Vasudevan M, Chattopadhyay I, Borthakar BB, Rai AK, Phukan RK, Sharma J, Mahanta J, Kataki AC, Kapur S, Saxena S. Esophageal Cancer Epigenomics and Integrome Analysis of Genome-Wide Methylation and Expression in High Risk Northeast Indian Population. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 19:688-99. [DOI: 10.1089/omi.2015.0121] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Virendra Singh
- National Institute of Pathology (ICMR), New Delhi, India
| | | | | | | | | | | | - Rup Kumar Phukan
- Regional Medical Research Centre (RMRC), Dibrugadh, Assam, India
| | | | - Jagadish Mahanta
- Regional Medical Research Centre (RMRC), Dibrugadh, Assam, India
| | | | - Sujala Kapur
- National Institute of Pathology (ICMR), New Delhi, India
| | - Sunita Saxena
- National Institute of Pathology (ICMR), New Delhi, India
| |
Collapse
|
43
|
Effects of soluble and particulate Cr(VI) on genome-wide DNA methylation in human B lymphoblastoid cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 792:12-8. [PMID: 26433257 DOI: 10.1016/j.mrgentox.2015.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 08/06/2015] [Accepted: 08/11/2015] [Indexed: 12/15/2022]
Abstract
Several previous studies highlighted the potential epigenetic effects of Cr(VI), especially DNA methylation. However, few studies have compared the effects of Cr(VI) on DNA methylation profiles between soluble and particulate chromate in vitro. Accordingly, Illumina Infinium Human Methylation 450K BeadChip array was used to analyze DNA methylation profiles of human B lymphoblastoid cells exposed to potassium dichromate or lead chromate, and the cell viability was also studied. Array based DNA methylation analysis showed that the impacts of Cr(VI) on DNA methylation were limited, only about 40 differentially methylated CpG sites, with an overlap of 15CpG sites, were induced by both potassium dichromate and lead chromate. The results of mRNA expression showed that after Cr(VI) treatment, mRNA expression changes of four genes (TBL1Y, FZD5, IKZF2, and KIAA1949) were consistent with their DNA methylation alteration, but DNA methylation changes of other six genes did not correlate with mRNA expression. In conclusion, both of soluble and particulate Cr(VI) could induce a small amount of differentially methylated sites in human B lymphoblastoid cells, and the correlations between DNA methylation changes and mRNA expression varied between different genes.
Collapse
|
44
|
Yao DM, Zhou JD, Zhang YY, Yang L, Wen XM, Yang J, Guo H, Chen Q, Lin J, Qian J. GPX3 promoter is methylated in chronic myeloid leukemia. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:6450-6457. [PMID: 26261521 PMCID: PMC4525855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/17/2015] [Indexed: 06/04/2023]
Abstract
Hypermethylation of GPX3 (glutathione peroxidase 3) promoter has been identified in various cancers. However, the pattern of GPX3 promoter methylation in chronic myeloid leukemia (CML) remains unknown. Our study was aimed to investigate the methylation status of GPX3 promoter and its clinical relevance in CML. Real-time quantitative methylation-specific PCR and bisulfite sequencing PCR was performed to detect the level of GPX3 methylation in 80 CML patients and 44 controls. GPX3 promoter in CML patients was significantly methylated compared with controls (P = 0.007). GPX3 highly methylated patients showed significantly older age than GPX3 lowly methylated patients (P = 0.037). However, patients with GPX3 methylation had significantly lower white blood cells than those with low GPX3 methylation (P = 0.006). BCR-ABL transcript in GPX3 highly methylated patients was a little lower than that in GPX3 lowly methylated patients (P = 0.161). No significant differences were observed in the frequency of GPX3 methylation in the different stages of CML (P = 1.000). Significantly negative correlation was observed between GPX3 expression and GPX3 methylation (R = -0.442, P = 0.004). GPX3 mRNA level in K562 cell line was significantly increased after 5-aza-2'-deoxycytidine treatment, and GPX3 methylation level was decreased. GPX3 hypermethylation is frequent in CML and is negatively associated with its expression.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Azacitidine/analogs & derivatives
- Azacitidine/pharmacology
- Case-Control Studies
- DNA Methylation/drug effects
- DNA Modification Methylases/antagonists & inhibitors
- DNA Modification Methylases/metabolism
- Decitabine
- Enzyme Inhibitors/pharmacology
- Epigenesis, Genetic/drug effects
- Female
- Fusion Proteins, bcr-abl/genetics
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Neoplastic
- Glutathione Peroxidase/genetics
- Glutathione Peroxidase/metabolism
- Humans
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Male
- Middle Aged
- Neoplasm Staging
- Promoter Regions, Genetic
- RNA, Messenger/genetics
- Young Adult
Collapse
Affiliation(s)
- Dong-Ming Yao
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
- Medical Laboratory, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Jing-Dong Zhou
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Ying-Ying Zhang
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Lei Yang
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Xiang-Mei Wen
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Jing Yang
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Hong Guo
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Qin Chen
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Jiang Lin
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Jun Qian
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| |
Collapse
|
45
|
Villanueva A, Portela A, Sayols S, Battiston C, Hoshida Y, Méndez-González J, Imbeaud S, Letouzé E, Hernandez-Gea V, Cornella H, Pinyol R, Solé M, Fuster J, Zucman-Rossi J, Mazzaferro V, Esteller M, Llovet JM. DNA methylation-based prognosis and epidrivers in hepatocellular carcinoma. Hepatology 2015; 61:1945-56. [PMID: 25645722 DOI: 10.1002/hep.27732] [Citation(s) in RCA: 311] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 01/25/2015] [Indexed: 12/07/2022]
Abstract
UNLABELLED Epigenetic deregulation has emerged as a driver in human malignancies. There is no clear understanding of the epigenetic alterations in hepatocellular carcinoma (HCC) and of the potential role of DNA methylation markers as prognostic biomarkers. Analysis of tumor tissue from 304 patients with HCC treated with surgical resection allowed us to generate a methylation-based prognostic signature using a training-validation scheme. Methylome profiling was done with the Illumina HumanMethylation450 array (Illumina, Inc., San Diego, CA), which covers 96% of known cytosine-phosphate-guanine (CpG) islands and 485,000 CpG, and transcriptome profiling was performed with Affymetrix Human Genome U219 Plate (Affymetrix, Inc., Santa Clara, CA) and miRNA Chip 2.0. Random survival forests enabled us to generate a methylation signature based on 36 methylation probes. We computed a risk score of mortality for each individual that accurately discriminated patient survival both in the training (221 patients; 47% hepatitis C-related HCC) and validation sets (n = 83; 47% alcohol-related HCC). This signature correlated with known predictors of poor outcome and retained independent prognostic capacity of survival along with multinodularity and platelet count. The subset of patients identified by this signature was enriched in the molecular subclass of proliferation with progenitor cell features. The study confirmed a high prevalence of genes known to be deregulated by aberrant methylation in HCC (e.g., Ras association [RalGDS/AF-6] domain family member 1, insulin-like growth factor 2, and adenomatous polyposis coli) and other solid tumors (e.g., NOTCH3) and describes potential candidate epidrivers (e.g., septin 9 and ephrin B2). CONCLUSIONS A validated signature of 36 DNA methylation markers accurately predicts poor survival in patients with HCC. Patients with this methylation profile harbor messenger RNA-based signatures indicating tumors with progenitor cell features.
Collapse
Affiliation(s)
- Augusto Villanueva
- Liver Cancer Research Program, Division of Liver Diseases, Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY.,Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY.,Barcelona-Clínic Liver Cancer Group (Liver Cancer Translational Research Laboratory, Liver Unit, Pathology Department, Surgery Department), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBEREHD, Hospital Clínic de Barcelona, Universitat de Barcelona (UB), Barcelona, Spain
| | - Anna Portela
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Sergi Sayols
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,Institute of Molecular Biology, Mainz, Germany
| | - Carlo Battiston
- Gastrointestinal Surgery and Liver Transplantation Unit, National Cancer Institute, Milan, Italy
| | - Yujin Hoshida
- Liver Cancer Research Program, Division of Liver Diseases, Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jesús Méndez-González
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Sandrine Imbeaud
- Inserm, UMR-1162, Génomique fonctionnelle des tumeurs solides, IUH, Paris, France.,Université Paris Descartes; Université Paris Diderot, Université Paris 13, Labex Immuno-oncology, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - Eric Letouzé
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer, Paris, France
| | - Virginia Hernandez-Gea
- Barcelona-Clínic Liver Cancer Group (Liver Cancer Translational Research Laboratory, Liver Unit, Pathology Department, Surgery Department), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBEREHD, Hospital Clínic de Barcelona, Universitat de Barcelona (UB), Barcelona, Spain
| | - Helena Cornella
- Barcelona-Clínic Liver Cancer Group (Liver Cancer Translational Research Laboratory, Liver Unit, Pathology Department, Surgery Department), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBEREHD, Hospital Clínic de Barcelona, Universitat de Barcelona (UB), Barcelona, Spain
| | - Roser Pinyol
- Barcelona-Clínic Liver Cancer Group (Liver Cancer Translational Research Laboratory, Liver Unit, Pathology Department, Surgery Department), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBEREHD, Hospital Clínic de Barcelona, Universitat de Barcelona (UB), Barcelona, Spain
| | - Manel Solé
- Barcelona-Clínic Liver Cancer Group (Liver Cancer Translational Research Laboratory, Liver Unit, Pathology Department, Surgery Department), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBEREHD, Hospital Clínic de Barcelona, Universitat de Barcelona (UB), Barcelona, Spain
| | - Josep Fuster
- Barcelona-Clínic Liver Cancer Group (Liver Cancer Translational Research Laboratory, Liver Unit, Pathology Department, Surgery Department), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBEREHD, Hospital Clínic de Barcelona, Universitat de Barcelona (UB), Barcelona, Spain
| | - Jessica Zucman-Rossi
- Inserm, UMR-1162, Génomique fonctionnelle des tumeurs solides, IUH, Paris, France.,Université Paris Descartes; Université Paris Diderot, Université Paris 13, Labex Immuno-oncology, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - Vincenzo Mazzaferro
- Gastrointestinal Surgery and Liver Transplantation Unit, National Cancer Institute, Milan, Italy
| | - Manel Esteller
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Josep M Llovet
- Liver Cancer Research Program, Division of Liver Diseases, Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY.,Barcelona-Clínic Liver Cancer Group (Liver Cancer Translational Research Laboratory, Liver Unit, Pathology Department, Surgery Department), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBEREHD, Hospital Clínic de Barcelona, Universitat de Barcelona (UB), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | | |
Collapse
|
46
|
Zhou JD, Yao DM, Zhang YY, Ma JC, Wen XM, Yang J, Guo H, Chen Q, Lin J, Qian J. GPX3 hypermethylation serves as an independent prognostic biomarker in non-M3 acute myeloid leukemia. Am J Cancer Res 2015; 5:2047-2055. [PMID: 26269763 PMCID: PMC4529623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 05/10/2015] [Indexed: 06/04/2023] Open
Abstract
Hypermethylation of GPX3 (glutathione peroxidase 3) promoter has been identified in various solid tumors. However, the pattern of GPX3 promoter methylation in acute myeloid leukemia (AML) remains unknown. The current study was intended to investigate the clinical significance of GPX3 promoter methylation in de novo AML patients and further determine its role in regulating GPX3 expression. GPX3 promoter methylation status was detected in 181 de novo AML patients and 44 normal controls by real-time quantitative methylation-specific PCR and bisulfite sequencing PCR. Real-time quantitative PCR was carried out to assess GPX3 expression. GPX3 promoter was significantly methylated in AML patients compared with normal controls (P=0.022). The patients with GPX3 methylation presented significantly older age than those with GPX3 unmethylation (P=0.011). GPX3 methylated patients had significantly lower frequency of C/EBPA mutation and higher incidence of FLT3-ITD mutation (P=0.037 and 0.030, respectively). The non-M3 patients with GPX3 methylation had significantly lower overall survival than those with GPX3 unmethylation (P=0.036). No significant correlation was observed between GPX3 expression and its promoter methylation (R=0.110, P=0.284). However, GPX3 mRNA level was significantly increased after 5-aza-2'-deoxycytidine treatment in leukemic cell line THP1. Our data suggest that GPX3 methylation predicts adverse clinical outcome in non-M3 AML patients. Moreover, GPX3 expression is regulated by its promoter methylation in leukemic cell line THP1.
Collapse
Affiliation(s)
- Jing-Dong Zhou
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Dong-Ming Yao
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Ying-Ying Zhang
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Ji-Chun Ma
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Xiang-Mei Wen
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Jing Yang
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Hong Guo
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Qin Chen
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Jiang Lin
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Jun Qian
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| |
Collapse
|
47
|
Zhou JD, Yao DM, Zhang YY, Ma JC, Wen XM, Yang J, Guo H, Chen Q, Lin J, Qian J. GPX3 hypermethylation serves as an independent prognostic biomarker in non-M3 acute myeloid leukemia. Am J Cancer Res 2015; 5:1786-1794. [PMID: 26175946 PMCID: PMC4497444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/10/2015] [Indexed: 06/04/2023] Open
Abstract
Hypermethylation of GPX3 (glutathione peroxidase 3) promoter has been identified in various solid tumors. However, the pattern of GPX3 promoter methylation in acute myeloid leukemia (AML) remains poorly known. The current study was intended to investigate the clinical significance of GPX3 promoter methylation in de novo AML patients and further determine its role in regulating GPX3 expression. GPX3 promoter methylation status in 181 de novo AML patients and 44 normal controls was detected by real-time quantitative methylation-specific PCR and bisulfite sequencing PCR. Real-time quantitative PCR was carried out to assess GPX3 expression. GPX3 promoter was significantly methylated in 181 AML patients compared with normal controls (P=0.022). The patients with GPX3 methylation presented significantly older age than those with GPX3 unmethylation (P=0.011). GPX3 methylated patients had significantly lower frequency of C/EBPA mutation and higher incidence of FLT3-ITD mutation (P=0.037 and 0.030). The non-M3 patients with GPX3 methylation had significantly lower overall survival than thoes with GPX3 unmethylation (P=0.036). No significant correlation was observed between GPX3 expression and its promoter methylation (R=0.110, P=0.284). However, GPX3 mRNA level was significantly increased after 5-aza-2'-deoxycytidine treatment in leukemic cell line THP1. GPX3 methylation predicts adverse clinical outcome in non-M3 AML patients. Moreover, GPX3 expression is regulated by its promoter methylation in leukemic cell line THP1.
Collapse
Affiliation(s)
- Jing-Dong Zhou
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Dong-Ming Yao
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Ying-Ying Zhang
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Ji-Chun Ma
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Xiang-Mei Wen
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Jing Yang
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Hong Guo
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Qin Chen
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Jiang Lin
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Jun Qian
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| |
Collapse
|
48
|
Zhou JD, Wen XM, Zhang YY, Yang L, Ma YJ, Ma JC, Yang J, Guo H, Yao DM, Lin J, Qian J. Down-regulation of GPX3 is associated with favorable/intermediate karyotypes in de novo acute myeloid leukemia. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:2384-2391. [PMID: 26045745 PMCID: PMC4440054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 02/27/2015] [Indexed: 06/04/2023]
Abstract
Decreased glutathione peroxidase 3 (GPX3) expression has been identified in numerous solid tumors. However, GPX3 expression pattern in acute myeloid leukemia (AML) remains poorly known. Our study was intended to explore GPX3 expression status and further analyze the clinical relevance of GPX3 expression in AML. GPX3 mRNA level was detected by real-time quantitative PCR in 122 de novo AML patients and 44 normal controls. GPX3 transcript level was significantly decreased compared with normal controls (P<0.001). The patients with low GPX3 expression had significantly higher hemoglobin and platelets than those with high GPX3 expression (P=0.049 and 0.020). The frequency of low GPX3 expression in favorable karyotype (66%, 23/35) and intermediate karyotype (65%, 45/69) was higher than in poor karyotype (29%, 4/14) (P=0.017). No significant differences were observed in both complete remission and overall survival between the GPX3 low-expressed and high-expressed patients (P>0.05). Reduced GPX3 expression is associated with favorable/intermediate karyotypes but not with survival in de novo AML patients.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Case-Control Studies
- Child
- Down-Regulation
- Female
- Genetic Predisposition to Disease
- Glutathione Peroxidase/genetics
- Glutathione Peroxidase/metabolism
- Hemoglobins/analysis
- Humans
- K562 Cells
- Kaplan-Meier Estimate
- Karyotype
- Karyotyping
- Leukemia, Myeloid, Acute/blood
- Leukemia, Myeloid, Acute/enzymology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Male
- Middle Aged
- Phenotype
- Platelet Count
- Predictive Value of Tests
- Prognosis
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Risk Factors
- Time Factors
- Young Adult
Collapse
Affiliation(s)
- Jing-Dong Zhou
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Xiang-Mei Wen
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Ying-Ying Zhang
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Lei Yang
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Yu-Juan Ma
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Ji-Chun Ma
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Jing Yang
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Hong Guo
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Dong-Ming Yao
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Jiang Lin
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Jun Qian
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| |
Collapse
|
49
|
Genomic assays for Epstein-Barr virus-positive gastric adenocarcinoma. Exp Mol Med 2015; 47:e134. [PMID: 25613731 PMCID: PMC4314585 DOI: 10.1038/emm.2014.93] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 10/06/2014] [Indexed: 12/13/2022] Open
Abstract
A small set of gastric adenocarcinomas (9%) harbor Epstein–Barr virus (EBV) DNA within malignant cells, and the virus is not an innocent bystander but rather is intimately linked to pathogenesis and tumor maintenance. Evidence comes from unique genomic features of host DNA, mRNA, microRNA and CpG methylation profiles as revealed by recent comprehensive genomic analysis by The Cancer Genome Atlas Network. Their data show that gastric cancer is not one disease but rather comprises four major classes: EBV-positive, microsatellite instability (MSI), genomically stable and chromosome instability. The EBV-positive class has even more marked CpG methylation than does the MSI class, and viral cancers have a unique pattern of methylation linked to the downregulation of CDKN2A (p16) but not MLH1. EBV-positive cancers often have mutated PIK3CA and ARID1A and an amplified 9p24.1 locus linked to overexpression of JAK2, CD274 (PD-L1) and PDCD1LG2 (PD-L2). Multiple noncoding viral RNAs are highly expressed. Patients who fail standard therapy may qualify for enrollment in clinical trials targeting cancer-related human gene pathways or promoting destruction of infected cells through lytic induction of EBV genes. Genomic tests such as the GastroGenus Gastric Cancer Classifier are available to identify actionable variants in formalin-fixed cancer tissue of affected patients.
Collapse
|