1
|
Hau SJ, Luan SL, Weinert LA, Langford PR, Rycroft A, Wren BW, Maskell DJ, Tucker AWD, Brockmeier SL. Capsular immunity is necessary for protection against some but not all strains of Glaesserella parasuis. Vet Microbiol 2025; 305:110509. [PMID: 40250105 PMCID: PMC12094177 DOI: 10.1016/j.vetmic.2025.110509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 03/17/2025] [Accepted: 04/07/2025] [Indexed: 04/20/2025]
Abstract
Glaesserella parasuis is the causative agent of Glässer's disease in pigs and results in significant losses to the swine industry annually. Due to the serovar and strain specific response associated with many bacterin vaccines, there has been difficulty generating broad heterologous protection. Here, an unencapsulated G. parasuis mutant (HS069∆cap) was assessed as a bacterin vaccine and compared to a bacterin made from the encapsulated parent strain, against challenge with the homologous, parent strain (serovar 5) as well as four heterologous challenge strains (serovar 1, 4, 5, and 14). Both the HS069 and HS069∆cap bacterins generated high titers to the homologous and heterologous strains. The HS069∆cap bacterin was able to provide protection against the parent strain as well as 12939 (serovar 1), 2170B (serovar 4), and MN-H (serovar 13), but was unable to protect animals from challenge with Nagasaki (serovar 5). In contrast, the HS069 bacterin was able to provide protection against all challenge strains, showing the importance of serovar specific immunity against the challenge strain Nagasaki. This appears to be due to the production of a more abundant and well-organized capsule in Nagasaki as compared to HS069. This study indicates HS069∆cap is a good candidate strain for bacterin development; however, it may be less able to provide protection against highly encapsulated strains of G. parasuis.
Collapse
Affiliation(s)
- Samantha J Hau
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Shi-Lu Luan
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Lucy A Weinert
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Paul R Langford
- Section of Paediatrics, Department of Medicine, Imperial College London, St. Mary's Campus, London, UK
| | - Andrew Rycroft
- The Royal Veterinary College, Hawkshead Campus, Hatfield, United Kingdom
| | - Brendan W Wren
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Duncan J Maskell
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Alexander W Dan Tucker
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Susan L Brockmeier
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States.
| |
Collapse
|
2
|
Nielsen DW, Sarlo Davila KM, Brockmeier SL, Hau SJ. Transcriptional profile of Glaesserella parasuis in swine serosal and joint fluids. Front Vet Sci 2025; 12:1452973. [PMID: 40351770 PMCID: PMC12063495 DOI: 10.3389/fvets.2025.1452973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 04/07/2025] [Indexed: 05/14/2025] Open
Abstract
Glaesserella parasuis is the causative agent of Glässer's disease and contributes to significant post-weaning mortality in the swine industry. Glässer's disease is characterized by meningitis, polyserositis, and polyarthritis. Previous work has examined transcriptomic differences of G. parasuis when inoculated into different in vitro conditions, lung explants, or the lung in vivo following intratracheal challenge. However, it is still unknown how the transcriptome of G. parasuis may change to cause polyserositis or polyarthritis. Here, we incubated G. parasuis in acellular joint or serosal fluid for 3 and 12 hours to better understand transcriptional changes in the joint or serosal compartment. When G. parasuis serovar 5 strain 29755 was incubated in host fluid for 3h, cell wall, membrane, and envelope biogenesis genes were downregulated compared to G. parasuis incubated in PBS. In contrast, translation, ribosomal structure, and biogenesis and carbohydrate transport and metabolism were upregulated in the host fluid compared to PBS. Additionally, there were eleven differentially expressed genes with an unknown function shared between the acellular joint and serosal fluid at the 3h timepoint compared to PBS. When comparing the differences between the host fluids from 12 to 3h and the host fluids at 3h compared to PBS, this study found sixteen genes with inverse expression patterns. An investigation into the hypothetical genes identified and the nineteen shared genes in all comparisons may provide further knowledge about the pathogenesis of G. parasuis, which may be useful in developing interventions against Glässer's disease.
Collapse
Affiliation(s)
- Daniel W. Nielsen
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center (USDA-ARS), Ames, IA, United States
| | - Kaitlyn M. Sarlo Davila
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center (USDA-ARS), Ames, IA, United States
| | - Susan L. Brockmeier
- Virus and Prion Research Unit, National Animal Disease Center (USDA-ARS), Ames, IA, United States
| | - Samantha J. Hau
- Virus and Prion Research Unit, National Animal Disease Center (USDA-ARS), Ames, IA, United States
| |
Collapse
|
3
|
Yan X, Gu C, Xiao W, Zhou Y, Xiang X, Yu Z, He M, Yang Q, Zhao M, He L. Evaluation of immunoregulation and immunoprotective efficacy of Glaesserella parasuis histidine kinase QseC. Microb Pathog 2024; 192:106685. [PMID: 38750774 DOI: 10.1016/j.micpath.2024.106685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 05/08/2024] [Accepted: 05/12/2024] [Indexed: 05/19/2024]
Abstract
QseC is a membrane sensor kinase that enables bacteria to perceive autoinducers -3, adrenaline, and norepinephrine to initiate downstream gene transcription. In this study, we found that the QseC protein of Glaesserella parasuis can serve as an effective antigen to activate the host's immune response. Therefore, we investigated the immunogenicity and host protective effect of this protein. ELISA and indirect immunofluorescence results showed that QseC protein can induce high titer levels of humoral immunity in mice and regularly generate specific serum antibodies. We used MTS reagents to detect lymphocyte proliferation levels and found that QseC protein can cause splenic lymphocyte proliferation with memory and specificity. Further immunological analysis of the spleen cell supernatant revealed significant upregulation of levels of IL-1β, IL-4 and IFN-γ in the QseC + adjuvant group. In the mouse challenge experiment, it was found that QseC + adjuvant can provide effective protection. The results of this study demonstrate that QseC protein provides effective protection in a mouse model and has the potential to serve as a candidate antigen for a novel subunit vaccine for further research.
Collapse
MESH Headings
- Animals
- Mice
- Interleukin-4/metabolism
- Interleukin-4/immunology
- Antibodies, Bacterial/blood
- Antibodies, Bacterial/immunology
- Haemophilus Infections/immunology
- Haemophilus Infections/prevention & control
- Haemophilus Infections/microbiology
- Interferon-gamma/metabolism
- Histidine Kinase/genetics
- Histidine Kinase/metabolism
- Histidine Kinase/immunology
- Interleukin-1beta/metabolism
- Interleukin-1beta/genetics
- Immunity, Humoral
- Mice, Inbred BALB C
- Spleen/immunology
- Bacterial Proteins/immunology
- Bacterial Proteins/genetics
- Cell Proliferation
- Female
- Adjuvants, Immunologic
- Haemophilus parasuis/immunology
- Haemophilus parasuis/genetics
- Cytokines/metabolism
- Bacterial Vaccines/immunology
- Bacterial Vaccines/genetics
- Disease Models, Animal
- Antigens, Bacterial/immunology
- Antigens, Bacterial/genetics
- Lymphocytes/immunology
- Vaccines, Subunit/immunology
- Vaccines, Subunit/genetics
Collapse
Affiliation(s)
- Xuefeng Yan
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Congwei Gu
- Experimental Animal Center, Technology Department, Southwest Medical University, Luzhou, China
| | - Wudian Xiao
- Experimental Animal Center, Technology Department, Southwest Medical University, Luzhou, China
| | - Yuhong Zhou
- College of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xinyi Xiang
- School of Public Health, Southwest Medical University, Luzhou, China
| | - Zehui Yu
- Experimental Animal Center, Technology Department, Southwest Medical University, Luzhou, China
| | - Manli He
- Experimental Animal Center, Technology Department, Southwest Medical University, Luzhou, China
| | - Qian Yang
- Experimental Animal Center, Technology Department, Southwest Medical University, Luzhou, China
| | - Mingde Zhao
- Experimental Animal Center, Technology Department, Southwest Medical University, Luzhou, China
| | - Lvqin He
- Experimental Animal Center, Technology Department, Southwest Medical University, Luzhou, China.
| |
Collapse
|
4
|
Nielsen DW, Hau SJ, Mou KT, Alt DP, Brockmeier SL. Shifts in the swine nasal microbiota following Bordetella bronchiseptica challenge in a longitudinal study. Front Microbiol 2023; 14:1260465. [PMID: 37840723 PMCID: PMC10574184 DOI: 10.3389/fmicb.2023.1260465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/25/2023] [Indexed: 10/17/2023] Open
Abstract
Bordetella bronchiseptica is a widespread, highly infectious bacterial pathogen that causes respiratory disease in swine and increases the severity of respiratory infections caused by other viral or bacterial pathogens. However, the impact of B. bronchiseptica infection on the swine respiratory microbiota has not been thoroughly investigated. Here, we aim to assess the influence of B. bronchiseptica infection on the community structure and abundance of members of the swine nasal microbiota. To do so, the nasal microbiota of a non-infected control group and a group infected with B. bronchiseptica (BB group) were characterized prior to B. bronchiseptica strain KM22 challenge (day 0) and on selected days in the weeks following B. bronchiseptica challenge (days 1, 3, 7, 10, 14, 21, 36, and 42). Bordetella bronchiseptica was cultured from nasal samples of the BB group to assess nasal colonization. The results showed that B. bronchiseptica colonization did not persistently affect the nasal bacterial diversity of either of the treatment groups (alpha diversity). However, the bacterial community structures (beta diversity) of the two treatment groups significantly diverged on day 7 when peak colonization levels of B. bronchiseptica were detected. This divergence continued through the last sampling time point. In addition, Pasteurella, Pasteurellaceae (unclassified), Mycoplasma, Actinobacillus, Streptococcus, Escherichia-Shigella, and Prevotellaceae (unclassified) showed increased abundances in the BB group relative to the control group at various time points. This study revealed that B. bronchiseptica colonization can disturb the upper respiratory tract microbiota, and further research is warranted to assess how these disturbances can impact susceptibility to secondary infections by other respiratory pathogens.
Collapse
Affiliation(s)
- Daniel W. Nielsen
- National Animal Disease Center, USDA Agricultural Research Service, Ames, IA, United States
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge Associated Universities (ORAU), Oak Ridge, TN, United States
| | - Samantha J. Hau
- National Animal Disease Center, USDA Agricultural Research Service, Ames, IA, United States
| | - Kathy T. Mou
- National Animal Disease Center, USDA Agricultural Research Service, Ames, IA, United States
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge Associated Universities (ORAU), Oak Ridge, TN, United States
| | - David P. Alt
- National Animal Disease Center, USDA Agricultural Research Service, Ames, IA, United States
| | - Susan L. Brockmeier
- National Animal Disease Center, USDA Agricultural Research Service, Ames, IA, United States
| |
Collapse
|
5
|
Mugabi R, Silva APSP, Hu X, Gottschalk M, Aragon V, Macedo NR, Sahin O, Harms P, Main R, Tucker AW, Li G, Clavijo MJ. Molecular characterization of Glaesserella parasuis strains circulating in North American swine production systems. BMC Vet Res 2023; 19:135. [PMID: 37641044 PMCID: PMC10464461 DOI: 10.1186/s12917-023-03698-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Glaesserella parasuis is the causative agent of Glässer's disease in pigs. Serotyping is the most common method used to type G. parasuis isolates. However, the high number of non-typables (NT) and low discriminatory power make serotyping problematic. In this study, 218 field clinical isolates and 15 G. parasuis reference strains were whole-genome sequenced (WGS). Multilocus sequence types (MLST), serotypes, core-genome phylogeny, antimicrobial resistance (AMR) genes, and putative virulence gene information was extracted. RESULTS In silico WGS serotyping identified 11 of 15 serotypes. The most frequently detected serotypes were 7, 13, 4, and 2. MLST identified 72 sequence types (STs), of which 66 were novel. The most predominant ST was ST454. Core-genome phylogeny depicted 3 primary lineages (LI, LII, and LIII), with LIIIA sublineage isolates lacking all vtaA genes, based on the structure of the phylogenetic tree and the number of virulence genes. At least one group 1 vtaA virulence genes were observed in most isolates (97.2%), except for serotype 8 (ST299 and ST406), 15 (ST408 and ST552) and NT (ST448). A few group 1 vtaA genes were significantly associated with certain serotypes or STs. The putative virulence gene lsgB, was detected in 8.3% of the isolates which were predominantly of serotype 5/12. While most isolates carried the bcr, ksgA, and bacA genes, the following antimicrobial resistant genes were detected in lower frequency; blaZ (6.9%), tetM (3.7%), spc (3.7%), tetB (2.8%), bla-ROB-1 (1.8%), ermA (1.8%), strA (1.4%), qnrB (0.5%), and aph3''Ia (0.5%). CONCLUSION: This study showed the use of WGS to type G. parasuis isolates and can be considered an alternative to the more labor-intensive and traditional serotyping and standard MLST. Core-genome phylogeny provided the best strain discrimination. These findings will lead to a better understanding of the molecular epidemiology and virulence in G. parasuis that can be applied to the future development of diagnostic tools, autogenous vaccines, evaluation of antibiotic use, prevention, and disease control.
Collapse
Affiliation(s)
- Robert Mugabi
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Ana Paula S Poeta Silva
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Xiao Hu
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Marcelo Gottschalk
- Groupe de Recherche Sur Les Maladies Infectieuses du Porc, Faculté de Médecine Vétérinaire, Université de Montréal, Montréal, Canada
| | - Virginia Aragon
- Centre de Recerca en Sanitat Animal (CReSA), Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, UniversitatAutònoma de Barcelona (UAB), Campus, Bellaterra, Barcelona, Spain
- Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), IRTA, UniversitatAutònoma de Barcelona (UAB), Campus, Bellaterra, Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - Nubia R Macedo
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Orhan Sahin
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | | | - Rodger Main
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Alexander W Tucker
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Ganwu Li
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Maria J Clavijo
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA.
- PIC North America, Hendersonville, TN, USA.
| |
Collapse
|
6
|
Scherrer S, Schmitt S, Rademacher F, Kuhnert P, Ghielmetti G, Peterhans S, Stephan R. Development of a new multiplex quantitative PCR for the detection of Glaesserella parasuis, Mycoplasma hyorhinis, and Mycoplasma hyosynoviae. Microbiologyopen 2023; 12:e1353. [PMID: 37379423 PMCID: PMC10186005 DOI: 10.1002/mbo3.1353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/26/2023] [Accepted: 04/13/2023] [Indexed: 06/30/2023] Open
Abstract
Glaesserella parasuis, Mycoplasma hyorhinis, and Mycoplasma hyosynoviae are important porcine pathogens responsible for polyserositis, polyarthritis, meningitis, pneumonia, and septicemia causing significant economic losses in the swine industry. A new multiplex quantitative polymerase chain reaction (qPCR) was designed on one hand for the detection of G. parasuis and the virulence marker vtaA to distinguish between highly virulent and non-virulent strains. On the other hand, fluorescent probes were established for the detection and identification of both M. hyorhinis and M. hyosynoviae targeting 16S ribosomal RNA genes. The development of the qPCR was based on reference strains of 15 known serovars of G. parasuis, as well as on the type strains M. hyorhinis ATCC 17981T and M. hyosynoviae NCTC 10167T . The new qPCR was further evaluated using 21 G. parasuis, 26 M. hyorhinis, and 3 M. hyosynoviae field isolates. Moreover, a pilot study including different clinical specimens of 42 diseased pigs was performed. The specificity of the assay was 100% without cross-reactivity or detection of other bacterial swine pathogens. The sensitivity of the new qPCR was demonstrated to be between 11-180 genome equivalents (GE) of DNA for M. hyosynoviae and M. hyorhinis, and 140-1200 GE for G. parasuis and vtaA. The cut-off threshold cycle was found to be at 35. The developed sensitive and specific qPCR assay has the potential to become a useful molecular tool, which could be implemented in veterinary diagnostic laboratories for the detection and identification of G. parasuis, its virulence marker vtaA, M. hyorhinis, and M. hyosynoviae.
Collapse
Affiliation(s)
- Simone Scherrer
- Section of Veterinary Bacteriology, Institute for Food Safety and Hygiene, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Sarah Schmitt
- Section of Veterinary Bacteriology, Institute for Food Safety and Hygiene, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Fenja Rademacher
- Section of Veterinary Bacteriology, Institute for Food Safety and Hygiene, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Peter Kuhnert
- Institute of Veterinary Bacteriology, Vetsuisse FacultyUniversity of BernBernSwitzerland
| | - Giovanni Ghielmetti
- Section of Veterinary Bacteriology, Institute for Food Safety and Hygiene, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Sophie Peterhans
- Section of Veterinary Bacteriology, Institute for Food Safety and Hygiene, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Roger Stephan
- Section of Veterinary Bacteriology, Institute for Food Safety and Hygiene, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
- Institute for Food Safety and Hygiene, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| |
Collapse
|
7
|
Ewasechko NF, Chaudhuri S, Schryvers AB. Insights from targeting transferrin receptors to develop vaccines for pathogens of humans and food production animals. Front Cell Infect Microbiol 2023; 12:1083090. [PMID: 36683691 PMCID: PMC9853020 DOI: 10.3389/fcimb.2022.1083090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/16/2022] [Indexed: 01/09/2023] Open
Abstract
While developing vaccines targeting surface transferrin receptor proteins in Gram-negative pathogens of humans and food production animals, the common features derived from their evolutionary origins has provided us with insights on how improvements could be implemented in the various stages of research and vaccine development. These pathogens are adapted to live exclusively on the mucosal surfaces of the upper respiratory or genitourinary tract of their host and rely on their receptors to acquire iron from transferrin for survival, indicating that there likely are common mechanisms for delivering transferrin to the mucosal surfaces that should be explored. The modern-day receptors are derived from those present in bacteria that lived over 320 million years ago. The pathogens represent the most host adapted members of their bacterial lineages and may possess factors that enable them to have strong association with the mucosal epithelial cells, thus likely reside in a different niche than the commensal members of the bacterial lineage. The bacterial pathogens normally lead a commensal lifestyle which presents challenges for development of relevant infection models as most infection models either exclude the early stages of colonization or subsequent disease development, and the immune mechanisms at the mucosal surface that would prevent disease are not evident. Development of infection models emulating natural horizontal disease transmission are also lacking. Our aim is to share our insights from the study of pathogens of humans and food production animals with individuals involved in vaccine development, maintaining health or regulation of products in the human and animal health sectors.
Collapse
Affiliation(s)
- Nikolas F Ewasechko
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, Calgary, AB, Canada
| | - Somshukla Chaudhuri
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, Calgary, AB, Canada
| | - Anthony B Schryvers
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, Calgary, AB, Canada
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
8
|
Wu J, Nan W, Peng G, Hu H, Xu C, Huang J, Xiao Z. Screening of linear B-cell epitopes and its proinflammatory activities of Haemophilus parasuis outer membrane protein P2. Front Cell Infect Microbiol 2023; 13:1192651. [PMID: 37207184 PMCID: PMC10189045 DOI: 10.3389/fcimb.2023.1192651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/11/2023] [Indexed: 05/21/2023] Open
Abstract
Haemophilus parasuis is a commensal organism of the upper respiratory tract of pigs, but virulent strains can cause Glässer's disease, resulting in significant economic losses to the swine industry. OmpP2 is an outer membrane protein of this organism that shows considerable heterogeneity between virulent and non-virulent strains, with classification into genotypes I and II. It also acts as a dominant antigen and is involved in the inflammatory response. In this study, 32 monoclonal antibodies (mAbs) against recombinant OmpP2 (rOmpP2) of different genotypes were tested for reactivity to a panel of OmpP2 peptides. Nine linear B cell epitopes were screened, including five common genotype epitopes (Pt1a, Pt7/Pt7a, Pt9a, Pt17, and Pt19/Pt19a) and two groups of genotype-specific epitopes (Pt5 and Pt5-II, Pt11/Pt11a, and Pt11a-II). In addition, we used positive sera from mice and pigs to screen for five linear B-cell epitopes (Pt4, Pt14, Pt15, Pt21, and Pt22). After porcine alveolar macrophages (PAMs) were stimulated with overlapping OmpP2 peptides, we found that the epitope peptides Pt1 and Pt9, and the loop peptide Pt20 which was adjacent epitopes could all significantly upregulated the mRNA expression levels of IL-1α, IL-1β, IL-6, IL-8, and TNF-α. Additionally, we identified epitope peptides Pt7, Pt11/Pt11a, Pt17, Pt19, and Pt21 and loop peptides Pt13 and Pt18 which adjacent epitopes could also upregulate the mRNA expression levels of most proinflammatory cytokines. This suggested that these peptides may be the virulence-related sites of the OmpP2 protein, with proinflammatory activity. Further study revealed differences in the mRNA expression levels of proinflammatory cytokines, including IL-1β and IL-6, between genotype-specific epitopes, which may be responsible for pathogenic differences between different genotype strains. Here, we profiled a linear B-cell epitope map of the OmpP2 protein and preliminarily analyzed the proinflammatory activities and effects of these epitopes on bacterial virulence, providing a reliable theoretical basis for establishing a method to distinguish strain pathogenicity and to screen candidate peptides for subunit vaccines.
Collapse
Affiliation(s)
- Jingbo Wu
- Henry Fok College of Yingdong Biology and Agricultural, Shaoguan University, Shaoguan, China
- North Guangdong Collaborative Innovation and Development Center of Pig Farming and Disease Control, Shaoguan University, Shaoguan, China
- North Guangdong Pig Breeding Waste Reduction Engineering Technology Center, Shaoguan University, Shaoguan, China
| | - Wenjin Nan
- Henry Fok College of Yingdong Biology and Agricultural, Shaoguan University, Shaoguan, China
- North Guangdong Pig Breeding Waste Reduction Engineering Technology Center, Shaoguan University, Shaoguan, China
- *Correspondence: Wenjin Nan,
| | - Guoliang Peng
- Henry Fok College of Yingdong Biology and Agricultural, Shaoguan University, Shaoguan, China
- North Guangdong Pig Breeding Waste Reduction Engineering Technology Center, Shaoguan University, Shaoguan, China
| | - Honghui Hu
- Henry Fok College of Yingdong Biology and Agricultural, Shaoguan University, Shaoguan, China
- North Guangdong Pig Breeding Waste Reduction Engineering Technology Center, Shaoguan University, Shaoguan, China
| | - Chongbo Xu
- Henry Fok College of Yingdong Biology and Agricultural, Shaoguan University, Shaoguan, China
- North Guangdong Collaborative Innovation and Development Center of Pig Farming and Disease Control, Shaoguan University, Shaoguan, China
| | - Jianqiang Huang
- Henry Fok College of Yingdong Biology and Agricultural, Shaoguan University, Shaoguan, China
- North Guangdong Collaborative Innovation and Development Center of Pig Farming and Disease Control, Shaoguan University, Shaoguan, China
| | - Zhengzhong Xiao
- Henry Fok College of Yingdong Biology and Agricultural, Shaoguan University, Shaoguan, China
- North Guangdong Collaborative Innovation and Development Center of Pig Farming and Disease Control, Shaoguan University, Shaoguan, China
| |
Collapse
|
9
|
Pang M, Tu T, Wang Y, Zhang P, Ren M, Yao X, Luo Y, Yang Z. Design of a multi-epitope vaccine against Haemophilus parasuis based on pan-genome and immunoinformatics approaches. Front Vet Sci 2022; 9:1053198. [PMID: 36644533 PMCID: PMC9835091 DOI: 10.3389/fvets.2022.1053198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/30/2022] [Indexed: 12/30/2022] Open
Abstract
Background Glässer's disease, caused by Haemophilus parasuis (HPS), is responsible for economic losses in the pig industry worldwide. However, the existing commercial vaccines offer poor protection and there are significant barriers to the development of effective vaccines. Methods In the current study, we aimed to identify potential vaccine candidates and design a multi-epitope vaccine against HPS by performing pan-genomic analysis of 121 strains and using a reverse vaccinology approach. Results The designed vaccine constructs consist of predicted epitopes of B and T cells derived from the outer membrane proteins of the HPS core genome. The vaccine was found to be highly immunogenic, non-toxic, and non-allergenic as well as have stable physicochemical properties. It has a high binding affinity to Toll-like receptor 2. In addition, in silico immune simulation results showed that the vaccine elicited an effective immune response. Moreover, the mouse polyclonal antibody obtained by immunizing the vaccine protein can be combined with different serotypes and non-typable Haemophilus parasuis in vitro. Conclusion The overall results of the study suggest that the designed multi-epitope vaccine is a promising candidate for pan-prophylaxis against different strains of HPS.
Collapse
Affiliation(s)
- Maonan Pang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Teng Tu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Yin Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, Sichuan, China,*Correspondence: Yin Wang
| | - Pengfei Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Meishen Ren
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Xueping Yao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Yan Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Zexiao Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, Sichuan, China
| |
Collapse
|
10
|
GUO Z, JIA Y, HUANG C, ZHOU Y, CHEN X, YIN R, GUO Y, WANG L, YUAN J, WANG J, YAN P, YIN R. Immunogenicity and protection against Glaesserella parasuis serotype 13 infection after vaccination with recombinant protein LolA in mice. J Vet Med Sci 2022; 84:1527-1535. [PMID: 36216558 PMCID: PMC9705812 DOI: 10.1292/jvms.22-0203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/19/2022] [Indexed: 01/03/2024] Open
Abstract
Glaesserella parasuis is a pathogen causing Glässer's disease characterized by fibrinous polyserositis, polyarthritis, and meningitis. Owing to the low cross-immunogenicity of different bacterial antigens in commercial vaccines, finding and identifying effective immunoprotective antigens will facilitate the development of novel subunit vaccines. In this study, LolA, identified by bioinformatics approaches, was cloned and successfully expressed as a recombinant protein in Escherichia coli, and its immunogenicity and protection were evaluated in a mouse model. The results showed that the recombinant protein LolA can stimulate mice to produce high levels of IgG antibodies and confer 50% protection against challenge with the highly virulent G. parasuis CY1201 strain (serotype 13). By testing the cytokine levels of interleukin 4 (IL-4), IL-10, and interferon-γ (IFN-γ), it was found that the recombinant protein LolA can induce both Th1 and Th2 immune responses in mice. These results suggest that the recombinant protein LolA has the potential to serve as an alternative antigen for a novel vaccine to prevent G. parasuis infection.
Collapse
Affiliation(s)
- Zhongbo GUO
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University,
Shenyang, China
| | - Yongchao JIA
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University,
Shenyang, China
| | - Chen HUANG
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University,
Shenyang, China
| | - Yuanyuan ZHOU
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University,
Shenyang, China
| | - Xin CHEN
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University,
Shenyang, China
| | - Ronglan YIN
- Research Academy of Animal Husbandry and Veterinary Medicine Sciences of Jilin Province, Changchun, China
| | - Ying GUO
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University,
Shenyang, China
| | - Linxi WANG
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University,
Shenyang, China
| | - Jing YUAN
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University,
Shenyang, China
| | - Jingyi WANG
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University,
Shenyang, China
| | - Ping YAN
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University,
Shenyang, China
| | - Ronghuan YIN
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University,
Shenyang, China
| |
Collapse
|
11
|
Studying the Interaction of Neutrophils and Glaesserella Parasuis Indicates a Serotype Independent Benefit from Degradation of NETs. Pathogens 2022; 11:pathogens11080880. [PMID: 36015001 PMCID: PMC9415231 DOI: 10.3390/pathogens11080880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 02/04/2023] Open
Abstract
Glaesserella (G.) parasuis is one of the most important porcine pathogens causing Glaesser’s disease. Neutrophil granulocytes are the major counteracting cell type of the innate immune system, which contribute to the host defense by phagocytosis or the formation of neutrophil extracellular traps (NETs). Recently, NET-formation has been shown to facilitate the survival of bacteria from the Pasteurellaceae family. However, the interaction of NETs and G. parasuis is unclear so far. In this study, we investigated the interplay of three G. parasuis serotypes with porcine neutrophils. The production of reactive oxygen species by neutrophils after G. parasuis infection varied slightly among the serotypes but was generally low and not significantly influenced by the serotypes. Interestingly, we detected that independent of the serotype of G. parasuis, NET formation in neutrophils was induced to a small but significant extent. This phenomenon occurred despite the ability of G. parasuis to release nucleases, which can degrade NETs. Furthermore, the growth of Glaesserella was enhanced by external DNases and degraded NETs. This indicates that Glaesserella takes up degraded NET components, supplying them with nicotinamide adenine dinucleotide (NAD), as this benefit was diminished by inhibiting the 5′-nucleotidase, which metabolizes NAD. Our results indicate a serotype-independent interaction of Glaesserella with neutrophils by inducing NET-formation and benefiting from DNA degradation.
Collapse
|
12
|
Identification of Glaesserella parasuis and Differentiation of Its 15 Serovars Using High-Resolution Melting Assays. Pathogens 2022; 11:pathogens11070752. [PMID: 35889997 PMCID: PMC9323117 DOI: 10.3390/pathogens11070752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 02/04/2023] Open
Abstract
Glaesserella parasuis is the etiological agent of Glässer’s disease, which is associated with polyserositis and arthritis and has a significant impact on the economy of the pig production industry. For the optimal surveillance of this pathogen, as well as for the investigation of G. parasuis-associated diseases, it is crucial to identify G. parasuis at the serovar level. In this work, we designed and developed new high-resolution melting (HRM) approaches, namely, the species-specific GPS-HRM1 and two serovar-specific HRM assays (GPS-HRM2 and GPS-HRM3), and evaluated the sensitivity and specificity of the assays. The HRM assays demonstrated good sensitivity, with 12.5 fg–1.25 pg of input DNA for GPS-HRM1 and 125 fg–12.5 pg for GPS-HRM2 and GPS-HRM3, as well as a specificity of 100% for the identification of all recognized 15 G. parasuis serovars. Eighteen clinical isolates obtained between 2014 and 2022 in Switzerland were tested by applying the developed HRM assays, which revealed a heterogeneous distribution of serovars 2, 7, 4, 13, 1, and 14. The combination with virulence marker vtaA (virulence-associated trimeric autotransporters) allows for the prediction of potentially virulent strains. The assays are simple to execute and enable a reliable low-cost approach, thereby refining currently available diagnostic tools.
Collapse
|
13
|
Characterization of a universal neutralizing monoclonal antibody against Glaesserella parasuis CdtB. Vet Microbiol 2022; 270:109446. [DOI: 10.1016/j.vetmic.2022.109446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/23/2022]
|
14
|
Guo LL, Gao RY, Wang LH, Lin SJ, Fang BH, Zhao YD. In vivo Pharmacokinetic/Pharmacodynamic (PK/PD) Profiles of Tulathromycin in an Experimental Intraperitoneal Haemophilus parasuis Infection Model in Neutropenic Guinea Pigs. Front Vet Sci 2021; 8:715887. [PMID: 34869712 PMCID: PMC8632807 DOI: 10.3389/fvets.2021.715887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/07/2021] [Indexed: 12/26/2022] Open
Abstract
Tulathromycin is a semi-synthetic macrolide antimicrobial that has an important role in veterinary medicine for respiratory disease. The objective of the study was to develop a pharmacokinetic/pharmacodynamic (PK/PD) model to examine the efficacy and determine an optimal dosage of tulathromycin intramuscular (IM) treatment against Haemophilus parasuis infection induced after intraperitoneal inoculation in neutropenic guinea pigs. The PKs of tulathromycin in serum and lung tissue after intramuscular administration at doses of 1, 10, and 20 mg/kg in H. parasuis-infected neutropenic guinea pigs were evaluated by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The tulathromycin minimum inhibitory concentration (MIC) against H. parasuis was ~16 times lower in guinea pig serum (0.03 μg/mL) than in cation-adjusted Mueller-Hinton broth (CAMHB) (0.5 μg/mL). The ratio of the 168-h area under the concentration-time curve (AUC) to MIC (AUC168h/MIC) positively correlated with the in vivo antibacterial effectiveness of tulathromycin (R 2 = 0.9878 in serum and R 2 = 0.9911 in lung tissue). The computed doses to achieve a reduction of 2-log10 CFU/lung from the ratios of AUC72h/MIC were 5.7 mg/kg for serum and 2.5 mg/kg for lung tissue, which lower than the values of 13.2 mg/kg for serum and 8.9 mg/kg for lung tissue with AUC168h/MIC. In addition, using as objective a 2-log10 reduction and an AUC0-72h as the value of the PK/PD index could be more realistic. The results of this study could provide a solid foundation for the application of PK/PD models in research on macrolide antibiotics used to treat respiratory diseases.
Collapse
Affiliation(s)
- Li-li Guo
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Rui-yuan Gao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Li-hua Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Shu-jun Lin
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Bing-hu Fang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yong-da Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
15
|
JIA YC, CHEN X, ZHOU YY, YAN P, GUO Y, YIN RL, YUAN J, WANG LX, WANG XZ, YIN RH. Application of mouse model for evaluation of recombinant LpxC and GmhA as novel antigenic vaccine candidates of Glaesserella parasuis serotype 13. J Vet Med Sci 2021; 83:1500-1508. [PMID: 34393140 PMCID: PMC8569868 DOI: 10.1292/jvms.21-0298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/30/2021] [Indexed: 11/22/2022] Open
Abstract
Glaesserella parasuis (G. parasuis) has been one of the bacteria affecting the large-scale swine industry. Lack of an effective vaccine has limited control of the disease, which has an effect on prevalence. In order to improve the cross-protection of vaccines, development on subunit vaccines has become a hot spot. In this study, we firstly cloned the lpxC and gmhA genes from G. parasuis serotype 13 isolates, and expressed and purified their proteins. The results showed that LpxC and GmhA can stimulate mice to produce IgG antibodies. Through testing the cytokine levels of interleukin 4 (IL-4), IL-10 and interferon-γ (IFN-γ), it is found that recombinant GmhA, the mixed LpxC and GmhA can stimulate the body to produce Th1 and Th2 immune responses, while recombinant LpxC and inactivated bacteria can only produce Th2 immune responses. On the protection rate for mice, recombinant LpxC, GmhA and the mixture of LpxC and GmhA can provide 50%, 50% and 60% protection for lethal dose of G. parasuis infection, respectively. The partial protection achieved by the recombinant LpxC and GmhA supports their potential as novel vaccine candidate antigens against G. parasuis.
Collapse
Affiliation(s)
- Yong C. JIA
- Key Laboratory of Livestock Infectious Diseases in Northeast
China, Ministry of Education, College of Animal Science & Veterinary Medicine,
Shenyang Agricultural University, Shenyang 110866, China
| | - Xin CHEN
- Key Laboratory of Livestock Infectious Diseases in Northeast
China, Ministry of Education, College of Animal Science & Veterinary Medicine,
Shenyang Agricultural University, Shenyang 110866, China
| | - Yuan Y. ZHOU
- Key Laboratory of Livestock Infectious Diseases in Northeast
China, Ministry of Education, College of Animal Science & Veterinary Medicine,
Shenyang Agricultural University, Shenyang 110866, China
| | - Ping YAN
- Key Laboratory of Livestock Infectious Diseases in Northeast
China, Ministry of Education, College of Animal Science & Veterinary Medicine,
Shenyang Agricultural University, Shenyang 110866, China
| | - Ying GUO
- Key Laboratory of Livestock Infectious Diseases in Northeast
China, Ministry of Education, College of Animal Science & Veterinary Medicine,
Shenyang Agricultural University, Shenyang 110866, China
| | - Rong L. YIN
- Research Academy of Animal Husbandry and Veterinary Medicine
Sciences of Jilin Province, Changchun 130062, China
| | - Jing YUAN
- Key Laboratory of Livestock Infectious Diseases in Northeast
China, Ministry of Education, College of Animal Science & Veterinary Medicine,
Shenyang Agricultural University, Shenyang 110866, China
| | - Lin X. WANG
- Key Laboratory of Livestock Infectious Diseases in Northeast
China, Ministry of Education, College of Animal Science & Veterinary Medicine,
Shenyang Agricultural University, Shenyang 110866, China
| | - Xin Z. WANG
- Liaoning Agricultural Technical College, Yingkou, 115009,
China
| | - Rong H. YIN
- Key Laboratory of Livestock Infectious Diseases in Northeast
China, Ministry of Education, College of Animal Science & Veterinary Medicine,
Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
16
|
Qi B, Li F, Chen K, Ding W, Xue Y, Wang Y, Wang H, Ding K, Zhao Z. Comparison of the Glaesserella parasuis Virulence in Mice and Piglets. Front Vet Sci 2021; 8:659244. [PMID: 34250058 PMCID: PMC8265781 DOI: 10.3389/fvets.2021.659244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/24/2021] [Indexed: 12/02/2022] Open
Abstract
In this study, we compared the virulence of the most common serovars of Glaesserella parasuis in China, serovars 4, 5, 12, and 13 (36 strains in total) in BALB/c mice and piglets. In mice, the median lethal doses (LD50s) of the four serovars were roughly 9.80 × 107–4.60 × 109 CFU, 2.10 × 108–8.85 × 109 CFU, 4.81 × 107–7.01 × 109 CFU, and 1.75 × 108–8.45 × 108 CFU, respectively. Serovar 13 showed the strongest virulence, followed by serovar 4, serovar 12, and serovar 5, but a significant difference in virulence was only observed between serovars 5 and 13. The virulence of strains of the same serovars differed significantly in piglets. Virulent and attenuated strains were present in all serovars, but serovar 5 was the most virulent in piglets, followed by serovars 13, 4, and 12. A significant difference in virulence was observed between serovars 5 and 4 and between serovars 5 and 12. However, the virulence of serovars 5 and 13 did not differ significantly. This comprehensive analysis of G. parasuis virulence in mice and piglets demonstrated that: (1) the order of virulence of the four domestic epidemic serovars (from strongest to weakest) in piglets was serovars 5, 13, 4, and 12; (2) both virulent and attenuated strains were present in all serovars, so virulence did not necessarily correlate with serovar; (3) Although G. parasuis was fatal in BALB/c mice, its virulence is inconsistent with that in piglets, indicating that BALB/c mice are inadequate as an alternative model of G. parasuis infection.
Collapse
Affiliation(s)
- Baichuan Qi
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Feiyue Li
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Kunpeng Chen
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Wenwen Ding
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Yun Xue
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Yang Wang
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China.,Henan Provincial Open Laboratory of Key Disciplines in Environmental and Animal Products Safety, Henan University of Science and Technology, Luoyang, China
| | - Hongwei Wang
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China.,Henan Provincial Open Laboratory of Key Disciplines in Environmental and Animal Products Safety, Henan University of Science and Technology, Luoyang, China
| | - Ke Ding
- Henan Provincial Open Laboratory of Key Disciplines in Environmental and Animal Products Safety, Henan University of Science and Technology, Luoyang, China
| | - Zhanqin Zhao
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China.,Henan Provincial Open Laboratory of Key Disciplines in Environmental and Animal Products Safety, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
17
|
Matiašková K, Kavanová L, Kulich P, Gebauer J, Nedbalcová K, Kudláčková H, Tesařík R, Faldyna M. The Role of Antibodies Against the Crude Capsular Extract in the Immune Response of Porcine Alveolar Macrophages to In Vitro Infection of Various Serovars of Glaesserella ( Haemophilus) parasuis. Front Immunol 2021; 12:635097. [PMID: 33968026 PMCID: PMC8101634 DOI: 10.3389/fimmu.2021.635097] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
In Glässer’s disease outbreaks, Glaesserella (Haemophilus) parasuis has to overcome the non-specific immune system in the lower respiratory tract, the alveolar macrophages. Here we showed that porcine alveolar macrophages (PAMs) were able to recognize and phagocyte G. parasuis with strain-to-strain variability despite the presence of the capsule in virulent (serovar 1, 5, 12) as well in avirulent strains (serovar 6 and 9). The capsule, outer membrane proteins, virulence-associated autotransporters, cytolethal distending toxins and many other proteins have been identified as virulence factors of this bacterium. Therefore, we immunized pigs with the crude capsular extract (cCE) from the virulent G. parasuis CAPM 6475 strain (serovar 5) and evaluated the role of the anti-cCE/post-vaccinal IgG in the immune response of PAMs to in vitro infection with various G. parasuis strains. We demonstrated the specific binding of the antibodies to the cCE by Western-blotting assay and immunoprecipitation as well as the specific binding to the strain CAPM 6475 in transmission electron microscopy. In the cCE, we identified several virulence-associated proteins that were immunoreactive with IgG isolated from sera of immunized pigs. Opsonization of G. parasuis strains by post-vaccinal IgG led to enhanced phagocytosis of G. parasuis by PAMs at the first two hours of infection. Moreover, opsonization increased the oxidative burst and expression/production of both pro- and anti-inflammatory cytokines. The neutralizing effects of these antibodies on the antioxidant mechanisms of G. parasuis may lead to attenuation of its virulence and pathogenicity in vivo. Together with opsonization of bacteria by these antibodies, the host may eliminate G. parasuis in the infection site more efficiently. Based on these results, the crude capsular extract is a vaccine candidate with immunogenic properties.
Collapse
Affiliation(s)
- Katarína Matiašková
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czechia
| | - Lenka Kavanová
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czechia
| | - Pavel Kulich
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Brno, Czechia
| | - Jan Gebauer
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czechia
| | - Kateřina Nedbalcová
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czechia
| | - Hana Kudláčková
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czechia
| | - Radek Tesařík
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czechia
| | - Martin Faldyna
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czechia.,Department of Infectious Diseases and Microbiology, University of Veterinary Sciences, Brno, Czechia
| |
Collapse
|
18
|
Hau SJ, Eberle KC, Brockmeier SL. Importance of strain selection in the generation of heterologous immunity to Glaesserella (Haemophilus) parasuis. Vet Immunol Immunopathol 2021; 234:110205. [PMID: 33636545 DOI: 10.1016/j.vetimm.2021.110205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 02/01/2023]
Abstract
Glaesserella (Haemophilus) parasuis is a part of the microbiota of healthy pigs and also causes the systemic condition called Glässer's disease. G. parasuis is categorized by it capsular polysaccharide into 15 serovars. Because of the serovar and strain specific immunity generated by whole cell vaccines and the rapid onset of disease, G. parasuis has been difficult to control in the swine industry. This report investigated the protection afforded by the use of two serovar 5 isolates (Nagasaki and HS069) as whole cell, killed bacterins against homologous challenge and heterologous challenge with the serovar 1 strain 12939 to better understand bacterin generated immunity. Both bacterins induced a high antibody titer to the vaccine strain and the heterologous challenge strain. Protection was seen with both bacterins against homologous challenge; however, after heterologous challenge, the HS069 bacterin provided complete protection and all Nagasaki bacterin vaccinated animals succumbed to disease. The difference in protection appears to be due to differences in antibody specificity and the capacity of induced antibody to fix complement and opsonize G. parasuis, as shown by Western blotting and functional assays. This report shows the importance of strain selection when developing bacterin vaccines, as some strains are better able to generate heterologous protection. The difference in protection seen here can also be utilized to detect proteins of interest for subunit vaccine development.
Collapse
Affiliation(s)
- Samantha J Hau
- National Animal Disease Center, ARS, USDA, 1920 Dayton Ave, Ames, IA, 50010, United States; Oak Ridge Institute for Science and Education, 1299 Bethel Valley Rd, Oak Ridge, TN, 37830, United States
| | - Kirsten C Eberle
- National Animal Disease Center, ARS, USDA, 1920 Dayton Ave, Ames, IA, 50010, United States; Oak Ridge Institute for Science and Education, 1299 Bethel Valley Rd, Oak Ridge, TN, 37830, United States
| | - Susan L Brockmeier
- National Animal Disease Center, ARS, USDA, 1920 Dayton Ave, Ames, IA, 50010, United States.
| |
Collapse
|
19
|
Schuwerk L, Hoeltig D, Waldmann KH, Strutzberg-Minder K, Valentin-Weigand P, Rohde J. Serotyping and pathotyping of Glaesserella parasuis isolated 2012-2019 in Germany comparing different PCR-based methods. Vet Res 2020; 51:137. [PMID: 33203465 PMCID: PMC7673094 DOI: 10.1186/s13567-020-00862-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/23/2020] [Indexed: 01/21/2023] Open
Abstract
Glaesserella parasuis is an important pathogen in swine production. It acts as a primary pathogen in systemic Glässer´s disease and as a secondary pathogen in Porcine Respiratory Disease Complex. In this study, a collection of 308 isolates from carrier animals and individuals with respiratory or Glässer´s disease isolated 2012–2019 in Germany was analysed. Isolates were characterized for serovar implementing two different PCR methods. Additionally, two different PCR methods for pathotyping isolates were applied to the collection and results compared. Serovar 6 (p < 0.0001) and 9 (p = 0.0007) were correlated with carrier isolates and serovar 4 was associated with isolates from animals with respiratory disease (p = 0.015). In systemic isolates, serovar 13 was most frequently detected (18.9%). Various other serovars were isolated from all sites and the ratio of serovar 5 to serovar 12 was approximately 1:2. These two serovars together represented 14.3% of the isolates; only serovar 4 was isolated more frequently (24.7%). The pathotyping method based on the leader sequence (LS = ESPR of vta) was easy to perform and corresponded well to the clinical background information. Of the carrier isolates 72% were identified as non-virulent while 91% of the systemic isolates were classified as virulent (p < 0.0001). Results of the pathotyping PCR based on 10 different marker genes overall were in good agreement with clinical metadata as well as with results of the LS-PCR. However, the pathotyping PCR was more complicated to perform and analyze. In conclusion, a combination of the serotyping multiplex-PCR and the LS-PCR could improve identification of clinically relevant G. parasuis isolates, especially from respiratory samples.
Collapse
Affiliation(s)
- Lukas Schuwerk
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Doris Hoeltig
- Clinic for Swine and Small Ruminants and Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Karl-Heinz Waldmann
- Clinic for Swine and Small Ruminants and Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | | | - Peter Valentin-Weigand
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Judith Rohde
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine, Foundation, Hannover, Germany.
| |
Collapse
|
20
|
Bom HA, Silva Filho GB, Silva EG, Pereira MR, Fonseca SM, Boswell R, Almeida VM, Souza FA, Mendonça FS. Glässer’s disease in swine from Northeastern Brazil. PESQUISA VETERINÁRIA BRASILEIRA 2020. [DOI: 10.1590/1678-5150-pvb-6642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT: Glässer’s disease is an important infectious disorder of swine caused by Haemophilus parasuis. Although well recognized in most regions of Brazil, outbreaks of Glässer’s disease have not been described in Northeastern region. For this reason, three municipalities of the Pernambuco State were visited in order to identify histories of high mortality in growing and finishing pigs. The main clinical signs consisted of dry cough, apathy, fever, anorexia, paresis, muscle tremors, motor incoordination, seizures leading to high mortality rates. Nine pigs were necropsied, and fragments of the nervous system, organs of the abdominal and thoracic cavities were collected for histological analysis. In addition, lung and brain fragments were used for DNA extraction and molecular testing by real-time Polymerase Chain Reaction (PCR). Grossly, the main lesions consisted of petechial hemorrhages or ecchymosis on the skin of the face, abdomen, forelimbs, and hind limbs. The main severe lesions consisted of hydropericardium, hemopericardium, fibrinous pericarditis and pleuropneumonia. Microscopically, pericarditis, epicarditis and subepicardial myocarditis, followed by a moderate to severe multifocal pleuropneumonia, fibrinosuppurative and necrotizing were the most frequent lesions observed. Real-time PCR amplified H. parasuis infB gene in all samples analyzed, confirming the presence of this etiologic agent.
Collapse
Affiliation(s)
| | | | | | | | | | - Rikki Boswell
- Western University of Health Sciences, United States
| | | | | | | |
Collapse
|
21
|
Wan X, Li X, Osmundson T, Li C, Yan H. Whole-genome sequence analyses of Glaesserella parasuis isolates reveals extensive genomic variation and diverse antibiotic resistance determinants. PeerJ 2020; 8:e9293. [PMID: 32607281 PMCID: PMC7316082 DOI: 10.7717/peerj.9293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/13/2020] [Indexed: 01/18/2023] Open
Abstract
Background Glaesserella parasuis (G. parasuis) is a respiratory pathogen of swine and the etiological agent of Glässer’s disease. The structural organization of genetic information, antibiotic resistance genes, potential pathogenicity, and evolutionary relationships among global G. parasuis strains remain unclear. The aim of this study was to better understand patterns of genetic variation, antibiotic resistance factors, and virulence mechanisms of this pathogen. Methods The whole-genome sequence of a ST328 isolate from diseased swine in China was determined using Pacbio RS II and Illumina MiSeq platforms and compared with 54 isolates from China sequenced in this study and 39 strains from China and eigtht other countries sequenced by previously. Patterns of genetic variation, antibiotic resistance, and virulence mechanisms were investigated in relation to the phylogeny of the isolates. Electrotransformation experiments were performed to confirm the ability of pYL1—a plasmid observed in ST328—to confer antibiotic resistance. Results The ST328 genome contained a novel Tn6678 transposon harbouring a unique resistance determinant. It also contained a small broad-host-range plasmid pYL1 carrying aac(6’)-Ie-aph(2”)-Ia and blaROB-1; when transferred to Staphylococcus aureus RN4220 by electroporation, this plasmid was highly stable under kanamycin selection. Most (85.13–91.74%) of the genetic variation between G. parasuis isolates was observed in the accessory genomes. Phylogenetic analysis revealed two major subgroups distinguished by country of origin, serotype, and multilocus sequence type (MLST). Novel virulence factors (gigP, malQ, and gmhA) and drug resistance genes (norA, bacA, ksgA, and bcr) in G. parasuis were identified. Resistance determinants (sul2, aph(3”)-Ib, norA, bacA, ksgA, and bcr) were widespread across isolates, regardless of serovar, isolation source, or geographical location. Conclusions Our comparative genomic analysis of worldwide G. parasuis isolates provides valuable insight into the emergence and transmission of G. parasuis in the swine industry. The result suggests the importance of transposon-related and/or plasmid-related gene variations in the evolution of G. parasuis.
Collapse
Affiliation(s)
- Xiulin Wan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xinhui Li
- Department of Microbiology, University of Wisconsin-La Crosse, La Crosse, United States of America
| | - Todd Osmundson
- Department of Biology, University of Wisconsin-La Crosse, La Crosse, United States of America
| | - Chunling Li
- Institute of Animal Health Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - He Yan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
22
|
Hau SJ, Luan SL, Loving CL, Nicholson TL, Wang J, Peters SE, Seilly D, Weinert LA, Langford PR, Rycroft AN, Wren BW, Maskell DJ, Tucker AW, Brockmeier SL. Evaluation of the recombinant proteins RlpB and VacJ as a vaccine for protection against Glaesserella parasuis in pigs. BMC Vet Res 2020; 16:167. [PMID: 32460764 PMCID: PMC7252510 DOI: 10.1186/s12917-020-02377-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 05/14/2020] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Glaesserella parasuis, the causative agent of Glӓsser's disease, is widespread in swine globally resulting in significant economic losses to the swine industry. Prevention of Glӓsser's disease in pigs has been plagued with an inability to design broadly protective vaccines, as many bacterin based platforms generate serovar or strain specific immunity. Subunit vaccines are of interest to provide protective immunity to multiple strains of G. parasuis. Selected proteins for subunit vaccination should be widespread, highly conserved, and surface exposed. RESULTS Two candidate proteins for subunit vaccination (RlpB and VacJ) against G. parasuis were identified using random mutagenesis and an in vitro organ culture system. Pigs were vaccinated with recombinant RlpB and VacJ, outer membrane proteins with important contributions to cellular function and viability. Though high antibody titers to the recombinant proteins and increased interferon-γ producing cells were found in subunit vaccinated animals, the pigs were not protected from developing systemic disease. CONCLUSIONS It appears there may be insufficient RlpB and VacJ exposed on the bacterial surface for antibody to bind, preventing high RlpB and VacJ specific antibody titers from protecting animals from G. parasuis. Additionally, this work confirms the importance of utilizing the natural host species when assessing the efficacy of vaccine candidates.
Collapse
Affiliation(s)
- Samantha J Hau
- USDA, ARS, National Animal Disease Center, 1920 Dayton Ave, Ames, IA, 50010, USA
| | - Shi-Lu Luan
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Crystal L Loving
- USDA, ARS, National Animal Disease Center, 1920 Dayton Ave, Ames, IA, 50010, USA
| | - Tracy L Nicholson
- USDA, ARS, National Animal Disease Center, 1920 Dayton Ave, Ames, IA, 50010, USA
| | - Jinhong Wang
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Sarah E Peters
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - David Seilly
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Lucy A Weinert
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Paul R Langford
- Section of Paediatric Infectious Diseases, Department of Infectious Disease, Imperial College London, St. Mary's Campus, London, UK
| | | | - Brendan W Wren
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Duncan J Maskell
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.,Current address: The University of Melbourne, Level 9, Raymond Priestley Building, Melbourne, Victoria, 3010, Australia
| | - Alexander W Tucker
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Susan L Brockmeier
- USDA, ARS, National Animal Disease Center, 1920 Dayton Ave, Ames, IA, 50010, USA.
| | | |
Collapse
|
23
|
Dazzi CC, Guizzo JA, Prigol SR, Kreutz LC, Driemeier D, Chaudhuri S, Schryvers AB, Frandoloso R. New Pathological Lesions Developed in Pigs by a "Non-virulent" Strain of Glaesserella parasuis. Front Vet Sci 2020; 7:98. [PMID: 32158772 PMCID: PMC7052124 DOI: 10.3389/fvets.2020.00098] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/10/2020] [Indexed: 12/17/2022] Open
Abstract
Glaesserella parasuis is a Gram-negative bacterium that causes Glässer's disease, a common pathology found in young pigs characterized by polyarthritis, polyserositis, and meningitis. The bacterium has 15 known serovars that have been classified by virulence. Serovars 1, 4, 5, and 12 are considered highly virulent and used in most studies. Serovars 3, 6, 7, 9, and 11 are considered avirulent. Recent reports that serovar 7 is an emerging problem in the pig industry indicate that the association of virulence and serovar may not always be reliable. This led us to infect colostrum-deprived piglets with the reference serovar 7 strain (SV7 strain 174) that had been passaged through pigs and characterize the clinical and pathological signs. We observed that SV7 strain 174 caused clinical signs consistent with Glässer's disease in all infected piglets that succumbed to infection for up to day 5 post-infection. Macroscopic and microscopic lesions were consistent with those found in piglets infected with conventional virulent serovars. In addition, we describe novel microscopic lesions associated with Glässer's disease such as endophthalmitis and thymic depletion. Thus, our findings indicate that SV7 strain 174 causes classical signs of Glässer's disease in colostrum-deprived piglets and some caution should be used in employing vaccine strategies based on association between capsular serovar and virulence.
Collapse
Affiliation(s)
- Cláudia Cerutti Dazzi
- Laboratory of Microbiology and Advanced Immunology, Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo, Brazil
| | - João Antônio Guizzo
- Laboratory of Microbiology and Advanced Immunology, Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo, Brazil
| | - Simone Ramos Prigol
- Laboratory of Microbiology and Advanced Immunology, Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo, Brazil
| | - Luiz Carlos Kreutz
- Laboratory of Microbiology and Advanced Immunology, Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo, Brazil
| | - David Driemeier
- Department of Veterinary Pathology, School of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Somshukla Chaudhuri
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - Anthony Bernard Schryvers
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - Rafael Frandoloso
- Laboratory of Microbiology and Advanced Immunology, Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo, Brazil
| |
Collapse
|
24
|
Immunological and molecular techniques used for determination of serotypes in Pasteurellaceae. J Microbiol Methods 2020. [DOI: 10.1016/bs.mim.2020.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
25
|
Hau SJ, Mou KT, Bayles DO, Brockmeier SL. Transcriptomic differences noted in Glaesserella parasuis between growth in broth and on agar. PLoS One 2019; 14:e0220365. [PMID: 31386681 PMCID: PMC6684057 DOI: 10.1371/journal.pone.0220365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/15/2019] [Indexed: 11/27/2022] Open
Abstract
Glaesserella parasuis is the cause of Glӓsser’s disease in pigs and is a significant contributor to post-weaning mortality in the swine industry. Prevention of G. parasuis disease relies primarily on bacterin vaccines, which have shown good homologous protection and variable heterologous protection. Bacterin production involves large scale growth of the bacteria and proteins produced during the proliferation phase of production become important antigens that stimulate the immune response. In order to evaluate genes activated during G. parasuis growth on different media substrates, the transcriptome of broth and agar grown G. parasuis strain 29755 were sequenced and compared. The transcription of most purported virulence genes were comparable between broth and agar grown G. parasuis; however, four virulence-associated genes, including ompA and vapD, had elevated expression under agar growth, while six virulence-associate genes had elevated expression during broth growth, including several protease genes. Additionally, there were metabolic shifts toward increased protein and lipid production and increased cellular division in broth grown G. parasuis. The results contribute to the understanding of how growth substrate alters gene transcription and protein expression, which may impact vaccine efficacy if immunogens important to the protective immune response are not produced under specific in vitro conditions. While the results of this work are unable to fully elucidate which growth medium presents a transcriptome more representative of in vivo samples or best suited for bacterin production, it forms a foundation that can be used for future comparisons and provides a better understanding of the metabolic differences in broth and agar grown bacteria.
Collapse
Affiliation(s)
- Samantha J. Hau
- Virus and Prion Research Unit, National Animal Disease Center, ARS, USDA, Ames, Iowa, United States of America
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, United States of America
| | - Kathy T. Mou
- Virus and Prion Research Unit, National Animal Disease Center, ARS, USDA, Ames, Iowa, United States of America
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, United States of America
| | - Darrell O. Bayles
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, ARS, USDA, Ames, Iowa, United States of America
| | - Susan L. Brockmeier
- Virus and Prion Research Unit, National Animal Disease Center, ARS, USDA, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
26
|
Li J, Xu L, Su F, Yu B, Yuan X. Association between iscR-based phylogeny, serovars and potential virulence markers of Haemophilus parasuis. PeerJ 2019; 7:e6950. [PMID: 31143554 PMCID: PMC6524630 DOI: 10.7717/peerj.6950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/09/2019] [Indexed: 12/03/2022] Open
Abstract
Haemophilus parasuis is an economically important bacterial pathogen of swine. Extensive genetic and phenotypic heterogeneity among H. parasuis strains have been observed, which hinders the deciphering of the population structure and its association with clinical virulence. In this study, two highly divergent clades were defined according to iron-sulphur cluster regulator (iscR)-based phylogeny analysis of 148 isolates. Clear separation of serovars and potential virulence markers (PVMs) were observed between the two clades, which are indicative of independent evolution of the two lineages. Previously suggested virulence factors showed no correlation with clinical virulence, and were probably clade or serovar specific genes emerged during different stage of evolution. PVMs profiles varied widely among isolates in the same serovar. Higher strain diversity in respect of PVMs was found for isolates from multi-strain infected farms than those from single strain infected ones, which indicates that multi-strain infection in one farm may increase the frequency of gene transfer in H. parasuis. Systemic isolates were more frequently found in serovar 13 and serovar 12, while no correlation between clinical virulence and iscR-based phylogeny was observed. It shows that iscR is a reliable marker for studying population structure of H. parasuis, while other factors should be included to avoid the interference of gene exchange of iscR between isolates. The two lineages of H. parasuis may have undergone independent evolution, but show no difference in clinical virulence. Wide distribution of systemic isolates across the entire population poses new challenge for development of vaccine with better cross-protection. Our study provides new information for better deciphering the population structure of H. parasuis, which helps understanding the extreme diversity within this pathogenic bacterium.
Collapse
Affiliation(s)
- Junxing Li
- Zhejiang Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Lihua Xu
- Zhejiang Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Fei Su
- Zhejiang Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Bin Yu
- Zhejiang Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Xiufang Yuan
- Zhejiang Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
27
|
Zhao Y, Guo LL, Fang B, Liu B. Pharmacokinetic/pharmacodynamic (PK/PD) evaluation of tulathromycin against Haemophilus parasuis in an experimental neutropenic guinea pig model. PLoS One 2018; 13:e0209177. [PMID: 30596709 PMCID: PMC6312216 DOI: 10.1371/journal.pone.0209177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 11/30/2018] [Indexed: 01/30/2023] Open
Abstract
The objective of the study was to develop an ex-vivo PK/PD model of intramuscular (IM) administration of tulathromycin and to test its efficacy against Haemophilus parasuis (H. parasuis) infection in intraperitoneal-inoculated neutropenic guinea pigs. The pharmacokinetics (PKs) of tulathromycin at doses of 1 and 10 mg/kg in H. parasuis-infected neutropenic guinea pig were studied by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). In vitro minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), mutant prevention concentration (MPC), post-antibiotic effect (PAE) and dynamic time-kill curve experiments were carried out using H. parasuis strain 13R. Tulathromycin exhibited concentration-dependent activity and PAE persisted long after administration of the antibiotic. The ratio of the 24-h area under the concentration–time curve (AUC) to MIC in serum (AUC24h/MICserum) was recognized as an important PK/PD parameter that positively correlated with the in vitro antibacterial effectiveness of tulathromycin (R2 = 0.9961 or R2 = 1). For the 1 and 10 mg/kg treatments with tulathromycin, the values of AUC24h/MIC for H. parasuis bacteriostatic action, bactericidal action and virtual bacterial eradication were respectively 22.73, 34.5 and 88.03 h for the 1 mg/kg treatment and respectively 24.94, 30.94 and 49.92 h for the 10 mg/kg treatment. In addition, we demonstrated that doses of 7.2–8.0 mg/kg of tulathromycin resulted in high eradication rates (99.99%). Using a previously published conversion factor of 0.296, we were able to estimate an approximate dose, 2.1–2.4 mg/kg, that should also obtain high eradication rates in the target animal, pigs. This study can help optimize tulathromycin efficacy against H. parasuis infections in swine farming.
Collapse
Affiliation(s)
- Yongda Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - Li-Li Guo
- Qingdao Yebio Biological Engineering Co., Ltd, Qingdao, Shandong, China
| | - Binghu Fang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China
- * E-mail: (FBH); (LBT)
| | - Baotao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
- * E-mail: (FBH); (LBT)
| |
Collapse
|
28
|
Lin WH, Shih HC, Lin CF, Yang CY, Chang YF, Lin CN, Chiou MT. Molecular serotyping of Haemophilus parasuis isolated from diseased pigs and the relationship between serovars and pathological patterns in Taiwan. PeerJ 2018; 6:e6017. [PMID: 30519512 PMCID: PMC6275120 DOI: 10.7717/peerj.6017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/26/2018] [Indexed: 11/20/2022] Open
Abstract
Background Haemophilus parasuis is the etiological agent of Glässer’s disease, and causes severe economic losses in the swine industry. Serovar classification is intended as an indicator of virulence and pathotype and is also crucial for vaccination programs and vaccine development. According to a polysaccharide biosynthesis locus analysis, H. parasuis isolates could be classified by a molecular serotyping assay except serovars 5 and 12 detected by the same primer pair. The aim of this study was to identify H. parasuis isolates from diseased pigs in Taiwan by using a molecular serotyping assay and to analyze the relationship between serovars and pathological patterns. Methods From August 2013 to February 2017, a total of 133 isolates from 277 lesions on 155 diseased animals from 124 infected herds serotyped by multiplex PCR and analyzed with pathological data. Results The dominant serovars of H. parasuis in Taiwan were serovars 5/12 (37.6%), 4 (27.8%) and 13 (15%) followed by molecular serotyping non-typable (MSNT) isolates (13.5%). Nevertheless, the serovar-specific amplicons were not precisely the same sizes as previously indicated in the original publication, and MSNT isolates appeared with unexpected amplicons or lacked serovar-specific amplicons. Most H. parasuis isolates were isolated from nursery pigs infected with porcine reproductive and respiratory syndrome virus. The percentage of lung lesions (30.4%) showing H. parasuis infection was significantly higher than that of serosal lesions. Discussion Collectively, the distribution of serovars in Taiwan is similar to that found in other countries, but MSNT isolates remain due to genetic variations. Furthermore, pulmonary lesions may be optimum sites for H. parasuis isolation, the diagnosis of Glässer’s disease, and may also serve as points of origin for systemic H. parasuis infections in hosts.
Collapse
Affiliation(s)
- Wei-Hao Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Hsing-Chun Shih
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Chuen-Fu Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chiayi University, Chiayi, Taiwan
| | - Cheng-Yao Yang
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, NY, USA
| | - Chao-Nan Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Ming-Tang Chiou
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
29
|
Zhao YD, Liu BT, Guo LL, Shan H, Fang BH. A novel experimental intraperitoneal infection model for Haemophilus parasuis in neutropenic guinea pigs. J Pharmacol Toxicol Methods 2018; 95:27-35. [PMID: 30476621 DOI: 10.1016/j.vascn.2018.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/29/2018] [Accepted: 11/21/2018] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Haemophilus parasuis, one of the major swine pathogens, has at least fifteen different types, all of which have significant economic effects on the global swine industry. The aim of this study was to establish an experimental intraperitoneal infection model for H. parasuis in neutropenic guinea pigs. METHODS Intraperitoneal administration of cyclophosphamide and Haemophilus parasuis was conducted in guinea pigs. Clinical signs, gross pathology, and histopathology were observed in neutropenic guinea pigs infected with H. parasuis. RESULTS Intraperitoneal administration of 100 mg/kg cyclophosphamide led to immunosuppression with white blood cells, lymphocytes, and neutrophils all <1000 mm3, while no histological tissue damage was observed. Intraperitoneal administration of 109 colony-forming units (CFU) of H. parasuis led to typical respiratory symptoms, 90% morbidity, and 20% mortality in a 72 h-period. Bacteriological screening revealed that multiple organs, including the heart, liver, spleen, lungs, kidneys, and blood, were infected with H. parasuis. The threshold loads of bacteria in blood and the lungs were (7.04 ± 0.53)log10 CFU/mL and (6.24 ± 0.62)log10 CFU/g, respectively, at 3 d after infection. Gross pathology examination showed celiac effusion, intestinal mucosal hemorrhage, and liver, spleen, or lung swelling, necrosis, and hemorrhage. Congestion, mild interstitial pneumonia, inflammatory exudation, and endothelial cell proliferation were observed in the histological examination. DISCUSSION All the results suggest that we have established an experimental intraperitoneal infection model for H. parasuis in neutropenic guinea pigs. It is especially useful as a tool for pharmacokinetics, pharmacodynamics, or a pharmacokinetics/pharmacodynamics (PK/PD) model of antimicrobial agents against respiratory disease.
Collapse
Affiliation(s)
- Yong-da Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Bao-Tao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Li-Li Guo
- Qingdao Yebio Biological Engineering Co., Ltd., Qingdao 266109, China
| | - Hu Shan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China.
| | - Bing-Hu Fang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
30
|
Comparative genomic and methylome analysis of non-virulent D74 and virulent Nagasaki Haemophilus parasuis isolates. PLoS One 2018; 13:e0205700. [PMID: 30383795 PMCID: PMC6211672 DOI: 10.1371/journal.pone.0205700] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/28/2018] [Indexed: 12/13/2022] Open
Abstract
Haemophilus parasuis is a respiratory pathogen of swine and the etiological agent of Glässer's disease. H. parasuis isolates can exhibit different virulence capabilities ranging from lethal systemic disease to subclinical carriage. To identify genomic differences between phenotypically distinct strains, we obtained the closed whole-genome sequence annotation and genome-wide methylation patterns for the highly virulent Nagasaki strain and for the non-virulent D74 strain. Evaluation of the virulence-associated genes contained within the genomes of D74 and Nagasaki led to the discovery of a large number of toxin-antitoxin (TA) systems within both genomes. Five predicted hemolysins were identified as unique to Nagasaki and seven putative contact-dependent growth inhibition toxin proteins were identified only in strain D74. Assessment of all potential vtaA genes revealed thirteen present in the Nagasaki genome and three in the D74 genome. Subsequent evaluation of the predicted protein structure revealed that none of the D74 VtaA proteins contain a collagen triple helix repeat domain. Additionally, the predicted protein sequence for two D74 VtaA proteins is substantially longer than any predicted Nagasaki VtaA proteins. Fifteen methylation sequence motifs were identified in D74 and fourteen methylation sequence motifs were identified in Nagasaki using SMRT sequencing analysis. Only one of the methylation sequence motifs was observed in both strains indicative of the diversity between D74 and Nagasaki. Subsequent analysis also revealed diversity in the restriction-modification systems harbored by D74 and Nagasaki. The collective information reported in this study will aid in the development of vaccines and intervention strategies to decrease the prevalence and disease burden caused by H. parasuis.
Collapse
|
31
|
Zhang X, Cai X, Qi Y, Liu Y, Cao Q, Wang X, Chen H, Xu X. Improvement in the efficiency of natural transformation of Haemophilus parasuis by shuttle-plasmid methylation. Plasmid 2018; 98:8-14. [PMID: 30003899 DOI: 10.1016/j.plasmid.2018.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 07/01/2018] [Accepted: 07/04/2018] [Indexed: 11/26/2022]
Abstract
Some Haemophilus parasuis strains display resistance to transformation with Escherichia.coli-derived plasmids. This property limits the application of genetic approaches previously developed for H. parasuis. The present study showed that natural transformation with the shuttle plasmid pS2UK led to allelic exchange in H. parasuis strains SH0165 and CF7066. Furthermore, natural transformation with pS2UK yielded allelic exchange mutants in 10 of 17 H. parasuis strains, similar to results using the suicide plasmid pK2UK. Subsequently, 17 H. parasuis strains were transformed with pS2UK by electroporation and 13 obtained the transformants harboring the complete plasmid molecules. As a result, natural transformation of homologous blank strains with the H. parasui-derived plasmids significantly improved the transformation efficiency targeted at obtaining allelic exchange mutants. In addition, shuttle plasmids pS1UG and pSHUK that carried the different homologous arm sequences also displayed the increased transformation efficiency after they were replicated in homologous H. parasuis cells. The approach described here not only improved the efficiency of natural transformation of H. parasuis, but also enlarged the range of transformable H. parasuis strains, thereby enabling application of H. parasuis-specific genetic manipulation techniques in a wider range of isolates.
Collapse
Affiliation(s)
- Xiaojing Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University,Wuhan, Hubei 430070,China
| | - Xuwang Cai
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University,Wuhan, Hubei 430070,China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Yi Qi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University,Wuhan, Hubei 430070,China
| | - Yunbao Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University,Wuhan, Hubei 430070,China
| | - Qi Cao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University,Wuhan, Hubei 430070,China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University,Wuhan, Hubei 430070,China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University,Wuhan, Hubei 430070,China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Xiaojuan Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University,Wuhan, Hubei 430070,China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China.
| |
Collapse
|
32
|
"Pathotyping" Multiplex PCR Assay for Haemophilus parasuis: a Tool for Prediction of Virulence. J Clin Microbiol 2017; 55:2617-2628. [PMID: 28615466 DOI: 10.1128/jcm.02464-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/28/2017] [Indexed: 11/20/2022] Open
Abstract
Haemophilus parasuis is a diverse bacterial species that is found in the upper respiratory tracts of pigs and can also cause Glässer's disease and pneumonia. A previous pangenome study of H. parasuis identified 48 genes that were associated with clinical disease. Here, we describe the development of a generalized linear model (termed a pathotyping model) to predict the potential virulence of isolates of H. parasuis based on a subset of 10 genes from the pangenome. A multiplex PCR (mPCR) was constructed based on these genes, the results of which were entered into the pathotyping model to yield a prediction of virulence. This new diagnostic mPCR was tested on 143 field isolates of H. parasuis that had previously been whole-genome sequenced and a further 84 isolates from the United Kingdom from cases of H. parasuis-related disease in pigs collected between 2013 and 2014. The combination of the mPCR and the pathotyping model predicted the virulence of an isolate with 78% accuracy for the original isolate collection and 90% for the additional isolate collection, providing an overall accuracy of 83% (81% sensitivity and 93% specificity) compared with that of the "current standard" of detailed clinical metadata. This new pathotyping assay has the potential to aid surveillance and disease control in addition to serotyping data.
Collapse
|
33
|
Zhao Z, Liu H, Xue Y, Chen K, Liu Z, Xue Q, Wang C. Analysis of efficacy obtained with a trivalent inactivated Haemophilus parasuis serovars 4, 5, and 12 vaccine and commercial vaccines against Glässer's disease in piglets. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2017; 81:22-27. [PMID: 28154458 PMCID: PMC5220590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/03/2016] [Indexed: 06/06/2023]
Abstract
The objective of this study was to assess the efficacy of a trivalent inactivated Haemophilus parasuis serovars 4, 5, and 12 vaccine with polymeric adjuvant gel (GEL) and commercial vaccines against Glässer's disease in piglets. Commercial vaccines containing inactivated H. parasuis serovars 4 and 5 (China), inactivated H. parasuis serovars 1 and 6 (Spain), and inactivated H. parasuis serovar 5 (USA) were also evaluated. Our results demonstrated that the trivalent inactivated H. parasuis serovars 4, 5, and 12 vaccine with GEL adjuvant can provide better protection against the 3 most common pathogenic serovars circulating in China than other commercial vaccines tested. Our findings also indicated that inactivated H. parasuis serovars 1 and 6 vaccine cross-protects piglets against H. parasuis serovars 4 and 5; inactivated H. parasuis serovar 5 vaccine cross-protects piglets against H. parasuis serovar 4 challenge; but none of the commercial vaccines tested in this study protected piglets against H. parasuis serovar 12. Our results provide a basis for further identification of common protective antigens that can induce cross-protection against heterogeneous serovars.
Collapse
Affiliation(s)
| | | | - Yun Xue
- Address all correspondence to Dr. Yun Xue; tel.: 86 136 3379 9373; e-mail:
| | | | | | | | | |
Collapse
|
34
|
Liu H, Xue Q, Zeng Q, Zhao Z. Haemophilus parasuis vaccines. Vet Immunol Immunopathol 2016; 180:53-58. [DOI: 10.1016/j.vetimm.2016.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 09/06/2016] [Accepted: 09/08/2016] [Indexed: 11/24/2022]
|
35
|
Zhao Z, Liu H, Zhang K, Xue Q, Chen K, Xue Y. Minimum dose, antigen content, and immunization duration of a trivalent vaccine of inactivated Haemophilus parasuis serovars 4, 5, and 12 against Glässer's disease in pigs. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2016; 80:287-293. [PMID: 27733783 PMCID: PMC5052880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 07/06/2016] [Indexed: 06/06/2023]
Abstract
The objective of this study was to assess the minimum dose, antigen content, and immunization duration of a trivalent vaccine containing inactivated Haemophilus parasuis serovars 4, 5, and 12 and the Montanide GEL 01 PR adjuvant in piglets and pregnant sows. Our results demonstrated that the minimum vaccine dose was 2 mL per pig and the optimal antigen content 2.0 × 109, 1.0 × 109, and 1.0 × 109 colony-forming units/mL of serovars 4, 5, and 12, respectively. The vaccine provided effective protection 14 d after the 2nd vaccination, and the period of immune protection was 180 d (6 mo) after the 2nd vaccination. Maternal antibodies provided early protection for the piglets, and vaccinating the sows before farrowing helped to control disease and protected the piglets during lactation; the piglets were protected during the finishing period by being vaccinated during lactation. Our findings provide a basis for developing a commercial trivalent vaccine of inactivated H. parasuis serovars 4, 5, and 12 against Glässer's disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Yun Xue
- Address all correspondence to Dr. Yun Xue; telephone: +86-13633799373; e-mail:
| |
Collapse
|
36
|
Li M, Li C, Song S, Kang H, Yang D, Li G. Development and antigenic characterization of three recombinant proteins with potential for Glässer's disease prevention. Vaccine 2016; 34:2251-8. [PMID: 26993332 DOI: 10.1016/j.vaccine.2016.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 02/13/2016] [Accepted: 03/07/2016] [Indexed: 01/08/2023]
Abstract
Haemophilus parasuis is the causative agent of Glässer's disease, which causes high morbidity and mortality in piglets, leading to severe economic losses. The lack of a commercial vaccine against a broad spectrum of strains has limited the disease control. H. parasuis outer membrane proteins (OMPs) are potentially essential components for vaccine formulation. In this study, seven putative OMPs were selected from the annotated H. parasuis serovar 5 genome; they were predicted by bioinformatics and annotated as potential virulence-related factors. These proteins were cloned, expressed, and purified as His-tagged proteins. Antigenicity of the candidate proteins was assessed using Western blotting with convalescent sera against H. parasuis serovar 5. The immunogenicity of the seven OMPs was assessed in a guinea pig model. Except VacJ, all the other six recombinant proteins elicited a detectable antibody response. Antisera against four of the selected proteins effectively killed the bacteria in vitro. Three proteins (Omp26, VacJ, and HAPS_0742) were found to confer significant protection against challenge with a lethal dose of H. parasuis in a guinea pig model. The results suggest that these three proteins have a strong potential to be vaccine candidates against Glässer's disease.
Collapse
Affiliation(s)
- Miao Li
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China; Public Laboratory of Veterinary Public Health of Guangdong Province, Guangzhou 510640, Guangdong, China; Guangdong Key Laboratory of Animal Epidemic Diseases Prevention, Guangzhou 510640, Guangdong, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Chunling Li
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China; Public Laboratory of Veterinary Public Health of Guangdong Province, Guangzhou 510640, Guangdong, China; Guangdong Key Laboratory of Animal Epidemic Diseases Prevention, Guangzhou 510640, Guangdong, China.
| | - Shuai Song
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China; Public Laboratory of Veterinary Public Health of Guangdong Province, Guangzhou 510640, Guangdong, China; Guangdong Key Laboratory of Animal Epidemic Diseases Prevention, Guangzhou 510640, Guangdong, China
| | - Huahua Kang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China; Public Laboratory of Veterinary Public Health of Guangdong Province, Guangzhou 510640, Guangdong, China; Guangdong Key Laboratory of Animal Epidemic Diseases Prevention, Guangzhou 510640, Guangdong, China
| | - Dongxia Yang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China; Public Laboratory of Veterinary Public Health of Guangdong Province, Guangzhou 510640, Guangdong, China; Guangdong Key Laboratory of Animal Epidemic Diseases Prevention, Guangzhou 510640, Guangdong, China
| | - Guoqing Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| |
Collapse
|
37
|
Characterization and Vaccine Potential of Outer Membrane Vesicles Produced by Haemophilus parasuis. PLoS One 2016; 11:e0149132. [PMID: 26930282 PMCID: PMC4773134 DOI: 10.1371/journal.pone.0149132] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/26/2016] [Indexed: 11/19/2022] Open
Abstract
Haemophilus parasuis is a Gram-negative bacterium that colonizes the upper respiratory tract of swine and is capable of causing a systemic infection, resulting in high morbidity and mortality. H. parasuis isolates display a wide range of virulence and virulence factors are largely unknown. Commercial bacterins are often used to vaccinate swine against H. parasuis, though strain variability and lack of cross-reactivity can make this an ineffective means of protection. Outer membrane vesicles (OMV) are spherical structures naturally released from the membrane of bacteria and OMV are often enriched in toxins, signaling molecules and other bacterial components. Examination of OMV structures has led to identification of virulence factors in a number of bacteria and they have been successfully used as subunit vaccines. We have isolated OMV from both virulent and avirulent strains of H. parasuis, have examined their protein content and assessed their ability to induce an immune response in the host. Vaccination with purified OMV derived from the virulent H. parasuis Nagasaki strain provided protection against challenge with a lethal dose of the bacteria.
Collapse
|
38
|
First comparison of adjuvant for trivalent inactivated Haemophilus parasuis serovars 4, 5 and 12 vaccines against Glässer's disease. Vet Immunol Immunopathol 2015; 168:153-8. [DOI: 10.1016/j.vetimm.2015.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 09/16/2015] [Accepted: 11/02/2015] [Indexed: 11/23/2022]
|