1
|
Rodrigues SP, de A Soares E, Antunes TFS, Maurastoni M, Madroñero LJ, Broetto SG, Nunes LEC, Verçoza BRF, Buss DS, Silva DM, Rodrigues JCF, Ventura JA, Fernandes PMB. Juvenile-related tolerance to papaya sticky disease (PSD): proteomic, ultrastructural, and physiological events. PLANT CELL REPORTS 2024; 43:269. [PMID: 39441432 DOI: 10.1007/s00299-024-03358-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/06/2024] [Indexed: 10/25/2024]
Abstract
KEY MESSAGE The proteomic analysis of PMeV-complex-infected C. papaya unveiled proteins undergoing modulation during the plant's development. The infection notably impacted processes related to photosynthesis and cell wall dynamics. The development of Papaya Sticky Disease (PSD), caused by the papaya meleira virus complex (PMeV-complex), occurs only after the juvenile/adult transition of Carica papaya plants, indicating the presence of tolerance mechanisms during the juvenile development phase. In this study, we quantified 1609 leaf proteins of C. papaya using a label-free strategy. A total of 345 differentially accumulated proteins were identified-38 at 3 months (juvenile), 130 at 4 months (juvenile/adult transition), 160 at 7 months (fruit development), and 17 at 9 months (fruit harvesting)-indicating modulation of biological processes at each developmental phase, primarily related to photosynthesis and cell wall remodeling. Infected 3- and 4-mpg C. papaya exhibited an accumulation of photosynthetic proteins, and chlorophyll fluorescence results suggested enhanced energy flux efficiency in photosystems II and I in these plants. Additionally, 3 and 4-mpg plants showed a reduction in cell wall-degrading enzymes, followed by an accumulation of proteins involved in the synthesis of wall precursors during the 7 and 9-mpg phases. These findings, along with ultrastructural data on laticifers, indicate that C. papaya struggles to maintain the integrity of laticifer walls, ultimately failing to do so after the 4-mpg phase, leading to latex exudation. This supports initiatives for the genetic improvement of C. papaya to enhance resistance against the PMeV-complex.
Collapse
Affiliation(s)
- Silas P Rodrigues
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Vitória, ES, 29040-090, Brazil
- Núcleo Multidisciplinar de Pesquisa em Biologia, Universidade Federal do Rio de Janeiro, Duque de Caxias, RJ, 25240-005, Brazil
| | - Eduardo de A Soares
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Vitória, ES, 29040-090, Brazil
| | - Tathiana F Sá Antunes
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Vitória, ES, 29040-090, Brazil
| | - Marlonni Maurastoni
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Vitória, ES, 29040-090, Brazil
| | - Leidy J Madroñero
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Vitória, ES, 29040-090, Brazil
- Grupo de Virología, Vicerrectoría de Investigaciones, Universidad El Bosque, 110121, Bogotá, Colombia
| | - Sabrina G Broetto
- Núcleo de Estudos da Fotossíntese, Universidade Federal do Espírito Santo, Vitória, ES, 29075-010, Brazil
| | - Lucas E C Nunes
- Núcleo Multidisciplinar de Pesquisa em Biologia, Universidade Federal do Rio de Janeiro, Duque de Caxias, RJ, 25240-005, Brazil
| | - Brunno R F Verçoza
- Núcleo Multidisciplinar de Pesquisa em Biologia, Universidade Federal do Rio de Janeiro, Duque de Caxias, RJ, 25240-005, Brazil
| | - David S Buss
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Vitória, ES, 29040-090, Brazil
| | - Diolina M Silva
- Núcleo de Estudos da Fotossíntese, Universidade Federal do Espírito Santo, Vitória, ES, 29075-010, Brazil
| | - Juliany C F Rodrigues
- Núcleo Multidisciplinar de Pesquisa em Biologia, Universidade Federal do Rio de Janeiro, Duque de Caxias, RJ, 25240-005, Brazil
| | - José A Ventura
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Vitória, ES, 29040-090, Brazil
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural, Vitória, ES, 29052-010, Brazil
| | - Patricia M B Fernandes
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Vitória, ES, 29040-090, Brazil.
| |
Collapse
|
2
|
Sebutsoe XM, Tsotetsi NJN, Jantjies ZE, Raphela-Choma PP, Choene MS, Motadi LR. Therapeutic Strategies in Advanced Cervical Cancer Detection, Prevention and Treatment. Onco Targets Ther 2024; 17:785-801. [PMID: 39345275 PMCID: PMC11439348 DOI: 10.2147/ott.s475132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/08/2024] [Indexed: 10/01/2024] Open
Abstract
Cervical cancer is ranked the fourth most common cause of cancer related deaths amongst women. The situation is particularly dire in low to lower middle-income countries. It continues to affect these countries due to poor vaccine coverage and screening. Cervical cancer is mostly detected in the advanced stages leading to poor outcomes. This review focuses on the progress made to date to improve early detection and targeted therapy using both circulating RNA. Vaccine has played a major role in cervical cancer control in vaccinated young woman in mainly developed countries yet in low-income countries with challenges of 3 dose vaccination affordability, cervical cancer continues to be the second most deadly amongst women. In this review, we show the progress made in reducing cervical cancer using vaccination that in combination with other treatments that might improve survival in cervical cancer. We further show with both miRNA and siRNA that targeted therapy and specific markers might be ideal for early detection of cervical cancer in low-income countries. These markers are either upregulated or down regulated in cancer providing clue to the stage of the cancer.
Collapse
Affiliation(s)
- Xolisiwe M Sebutsoe
- Department of Biochemistry C2 Lab, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg, South Africa
| | | | - Zodwa Edith Jantjies
- Department of Biochemistry C2 Lab, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg, South Africa
| | - Portia Pheladi Raphela-Choma
- Department of Biochemistry C2 Lab, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg, South Africa
| | - Mpho S Choene
- Department of Biochemistry C2 Lab, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg, South Africa
| | - Lesetja R Motadi
- Department of Biochemistry C2 Lab, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg, South Africa
| |
Collapse
|
3
|
Patil BL, Tripathi S. Differential expression of microRNAs in response to Papaya ringspot virus infection in differentially responding genotypes of papaya ( Carica papaya L.) and its wild relative. FRONTIERS IN PLANT SCIENCE 2024; 15:1398437. [PMID: 38966149 PMCID: PMC11222417 DOI: 10.3389/fpls.2024.1398437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/29/2024] [Indexed: 07/06/2024]
Abstract
Papaya ringspot virus (PRSV) is one of the most devastating viruses of papaya that has significantly hampered papaya production across the globe. Although PRSV resistance is known in some of its wild relatives, such as Vasconcellea cauliflora and in some of the improved papaya genotypes, the molecular basis of this resistance mechanism has not been studied and understood. Plant microRNAs are an important class of small RNAs that regulate the gene expression in several plant species against the invading plant pathogens. These miRNAs are known to manifest the expression of genes involved in resistance against plant pathogens, through modulation of the plant's biochemistry and physiology. In this study we made an attempt to study the overall expression pattern of small RNAs and more specifically the miRNAs in different papaya genotypes from India, that exhibit varying levels of tolerance or resistance to PRSV. Our study found that the expression of some of the miRNAs was differentially regulated in these papaya genotypes and they had entirely different miRNA expression profile in healthy and PRSV infected symptomatic plants. This data may help in improvement of papaya cultivars for resistance against PRSV through new breeding initiatives or biotechnological approaches such as genome editing.
Collapse
Affiliation(s)
| | - Savarni Tripathi
- ICAR-Indian Agricultural Research Institute, Regional Station, Pune, India
| |
Collapse
|
4
|
Characterization of Tomato Brown Rugose Fruit Virus (ToBRFV) Detected in Czech Republic. DIVERSITY 2023. [DOI: 10.3390/d15020301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Tomato is the most consumed vegetable in the world. The tomato brown rugose fruit virus (ToBRFV) is an important destructive virus that damages tomatoes and peppers with significant economic impact. The detection and characterization of this important viral pathogen were evaluated at the molecular and morphological level. The viral isolate was purified and inoculated on tomato and pepper plants. Small RNAs were sequenced in both plants and the profiles were compared. The complete genome of the isolate was obtained, and microRNA (miRNA) profiles were unveiled by small RNA sequencing. Symptoms caused by the isolate were also described and the morphology of the isolate was observed by transmission electron microscopy. Our results contribute to further understanding of the role of miRNAs in ToBRFV pathogenesis, which may be crucial for understanding disease symptom development in tomatoes and peppers.
Collapse
|
5
|
MicroRNA398: A Master Regulator of Plant Development and Stress Responses. Int J Mol Sci 2022; 23:ijms231810803. [PMID: 36142715 PMCID: PMC9502370 DOI: 10.3390/ijms231810803] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/04/2022] [Accepted: 09/12/2022] [Indexed: 02/05/2023] Open
Abstract
MicroRNAs (miRNAs) play crucial roles in plant development and stress responses, and a growing number of studies suggest that miRNAs are promising targets for crop improvement because they participate in the regulation of diverse, important agronomic traits. MicroRNA398 (miR398) is a conserved miRNA in plants and has been shown to control multiple stress responses and plant growth in a variety of species. There are many studies on the stress response and developmental regulation of miR398. To systematically understand its function, it is necessary to summarize the evolution and functional roles of miR398 and its target genes. In this review, we analyze the evolution of miR398 in plants and outline its involvement in abiotic and biotic stress responses, in growth and development and in model and non-model plants. We summarize recent functional analyses, highlighting the role of miR398 as a master regulator that coordinates growth and diverse responses to environmental factors. We also discuss the potential for fine-tuning miR398 to achieve the goal of simultaneously improving plant growth and stress tolerance.
Collapse
|
6
|
Lin KY, Wu SY, Hsu YH, Lin NS. MiR398-regulated antioxidants contribute to Bamboo mosaic virus accumulation and symptom manifestation. PLANT PHYSIOLOGY 2022; 188:593-607. [PMID: 34695209 PMCID: PMC9040666 DOI: 10.1093/plphys/kiab451] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Virus infections that cause mosaic or mottling in leaves commonly also induce increased levels of reactive oxygen species (ROS). However, how ROS contributes to symptoms is less well documented. Bamboo mosaic virus (BaMV) causes chlorotic mosaic symptoms in both Brachypodium distachyon and Nicotiana benthamiana. The BaMV △CPN35 mutant with an N-terminal deletion of its coat protein gene exhibits asymptomatic infection independently of virus titer. Histochemical staining of ROS in mock-, BaMV-, and BaMV△CPN35-infected leaves revealed that hydrogen peroxide (H2O2) accumulated solely in BaMV-induced chlorotic spots. Moreover, exogenous H2O2 treatment enhanced yellowish chlorosis in BaMV-infected leaves. Both BaMV and BaMV△CPN35 infection could induce the expression of Cu/Zu superoxide dismutase (CSD) antioxidants at messenger RNA and protein level. However, BaMV triggered the abundant accumulation of full-length NbCSD2 preprotein (prNbCSD2, without transit peptide cleavage), whereas BaMV△CPN35 induced a truncated prNbCSD2. Confocal microscopy showed that majority of NbCSD2-green fluorescent protein (GFP) predominantly localized in the cytosol upon BaMV infection, but BaMV△CPN35 infection tended to cause NbCSD2-GFP to remain in chloroplasts. By 5'-RNA ligase-mediated rapid amplification of cDNA ends, we validated CSDs are the targets of miR398 in vivo. Furthermore, BaMV infection increased the level of miR398, while the level of BaMV titer was regulated positively by miR398 but negatively by CSD2. In contrast, overexpression of cytosolic form NbCSD2, impairing the transport into chloroplasts, greatly enhanced BaMV accumulation. Taken together, our results indicate that induction of miR398 by BaMV infection may facilitate viral titer accumulation, and cytosolic prNbCSD2 induction may contribute to H2O2 accumulation, resulting in the development of BaMV chlorotic symptoms in plants.
Collapse
Affiliation(s)
- Kuan-Yu Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Su-Yao Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Na-Sheng Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
7
|
Ma Y, Li S. Purification of Total RNAs and Small RNAs from Fruit Tree Leaf Tissues. Methods Mol Biol 2022; 2400:217-224. [PMID: 34905205 DOI: 10.1007/978-1-0716-1835-6_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Perennial fruit crops are susceptible to many viral pathogens, which often lead to declines in quality and yield. For the production of good quality and virus-free propagation materials, conventional molecular detection methods combining high throughput sequencing technology have been widely applied to virus detection and discovery in fruit trees. Recovery of high-quality RNAs from fruit tree leaf tissues, the critical step for the subsequent molecular analysis, is often complicated by the presence of high levels of RNases and problematic biomolecules. Therefore, the universal extraction methods often require modification according to different properties of various tissues. In this chapter, we provide a set of methods that have been used successfully to isolate total RNAs and small RNAs from various fruit tree leaf tissues and as examples, presented in detail of a modified TRIzol method for total RNAs purification from mulberry (Morus alba L.) leaf tissues and an alternative small RNAs purification protocol using mirVana™ miRNA isolation kit (Ambion/Life Technologies) for some fruit tree leaf tissues. The protocols described here aim to provide examples of what have worked successfully for a range of fruit trees and may be successful for a given sample in the future.
Collapse
Affiliation(s)
- Yuxin Ma
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Shifang Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
8
|
Cai J, Wu Z, Hao Y, Liu Y, Song Z, Chen W, Li X, Zhu X. Small RNAs, Degradome, and Transcriptome Sequencing Provide Insights into Papaya Fruit Ripening Regulated by 1-MCP. Foods 2021; 10:1643. [PMID: 34359513 PMCID: PMC8303378 DOI: 10.3390/foods10071643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/04/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022] Open
Abstract
As an inhibitor of ethylene receptors, 1-methylcyclopropene (1-MCP) can delay the ripening of papaya. However, improper 1-MCP treatment will cause a rubbery texture in papaya. Understanding of the underlying mechanism is still lacking. In the present work, a comparative sRNA analysis was conducted after different 1-MCP treatments and identified a total of 213 miRNAs, of which 44 were known miRNAs and 169 were novel miRNAs in papaya. Comprehensive functional enrichment analysis indicated that plant hormone signal pathways play an important role in fruit ripening. Through the comparative analysis of sRNAs and transcriptome sequencing, a total of 11 miRNAs and 12 target genes were associated with the ethylene and auxin signaling pathways. A total of 1741 target genes of miRNAs were identified by degradome sequencing, and nine miRNAs and eight miRNAs were differentially expressed under the ethylene and auxin signaling pathways, respectively. The network regulation diagram of miRNAs and target genes during fruit ripening was drawn. The expression of 11 miRNAs and 12 target genes was verified by RT-qPCR. The target gene verification showed that cpa-miR390a and cpa-miR396 target CpARF19-like and CpERF RAP2-12-like, respectively, affecting the ethylene and auxin signaling pathways and, therefore, papaya ripening.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiaoyang Zhu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (J.C.); (Z.W.); (Y.H.); (Y.L.); (Z.S.); (W.C.); (X.L.)
| |
Collapse
|
9
|
Sankaranarayanan R, Palani SN, Tamilmaran N, Punitha Selvakumar AS, Chandra Sekar P, Tennyson J. Novel approaches on identification of conserved miRNAs for broad-spectrum Potyvirus control measures. Mol Biol Rep 2021; 48:2377-2388. [PMID: 33743120 DOI: 10.1007/s11033-021-06271-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/05/2021] [Indexed: 10/21/2022]
Abstract
Potyviridae comprises more than 200 ssRNA viruses, many of which have a broad host range and geographical distributions. Potyvirids (members of Potyviridae) infect several economically important plants such as saffron, cardamom, cucumber, pepper, potato, tomato, yam, etc. Cumulatively, potyvirids cause a substantial economic loss. The major bottleneck in developing an efficient antiviral strategy is that viruses quickly evade host immunity owing to their higher mutation and recombination rates. Due to this reason, the emergence of newer and improved broad-spectrum approaches to combat viral infections is essential. The use of microRNA's (miRNA) to circumvent viral infection against animal viruses has been successfully employed. Fewer studies reported the development of efficient miRNA-based antivirus resistant strategies against plant viruses and none focused on multiple virus resistance. We focused on potyviruses since studies are limited and identification of conserved miRNAs among various host plants would be an initiative to design broad-spectrum antivirus strategies. In this study, we predicted evolutionarily conserved miRNAs by BLAST searching of reported miRNAs from 15 plants against the GSS and EST sequences of banana. A total of nine miRNAs were predicted and screened in nine diverse potyvirids' hosts (Banana, Tomato, Green gram, Jasmine, Chilli, Coriander, Onion, Rose and Colocasia) belonging to eight different orders (Zingiberales, Solanales, Fabales, Lamiales, Apiales, Asperagales, Rosales and Alismatales). Results suggested that miR168 and miR162 are conserved among all the selected plants. This comprehensive study laid the foundations to design broad-spectrum antivirus resistance using miRNAs. To conclude miR168 and miR162 are conserved among many plants and play a crucial role in evading virus infection which could be used as a potential candidate for developing antiviral strategies against potyvirid infections.
Collapse
|
10
|
Azadirachta indica MicroRNAs: Genome-Wide Identification, Target Transcript Prediction, and Expression Analyses. Appl Biochem Biotechnol 2021; 193:1924-1944. [PMID: 33523368 DOI: 10.1007/s12010-021-03500-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 01/07/2021] [Indexed: 10/22/2022]
Abstract
MicroRNAs are short, endogenous, non-coding RNAs, liable for essential regulatory function. Numerous miRNAs have been identified and studied in plants with known genomic or small RNA resources. Despite the availability of genomic and transcriptomic resources, the miRNAs have not been reported in the medicinal tree Azadirachta indica (Neem) till date. Here for the first time, we report extensive identification of miRNAs and their possible targets in A. indica which might help to unravel their therapeutic potential. A comprehensive search of miRNAs in the A. indica genome by C-mii tool was performed. Overall, 123 miRNAs classified into 63 families and their stem-loop hairpin structures were predicted. The size of the A. indica (ain)-miRNAs ranged between 19 and 23 nt in length, and their corresponding ain-miRNA precursor sequence MFEI value averaged as -1.147 kcal/mol. The targets of ain-miRNAs were predicted in A. indica as well as Arabidopsis thaliana plant. The gene ontology (GO) annotation revealed the involvement of ain-miRNA targets in developmental processes, transport, stress, and metabolic processes including secondary metabolism. Stem-loop qRT-PCR was carried out for 25 randomly selected ain-miRNAs and differential expression patterns were observed in different A. indica tissues. Expression of miRNAs and its targets shows negative correlation in a dependent manner.
Collapse
|
11
|
Sá Antunes TF, Maurastoni M, Madroñero LJ, Fuentes G, Santamaría JM, Ventura JA, Abreu EF, Fernandes AAR, Fernandes PMB. Battle of Three: The Curious Case of Papaya Sticky Disease. PLANT DISEASE 2020; 104:2754-2763. [PMID: 32813628 DOI: 10.1094/pdis-12-19-2622-fe] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Among the most serious problems in papaya production are the viruses associated with papaya ringspot and papaya sticky disease (PSD). PSD concerns producers worldwide because its symptoms are extremely aggressive and appear only after flowering. As no resistant cultivar is available, several disease management strategies have been used in affected countries, such as the use of healthy seeds, exclusion of the pathogen, and roguing. In the 1990s, a dsRNA virus, papaya meleira virus (PMeV), was identified in Brazil as the causal agent of PSD. However, in 2016 a second virus, papaya meleira virus 2 (PMeV2), with an ssRNA genome, was also identified in PSD plants. Only PMeV is detected in asymptomatic plants, whereas all symptomatic plants contain both viral RNAs separately packaged in particles formed by the PMeV capsid protein. PSD also affects papaya plants in Mexico, Ecuador, and Australia. PMeV2-like viruses have been identified in the affected plants, but the partner virus(es) in these countries are still unknown. In Brazil, PMeV and PMeV2 reside in laticifers that promote spontaneous latex exudation, resulting in the affected papaya fruit's sticky appearance. Genes modulated in plants affected by PSD include those involved in reactive oxygen species and salicylic acid signaling, proteasomal degradation, and photosynthesis, which are key plant defenses against PMeV complex infection. However, the complete activation of the defense response is impaired by the expression of negative effectors modulated by the virus. This review presents a summary of the current knowledge of the Carica papaya-PMeV complex interaction and management strategies.
Collapse
Affiliation(s)
- Tathiana F Sá Antunes
- Nucleo de Biotecnologia Universidade Federal do Espírito Santo, Vitória, Espírito Santo 29040-090, Brazil
| | - Marlonni Maurastoni
- Nucleo de Biotecnologia Universidade Federal do Espírito Santo, Vitória, Espírito Santo 29040-090, Brazil
| | - L Johana Madroñero
- Nucleo de Biotecnologia Universidade Federal do Espírito Santo, Vitória, Espírito Santo 29040-090, Brazil
- Universidad El Bosque, Vicerrectoría de Investigaciones, Bogota, Colombia
| | - Gabriela Fuentes
- Centro de Investigación Científica de Yucatán, Col. Chuburná de Hidalgo, 97200 Mérida, Yucatán, Mexico
| | - Jorge M Santamaría
- Centro de Investigación Científica de Yucatán, Col. Chuburná de Hidalgo, 97200 Mérida, Yucatán, Mexico
| | - José Aires Ventura
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural, Vitória 29050790, Espírito Santo, Brazil
| | - Emanuel F Abreu
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, 70770-900, Brazil
| | - A Alberto R Fernandes
- Nucleo de Biotecnologia Universidade Federal do Espírito Santo, Vitória, Espírito Santo 29040-090, Brazil
| | - Patricia M B Fernandes
- Nucleo de Biotecnologia Universidade Federal do Espírito Santo, Vitória, Espírito Santo 29040-090, Brazil
| |
Collapse
|
12
|
Liu J, Fan H, Wang Y, Han C, Wang X, Yu J, Li D, Zhang Y. Genome-Wide microRNA Profiling Using Oligonucleotide Microarray Reveals Regulatory Networks of microRNAs in Nicotiana benthamiana During Beet Necrotic Yellow Vein Virus Infection. Viruses 2020; 12:E310. [PMID: 32178444 PMCID: PMC7150760 DOI: 10.3390/v12030310] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 01/15/2023] Open
Abstract
Beet necrotic yellow vein virus (BNYVV) infections induce stunting and leaf curling, as well as root and floral developmental defects and leaf senescence in Nicotiana benthamiana. A microarray analysis with probes capable of detecting 1596 candidate microRNAs (miRNAs) was conducted to investigate differentially expressed miRNAs and their targets upon BNYVV infection of N. benthamiana plants. Eight species-specific miRNAs of N. benthamiana were identified. Comprehensive characterization of the N. benthamiana microRNA profile in response to the BNYVV infection revealed that 129 miRNAs were altered, including four species-specific miRNAs. The targets of the differentially expressed miRNAs were predicted accordingly. The expressions of miR164, 160, and 393 were up-regulated by BNYVV infection, and those of their target genes, NAC21/22, ARF17/18, and TIR, were down-regulated. GRF1, which is a target of miR396, was also down-regulated. Further genetic analysis of GRF1, by Tobacco rattle virus-induced gene silencing, assay confirmed the involvement of GRF1 in the symptom development during BNYVV infection. BNYVV infection also induced the up-regulation of miR168 and miR398. The miR398 was predicted to target umecyanin, and silencing of umecyanin could enhance plant resistance against viruses, suggesting the activation of primary defense response to BNYVV infection in N. benthamiana. These results provide a global profile of miRNA changes induced by BNYVV infection and enhance our understanding of the mechanisms underlying BNYVV pathogenesis.
Collapse
Affiliation(s)
- Junying Liu
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (J.L.); (H.F.); (Y.W.)
- Laboratory of Phytopathology, College of Chemistry Biology and Environment, Yuxi Normal University, Yuxi 653100, China
| | - Huiyan Fan
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (J.L.); (H.F.); (Y.W.)
| | - Ying Wang
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (J.L.); (H.F.); (Y.W.)
| | - Chenggui Han
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (J.L.); (H.F.); (Y.W.)
| | - Xianbing Wang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (X.W.); (J.Y.); (D.L.)
| | - Jialin Yu
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (X.W.); (J.Y.); (D.L.)
| | - Dawei Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (X.W.); (J.Y.); (D.L.)
| | - Yongliang Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (X.W.); (J.Y.); (D.L.)
| |
Collapse
|
13
|
Wang S, Cui W, Wu X, Yuan Q, Zhao J, Zheng H, Lu Y, Peng J, Lin L, Chen J, Yan F. Suppression of nbe-miR166h-p5 attenuates leaf yellowing symptoms of potato virus X on Nicotiana benthamiana and reduces virus accumulation. MOLECULAR PLANT PATHOLOGY 2018; 19:2384-2396. [PMID: 30011130 PMCID: PMC6638021 DOI: 10.1111/mpp.12717] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/22/2018] [Accepted: 05/20/2018] [Indexed: 05/14/2023]
Abstract
MicroRNAs (miRNAs) play essential roles in plant development. There is increasing evidence that changed expression of miRNAs in virus-infected plants contributes to the development of viral symptoms. Here, we analysed the altered expression of miRNAs of Nicotiana benthamiana in response to Potato virus X (PVX) by Illumina Solexa sequencing. One of the 21 miRNAs significantly affected, nbe-miR166h-p5, was closely associated with viral symptoms. Using the Tobacco rattle virus-based miRNA suppression (VbMS) system, we found that the suppression of nbe-miR166h-p5 in plants caused leaves to turn dark green with increased chlorophyll. When PVX was inoculated on nbe-miR166h-p5-suppressed plants, the leaf yellowing symptom of PVX was largely attenuated with less reduction in chlorophyll content, and the accumulation of PVX was decreased. nbe-miR166h-p5 was also up-regulated in plants infected by Turnip mosaic virus (TuMV), and its suppression attenuated the leaf yellowing symptom of TuMV and decreased viral accumulation. Three potential targets of nbe-miR166h-p5 were identified. The results indicate the association of nbe-miR166h-p5 with symptoms of PVX and also with those of TuMV, providing useful information on the relationship between miRNA and viral infection.
Collapse
Affiliation(s)
- Shu Wang
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
| | - Weijun Cui
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
| | - Xinyang Wu
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
| | - Quan Yuan
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
- College of Plant ProtectionNorthwest A & F UniversityYangling712100China
| | - Jinping Zhao
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
| | - Hongying Zheng
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
| | - Yuwen Lu
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
| | - Jiejun Peng
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
| | - Lin Lin
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
| | - Jianping Chen
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
- Institute of Plant VirologyNingbo UniversityNingbo315211China
| | - Fei Yan
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
- Institute of Plant VirologyNingbo UniversityNingbo315211China
| |
Collapse
|
14
|
Wang MR, Cui ZH, Li JW, Hao XY, Zhao L, Wang QC. In vitro thermotherapy-based methods for plant virus eradication. PLANT METHODS 2018; 14:87. [PMID: 30323856 PMCID: PMC6173849 DOI: 10.1186/s13007-018-0355-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/03/2018] [Indexed: 05/19/2023]
Abstract
Production of virus-free plants is necessary to control viral diseases, import novel cultivars from other countries, exchange breeding materials between countries or regions and preserve plant germplasm. In vitro techniques represent the most successful approaches for virus eradication. In vitro thermotherapy-based methods, including combining thermotherapy with shoot tip culture, chemotherapy, micrografting or shoot tip cryotherapy, have been successfully established for efficient eradication of various viruses from almost all of the most economically important crops. The present study reviewed recent advances in in vitro thermotherapy-based methods for virus eradication since the twenty-first century. Mechanisms as to why thermotherapy-based methods could efficiently eradicate viruses were discussed. Finally, future prospects were proposed to direct further studies.
Collapse
Affiliation(s)
- Min-Rui Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Zhen-Hua Cui
- College of Horticulture, Qingdao Agriculture University, Qingdao, 266109 Shandong China
| | - Jing-Wei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Xin-Yi Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Lei Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Qiao-Chun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- College of Horticulture, Qingdao Agriculture University, Qingdao, 266109 Shandong China
| |
Collapse
|
15
|
Madroñero J, Rodrigues SP, Antunes TFS, Abreu PMV, Ventura JA, Fernandes AAR, Fernandes PMB. Transcriptome analysis provides insights into the delayed sticky disease symptoms in Carica papaya. PLANT CELL REPORTS 2018; 37:967-980. [PMID: 29564545 DOI: 10.1007/s00299-018-2281-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/16/2018] [Indexed: 05/25/2023]
Abstract
Global gene expression analysis indicates host stress responses, mainly those mediated by SA, associated to the tolerance to sticky disease symptoms at pre-flowering stage in Carica papaya. Carica papaya plants develop the papaya sticky disease (PSD) as a result of the combined infection of papaya meleira virus (PMeV) and papaya meleira virus 2 (PMeV2), or PMeV complex. PSD symptoms appear only after C. papaya flowers. To understand the mechanisms involved in this phenomenon, the global gene expression patterns of PMeV complex-infected C. papaya at pre-and post-flowering stages were assessed by RNA-Seq. The result was 633 and 88 differentially expressed genes at pre- and post-flowering stages, respectively. At pre-flowering stage, genes related to stress and transport were up-regulated while metabolism-related genes were down-regulated. It was observed that induction of several salicylic acid (SA)-activated genes, including PR1, PR2, PR5, WRKY transcription factors, ROS and callose genes, suggesting SA signaling involvement in the delayed symptoms. In fact, pre-flowering C. papaya treated with exogenous SA showed a tendency to decrease the PMeV and PMeV2 loads when compared to control plants. However, pre-flowering C. papaya also accumulated transcripts encoding a NPR1-inhibitor (NPR1-I/NIM1-I) candidate, genes coding for UDP-glucosyltransferases (UGTs) and several genes involved with ethylene pathway, known to be negative regulators of SA signaling. At post-flowering, when PSD symptoms appeared, the down-regulation of PR-1 encoding gene and the induction of BSMT1 and JA metabolism-related genes were observed. Hence, SA signaling likely operates at the pre-flowering stage of PMeV complex-infected C. papaya inhibiting the development of PSD symptoms, but the induction of its negative regulators prevents the full-scale and long-lasting tolerance.
Collapse
Affiliation(s)
- Johana Madroñero
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Av. Marechal Campos, 1468, Vitória, ES, 29040-090, Brazil
| | - Silas P Rodrigues
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Av. Marechal Campos, 1468, Vitória, ES, 29040-090, Brazil
- Núcleo Multidisciplinar de Pesquisa-Polo de Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Tathiana F S Antunes
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Av. Marechal Campos, 1468, Vitória, ES, 29040-090, Brazil
| | - Paolla M V Abreu
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Av. Marechal Campos, 1468, Vitória, ES, 29040-090, Brazil
| | - José A Ventura
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Av. Marechal Campos, 1468, Vitória, ES, 29040-090, Brazil
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural, Vitória, ES, Brazil
| | - A Alberto R Fernandes
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Av. Marechal Campos, 1468, Vitória, ES, 29040-090, Brazil
| | | |
Collapse
|
16
|
Chaudhary V, Jangra S, Yadav NR. Nanotechnology based approaches for detection and delivery of microRNA in healthcare and crop protection. J Nanobiotechnology 2018; 16:40. [PMID: 29653577 PMCID: PMC5897953 DOI: 10.1186/s12951-018-0368-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 04/07/2018] [Indexed: 12/31/2022] Open
Abstract
Nanobiotechnology has the potential to revolutionize diverse sectors including medicine, agriculture, food, textile and pharmaceuticals. Disease diagnostics, therapeutics and crop protection strategies are fast emerging using nanomaterials preferably nanobiomaterials. It has potential for development of novel nanobiomolecules which offer several advantages over conventional treatment methods. RNA nanoparticles with many unique features are promising candidates in disease treatment. The miRNAs are involved in many biochemical and developmental pathways and their regulation in plants and animals. These appear to be a powerful tool for controlling various pathological diseases in human, plants and animals, however there are challenges associated with miRNA based nanotechnology. Several advancements made in the field of miRNA therapeutics make it an attractive approach, but a lot more has to be explored in nanotechnology assisted miRNA therapy. The miRNA based technologies can be employed for detection and combating crop diseases as well. Despite these potential advantages, nanobiotechnology applications in the agricultural sector are still in its infancy and have not yet made its mark in comparison with healthcare sector. The review provides a platform to discuss nature, role and use of miRNAs in nanobiotechnology applications.
Collapse
Affiliation(s)
- Vrantika Chaudhary
- Department of Molecular Biology, Biotechnology and Bioinformatics, CCS Haryana Agricultural University, Hisar, 125004 India
| | - Sumit Jangra
- Department of Molecular Biology, Biotechnology and Bioinformatics, CCS Haryana Agricultural University, Hisar, 125004 India
| | - Neelam R. Yadav
- Department of Molecular Biology, Biotechnology and Bioinformatics, CCS Haryana Agricultural University, Hisar, 125004 India
| |
Collapse
|
17
|
Bao D, Ganbaatar O, Cui X, Yu R, Bao W, Falk BW, Wuriyanghan H. Down-regulation of genes coding for core RNAi components and disease resistance proteins via corresponding microRNAs might be correlated with successful Soybean mosaic virus infection in soybean. MOLECULAR PLANT PATHOLOGY 2018; 19:948-960. [PMID: 28695996 PMCID: PMC6638018 DOI: 10.1111/mpp.12581] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/30/2017] [Accepted: 07/06/2017] [Indexed: 05/20/2023]
Abstract
Plants protect themselves from virus infections by several different defence mechanisms. RNA interference (RNAi) is one prominent antiviral mechanism, which requires the participation of AGO (Argonaute) and Dicer/DCL (Dicer-like) proteins. Effector-triggered immunity (ETI) is an antiviral mechanism mediated by resistance (R) genes, most of which encode nucleotide-binding site-leucine-rich repeat (NBS-LRR) family proteins. MicroRNAs (miRNAs) play important regulatory roles in plants, including the regulation of host defences. Soybean mosaic virus (SMV) is the most common virus in soybean and, in this work, we identified dozens of SMV-responsive miRNAs by microarray analysis in an SMV-susceptible soybean line. Amongst the up-regulated miRNAs, miR168a, miR403a, miR162b and miR1515a predictively regulate the expression of AGO1, AGO2, DCL1 and DCL2, respectively, and miR1507a, miR1507c and miR482a putatively regulate the expression of several NBS-LRR family disease resistance genes. The regulation of target gene expression by these seven miRNAs was validated by both transient expression assays and RNA ligase-mediated rapid amplification of cDNA ends (RLM-RACE) experiments. Transcript levels for AGO1, DCL1, DCL2 and five NBS-LRR family genes were repressed at different time points after SMV infection, whereas the corresponding miRNA levels were up-regulated at these same time points. Furthermore, inhibition of miR1507a, miR1507c, miR482a, miR168a and miR1515a by short tandem target mimic (STTM) technology compromised SMV infection efficiency in soybean. Our results imply that SMV can counteract soybean defence responses by the down-regulation of several RNAi pathway genes and NBS-LRR family resistance genes via the induction of the accumulation of their corresponding miRNA levels.
Collapse
Affiliation(s)
- Duran Bao
- School of Life Sciences, University of Inner MongoliaHohhotInner Mongolia 010021, China
| | - Oyunchuluun Ganbaatar
- School of Life Sciences, University of Inner MongoliaHohhotInner Mongolia 010021, China
| | - Xiuqi Cui
- School of Life Sciences, University of Inner MongoliaHohhotInner Mongolia 010021, China
| | - Ruonan Yu
- School of Life Sciences, University of Inner MongoliaHohhotInner Mongolia 010021, China
| | - Wenhua Bao
- School of Life Sciences, University of Inner MongoliaHohhotInner Mongolia 010021, China
| | - Bryce W. Falk
- Department of Plant PathologyUniversity of California DavisDavisCA 95616USA
| | - Hada Wuriyanghan
- School of Life Sciences, University of Inner MongoliaHohhotInner Mongolia 010021, China
| |
Collapse
|
18
|
Gao X, Cui Q, Cao QZ, Liu Q, He HB, Zhang DM, Jia GX. Transcriptome-Wide Analysis of Botrytis elliptica Responsive microRNAs and Their Targets in Lilium Regale Wilson by High-Throughput Sequencing and Degradome Analysis. FRONTIERS IN PLANT SCIENCE 2017; 8:753. [PMID: 28572808 PMCID: PMC5435993 DOI: 10.3389/fpls.2017.00753] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/21/2017] [Indexed: 05/07/2023]
Abstract
MicroRNAs, as master regulators of gene expression, have been widely identified and play crucial roles in plant-pathogen interactions. A fatal pathogen, Botrytis elliptica, causes the serious folia disease of lily, which reduces production because of the high susceptibility of most cultivated species. However, the miRNAs related to Botrytis infection of lily, and the miRNA-mediated gene regulatory networks providing resistance to B. elliptica in lily remain largely unexplored. To systematically dissect B. elliptica-responsive miRNAs and their target genes, three small RNA libraries were constructed from the leaves of Lilium regale, a promising Chinese wild Lilium species, which had been subjected to mock B. elliptica treatment or B. elliptica infection for 6 and 24 h. By high-throughput sequencing, 71 known miRNAs belonging to 47 conserved families and 24 novel miRNA were identified, of which 18 miRNAs were downreguleted and 13 were upregulated in response to B. elliptica. Moreover, based on the lily mRNA transcriptome, 22 targets for 9 known and 1 novel miRNAs were identified by the degradome sequencing approach. Most target genes for elliptica-responsive miRNAs were involved in metabolic processes, few encoding different transcription factors, including ELONGATION FACTOR 1 ALPHA (EF1a) and TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR 2 (TCP2). Furthermore, the expression patterns of a set of elliptica-responsive miRNAs and their targets were validated by quantitative real-time PCR. This study represents the first transcriptome-based analysis of miRNAs responsive to B. elliptica and their targets in lily. The results reveal the possible regulatory roles of miRNAs and their targets in B. elliptica interaction, which will extend our understanding of the mechanisms of this disease in lily.
Collapse
Affiliation(s)
- Xue Gao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry UniversityBeijing, China
| | - Qi Cui
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry UniversityBeijing, China
| | - Qin-Zheng Cao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry UniversityBeijing, China
| | - Qiang Liu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry UniversityBeijing, China
| | - Heng-Bin He
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry UniversityBeijing, China
| | - Dong-Mei Zhang
- Shanghai Academy of Landscape Architecture Science and PlanningShanghai, China
- Shanghai Engineering Research Center of Landscaping on Challenging Urban SitesShanghai, China
| | - Gui-Xia Jia
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry UniversityBeijing, China
- *Correspondence: Gui-Xia Jia
| |
Collapse
|
19
|
Abstract
Global sustainable development depends on, at least partially, the sustainable development of crop reproduction that provides food, cloth and bioenergy as well certain drugs. During thousands of years of human history, many crops have been domesticated for feeding the world. Perfectly, in the past 2 decades, scientists have innovated biotechnological tools for improving crop yield and quality. For sustainable development, more targets and tools are needed to develop. Among these, microRNA (miRNA) is becoming an emerging target for engineering new crop cultivars with high yield and quality as well tolerance to environmental abiotic and biotic stresses. miRNAs are an extensive class of small regulatory RNAs, which play essential roles in all plant biological and metabolic processes, not only in plant development and growth but also in compound biosynthesis and response to various environmental stress. miRNA-based biotechnology is becoming a new strategy for crop improvement, which will play important role in future agricultural sustainable development.
Collapse
Affiliation(s)
- Baohong Zhang
- a Henan Collaborative Innovation Center of Modern Biological Breeding, School of Life Science and Technology, Henan Institute of Science and Technology , Xinxiang , China.,b Department of Biology , East Carolina University , Greenville , NC , US
| | - Qinglian Wang
- a Henan Collaborative Innovation Center of Modern Biological Breeding, School of Life Science and Technology, Henan Institute of Science and Technology , Xinxiang , China
| |
Collapse
|
20
|
Label-free quantitative proteomic analysis of pre-flowering PMeV-infected Carica papaya L. J Proteomics 2016; 151:275-283. [PMID: 27343761 DOI: 10.1016/j.jprot.2016.06.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 05/27/2016] [Accepted: 06/18/2016] [Indexed: 01/08/2023]
Abstract
Papaya meleira virus (PMeV) infects papaya (Carica papaya L.) and leads to Papaya Sticky Disease (PSD) or "Meleira", characterized by a spontaneous exudation of latex from fruits and leaves only in the post-flowering developmental stage. The latex oxidizes in contact with air and accumulates as a sticky substance on the plant organs, impairing papaya fruit's marketing and exportation. To understand pre-flowering C. papaya resistance to PMeV, an LC-MS/MS-based label-free proteomics approach was used to assess the differential proteome of PMeV-infected pre-flowering C. papaya vs. uninfected (control) plants. In this study, 1333 proteins were identified, of which 111 proteins showed a significant abundance change (57 increased and 54 decreased) and supports the hypothesis of increased photosynthesis and reduction of 26S-proteassoma activity and cell-wall remodeling. All of these results suggest that increased photosynthetic activity has a positive effect on the induction of plant immunity, whereas the reduction of caspase-like activity and the observed changes in the cell-wall associated proteins impairs the full activation of defense response based on hypersensitive response and viral movement obstruction in pre-flowering C. papaya plants. BIOLOGICAL SIGNIFICANCE The papaya (Carica papaya L.) fruit's production is severely limited by the occurrence of Papaya meleira virus (PMeV) infection, which causes Papaya Sticky Disease (PSD). Despite the efforts to understand key features involved with the plant×virus interaction, PSD management is still largely based on the observation of the first disease symptoms in the field, followed by the elimination of the diseased plants. However, C. papaya develops PSD only after flowering, i.e. about six-months after planting, and the virus inoculum sources are kept in field. The development of PMeV resistant genotypes is impaired by the limited knowledge about C. papaya resistance against viruses. The occurrence of a resistance/tolerance mechanism to PSD symptoms development prior to C. papaya flowering is considered in this study. Thus, field-grown and PMeV-infected C. papaya leaf samples were analyzed using proteomics, which revealed the modulation of photosynthesis-, 26S proteasome- and cell-wall remodeling-associated proteins. The data implicate a role for those systems in C. papaya resistance to viruses and support the idea of a partial resistance induction in the plants at pre-flowering stage. The specific proteins presented in the manuscript represent a starting point to the selection of key genes to be used in C. papaya improvement to PMeV infection resistance. The presented data also contribute to the understanding of virus-induced disease symptoms development in plants, of interest to the plant-virus interaction field.
Collapse
|
21
|
Fan G, Niu S, Zhao Z, Deng M, Xu E, Wang Y, Yang L. Identification of microRNAs and their targets in Paulownia fortunei plants free from phytoplasma pathogen after methyl methane sulfonate treatment. Biochimie 2016; 127:271-80. [PMID: 27328782 DOI: 10.1016/j.biochi.2016.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/15/2016] [Indexed: 12/28/2022]
Abstract
MicroRNAs (miRNAs) play major roles in plant responses to various biotic and abiotic stresses by regulating gene expression at the transcriptional and post-transcriptional levels. Paulownia witches' broom (PaWB) disease caused by phytoplasmas reduces Paulownia production worldwide. In this study, we investigated the miRNA-mediated plant response to PaWB phytoplasma by Illumina sequencing and degradome analysis of Paulownia fortunei small RNAs (sRNAs). The sRNA and degradome libraries were constructed from healthy and diseased P. fortunei plants and the plants free from phytoplasma pathogen after 60 mg L(-1) methyl methane sulfonate treatment. A total of 96 P. fortunei-conserved miRNAs and 83 putative novel miRNAs were identified. Among them, 37 miRNAs (17 conserved, 20 novel) were found to be differentially expressed in response to PaWB phytoplasma infection. In addition, 114 target genes for 18 of the conserved miRNA families and 33 target genes for 15 of the novel miRNAs in P. fortunei were detected. The expression patterns of 14 of the PaWB phytoplasma-responsive miRNAs and 12 target genes were determined by quantitative real-time polymerase chain reaction (qPCR) experiments. A functional analysis of the miRNA targets indicated that these targeted genes may regulate transcription, stress response, nitrogen metabolism, and various other activities. Our results will help identify the potential roles of miRNAs involved in protecting P. fortunei from diseases.
Collapse
Affiliation(s)
- Guoqiang Fan
- Institute of Paulownia, Henan Agricultural University, 450002 Zhengzhou, Henan, PR China; College of Forestry, Henan Agricultural University, 450002 Zhengzhou, Henan, PR China.
| | - Suyan Niu
- Institute of Paulownia, Henan Agricultural University, 450002 Zhengzhou, Henan, PR China; College of Forestry, Henan Agricultural University, 450002 Zhengzhou, Henan, PR China
| | - Zhenli Zhao
- Institute of Paulownia, Henan Agricultural University, 450002 Zhengzhou, Henan, PR China; College of Forestry, Henan Agricultural University, 450002 Zhengzhou, Henan, PR China
| | - Minjie Deng
- Institute of Paulownia, Henan Agricultural University, 450002 Zhengzhou, Henan, PR China; College of Forestry, Henan Agricultural University, 450002 Zhengzhou, Henan, PR China
| | - Enkai Xu
- Institute of Paulownia, Henan Agricultural University, 450002 Zhengzhou, Henan, PR China; College of Forestry, Henan Agricultural University, 450002 Zhengzhou, Henan, PR China
| | - Yuanlong Wang
- Institute of Paulownia, Henan Agricultural University, 450002 Zhengzhou, Henan, PR China; College of Forestry, Henan Agricultural University, 450002 Zhengzhou, Henan, PR China
| | - Lu Yang
- Institute of Paulownia, Henan Agricultural University, 450002 Zhengzhou, Henan, PR China; College of Forestry, Henan Agricultural University, 450002 Zhengzhou, Henan, PR China
| |
Collapse
|
22
|
Magaña-Álvarez A, Vencioneck Dutra JC, Carneiro T, Pérez-Brito D, Tapia-Tussell R, Ventura JA, Higuera-Ciapara I, Fernandes PMB, Fernandes AAR. Physical Characteristics of the Leaves and Latex of Papaya Plants Infected with the Papaya meleira Virus. Int J Mol Sci 2016; 17:574. [PMID: 27092495 PMCID: PMC4849030 DOI: 10.3390/ijms17040574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/24/2016] [Accepted: 03/23/2016] [Indexed: 01/25/2023] Open
Abstract
Sticky disease, which is caused by Papaya meleira virus (PMeV), is a significant papaya disease in Brazil and Mexico, where it has caused severe economic losses, and it seems to have spread to Central and South America. Studies assessing the pathogen-host interaction at the nano-histological level are needed to better understand the mechanisms that underlie natural resistance. In this study, the topography and mechanical properties of the leaf midribs and latex of healthy and PMeV-infected papaya plants were observed by atomic force microscopy and scanning electron microscopy. Healthy plants displayed a smooth surface with practically no roughness of the leaf midribs and the latex and a higher adhesion force than infected plants. PMeV promotes changes in the leaf midribs and latex, making them more fragile and susceptible to breakage. These changes, which are associated with increased water uptake and internal pressure in laticifers, causes cell disruption that leads to spontaneous exudation of the latex and facilitates the spread of PMeV to other laticifers. These results provide new insights into the papaya-PMeV interaction that could be helpful for controlling papaya sticky disease.
Collapse
Affiliation(s)
- Anuar Magaña-Álvarez
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Av. Marechal Campos 1468, Vitória, Espírito Santo 29040-090, Brazil.
- Laboratorio GeMBio, Centro de Investigación Científica de Yucatán A.C., Calle 43 # 130, Col. Chuburná de Hidalgo, Mérida, Yucatán 97200, Mexico.
| | - Jean Carlos Vencioneck Dutra
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Av. Marechal Campos 1468, Vitória, Espírito Santo 29040-090, Brazil.
| | - Tarcio Carneiro
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Av. Marechal Campos 1468, Vitória, Espírito Santo 29040-090, Brazil.
| | - Daisy Pérez-Brito
- Laboratorio GeMBio, Centro de Investigación Científica de Yucatán A.C., Calle 43 # 130, Col. Chuburná de Hidalgo, Mérida, Yucatán 97200, Mexico.
| | - Raúl Tapia-Tussell
- Laboratorio GeMBio, Centro de Investigación Científica de Yucatán A.C., Calle 43 # 130, Col. Chuburná de Hidalgo, Mérida, Yucatán 97200, Mexico.
| | - Jose Aires Ventura
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Av. Marechal Campos 1468, Vitória, Espírito Santo 29040-090, Brazil.
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural, R. Afonso Sarlo 160, Vitória, Espírito Santo 29052-010, Brazil.
| | - Inocencio Higuera-Ciapara
- Unidad de Tecnología de Alimentos, Centro de Investigación y Asistencia Tecnológica y Diseño del Estado de Jalisco A.C., Ave. Normalistas # 800, Col. Colinas de la Norma, Guadalajara, Jalisco 44270, Mexico.
| | - Patricia Machado Bueno Fernandes
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Av. Marechal Campos 1468, Vitória, Espírito Santo 29040-090, Brazil.
| | - Antonio Alberto Ribeiro Fernandes
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Av. Marechal Campos 1468, Vitória, Espírito Santo 29040-090, Brazil.
| |
Collapse
|
23
|
Liu J, Zhang X, Zhang F, Hong N, Wang G, Wang A, Wang L. Identification and characterization of microRNAs from in vitro-grown pear shoots infected with Apple stem grooving virus in response to high temperature using small RNA sequencing. BMC Genomics 2015; 16:945. [PMID: 26573813 PMCID: PMC4647338 DOI: 10.1186/s12864-015-2126-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/22/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) have functions in diverse biological processes such as growth, signal transduction, disease resistance, and stress responses in plants. Thermotherapy is an effective approach for elimination of viruses from fruit trees. However, the role of miRNAs in this process remains elusive. Previously, we showed that high temperature treatment reduces the titers of Apple stem grooving virus (ASGV) from the tips of in vitro-grown Pyrus pyrifolia plants. In this study, we identified high temperature-altered pear miRNAs using the next generation sequencing technology, and futher molecularly characterized miRNA-mediated regulaton of target gene expression in the meristem tip and base tissues of in vitro-grown, ASGV-infected pear shoots under different temperatures. RESULTS Using in vitro-grown P. pyrifolia shoot meristem tips infected with ASGV, a total of 22,592,997 and 20,411,254 clean reads were obtained from Illumina high-throughput sequencing of small RNA libraries at 24 °C and 37 °C, respectively. We identified 149 conserved and 141 novel miRNAs. Seven conserved miRNAs and 77 novel miRNAs were differentially expressed at different temperatures. Target genes for differentially expressed known and novel miRNAs were predicted and functionally annotated. Gene Ontology (GO) analysis showed that high-ranking miRNA target genes were involved in metabolic processes, responses to stress, and signaling, indicating that these high temperature-responsive miRNAs have functions in diverse gene regulatory networks. Spatial expression patterns of the miRNAs and their target genes were found to be expressed in shoot tip and base tissues by qRT-PCR. In addition, high temperature reduced viral titers in the shoot meristem tip, while negatively regulated miRNA-mediated target genes related to resistance disease defense and hormone signal transduction pathway were up-regulated in the P. pyrifolia shoot tip in response to high temperature. These results suggested that miRNAs may have important functions in the high temperature-dependent decrease of ASGV titer in in vitro-grown pear shoots. CONCLUSIONS This is the first report of miRNAs differentially expressed at 24 °C and 37 °C in the meristem tip of pear shoots infected with ASGV. The results of this study provide valuable information for further exploration of the function of high temperature-altered miRNAs in suppressing viral infections in pear and other fruit trees.
Collapse
Affiliation(s)
- Juan Liu
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei, 430070, P. R. China.,College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China.,National Indoor Conservation Center of Virus-Free Germplasms of Fruit Crops, Wuhan, Hubei, 430070, P. R. China.,Lab of Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, 430070, P. R. China
| | - XueJiao Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China.,Shihezi University, Shihezi City, Xinjiang Uyghur Autonomous Region, 832003, P. R. China
| | - FangPeng Zhang
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei, 430070, P. R. China.,College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China.,National Indoor Conservation Center of Virus-Free Germplasms of Fruit Crops, Wuhan, Hubei, 430070, P. R. China.,Lab of Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, 430070, P. R. China
| | - Ni Hong
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei, 430070, P. R. China.,College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China.,National Indoor Conservation Center of Virus-Free Germplasms of Fruit Crops, Wuhan, Hubei, 430070, P. R. China.,Lab of Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, 430070, P. R. China
| | - GuoPing Wang
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei, 430070, P. R. China.,College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China.,National Indoor Conservation Center of Virus-Free Germplasms of Fruit Crops, Wuhan, Hubei, 430070, P. R. China.,Lab of Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, 430070, P. R. China
| | - Aiming Wang
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, N5V 4T3, ON, Canada
| | - LiPing Wang
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei, 430070, P. R. China. .,College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China. .,National Indoor Conservation Center of Virus-Free Germplasms of Fruit Crops, Wuhan, Hubei, 430070, P. R. China. .,Lab of Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, 430070, P. R. China.
| |
Collapse
|
24
|
Fan G, Cao X, Niu S, Deng M, Zhao Z, Dong Y. Transcriptome, microRNA, and degradome analyses of the gene expression of Paulownia with phytoplamsa. BMC Genomics 2015; 16:896. [PMID: 26537848 PMCID: PMC4634154 DOI: 10.1186/s12864-015-2074-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 10/15/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Paulownia witches' broom (PaWB) is a fatal disease of Paulownia caused by a phytoplasma. In previous studies, we found that plants with PaWB symptoms would revert to a healthy morphology after methyl methane sulfonate (MMS) treatment. To completely understand the gene expression profiles of the Paulownia-phytoplasma interaction, three high-throughput sequencing technologies were used to investigate changes of gene expression and microRNAs (miRNAs) in healthy Paulownia tomentosa plantlets, PaWB-infected plantlets, and PaWB-infected plantlets treated with 60 mg · L(-1) MMS. METHODS Transcriptome, miRNAs and degradome sequencing were performed to explore the global gene expression profiles in the process of Paulownia tomentosa with phytoplasma infection. RESULTS A total of 98,714 all-unigenes, 62 conserved miRNAs, and 35 novel miRNAs were obtained, among which 902 differentially expressed genes (DEGs) and 24 miRNAs were found to be associated with PaWB disease. Subsequently, the target genes of these miRNAs were predicted by degradome sequencing. Interestingly, we found that 19 target genes of these differentially expressed miRNAs were among the 902 DEGs. The targets of pau-miR156g, pau-miR403, and pau-miR166c were significantly up-regulated in the P. tomentosa plantlets infected with phytoplasma. Interaction of miRNA -target genes mediated gene expression related to PaWB were identified. CONCLUSIONS The results elucidated the possible roles of the regulation of genes and miRNAs in the Paulownia-phytoplasma interaction, which will enrich our understanding of the mechanisms of PaWB disease in this plant.
Collapse
Affiliation(s)
- Guoqiang Fan
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan, 450002, P. R. China.
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan, 450002, P. R. China.
| | - Xibing Cao
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan, 450002, P. R. China.
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan, 450002, P. R. China.
| | - Suyan Niu
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan, 450002, P. R. China.
| | - Minjie Deng
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan, 450002, P. R. China.
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan, 450002, P. R. China.
| | - Zhenli Zhao
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan, 450002, P. R. China.
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan, 450002, P. R. China.
| | - Yanpeng Dong
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan, 450002, P. R. China.
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan, 450002, P. R. China.
| |
Collapse
|
25
|
Plant-Pathogen Interaction-Related MicroRNAs and Their Targets Provide Indicators of Phytoplasma Infection in Paulownia tomentosa × Paulownia fortunei. PLoS One 2015; 10:e0140590. [PMID: 26484670 PMCID: PMC4617444 DOI: 10.1371/journal.pone.0140590] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/26/2015] [Indexed: 01/18/2023] Open
Abstract
Paulownia witches’ broom (PaWB) caused by a phytoplasma, has caused extensive losses in the yields of paulownia timber and resulted in significant economic losses. However, the molecular mechanisms in Paulownia that underlie the phytoplasma stress are poorly characterized. In this study, we use an Illumina platform to sequence four small RNA libraries and four degradome sequencing libraries derived from healthy, PaWB-infected, and PaWB-infected 15 mg·L−1 and 30 mg·L−1 methyl methane sulfonate (MMS)-treated plants. In total, 125 conserved and 118 novel microRNAs (miRNAs) were identified and 33 miRNAs responsive to PaWB disease were discovered. Furthermore, 166 target genes for 18 PaWB disease-related miRNAs were obtained, and found to be involved in plant-pathogen interaction and plant hormone signal transduction metabolic pathways. Eleven miRNAs and target genes responsive to PaWB disease were examined by a quantitative real-time PCR approach. Our findings will contribute to studies on miRNAs and their targets in Paulownia, and provide new insights to further understand plant-phytoplasma interactions.
Collapse
|
26
|
Abreu PMV, Antunes TFS, Magaña-Álvarez A, Pérez-Brito D, Tapia-Tussell R, Ventura JA, Fernandes AAR, Fernandes PMB. A current overview of the Papaya meleira virus, an unusual plant virus. Viruses 2015; 7:1853-70. [PMID: 25856636 PMCID: PMC4411680 DOI: 10.3390/v7041853] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/26/2015] [Accepted: 03/30/2015] [Indexed: 12/11/2022] Open
Abstract
Papaya meleira virus (PMeV) is the causal agent of papaya sticky disease, which is characterized by a spontaneous exudation of fluid and aqueous latex from the papaya fruit and leaves. The latex oxidizes after atmospheric exposure, resulting in a sticky feature on the fruit from which the name of the disease originates. PMeV is an isometric virus particle with a double-stranded RNA (dsRNA) genome of approximately 12 Kb. Unusual for a plant virus, PMeV particles are localized on and linked to the polymers present in the latex. The ability of the PMeV to inhabit such a hostile environment demonstrates an intriguing interaction of the virus with the papaya. A hypersensitivity response is triggered against PMeV infection, and there is a reduction in the proteolytic activity of papaya latex during sticky disease. In papaya leaf tissues, stress responsive proteins, mostly calreticulin and proteasome-related proteins, are up regulated and proteins related to metabolism are down-regulated. Additionally, PMeV modifies the transcription of several miRNAs involved in the modulation of genes related to the ubiquitin-proteasome system. Until now, no PMeV resistant papaya genotype has been identified and roguing is the only viral control strategy available. However, a single inoculation of papaya plants with PMeV dsRNA delayed the progress of viral infection.
Collapse
Affiliation(s)
- Paolla M V Abreu
- Biotecnologia, Universidade Federal do Espírito Santo, Vitória 29040090, Espírito Santo, Brazil.
| | - Tathiana F S Antunes
- Biotecnologia, Universidade Federal do Espírito Santo, Vitória 29040090, Espírito Santo, Brazil.
| | - Anuar Magaña-Álvarez
- Biotecnologia, Universidade Federal do Espírito Santo, Vitória 29040090, Espírito Santo, Brazil.
- Laboratorio GeMBio, Centro de Investigación Científica de Yucatán A.C., Mérida 97200, Yucatán, Mexico.
| | - Daisy Pérez-Brito
- Laboratorio GeMBio, Centro de Investigación Científica de Yucatán A.C., Mérida 97200, Yucatán, Mexico.
| | - Raúl Tapia-Tussell
- Laboratorio GeMBio, Centro de Investigación Científica de Yucatán A.C., Mérida 97200, Yucatán, Mexico.
| | - José A Ventura
- Biotecnologia, Universidade Federal do Espírito Santo, Vitória 29040090, Espírito Santo, Brazil.
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural, Vitória 29050790, Espírito Santo, Brazil.
| | - Antonio A R Fernandes
- Biotecnologia, Universidade Federal do Espírito Santo, Vitória 29040090, Espírito Santo, Brazil.
| | - Patricia M B Fernandes
- Biotecnologia, Universidade Federal do Espírito Santo, Vitória 29040090, Espírito Santo, Brazil.
| |
Collapse
|