1
|
Pavlovič A, Koller J, Vrobel O, Chamrád I, Lenobel R, Tarkowski P. Is the co-option of jasmonate signalling for botanical carnivory a universal trait for all carnivorous plants? JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:334-349. [PMID: 37708289 PMCID: PMC10735409 DOI: 10.1093/jxb/erad359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/13/2023] [Indexed: 09/16/2023]
Abstract
The carnivorous plants in the order Caryophyllales co-opted jasmonate signalling from plant defence to botanical carnivory. However, carnivorous plants have at least 11 independent origins, and here we ask whether jasmonate signalling has been co-opted repeatedly in different evolutionary lineages. We experimentally wounded and fed the carnivorous plants Sarracenia purpurea (order Ericales), Cephalotus follicularis (order Oxalidales), Drosophyllum lusitanicum (order Caryophyllales), and measured electrical signals, phytohormone tissue level, and digestive enzymes activity. Coronatine was added exogenously to confirm the role of jasmonates in the induction of digestive process. Immunodetection of aspartic protease and proteomic analysis of digestive fluid was also performed. We found that prey capture induced accumulation of endogenous jasmonates only in D. lusitanicum, in accordance with increased enzyme activity after insect prey or coronatine application. In C. follicularis, the enzyme activity was constitutive while in S. purpurea was regulated by multiple factors. Several classes of digestive enzymes were identified in the digestive fluid of D. lusitanicum. Although carnivorous plants from different evolutionary lineages use the same digestive enzymes, the mechanism of their regulation differs. All investigated genera use jasmonates for their ancient role, defence, but jasmonate signalling has been co-opted for botanical carnivory only in some of them.
Collapse
Affiliation(s)
- Andrej Pavlovič
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Jana Koller
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Ondřej Vrobel
- Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
- Center of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, CZ-783 71 Olomouc, Czech Republic
| | - Ivo Chamrád
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - René Lenobel
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Petr Tarkowski
- Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
- Center of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, CZ-783 71 Olomouc, Czech Republic
| |
Collapse
|
2
|
Yu M, Arai N, Ochiai T, Ohyama T. Expression and function of an S1-type nuclease in the digestive fluid of a sundew, Drosera adelae. ANNALS OF BOTANY 2023; 131:335-346. [PMID: 36546767 PMCID: PMC9992940 DOI: 10.1093/aob/mcac150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND AIMS Carnivorous plants trap and digest insects and similar-sized animals. Many studies have examined enzymes in the digestive fluids of these plants and have gradually unveiled the origins and gene expression of these enzymes. However, only a few attempts have been made at characterization of nucleases. This study aimed to reveal gene expression and the structural, functional and evolutionary characteristics of an S1-type nuclease (DAN1) in the digestive fluid of an Australian sundew, Drosera adelae, whose trap organ shows unique gene expression and related epigenetic regulation. METHODS Organ-specificity in Dan1 expression was examined using glandular tentacles, laminas, roots and inflorescences, and real-time PCR. The methylation status of the Dan1 promoter in each organ was clarified by bisulphite sequencing. The structural characteristics of DAN1 were studied by a comparison of primary structures of S1-type nucleases of three carnivorous and seven non-carnivorous plants. DAN1 was prepared using a cell-free protein synthesis system. Requirements for metal ions, optimum pH and temperature, and substrate preference were examined using conventional methods. KEY RESULTS Dan1 is exclusively expressed in the glandular tentacles and its promoter is almost completely unmethylated in all organs. This is in contrast to the S-like RNase gene da-I of Dr. adelae, which shows similar organ-specific expression, but is controlled by a promoter that is specifically unmethylated in the glandular tentacles. Comparison of amino acid sequences of S1-type nucleases identifies seven and three positions where amino acid residues are conserved only among the carnivorous plants and only among the non-carnivorous plants, respectively. DAN1 prefers a substrate RNA over DNA in the presence of Zn2+, Mn2+ or Ca2+ at an optimum pH of 4.0. CONCLUSIONS Uptake of phosphates from prey is suggested to be the main function of DAN1, which is very different from the known functions of S1-type nucleases. Evolution has modified the structure and expression of Dan1 to specifically function in the digestive fluid.
Collapse
Affiliation(s)
- Meng Yu
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Naoki Arai
- Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama-shi, Kanagawa 221-8686, Japan
| | - Tadahiro Ochiai
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Takashi Ohyama
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| |
Collapse
|
3
|
Ivesic C, Adlassnig W, Koller-Peroutka M, Kress L, Lang I. Snatching Sundews-Analysis of Tentacle Movement in Two Species of Drosera in Terms of Response Rate, Response Time, and Speed of Movement. PLANTS (BASEL, SWITZERLAND) 2022; 11:3212. [PMID: 36501252 PMCID: PMC9740574 DOI: 10.3390/plants11233212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Drosera, Droseraceae, catch prey with sticky tentacles. Both Australian Drosera allantostigma and widespread D. rotundifolia show three types of anatomically different tentacles: short, peripheral, and snap-tentacles. The latter two are capable of fast movement. This motion was analysed after mechanical, chemical, and electrical stimulation with respect to response rate, response time, and angular velocity of bending. Compared to D. rotundifolia, D. allantostigma responds more frequently and faster; the tentacles bend with higher angular velocity. Snap-tentacles have a lower response rate, shorter response time, and faster angular velocity. The response rates for chemical and electrical stimuli are similar, and higher than the rates for mechanical stimulus. The response time is not dependent on stimulus type. The higher motility in D. allantostigma indicates increased dependence on mechanical prey capture, and a reduced role of adhesive mucilage. The same tentacle types are present in both species and show similar motility patterns. The lower response rate of snap-tentacles might be a safety measure against accidental triggering, since the motion of snap-tentacles is irreversible and tissue destructive. Furthermore, tentacles seem to discern stimuli and respond specifically. The established model of stereotypical tentacle movement may not fully explain these observations.
Collapse
Affiliation(s)
- Caroline Ivesic
- Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
- Core Facility Cell Imaging and Ultrastructure Research, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Wolfram Adlassnig
- Core Facility Cell Imaging and Ultrastructure Research, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Marianne Koller-Peroutka
- Core Facility Cell Imaging and Ultrastructure Research, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Linda Kress
- Core Facility Cell Imaging and Ultrastructure Research, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Ingeborg Lang
- Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| |
Collapse
|
4
|
Durak GM, Speck T, Poppinga S. Shapeshifting in the Venus flytrap ( Dionaea muscipula): Morphological and biomechanical adaptations and the potential costs of a failed hunting cycle. FRONTIERS IN PLANT SCIENCE 2022; 13:970320. [PMID: 36119615 PMCID: PMC9478607 DOI: 10.3389/fpls.2022.970320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
The evolutionary roots of carnivory in the Venus flytrap (Dionaea muscipula) stem from a defense response to plant injury caused by, e.g., herbivores. Dionaea muscipula aka. Darwin's most wonderful plant underwent extensive modification of leaves into snap-traps specialized for prey capture. Even the tiny seedlings of the Venus flytrap already produce fully functional, millimeter-sized traps. The trap size increases as the plant matures, enabling capture of larger prey. The movement of snap-traps is very fast (~100-300 ms) and is actuated by a combination of changes in the hydrostatic pressure of the leaf tissue with the release of prestress (embedded energy), triggering a snap-through of the trap lobes. This instability phenomenon is facilitated by the double curvature of the trap lobes. In contrast, trap reopening is a slower process dependent on trap size and morphology, heavily reliant on turgor and/or cell growth. Once a prey item is caught, the trap reconfigures its shape, seals itself off and forms a digestive cavity allowing the plant to release an enzymatic cocktail to draw nutrition from its captive. Interestingly, a failed attempt to capture prey can come at a heavy cost: the trap can break during reopening, thus losing its functionality. In this mini-review, we provide a detailed account of morphological adaptations and biomechanical processes involved in the trap movement during D. muscipula hunting cycle, and discuss possible reasons for and consequences of trap breakage. We also provide a brief introduction to the biological aspects underlying plant motion and their evolutionary background.
Collapse
Affiliation(s)
- Grażyna M. Durak
- Plant Biomechanics Group, Botanical Garden, Department of Biology, University of Freiburg, Freiburg, Germany
| | - Thomas Speck
- Plant Biomechanics Group, Botanical Garden, Department of Biology, University of Freiburg, Freiburg, Germany
- Cluster of Excellence livMatS @ FIT, Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
| | - Simon Poppinga
- Botanical Garden, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
5
|
Freund M, Graus D, Fleischmann A, Gilbert KJ, Lin Q, Renner T, Stigloher C, Albert VA, Hedrich R, Fukushima K. The digestive systems of carnivorous plants. PLANT PHYSIOLOGY 2022; 190:44-59. [PMID: 35604105 PMCID: PMC9434158 DOI: 10.1093/plphys/kiac232] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/08/2022] [Indexed: 05/19/2023]
Abstract
To survive in the nutrient-poor habitats, carnivorous plants capture small organisms comprising complex substances not suitable for immediate reuse. The traps of carnivorous plants, which are analogous to the digestive systems of animals, are equipped with mechanisms for the breakdown and absorption of nutrients. Such capabilities have been acquired convergently over the past tens of millions of years in multiple angiosperm lineages by modifying plant-specific organs including leaves. The epidermis of carnivorous trap leaves bears groups of specialized cells called glands, which acquire substances from their prey via digestion and absorption. The digestive glands of carnivorous plants secrete mucilage, pitcher fluids, acids, and proteins, including digestive enzymes. The same (or morphologically distinct) glands then absorb the released compounds via various membrane transport proteins or endocytosis. Thus, these glands function in a manner similar to animal cells that are physiologically important in the digestive system, such as the parietal cells of the stomach and intestinal epithelial cells. Yet, carnivorous plants are equipped with strategies that deal with or incorporate plant-specific features, such as cell walls, epidermal cuticles, and phytohormones. In this review, we provide a systematic perspective on the digestive and absorptive capacity of convergently evolved carnivorous plants, with an emphasis on the forms and functions of glands.
Collapse
Affiliation(s)
- Matthias Freund
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Dorothea Graus
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Andreas Fleischmann
- Botanische Staatssammlung München and GeoBio-Center LMU, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Kadeem J Gilbert
- Department of Plant Biology & W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan 49060, USA
| | - Qianshi Lin
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Tanya Renner
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Christian Stigloher
- Imaging Core Facility of the Biocenter, University of Würzburg, Würzburg, Germany
| | - Victor A Albert
- Department of Biological Sciences, University at Buffalo, Buffalo, New York 14260, USA
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Kenji Fukushima
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| |
Collapse
|
6
|
Böhm J, Scherzer S. Signaling and transport processes related to the carnivorous lifestyle of plants living on nutrient-poor soil. PLANT PHYSIOLOGY 2021; 187:2017-2031. [PMID: 35235668 PMCID: PMC8890503 DOI: 10.1093/plphys/kiab297] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/04/2021] [Indexed: 05/29/2023]
Abstract
In Eukaryotes, long-distance and rapid signal transmission is required in order to be able to react fast and flexibly to external stimuli. This long-distance signal transmission cannot take place by diffusion of signal molecules from the site of perception to the target tissue, as their speed is insufficient. Therefore, for adequate stimulus transmission, plants as well as animals make use of electrical signal transmission, as this can quickly cover long distances. This update summarises the most important advances in plant electrical signal transduction with a focus on the carnivorous Venus flytrap. It highlights the different types of electrical signals, examines their underlying ion fluxes and summarises the carnivorous processes downstream of the electrical signals.
Collapse
Affiliation(s)
- Jennifer Böhm
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, 97082 Würzburg, Germany
| | - Sönke Scherzer
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, 97082 Würzburg, Germany
| |
Collapse
|
7
|
Carnivorous Nepenthes x ventrata plants use a naphthoquinone as phytoanticipin against herbivory. PLoS One 2021; 16:e0258235. [PMID: 34679089 PMCID: PMC8535358 DOI: 10.1371/journal.pone.0258235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/21/2021] [Indexed: 01/31/2023] Open
Abstract
Carnivorous plants feed on animal prey, mainly insects, to get additional nutrients. This carnivorous syndrome is widely investigated and reported. In contrast, reports on herbivores feeding on carnivorous plants and related defenses of the plants under attack are rare. Here, we studied the interaction of a pitcher plant, Nepenthes x ventrata, with a generalist lepidopteran herbivore, Spodoptera littoralis, using a combination of LC/MS-based chemical analytics, choice and feeding assays. Chemical defenses in N. x ventrata leaves were analyzed upon S. littoralis feeding. A naphthoquinone, plumbagin, was identified in Nepenthes defense against herbivores and as the compound mainly responsible for the finding that S. littoralis larvae gained almost no weight when feeding on Nepenthes leaves. Plumbagin is constitutively present but further 3-fold increased upon long-term (> 1 day) feeding. Moreover, in parallel de novo induced trypsin protease inhibitor (TI) activity was identified. In contrast to TI activity, enhanced plumbagin levels were not phytohormone inducible, not even by defense-related jasmonates although upon herbivory their level increased more than 50-fold in the case of the bioactive jasmonic acid-isoleucine. We conclude that Nepenthes is efficiently protected against insect herbivores by naphthoquinones acting as phytoanticipins, which is supported by additional inducible defenses. The regulation of these defenses remains to be investigated.
Collapse
|
8
|
Jakšová J, Adamec L, Petřík I, Novák O, Šebela M, Pavlovič A. Contrasting effect of prey capture on jasmonate accumulation in two genera of aquatic carnivorous plants (Aldrovanda, Utricularia). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:459-465. [PMID: 34166972 DOI: 10.1016/j.plaphy.2021.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Terrestrial carnivorous plants of genera Drosera, Dionaea and Nepenthes within the order Caryophyllales employ jasmonates for the induction of digestive processes in their traps. Here, we focused on two aquatic carnivorous plant genera with different trapping mechanism from distinct families and orders: Aldrovanda (Droseraceae, Caryophyllales) with snap-traps and Utricularia (Lentibulariaceae, Lamiales) with suction traps. Using phytohormone analyses and simple biotest, we asked whether the jasmonates are involved in the activation of carnivorous response similar to that known in traps of terrestrial genera of Droseraceae (Drosera, Dionaea). The results showed that Utricularia, in contrast with Aldrovanda, does not use jasmonates for activation of carnivorous response and is the second genus in Lamiales, which has not co-opted jasmonate signalling for botanical carnivory. On the other hand, the nLC-MS/MS analyses revealed that both genera secreted digestive fluid containing cysteine protease homologous to dionain although the mode of its regulation may differ. Whereas in Utricularia the cysteine protease is present constitutively in digestive fluid, it is induced by prey and exogenous application of jasmonic acid in Aldrovanda.
Collapse
Affiliation(s)
- Jana Jakšová
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Lubomír Adamec
- Institute of Botany of the Czech Academy of Sciences, Department of Experimental and Functional Morphology, Dukelská135, CZ-379 82, Třeboň, Czech Republic
| | - Ivan Petřík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Marek Šebela
- Department of Biochemistry, Faculty of Science, and Centre of the Region Haná for Biotechnological and Agricultural Research, CATRIN, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Andrej Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic.
| |
Collapse
|
9
|
Hatcher CR, Sommer U, Heaney LM, Millett J. Metabolomic analysis reveals reliance on secondary plant metabolites to facilitate carnivory in the Cape sundew, Drosera capensis. ANNALS OF BOTANY 2021. [PMID: 34077503 DOI: 10.17028/rd.lboro.14188703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND AIMS Secondary metabolites are integral to multiple key plant processes (growth regulation, pollinator attraction and interactions with conspecifics, competitors and symbionts) yet their role in plant adaptation remains an underexplored area of research. Carnivorous plants use secondary metabolites to acquire nutrients from prey, but the extent of the role of secondary metabolites in plant carnivory is not known. We aimed to determine the extent of the role of secondary metabolites in facilitating carnivory of the Cape sundew, Drosera capensis. METHODS We conducted metabolomic analysis of 72 plants in a time-series experiment before and after simulated prey capture. We used ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) and the retention time index to identify compounds in the leaf trap tissue that changed up to 72 h following simulated prey capture. We identified associated metabolic pathways, and cross-compared these compounds with metabolites previously known to be involved in carnivorous plants across taxa. KEY RESULTS For the first time in a carnivorous plant, we have profiled the whole-leaf metabolome response to prey capture. Reliance on secondary plant metabolites was higher than previously thought - 2383 out of 3257 compounds in fed leaves had statistically significant concentration changes in comparison with unfed controls. Of these, ~34 compounds are also associated with carnivory in other species; 11 are unique to Nepenthales. At least 20 compounds had 10-fold changes in concentration, 12 of which had 30-fold changes and are typically associated with defence or attraction in non-carnivorous plants. CONCLUSIONS Secondary plant metabolites are utilized in plant carnivory to an extent greater than previously thought - we found a whole-metabolome response to prey capture. Plant carnivory, at the metabolic level, likely evolved from at least two distinct functions: attraction and defence. Findings of this study support the hypothesis that secondary metabolites play an important role in plant diversification and adaptation to new environments.
Collapse
Affiliation(s)
- Christopher R Hatcher
- Loughborough University, Loughborough, UK
- Agri-Tech Centre, Pershore College, Part of WCG, Pershore, UK
| | - Ulf Sommer
- Biocrates Life Sciences AG, Innsbruck, Austria
| | - Liam M Heaney
- Agri-Tech Centre, Pershore College, Part of WCG, Pershore, UK
| | | |
Collapse
|
10
|
Hatcher CR, Sommer U, Heaney LM, Millett J. Metabolomic analysis reveals reliance on secondary plant metabolites to facilitate carnivory in the Cape sundew, Drosera capensis. ANNALS OF BOTANY 2021; 128:301-314. [PMID: 34077503 PMCID: PMC8389465 DOI: 10.1093/aob/mcab065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND AIMS Secondary metabolites are integral to multiple key plant processes (growth regulation, pollinator attraction and interactions with conspecifics, competitors and symbionts) yet their role in plant adaptation remains an underexplored area of research. Carnivorous plants use secondary metabolites to acquire nutrients from prey, but the extent of the role of secondary metabolites in plant carnivory is not known. We aimed to determine the extent of the role of secondary metabolites in facilitating carnivory of the Cape sundew, Drosera capensis. METHODS We conducted metabolomic analysis of 72 plants in a time-series experiment before and after simulated prey capture. We used ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) and the retention time index to identify compounds in the leaf trap tissue that changed up to 72 h following simulated prey capture. We identified associated metabolic pathways, and cross-compared these compounds with metabolites previously known to be involved in carnivorous plants across taxa. KEY RESULTS For the first time in a carnivorous plant, we have profiled the whole-leaf metabolome response to prey capture. Reliance on secondary plant metabolites was higher than previously thought - 2383 out of 3257 compounds in fed leaves had statistically significant concentration changes in comparison with unfed controls. Of these, ~34 compounds are also associated with carnivory in other species; 11 are unique to Nepenthales. At least 20 compounds had 10-fold changes in concentration, 12 of which had 30-fold changes and are typically associated with defence or attraction in non-carnivorous plants. CONCLUSIONS Secondary plant metabolites are utilized in plant carnivory to an extent greater than previously thought - we found a whole-metabolome response to prey capture. Plant carnivory, at the metabolic level, likely evolved from at least two distinct functions: attraction and defence. Findings of this study support the hypothesis that secondary metabolites play an important role in plant diversification and adaptation to new environments.
Collapse
Affiliation(s)
- Christopher R Hatcher
- Loughborough University, Loughborough, UK
- Agri-Tech Centre, Pershore College, Part of WCG, Pershore, UK
| | - Ulf Sommer
- Biocrates Life Sciences AG, Innsbruck, Austria
| | - Liam M Heaney
- Agri-Tech Centre, Pershore College, Part of WCG, Pershore, UK
| | | |
Collapse
|
11
|
Adamec L, Matušíková I, Pavlovič A. Recent ecophysiological, biochemical and evolutional insights into plant carnivory. ANNALS OF BOTANY 2021; 128:241-259. [PMID: 34111238 PMCID: PMC8389183 DOI: 10.1093/aob/mcab071] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/07/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND Carnivorous plants are an ecological group of approx. 810 vascular species which capture and digest animal prey, absorb prey-derived nutrients and utilize them to enhance their growth and development. Extant carnivorous plants have evolved in at least ten independent lineages, and their adaptive traits represent an example of structural and functional convergence. Plant carnivory is a result of complex adaptations to mostly nutrient-poor, wet and sunny habitats when the benefits of carnivory exceed the costs. With a boost in interest and extensive research in recent years, many aspects of these adaptations have been clarified (at least partly), but many remain unknown. SCOPE We provide some of the most recent insights into substantial ecophysiological, biochemical and evolutional particulars of plant carnivory from the functional viewpoint. We focus on those processes and traits in carnivorous plants associated with their ecological characterization, mineral nutrition, cost-benefit relationships, functioning of digestive enzymes and regulation of the hunting cycle in traps. We elucidate mechanisms by which uptake of prey-derived nutrients leads to stimulation of photosynthesis and root nutrient uptake. CONCLUSIONS Utilization of prey-derived mineral (mainly N and P) and organic nutrients is highly beneficial for plants and increases the photosynthetic rate in leaves as a prerequisite for faster plant growth. Whole-genome and tandem gene duplications brought gene material for diversification into carnivorous functions and enabled recruitment of defence-related genes. Possible mechanisms for the evolution of digestive enzymes are summarized, and a comprehensive picture on the biochemistry and regulation of prey decomposition and prey-derived nutrient uptake is provided.
Collapse
Affiliation(s)
- Lubomír Adamec
- Institute of Botany of the Czech Academy of Sciences, Dukelská 135, CZ-379 01 Třeboň, Czech Republic
| | - Ildikó Matušíková
- University of Ss. Cyril and Methodius, Department of Ecochemistry and Radioecology, J. Herdu 2, SK-917 01 Trnava, Slovak Republic
| | - Andrej Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
- For correspondence. E-mail
| |
Collapse
|
12
|
de Bakker JMT, Belterman CNW, Coronel R. Excitability and propagation of the electrical impulse in Venus flytrap; a comparative electrophysiological study of unipolar electrograms with myocardial tissue. Bioelectrochemistry 2021; 140:107810. [PMID: 33845442 DOI: 10.1016/j.bioelechem.2021.107810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/25/2021] [Accepted: 03/28/2021] [Indexed: 11/25/2022]
Abstract
Mammalian heart cells and cells of leaves of Dionaea muscipula share the ability to generate propagated action potentials, because the excitable cells are electrically coupled. In the heart the propagated action potential causes synchronized contraction of the heart muscle after automatic generation of the impulse in the sinus node. In Dionaea propagation results in closure of the trap after activation of trigger hairs by an insect. The electrical activity can be recorded in the extracellular space as an extracellular electrogram, resulting from transmembrane currents. Although the underlying physiological mechanism that causes the electrogram is similar for heart and Dionaea cells, the contribution of the various ions to the transmembrane current is different. We recorded extracellular electrograms from Dionaea leaves and compared the recorded signals with those known from the heart. The morphology of the electrograms differed considerably. In comparison to activation in mammalian myocardium, electrograms of Dionaea are more temporally and spatially variable. Whereas electrograms in healthy myocardium recorded at some distance from the site of activation reveal a simple biphasic pattern, Dionaea activation showed positive, negative or biphasic deflections. Comparison of patch clamp data from plant cells and cardiomyocytes suggests a role of temperature and ion concentrations in extracellular space for the diversity of morphologies of the Dionaea electrograms.
Collapse
Affiliation(s)
- Jacques M T de Bakker
- Heart Center, Department of Experimental Cardiology, Academic Medical Center, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands.
| | - Charly N W Belterman
- Heart Center, Department of Experimental Cardiology, Academic Medical Center, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
| | - Ruben Coronel
- Heart Center, Department of Experimental Cardiology, Academic Medical Center, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
| |
Collapse
|
13
|
Atsuzawa K, Kanaizumi D, Ajisaka M, Kamada T, Sakamoto K, Matsushima H, Kaneko Y. Fine structure of Aldrovanda vesiculosa L: the peculiar lifestyle of an aquatic carnivorous plant elucidated by electron microscopy using cryo-techniques. Microscopy (Oxf) 2021; 69:214-226. [PMID: 32328650 DOI: 10.1093/jmicro/dfaa019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/02/2020] [Accepted: 04/18/2020] [Indexed: 11/14/2022] Open
Abstract
The aquatic carnivorous plant Aldrovanda vesiculosa L. is critically endangered worldwide; its peculiar lifestyle raises many questions and poses problems both intriguing on their own and relevant to conservation. While establishing a culture system for its propagation and restoring its natural habitat in Hozoji pond in Saitama, Japan, we conducted ultrastructural observations to examine the various aspects of Aldrovanda's way of life. Electron microscopic observation in combination with cryo-techniques produced novel information which could not be obtained by other methods. Some of the results are: phosphorous is stored in petiole cells of turions during winter; mucilaginous guides are provided for pollen tubes in parietal placental ovaries; storage of potassium in the vicinity of the midrib of carnivorous leaves may contribute to the rapid closing of the carnivorous leaves; dynamic sequential changes of the ultrastructure of digestive glands are involved in the synthesis and secretion of digestive enzymes, including protease and acid phosphatase. These results should contribute significantly to our understanding of Aldrovanda and the detailed mechanisms of its life.
Collapse
Affiliation(s)
- Kimie Atsuzawa
- Comprehensive Analysis Center for Science, Saitama University, Saitama 338-8570, Japan
| | - Daiki Kanaizumi
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Mizuki Ajisaka
- Graduate School of Education, Saitama University, Saitama 338-8570, Japan, and
| | - Tasuku Kamada
- Graduate School of Education, Saitama University, Saitama 338-8570, Japan, and
| | - Kimie Sakamoto
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Hisashi Matsushima
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Yasuko Kaneko
- Department of Natural Science, Faculty of Education; Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| |
Collapse
|
14
|
Arai N, Ohno Y, Jumyo S, Hamaji Y, Ohyama T. Organ-specific expression and epigenetic traits of genes encoding digestive enzymes in the lance-leaf sundew (Drosera adelae). JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1946-1961. [PMID: 33247920 PMCID: PMC7921302 DOI: 10.1093/jxb/eraa560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/25/2020] [Indexed: 05/16/2023]
Abstract
Over the last two decades, extensive studies have been performed at the molecular level to understand the evolution of carnivorous plants. As fruits, the repertoire of protein components in the digestive fluids of several carnivorous plants have gradually become clear. However, the quantitative aspects of these proteins and the expression mechanisms of the genes that encode them are still poorly understood. In this study, using the Australian sundew Drosera adelae, we identified and quantified the digestive fluid proteins. We examined the expression and methylation status of the genes corresponding to major hydrolytic enzymes in various organs; these included thaumatin-like protein, S-like RNase, cysteine protease, class I chitinase, β-1, 3-glucanase, and hevein-like protein. The genes encoding these proteins were exclusively expressed in the glandular tentacles. Furthermore, the promoters of the β-1, 3-glucanase and cysteine protease genes were demethylated only in the glandular tentacles, similar to the previously reported case of the S-like RNase gene da-I. This phenomenon correlated with high expression of the DNA demethylase DEMETER in the glandular tentacles, strongly suggesting that it performs glandular tentacle-specific demethylation of the genes. The current study strengthens and generalizes the relevance of epigenetics to trap organ-specific gene expression in D. adelae. We also suggest similarities between the trap organs of carnivorous plants and the roots of non-carnivorous plants.
Collapse
Affiliation(s)
- Naoki Arai
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Yusuke Ohno
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Shinya Jumyo
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Yusuke Hamaji
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Takashi Ohyama
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, Shinjuku-ku, Tokyo, Japan
- Correspondence:
| |
Collapse
|
15
|
Kocáb O, Jakšová J, Novák O, Petřík I, Lenobel R, Chamrád I, Pavlovič A. Jasmonate-independent regulation of digestive enzyme activity in the carnivorous butterwort Pinguicula × Tina. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3749-3758. [PMID: 32219314 PMCID: PMC7307851 DOI: 10.1093/jxb/eraa159] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/25/2020] [Indexed: 05/18/2023]
Abstract
Carnivorous plants within the order Caryophyllales use jasmonates, a class of phytohormone, in the regulation of digestive enzyme activities. We used the carnivorous butterwort Pinguicula × Tina from the order Lamiales to investigate whether jasmonate signaling is a universal and ubiquitous signaling pathway that exists outside the order Caryophyllales. We measured the electrical signals, enzyme activities, and phytohormone tissue levels in response to prey capture. Mass spectrometry was used to identify proteins in the digestive secretion. We identified eight enzymes in the digestive secretion, many of which were previously found in other genera of carnivorous plants. Among them, alpha-amylase is unique in carnivorous plants. Enzymatic activities increased in response to prey capture; however, the tissue content of jasmonic acid and its isoleucine conjugate remained rather low in contrast to the jasmonate response to wounding. Enzyme activities did not increase in response to the exogenous application of jasmonic acid or coronatine. Whereas similar digestive enzymes were co-opted from plant defense mechanisms among carnivorous plants, the mode of their regulation differs. The butterwort has not co-opted jasmonate signaling for the induction of enzyme activities in response to prey capture. Moreover, the presence of alpha-amylase in digestive fluid of P. × Tina, which has not been found in other genera of carnivorous plants, might indicate that non-defense-related genes have also been co-opted for carnivory.
Collapse
Affiliation(s)
- Ondřej Kocáb
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, Czech Republic
| | - Jana Jakšová
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences and Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc , Czech Republic
| | - Ivan Petřík
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences and Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc , Czech Republic
| | - René Lenobel
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, Czech Republic
| | - Ivo Chamrád
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, Czech Republic
| | - Andrej Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, Czech Republic
- Correspondence:
| |
Collapse
|
16
|
Hatcher CR, Ryves DB, Millett J. The function of secondary metabolites in plant carnivory. ANNALS OF BOTANY 2020; 125:399-411. [PMID: 31760424 PMCID: PMC7061172 DOI: 10.1093/aob/mcz191] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/22/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND Carnivorous plants are an ideal model system for evaluating the role of secondary metabolites in plant ecology and evolution. Carnivory is a striking example of convergent evolution to attract, capture and digest prey for nutrients to enhance growth and reproduction and has evolved independently at least ten times. Though the roles of many traits in plant carnivory have been well studied, the role of secondary metabolites in the carnivorous habit is considerably less understood. SCOPE This review provides the first synthesis of research in which secondary plant metabolites have been demonstrated to have a functional role in plant carnivory. From these studies we identify key metabolites for plant carnivory and their functional role, and highlight biochemical similarities across taxa. From this synthesis we provide new research directions for integrating secondary metabolites into understanding of the ecology and evolution of plant carnivory. CONCLUSIONS Carnivorous plants use secondary metabolites to facilitate prey attraction, capture, digestion and assimilation. We found ~170 metabolites for which a functional role in carnivory has been demonstrated. Of these, 26 compounds are present across genera that independently evolved a carnivorous habit, suggesting convergent evolution. Some secondary metabolites have been co-opted from other processes, such as defence or pollinator attraction. Secondary metabolites in carnivorous plants provide a potentially powerful model system for exploring the role of metabolites in plant evolution. They also show promise for elucidating how the generation of novel compounds, as well as the co-option of pre-existing metabolites, provides a strategy for plants to occupy different environments.
Collapse
Affiliation(s)
| | - David B Ryves
- Geography and Environment, Loughborough University, Loughborough, LE, UK
| | - Jonathan Millett
- Geography and Environment, Loughborough University, Loughborough, LE, UK
| |
Collapse
|
17
|
Pavlovič A, Libiaková M, Bokor B, Jakšová J, Petřík I, Novák O, Baluška F. Anaesthesia with diethyl ether impairs jasmonate signalling in the carnivorous plant Venus flytrap (Dionaea muscipula). ANNALS OF BOTANY 2020; 125:173-183. [PMID: 31677265 PMCID: PMC6948209 DOI: 10.1093/aob/mcz177] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/06/2019] [Accepted: 10/25/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS General anaesthetics are compounds that induce loss of responsiveness to environmental stimuli in animals and humans. The primary site of action of general anaesthetics is the nervous system, where anaesthetics inhibit neuronal transmission. Although plants do not have neurons, they generate electrical signals in response to biotic and abiotic stresses. Here, we investigated the effect of the general volatile anaesthetic diethyl ether on the ability to sense potential prey or herbivore attacks in the carnivorous plant Venus flytrap (Dionaea muscipula). METHODS We monitored trap movement, electrical signalling, phytohormone accumulation and gene expression in response to the mechanical stimulation of trigger hairs and wounding under diethyl ether treatment. KEY RESULTS Diethyl ether completely inhibited the generation of action potentials and trap closing reactions, which were easily and rapidly restored when the anaesthetic was removed. Diethyl ether also inhibited the later response: jasmonic acid (JA) accumulation and expression of JA-responsive genes (cysteine protease dionain and type I chitinase). However, external application of JA bypassed the inhibited action potentials and restored gene expression under diethyl ether anaesthesia, indicating that downstream reactions from JA are not inhibited. CONCLUSIONS The Venus flytrap cannot sense prey or a herbivore attack under diethyl ether treatment caused by inhibited action potentials, and the JA signalling pathway as a consequence.
Collapse
Affiliation(s)
- Andrej Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů, Olomouc, Czech Republic
| | - Michaela Libiaková
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina, Bratislava, Slovakia
| | - Boris Bokor
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina, Bratislava, Slovakia
- Comenius University Science Park, Comenius University in Bratislava, Ilkovičova, Bratislava, Slovakia
| | - Jana Jakšová
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů, Olomouc, Czech Republic
| | - Ivan Petřík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů, Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů, Olomouc, Czech Republic
| | | |
Collapse
|
18
|
Jakšová J, Libiaková M, Bokor B, Petřík I, Novák O, Pavlovič A. Taste for protein: Chemical signal from prey stimulates enzyme secretion through jasmonate signalling in the carnivorous plant Venus flytrap. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 146:90-97. [PMID: 31734521 DOI: 10.1016/j.plaphy.2019.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/07/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
Hunting cycle of the carnivorous plant Venus flytrap (Dionaea muscipula Ellis) is comprised of mechanism for rapid trap closure followed by slow hermetical sealing and activation of gene expression responsible for digestion of prey and nutrient uptake. In the present study, we focus on the late phase of Venus's flytrap hunting cycle when mechanical stimulation of the prey ceases and is replaced by chemical cues. We used two nitrogen-rich compounds (chitin and protein) in addition to mechanostimulation to investigate the electrical and jasmonate signalling responsible for induction of enzyme activities. Chemical stimulation by BSA protein and chitin did not induce any additional spontaneous action potentials (APs). However, chemical stimulation by protein induced the highest levels of jasmonic acid (JA) and its isoleucine conjugate (JA-Ile) as well as the expression of studied gene encoding a cysteine protease (dionain). Although chitin is probably the first chemical agent which is in direct contact with digestive glands, presence of protein in the secured trap mimics the presence of insect prey best.
Collapse
Affiliation(s)
- Jana Jakšová
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Michaela Libiaková
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina B2, SK-842 15, Bratislava, Slovakia
| | - Boris Bokor
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina B2, SK-842 15, Bratislava, Slovakia; Comenius University Science Park, Comenius University in Bratislava, Ilkovičova 8, SK-841 04, Bratislava, Slovakia
| | - Ivan Petřík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Andrej Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic.
| |
Collapse
|
19
|
Pavlovič A, Mithöfer A. Jasmonate signalling in carnivorous plants: copycat of plant defence mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3379-3389. [PMID: 31120525 DOI: 10.1093/jxb/erz188] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/09/2019] [Indexed: 05/09/2023]
Abstract
The lipid-derived jasmonate phytohormones (JAs) regulate a wide spectrum of physiological processes in plants such as growth, development, tolerance to abiotic stresses, and defence against pathogen infection and insect attack. Recently, a new role for JAs has been revealed in carnivorous plants. In these specialized plants, JAs can induce the formation of digestive cavities and regulate enzyme production in response to different stimuli from caught prey. Appearing to be a new function for JAs in plants, a closer look reveals that the signalling pathways involved resemble known signalling pathways from plant defence mechanisms. Moreover, the digestion-related secretome of carnivorous plants is composed of many pathogenesis-related (PR) proteins and low molecular weight compounds, indicating that the plant carnivory syndrome is related to and has evolved from plant defence mechanisms. This review describes the similarities between defence and carnivory. It further describes how, after recognition of caught insects, JAs enable the carnivorous plants to digest and benefit from the prey. In addition, a causal connection between electrical and jasmonate signalling is discussed.
Collapse
Affiliation(s)
- Andrej Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů, CZ, Olomouc, Czech Republic
| | - Axel Mithöfer
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße, Jena, Germany
| |
Collapse
|
20
|
Volkov AG. Signaling in electrical networks of the Venus flytrap (Dionaea muscipula Ellis). Bioelectrochemistry 2019; 125:25-32. [DOI: 10.1016/j.bioelechem.2018.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/03/2018] [Accepted: 09/03/2018] [Indexed: 12/26/2022]
|
21
|
Saganová M, Bokor B, Stolárik T, Pavlovič A. Regulation of enzyme activities in carnivorous pitcher plants of the genus Nepenthes. PLANTA 2018; 248:451-464. [PMID: 29767335 DOI: 10.1007/s00425-018-2917-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/11/2018] [Indexed: 05/09/2023]
Abstract
Nepenthes regulates enzyme activities by sensing stimuli from the insect prey. Protein is the best inductor mimicking the presence of an insect prey. Carnivorous plants of the genus Nepenthes have evolved passive pitcher traps for prey capture. In this study, we investigated the ability of chemical signals from a prey (chitin, protein, and ammonium) to induce transcription and synthesis of digestive enzymes in Nepenthes × Mixta. We used real-time PCR and specific antibodies generated against the aspartic proteases nepenthesins, and type III and type IV chitinases to investigate the induction of digestive enzyme synthesis in response to different chemical stimuli from the prey. Transcription of nepenthesins was strongly induced by ammonium, protein and live prey; chitin induced transcription only very slightly. This is in accordance with the amount of released enzyme and proteolytic activity in the digestive fluid. Although transcription of type III chitinase was induced by all investigated stimuli, a significant accumulation of the enzyme in the digestive fluid was found mainly after protein and live prey addition. Protein and live prey were also the best inducers for accumulation of type IV chitinase in the digestive fluid. Although ammonium strongly induced transcription of all investigated genes probably through membrane depolarization, strong acidification of the digestive fluid affected stability and abundance of both chitinases in the digestive fluid. The study showed that the proteins are universal inductors of enzyme activities in carnivorous pitcher plants best mimicking the presence of insect prey. This is not surprising, because proteins are a much valuable source of nitrogen, superior to chitin. Extensive vesicular activity was observed in prey-activated glands.
Collapse
Affiliation(s)
- Michaela Saganová
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina B2, 842 15, Bratislava, Slovakia
| | - Boris Bokor
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina B2, 842 15, Bratislava, Slovakia
- Comenius University Science Park, Comenius University in Bratislava, Ilkovičova 8, 841 04, Bratislava, Slovakia
| | - Tibor Stolárik
- Department of Plant Physiology, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 845 23, Bratislava, Slovakia
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Andrej Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
22
|
Hedrich R, Neher E. Venus Flytrap: How an Excitable, Carnivorous Plant Works. TRENDS IN PLANT SCIENCE 2018; 23:220-234. [PMID: 29336976 DOI: 10.1016/j.tplants.2017.12.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 05/02/2023]
Abstract
The carnivorous plant Dionaea possesses very sensitive mechanoreceptors. Upon contact with prey an action potential is triggered which, via an electrical network - comparable to the nervous system of vertebrates - rapidly closes its bivalved trap. The 'hunting cycle' comprises a constitutively activated mechanism for the rapid capture of prey, followed by a well-orchestrated sequence of activation of genes responsible for tight trap closure, digestion of the prey, and uptake of nutrients. Decisions on the step-by-step activation are based on 'counting' the number of stimulations of sensory organs. These remarkable animal-like skills in the carnivore are achieved not by taking over genes from its prey but by modifying and rearranging the functions of genes that are ubiquitous in plants.
Collapse
Affiliation(s)
- Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany.
| | - Erwin Neher
- Department for Membrane Biophysics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| |
Collapse
|
23
|
Pavlovič A, Jakšová J, Novák O. Triggering a false alarm: wounding mimics prey capture in the carnivorous Venus flytrap (Dionaea muscipula). THE NEW PHYTOLOGIST 2017; 216:927-938. [PMID: 28850713 DOI: 10.1111/nph.14747] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/14/2017] [Indexed: 06/07/2023]
Abstract
In the carnivorous plant Venus flytrap (Dionaea muscipula), the sequence of events after prey capture resembles the well-known plant defence signalling pathway in response to pathogen or herbivore attack. Here, we used wounding to mimic prey capture to show the similarities and differences between botanical carnivory and plant defence mechanisms. We monitored movement, electrical signalling, jasmonate accumulation and digestive enzyme secretion in local and distal (systemic) traps in response to prey capture, the mechanical stimulation of trigger hairs and wounding. The Venus flytrap cannot discriminate between wounding and mechanical trigger hair stimulation. Both induced the same action potentials, rapid trap closure, hermetic trap sealing, the accumulation of jasmonic acid (JA) and its isoleucine conjugate (JA-Ile), and the secretion of proteases (aspartic and cysteine proteases), phosphatases and type I chitinase. The jasmonate accumulation and enzyme secretion were confined to the local traps, to which the stimulus was applied, which correlates with the propagation of electrical signals and the absence of a systemic response in the Venus flytrap. In contrast to plant defence mechanisms, the absence of a systemic response in carnivorous plant may represent a resource-saving strategy. During prey capture, it could be quite expensive to produce digestive enzymes in the traps on the plant without prey.
Collapse
Affiliation(s)
- Andrej Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Jana Jakšová
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR and Palacký University, Šlechtitelů 11, CZ-783 71, Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR and Palacký University, Šlechtitelů 11, CZ-783 71, Olomouc, Czech Republic
| |
Collapse
|
24
|
Kruse J, Gao P, Eibelmeier M, Alfarraj S, Rennenberg H. Dynamics of amino acid redistribution in the carnivorous Venus flytrap (Dionaea muscipula) after digestion of 13 C/ 15 N-labelled prey. PLANT BIOLOGY (STUTTGART, GERMANY) 2017; 19:886-895. [PMID: 28727249 DOI: 10.1111/plb.12603] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/17/2017] [Indexed: 06/07/2023]
Abstract
Amino acids represent an important component in the diet of the Venus flytrap (Dionaea muscipula), and supply plants with much needed nitrogen resources upon capture of insect prey. Little is known about the significance of prey-derived carbon backbones of amino acids for the success of Dionaea's carnivorous life-style. The present study aimed at characterizing the metabolic fate of 15 N and 13 C in amino acids acquired from double-labeled insect powder. We tracked changes in plant amino acid pools and their δ13 C- and δ15 N-signatures over a period of five weeks after feeding, as affected by contrasting feeding intensity and tissue type (i.e., fed and non-fed traps and attached petioles of Dionaea). Isotope signatures (i.e., δ13 C and δ15 N) of plant amino acid pools were strongly correlated, explaining 60% of observed variation. Residual variation was related to contrasting effects of tissue type, feeding intensity and elapsed time since feeding. Synthesis of nitrogen-rich transport compounds (i.e., amides) during peak time of prey digestion increased 15 N- relative to 13 C- abundances in amino acid pools. After completion of prey digestion, 13 C in amino acid pools was progressively exchanged for newly fixed 12 C. The latter process was most evident for non-fed traps and attached petioles of plants that had received ample insect powder. We argue that prey-derived amino acids contribute to respiratory energy gain and loss of 13 CO2 during conversion into transport compounds (i.e., 2 days after feeding), and that amino-nitrogen helps boost photosynthetic carbon gain later on (i.e., 5 weeks after feeding).
Collapse
Affiliation(s)
- J Kruse
- Institut für Forstbotanik und Baumphysiologie, Professur für Baumphysiologie, Universität Freiburg, Freiburg, Germany
| | - P Gao
- Institut für Forstbotanik und Baumphysiologie, Professur für Baumphysiologie, Universität Freiburg, Freiburg, Germany
| | - M Eibelmeier
- Institut für Forstbotanik und Baumphysiologie, Professur für Baumphysiologie, Universität Freiburg, Freiburg, Germany
| | - S Alfarraj
- College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - H Rennenberg
- Institut für Forstbotanik und Baumphysiologie, Professur für Baumphysiologie, Universität Freiburg, Freiburg, Germany
- College of Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
25
|
Long-read sequencing uncovers the adaptive topography of a carnivorous plant genome. Proc Natl Acad Sci U S A 2017; 114:E4435-E4441. [PMID: 28507139 DOI: 10.1073/pnas.1702072114] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Utricularia gibba, the humped bladderwort, is a carnivorous plant that retains a tiny nuclear genome despite at least two rounds of whole genome duplication (WGD) since common ancestry with grapevine and other species. We used a third-generation genome assembly with several complete chromosomes to reconstruct the two most recent lineage-specific ancestral genomes that led to the modern U. gibba genome structure. Patterns of subgenome dominance in the most recent WGD, both architectural and transcriptional, are suggestive of allopolyploidization, which may have generated genomic novelty and led to instantaneous speciation. Syntenic duplicates retained in polyploid blocks are enriched for transcription factor functions, whereas gene copies derived from ongoing tandem duplication events are enriched in metabolic functions potentially important for a carnivorous plant. Among these are tandem arrays of cysteine protease genes with trap-specific expression that evolved within a protein family known to be useful in the digestion of animal prey. Further enriched functions among tandem duplicates (also with trap-enhanced expression) include peptide transport (intercellular movement of broken-down prey proteins), ATPase activities (bladder-trap acidification and transmembrane nutrient transport), hydrolase and chitinase activities (breakdown of prey polysaccharides), and cell-wall dynamic components possibly associated with active bladder movements. Whereas independently polyploid Arabidopsis syntenic gene duplicates are similarly enriched for transcriptional regulatory activities, Arabidopsis tandems are distinct from those of U. gibba, while still metabolic and likely reflecting unique adaptations of that species. Taken together, these findings highlight the special importance of tandem duplications in the adaptive landscapes of a carnivorous plant genome.
Collapse
|
26
|
Insect haptoelectrical stimulation of Venus flytrap triggers exocytosis in gland cells. Proc Natl Acad Sci U S A 2017; 114:4822-4827. [PMID: 28416693 DOI: 10.1073/pnas.1701860114] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Venus flytrap Dionaea muscipula captures insects and consumes their flesh. Prey contacting touch-sensitive hairs trigger traveling electrical waves. These action potentials (APs) cause rapid closure of the trap and activate secretory functions of glands, which cover its inner surface. Such prey-induced haptoelectric stimulation activates the touch hormone jasmonate (JA) signaling pathway, which initiates secretion of an acidic hydrolase mixture to decompose the victim and acquire the animal nutrients. Although postulated since Darwin's pioneering studies, these secretory events have not been recorded so far. Using advanced analytical and imaging techniques, such as vibrating ion-selective electrodes, carbon fiber amperometry, and magnetic resonance imaging, we monitored stimulus-coupled glandular secretion into the flytrap. Trigger-hair bending or direct application of JA caused a quantal release of oxidizable material from gland cells monitored as distinct amperometric spikes. Spikes reminiscent of exocytotic events in secretory animal cells progressively increased in frequency, reaching steady state 1 d after stimulation. Our data indicate that trigger-hair mechanical stimulation evokes APs. Gland cells translate APs into touch-inducible JA signaling that promotes the formation of secretory vesicles. Early vesicles loaded with H+ and Cl- fuse with the plasma membrane, hyperacidifying the "green stomach"-like digestive organ, whereas subsequent ones carry hydrolases and nutrient transporters, together with a glutathione redox moiety, which is likely to act as the major detected compound in amperometry. Hence, when glands perceive the haptoelectrical stimulation, secretory vesicles are tailored to be released in a sequence that optimizes digestion of the captured animal.
Collapse
|
27
|
Fasbender L, Maurer D, Kreuzwieser J, Kreuzer I, Schulze WX, Kruse J, Becker D, Alfarraj S, Hedrich R, Werner C, Rennenberg H. The carnivorous Venus flytrap uses prey-derived amino acid carbon to fuel respiration. THE NEW PHYTOLOGIST 2017; 214:597-606. [PMID: 28042877 DOI: 10.1111/nph.14404] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 11/23/2016] [Indexed: 06/06/2023]
Abstract
The present study was performed to elucidate the fate of carbon (C) and nitrogen (N) derived from protein of prey caught by carnivorous Dionaea muscipula. For this, traps were fed 13 C/15 N-glutamine (Gln). The release of 13 CO2 was continuously monitored by isotope ratio infrared spectrometry. After 46 h, the allocation of C and N label into different organs was determined and tissues were subjected to metabolome, proteome and transcriptome analyses. Nitrogen of Gln fed was already separated from its C skeleton in the decomposing fluid secreted by the traps. Most of the Gln-C and Gln-N recovered inside plants were localized in fed traps. Among nonfed organs, traps were a stronger sink for Gln-C compared to Gln-N, and roots were a stronger sink for Gln-N compared to Gln-C. A significant amount of the Gln-C was respired as indicated by 13 C-CO2 emission, enhanced levels of metabolites of respiratory Gln degradation and increased abundance of proteins of respiratory processes. Transcription analyses revealed constitutive expression of enzymes involved in Gln metabolism in traps. It appears that prey not only provides building blocks of cellular constituents of carnivorous Dionaea muscipula, but also is used for energy generation by respiratory amino acid degradation.
Collapse
Affiliation(s)
- Lukas Fasbender
- Institute of Forest Sciences, Chair of Ecosystem Physiology, University of Freiburg, Georges-Köhler-Allee 53/54, Freiburg, 79110, Germany
| | - Daniel Maurer
- Institute of Forest Sciences, Chair of Tree Physiology, University of Freiburg, Georges-Köhler-Allee 53/54, Freiburg, 79110, Germany
| | - Jürgen Kreuzwieser
- Institute of Forest Sciences, Chair of Tree Physiology, University of Freiburg, Georges-Köhler-Allee 53/54, Freiburg, 79110, Germany
| | - Ines Kreuzer
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, 97070, Germany
| | - Waltraud X Schulze
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, 70593, Germany
| | - Jörg Kruse
- Institute of Forest Sciences, Chair of Tree Physiology, University of Freiburg, Georges-Köhler-Allee 53/54, Freiburg, 79110, Germany
| | - Dirk Becker
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, 97070, Germany
| | - Saleh Alfarraj
- College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, 97070, Germany
- College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Christiane Werner
- Institute of Forest Sciences, Chair of Ecosystem Physiology, University of Freiburg, Georges-Köhler-Allee 53/54, Freiburg, 79110, Germany
| | - Heinz Rennenberg
- Institute of Forest Sciences, Chair of Tree Physiology, University of Freiburg, Georges-Köhler-Allee 53/54, Freiburg, 79110, Germany
- College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
28
|
Mithöfer A. What Darwin only divined: unraveling the hierarchy of signaling events upon prey catch in carnivorous sundew plants. THE NEW PHYTOLOGIST 2017; 213:1564-1566. [PMID: 28164339 DOI: 10.1111/nph.14463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Affiliation(s)
- Axel Mithöfer
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| |
Collapse
|
29
|
Krausko M, Perutka Z, Šebela M, Šamajová O, Šamaj J, Novák O, Pavlovič A. The role of electrical and jasmonate signalling in the recognition of captured prey in the carnivorous sundew plant Drosera capensis. THE NEW PHYTOLOGIST 2017; 213:1818-1835. [PMID: 27933609 DOI: 10.1111/nph.14352] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 10/17/2016] [Indexed: 05/28/2023]
Abstract
The carnivorous sundew plant (Drosera capensis) captures prey using sticky tentacles. We investigated the tentacle and trap reactions in response to the electrical and jasmonate signalling evoked by different stimuli to reveal how carnivorous sundews recognize digestible captured prey in their traps. We measured the electrical signals, phytohormone concentration, enzyme activities and Chla fluorescence in response to mechanical stimulation, wounding or insect feeding in local and systemic traps. Seven new proteins in the digestive fluid were identified using mass spectrometry. Mechanical stimuli and live prey induced a fast, localized tentacle-bending reaction and enzyme secretion at the place of application. By contrast, repeated wounding induced a nonlocalized convulsive tentacle movement and enzyme secretion in local but also in distant systemic traps. These differences can be explained in terms of the electrical signal propagation and jasmonate accumulation, which also had a significant impact on the photosynthesis in the traps. The electrical signals generated in response to wounding could partially mimic a mechanical stimulation of struggling prey and might trigger a false alarm, confirming that the botanical carnivory and plant defence mechanisms are related. To trigger the full enzyme activity, the traps must detect chemical stimuli from the captured prey.
Collapse
Affiliation(s)
- Miroslav Krausko
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B2, Ilkovi?ova 6, Bratislava, SK-842 15, Slovakia
| | - Zdeněk Perutka
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic
| | - Marek Šebela
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic
| | - Olga Šamajová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, CZ-783 71, Czech Republic
| | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, CZ-783 71, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR and Palacký University, Šlechtitelů 27, Olomouc, CZ-783 71, Czech Republic
| | - Andrej Pavlovič
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B2, Ilkovi?ova 6, Bratislava, SK-842 15, Slovakia
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University , Šlechtitelů 27, Olomouc, CZ-783 71, Czech Republic
| |
Collapse
|
30
|
Yilamujiang A, Reichelt M, Mithöfer A. Slow food: insect prey and chitin induce phytohormone accumulation and gene expression in carnivorous Nepenthes plants. ANNALS OF BOTANY 2016; 118:369-75. [PMID: 27325901 PMCID: PMC4970371 DOI: 10.1093/aob/mcw110] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/25/2016] [Accepted: 04/29/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Carnivorous Nepenthes plants use modified leaves forming pitfall traps to capture and digest prey, mainly insects, for additional nutrient supply. These traps, so called pitchers, contain a plant-derived fluid composed of many hydrolytic enzymes and defence-related proteins. In this study, the prey-induced induction of corresponding genes of those proteins and a role for phytohormones in this process was analysed. METHODS Tissue from insect prey-fed, chitin- and phytohormone-challenged pitchers was harvested and analysed for selected gene expressions by a quantitative PCR technique. Phytohormone levels were determined by LC-MS/MS. Nepenthesin proteolytic activities were measured in the digestive fluid using a fluorescence substrate. KEY RESULTS Insect prey in the pitchers induced the accumulation of phytohormones such as jasmonates as well as the transcription of studied genes encoding a chitinase 3 and a protease (nepenthesin I), whereas a defence-related protein (PR-1) gene was not induced. Treatment with chitin as a component of the insects' exoskeleton triggered the accumulation of jasmonates, the expression of nepenthesin I and chitinase 3 genes similar to jasmonic acid treatment, and induced protease activity in the fluid. All detectable responses were slowly induced. CONCLUSIONS The results suggest that upon insect prey catch a sequence of signals is initiated: (1) insect-derived chitin, (2) jasmonate as endogenous phytohormone signal, (3) the induction of digestive gene expression and (4) protein expression. This resembles a similar hierarchy of events as described from plant pathogen/herbivore interactions, supporting the idea that carnivory evolved from plant defences.
Collapse
Affiliation(s)
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | | |
Collapse
|
31
|
Butts CT, Bierma JC, Martin RW. Novel proteases from the genome of the carnivorous plant Drosera capensis: Structural prediction and comparative analysis. Proteins 2016; 84:1517-33. [PMID: 27353064 DOI: 10.1002/prot.25095] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 05/16/2016] [Accepted: 06/13/2016] [Indexed: 12/21/2022]
Abstract
In his 1875 monograph on insectivorous plants, Darwin described the feeding reactions of Drosera flypaper traps and predicted that their secretions contained a "ferment" similar to mammalian pepsin, an aspartic protease. Here we report a high-quality draft genome sequence for the cape sundew, Drosera capensis, the first genome of a carnivorous plant from order Caryophyllales, which also includes the Venus flytrap (Dionaea) and the tropical pitcher plants (Nepenthes). This species was selected in part for its hardiness and ease of cultivation, making it an excellent model organism for further investigations of plant carnivory. Analysis of predicted protein sequences yields genes encoding proteases homologous to those found in other plants, some of which display sequence and structural features that suggest novel functionalities. Because the sequence similarity to proteins of known structure is in most cases too low for traditional homology modeling, 3D structures of representative proteases are predicted using comparative modeling with all-atom refinement. Although the overall folds and active residues for these proteins are conserved, we find structural and sequence differences consistent with a diversity of substrate recognition patterns. Finally, we predict differences in substrate specificities using in silico experiments, providing targets for structure/function studies of novel enzymes with biological and technological significance. Proteins 2016; 84:1517-1533. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Carter T Butts
- Department of Electrical Engineering and Computer Science, UC Irvine, Irvine, California, 92697. .,Department of Statistics, UC Irvine, Irvine, California, 92697. .,Department of Sociology, UC Irvine, Irvine, California, 92697.
| | - Jan C Bierma
- Department of Molecular Biology and Biochemistry, UC Irvine, Irvine, California, 92697
| | - Rachel W Martin
- Department of Molecular Biology and Biochemistry, UC Irvine, Irvine, California, 92697. .,Department of Chemistry, UC Irvine, Irvine, California, 92697.
| |
Collapse
|
32
|
Pavlovič A, Krausko M, Adamec L. A carnivorous sundew plant prefers protein over chitin as a source of nitrogen from its traps. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 104:11-16. [PMID: 26998942 DOI: 10.1016/j.plaphy.2016.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/04/2016] [Accepted: 03/04/2016] [Indexed: 06/05/2023]
Abstract
Carnivorous plants have evolved in nutrient-poor wetland habitats. They capture arthropod prey, which is an additional source of plant growth limiting nutrients. One of them is nitrogen, which occurs in the form of chitin and proteins in prey carcasses. In this study, the nutritional value of chitin and protein and their digestion traits in the carnivorous sundew Drosera capensis L. were estimated using stable nitrogen isotope abundance. Plants fed on chitin derived 49% of the leaf nitrogen from chitin, while those fed on the protein bovine serum albumin (BSA) derived 70% of its leaf nitrogen from this. Moreover, leaf nitrogen content doubled in protein-fed in comparison to chitin-fed plants indicating that the proteins were digested more effectively in comparison to chitin and resulted in significantly higher chlorophyll contents. The surplus chlorophyll and absorbed nitrogen from the protein digestion were incorporated into photosynthetic proteins - the light harvesting antennae of photosystem II. The incorporation of insect nitrogen into the plant photosynthetic apparatus may explain the increased rate of photosynthesis and plant growth after feeding. This general response in many genera of carnivorous plants has been reported in many previous studies.
Collapse
Affiliation(s)
- Andrej Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic; Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina, SK-842 15, Bratislava, Slovakia.
| | - Miroslav Krausko
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina, SK-842 15, Bratislava, Slovakia
| | - Lubomír Adamec
- Institute of Botany of the Czech Academy of Sciences, Section of Plant Ecology, Dukelská 135, CZ-379 82, Třeboň, Czech Republic
| |
Collapse
|
33
|
Butts CT, Zhang X, Kelly JE, Roskamp KW, Unhelkar MH, Freites JA, Tahir S, Martin RW. Sequence comparison, molecular modeling, and network analysis predict structural diversity in cysteine proteases from the Cape sundew, Drosera capensis. Comput Struct Biotechnol J 2016; 14:271-82. [PMID: 27471585 PMCID: PMC4949590 DOI: 10.1016/j.csbj.2016.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/11/2016] [Accepted: 05/17/2016] [Indexed: 01/02/2023] Open
Abstract
Carnivorous plants represent a so far underexploited reservoir of novel proteases with potentially useful activities. Here we investigate 44 cysteine proteases from the Cape sundew, Drosera capensis, predicted from genomic DNA sequences. D. capensis has a large number of cysteine protease genes; analysis of their sequences reveals homologs of known plant proteases, some of which are predicted to have novel properties. Many functionally significant sequence and structural features are observed, including targeting signals and occluding loops. Several of the proteases contain a new type of granulin domain. Although active site residues are conserved, the sequence identity of these proteases to known proteins is moderate to low; therefore, comparative modeling with all-atom refinement and subsequent atomistic MD-simulation is used to predict their 3D structures. The structure prediction data, as well as analysis of protein structure networks, suggest multifarious variations on the papain-like cysteine protease structural theme. This in silico methodology provides a general framework for investigating a large pool of sequences that are potentially useful for biotechnology applications, enabling informed choices about which proteins to investigate in the laboratory. 44 new cysteine proteases from the carnivorous plant Drosera capensis are described. Structure prediction and molecular dynamics simulation predict overall folds similar to papain. Functionally significant sequence and structural features are observed, including targeting signals and occluding loops. Several of the proteases contain a new type of granulin domain. Protein structure networks reveal global differences in interactions among chemical groups.
Collapse
Affiliation(s)
- Carter T Butts
- Department of Sociology, UC Irvine, USA; Department of Sociology, UC Irvine, USA; Department of Electrical Engineering and Computer Science, UC Irvine, USA
| | | | | | | | | | | | | | - Rachel W Martin
- Department of Chemistry, UC Irvine, USA; Department of Molecular Biology & Biochemistry, UC Irvine, Irvine, CA, 92697 USA
| |
Collapse
|
34
|
Bemm F, Becker D, Larisch C, Kreuzer I, Escalante-Perez M, Schulze WX, Ankenbrand M, Van de Weyer AL, Krol E, Al-Rasheid KA, Mithöfer A, Weber AP, Schultz J, Hedrich R. Venus flytrap carnivorous lifestyle builds on herbivore defense strategies. Genome Res 2016; 26:812-25. [PMID: 27197216 PMCID: PMC4889972 DOI: 10.1101/gr.202200.115] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 04/07/2016] [Indexed: 11/24/2022]
Abstract
Although the concept of botanical carnivory has been known since Darwin's time, the molecular mechanisms that allow animal feeding remain unknown, primarily due to a complete lack of genomic information. Here, we show that the transcriptomic landscape of the Dionaea trap is dramatically shifted toward signal transduction and nutrient transport upon insect feeding, with touch hormone signaling and protein secretion prevailing. At the same time, a massive induction of general defense responses is accompanied by the repression of cell death-related genes/processes. We hypothesize that the carnivory syndrome of Dionaea evolved by exaptation of ancient defense pathways, replacing cell death with nutrient acquisition.
Collapse
Affiliation(s)
- Felix Bemm
- Center for Computational and Theoretical Biology, Campus Hubland Nord; Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, D-97218 Würzburg, Germany
| | - Dirk Becker
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082 Würzburg, Germany
| | - Christina Larisch
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082 Würzburg, Germany
| | - Ines Kreuzer
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082 Würzburg, Germany
| | - Maria Escalante-Perez
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082 Würzburg, Germany
| | - Waltraud X Schulze
- Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Markus Ankenbrand
- Center for Computational and Theoretical Biology, Campus Hubland Nord; Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, D-97218 Würzburg, Germany; Department of Animal Ecology and Tropical Biology, Biocenter, Am Hubland, 97074 Würzburg, Germany
| | - Anna-Lena Van de Weyer
- Center for Computational and Theoretical Biology, Campus Hubland Nord; Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, D-97218 Würzburg, Germany
| | - Elzbieta Krol
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082 Würzburg, Germany
| | - Khaled A Al-Rasheid
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082 Würzburg, Germany; Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Axel Mithöfer
- Bioorganic Chemistry Department, Max-Planck-Institute for Chemical Ecology, 07745 Jena, Germany
| | - Andreas P Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Jörg Schultz
- Center for Computational and Theoretical Biology, Campus Hubland Nord; Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, D-97218 Würzburg, Germany
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082 Würzburg, Germany
| |
Collapse
|
35
|
Bajgar V, Penhaker M, Martinková L, Pavlovič A, Bober P, Trchová M, Stejskal J. Cotton Fabric Coated with Conducting Polymers and its Application in Monitoring of Carnivorous Plant Response. SENSORS (BASEL, SWITZERLAND) 2016; 16:E498. [PMID: 27070612 PMCID: PMC4851012 DOI: 10.3390/s16040498] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 03/25/2016] [Accepted: 03/28/2016] [Indexed: 02/05/2023]
Abstract
The paper describes the electrical plant response to mechanical stimulation monitored with the help of conducting polymers deposited on cotton fabric. Cotton fabric was coated with conducting polymers, polyaniline or polypyrrole, in situ during the oxidation of respective monomers in aqueous medium. Thus, modified fabrics were again coated with polypyrrole or polyaniline, respectively, in order to investigate any synergetic effect between both polymers with respect to conductivity and its stability during repeated dry cleaning. The coating was confirmed by infrared spectroscopy. The resulting fabrics have been used as electrodes to collect the electrical response to the stimulation of a Venus flytrap plant. This is a paradigm of the use of conducting polymers in monitoring of plant neurobiology.
Collapse
Affiliation(s)
- Václav Bajgar
- Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 708 33 Ostrava, Czech Republic.
| | - Marek Penhaker
- Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 708 33 Ostrava, Czech Republic.
| | | | - Andrej Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacky University in Olomouc, 783 71 Olomouc, Czech Republic.
| | - Patrycja Bober
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague 6, Czech Republic.
| | - Miroslava Trchová
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague 6, Czech Republic.
| | - Jaroslav Stejskal
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague 6, Czech Republic.
| |
Collapse
|
36
|
Rottloff S, Miguel S, Biteau F, Nisse E, Hammann P, Kuhn L, Chicher J, Bazile V, Gaume L, Mignard B, Hehn A, Bourgaud F. Proteome analysis of digestive fluids in Nepenthes pitchers. ANNALS OF BOTANY 2016; 117:479-95. [PMID: 26912512 PMCID: PMC4765550 DOI: 10.1093/aob/mcw001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/06/2015] [Accepted: 11/16/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Carnivorous plants have developed strategies to enable growth in nutrient-poor soils. For the genus Nepenthes, this strategy represents producing pitcher-modified leaves that can trap and digest various prey. These pitchers produce a digestive fluid composed of proteins, including hydrolytic enzymes. The focus of this study was on the identification of these proteins. METHODS In order to better characterize and have an overview of these proteins, digestive fluid was sampled from pitchers at different stages of maturity from five species of Nepenthes (N. mirabilis, N. alata, N. sanguinea, N. bicalcarata and N. albomarginata) that vary in their ecological niches and grew under different conditions. Three complementary approaches based on transcriptomic resources, mass spectrometry and in silico analysis were used. KEY RESULTS This study permitted the identification of 29 proteins excreted in the pitchers. Twenty of these proteins were never reported in Nepenthes previously and included serine carboxypeptidases, α- and β-galactosidases, lipid transfer proteins and esterases/lipases. These 20 proteins display sequence signals allowing their secretion into the pitcher fluid. CONCLUSIONS Nepenthes pitcher plants have evolved an arsenal of enzymes to digest prey caught in their traps. The panel of new proteins identified in this study provides new insights into the digestive process of these carnivorous plants.
Collapse
Affiliation(s)
- Sandy Rottloff
- INRA UMR 1121, Laboratoire Agronomie et Environnement, 2 avenue de la forêt de Haye TSA 40602, F-54518 Vandœuvre-lès-Nancy, France, Université de Lorraine UMR 1121, Laboratoire Agronomie et Environnement, 2 avenue de la forêt de Haye TSA 40602, F-54518 Vandœuvre-lès-Nancy, France, Aura Optik GmbH, Hans-Knöll-Str. 6, D-07745 Jena, Germany
| | - Sissi Miguel
- Plant Advanced Technologies SA, 13 Rue du bois de la Champelle, F-54500 Vandœuvre-lès-Nancy, France
| | - Flore Biteau
- INRA UMR 1121, Laboratoire Agronomie et Environnement, 2 avenue de la forêt de Haye TSA 40602, F-54518 Vandœuvre-lès-Nancy, France, Université de Lorraine UMR 1121, Laboratoire Agronomie et Environnement, 2 avenue de la forêt de Haye TSA 40602, F-54518 Vandœuvre-lès-Nancy, France
| | - Estelle Nisse
- Plant Advanced Technologies SA, 13 Rue du bois de la Champelle, F-54500 Vandœuvre-lès-Nancy, France
| | - Philippe Hammann
- Plant Advanced Technologies SA, 13 Rue du bois de la Champelle, F-54500 Vandœuvre-lès-Nancy, France
| | - Lauriane Kuhn
- Proteomic Platform, Institut de Biologie Moléculaire et Cellulaire, CNRS, FRC 1589, 15 rue Descartes, F-67084 Strasbourg cedex, France and
| | - Johana Chicher
- Proteomic Platform, Institut de Biologie Moléculaire et Cellulaire, CNRS, FRC 1589, 15 rue Descartes, F-67084 Strasbourg cedex, France and
| | - Vincent Bazile
- Université Montpellier II and CNRS, UMR AMAP: Botanique et bioinformatique de l'architecture des plantes, TA A51/PS2, Bd de la Lironde, F-34398 Montpellier cedex 5, France
| | - Laurence Gaume
- Université Montpellier II and CNRS, UMR AMAP: Botanique et bioinformatique de l'architecture des plantes, TA A51/PS2, Bd de la Lironde, F-34398 Montpellier cedex 5, France
| | - Benoit Mignard
- Plant Advanced Technologies SA, 13 Rue du bois de la Champelle, F-54500 Vandœuvre-lès-Nancy, France
| | - Alain Hehn
- INRA UMR 1121, Laboratoire Agronomie et Environnement, 2 avenue de la forêt de Haye TSA 40602, F-54518 Vandœuvre-lès-Nancy, France, Université de Lorraine UMR 1121, Laboratoire Agronomie et Environnement, 2 avenue de la forêt de Haye TSA 40602, F-54518 Vandœuvre-lès-Nancy, France,
| | - Frédéric Bourgaud
- INRA UMR 1121, Laboratoire Agronomie et Environnement, 2 avenue de la forêt de Haye TSA 40602, F-54518 Vandœuvre-lès-Nancy, France, Université de Lorraine UMR 1121, Laboratoire Agronomie et Environnement, 2 avenue de la forêt de Haye TSA 40602, F-54518 Vandœuvre-lès-Nancy, France
| |
Collapse
|
37
|
Böhm J, Scherzer S, Krol E, Kreuzer I, von Meyer K, Lorey C, Mueller TD, Shabala L, Monte I, Solano R, Al-Rasheid KAS, Rennenberg H, Shabala S, Neher E, Hedrich R. The Venus Flytrap Dionaea muscipula Counts Prey-Induced Action Potentials to Induce Sodium Uptake. Curr Biol 2016; 26:286-95. [PMID: 26804557 PMCID: PMC4751343 DOI: 10.1016/j.cub.2015.11.057] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 10/23/2015] [Accepted: 11/26/2015] [Indexed: 01/05/2023]
Abstract
Carnivorous plants, such as the Venus flytrap (Dionaea muscipula), depend on an animal diet when grown in nutrient-poor soils. When an insect visits the trap and tilts the mechanosensors on the inner surface, action potentials (APs) are fired. After a moving object elicits two APs, the trap snaps shut, encaging the victim. Panicking preys repeatedly touch the trigger hairs over the subsequent hours, leading to a hermetically closed trap, which via the gland-based endocrine system is flooded by a prey-decomposing acidic enzyme cocktail. Here, we asked the question as to how many times trigger hairs have to be stimulated (e.g., now many APs are required) for the flytrap to recognize an encaged object as potential food, thus making it worthwhile activating the glands. By applying a series of trigger-hair stimulations, we found that the touch hormone jasmonic acid (JA) signaling pathway is activated after the second stimulus, while more than three APs are required to trigger an expression of genes encoding prey-degrading hydrolases, and that this expression is proportional to the number of mechanical stimulations. A decomposing animal contains a sodium load, and we have found that these sodium ions enter the capture organ via glands. We identified a flytrap sodium channel DmHKT1 as responsible for this sodium acquisition, with the number of transcripts expressed being dependent on the number of mechano-electric stimulations. Hence, the number of APs a victim triggers while trying to break out of the trap identifies the moving prey as a struggling Na+-rich animal and nutrition for the plant. Video Abstract
Carnivorous Dionaea muscipula captures and processes nutrient- and sodium-rich prey Via mechano-sensor stimulation, an animal meal is recognized, captured, and processed Mechano-electrical waves induce JA signaling pathways that trigger prey digestion Number of stimulations controls the production of digesting enzymes and uptake modules
Collapse
Affiliation(s)
- Jennifer Böhm
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany
| | - Sönke Scherzer
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany
| | - Elzbieta Krol
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany
| | - Ines Kreuzer
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany
| | - Katharina von Meyer
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany
| | - Christian Lorey
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany; Naturwissenschaftliches Labor für Schüler, Friedrich-Koenig-Gymnasium, 97082 Würzburg, Germany
| | - Thomas D Mueller
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany
| | - Lana Shabala
- School of Land and Food, University of Tasmania, Hobart, TAS 7001, Australia
| | - Isabel Monte
- Plant Molecular Genetics Department, National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Campus University Autónoma, 28049 Madrid, Spain
| | - Roberto Solano
- Plant Molecular Genetics Department, National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Campus University Autónoma, 28049 Madrid, Spain
| | - Khaled A S Al-Rasheid
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany; Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Heinz Rennenberg
- Institute of Forest Sciences, University of Freiburg, Georges-Koehler-Allee 53/54, 79085 Freiburg, Germany
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, Hobart, TAS 7001, Australia
| | - Erwin Neher
- Department for Membrane Biophysics, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany.
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany.
| |
Collapse
|
38
|
Risør MW, Thomsen LR, Sanggaard KW, Nielsen TA, Thøgersen IB, Lukassen MV, Rossen L, Garcia-Ferrer I, Guevara T, Scavenius C, Meinjohanns E, Gomis-Rüth FX, Enghild JJ. Enzymatic and Structural Characterization of the Major Endopeptidase in the Venus Flytrap Digestion Fluid. J Biol Chem 2015; 291:2271-87. [PMID: 26627834 DOI: 10.1074/jbc.m115.672550] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Indexed: 11/06/2022] Open
Abstract
Carnivorous plants primarily use aspartic proteases during digestion of captured prey. In contrast, the major endopeptidases in the digestive fluid of the Venus flytrap (Dionaea muscipula) are cysteine proteases (dionain-1 to -4). Here, we present the crystal structure of mature dionain-1 in covalent complex with inhibitor E-64 at 1.5 Å resolution. The enzyme exhibits an overall protein fold reminiscent of other plant cysteine proteases. The inactive glycosylated pro-form undergoes autoprocessing and self-activation, optimally at the physiologically relevant pH value of 3.6, at which the protective effect of the pro-domain is lost. The mature enzyme was able to efficiently degrade a Drosophila fly protein extract at pH 4 showing high activity against the abundant Lys- and Arg-rich protein, myosin. The substrate specificity of dionain-1 was largely similar to that of papain with a preference for hydrophobic and aliphatic residues in subsite S2 and for positively charged residues in S1. A tentative structure of the pro-domain was obtained by homology modeling and suggested that a pro-peptide Lys residue intrudes into the S2 pocket, which is more spacious than in papain. This study provides the first analysis of a cysteine protease from the digestive fluid of a carnivorous plant and confirms the close relationship between carnivorous action and plant defense mechanisms.
Collapse
Affiliation(s)
- Michael W Risør
- From the Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark, the Interdisciplinary Nanoscience Center (iNANO), DK-8000 Aarhus, Denmark
| | - Line R Thomsen
- From the Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark, the Interdisciplinary Nanoscience Center (iNANO), DK-8000 Aarhus, Denmark
| | - Kristian W Sanggaard
- From the Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark, the Interdisciplinary Nanoscience Center (iNANO), DK-8000 Aarhus, Denmark
| | - Tania A Nielsen
- the Interdisciplinary Nanoscience Center (iNANO), DK-8000 Aarhus, Denmark
| | - Ida B Thøgersen
- From the Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Marie V Lukassen
- From the Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Litten Rossen
- From the Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Irene Garcia-Ferrer
- the Proteolysis Laboratory, Department of Structural Biology ("María de Maeztu" Unit of Excellence), Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona Science Park, c/Baldiri Reixac 15-21, 08028 Barcelona, Catalonia, Spain, and
| | - Tibisay Guevara
- the Proteolysis Laboratory, Department of Structural Biology ("María de Maeztu" Unit of Excellence), Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona Science Park, c/Baldiri Reixac 15-21, 08028 Barcelona, Catalonia, Spain, and
| | - Carsten Scavenius
- From the Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | | | - F Xavier Gomis-Rüth
- the Proteolysis Laboratory, Department of Structural Biology ("María de Maeztu" Unit of Excellence), Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona Science Park, c/Baldiri Reixac 15-21, 08028 Barcelona, Catalonia, Spain, and
| | - Jan J Enghild
- From the Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark, the Interdisciplinary Nanoscience Center (iNANO), DK-8000 Aarhus, Denmark,
| |
Collapse
|
39
|
Wasternack C, Strnad M. Jasmonate signaling in plant stress responses and development - active and inactive compounds. N Biotechnol 2015; 33:604-613. [PMID: 26581489 DOI: 10.1016/j.nbt.2015.11.001] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/21/2015] [Accepted: 11/04/2015] [Indexed: 12/28/2022]
Abstract
Jasmonates (JAs) are lipid-derived signals mediating plant responses to biotic and abiotic stresses and in plant development. Following the elucidation of each step in their biosynthesis and the important components of perception and signaling, several activators, repressors and co-repressors have been identified which contribute to fine-tuning the regulation of JA-induced gene expression. Many of the metabolic reactions in which JA participates, such as conjugation with amino acids, glucosylation, hydroxylation, carboxylation, sulfation and methylation, lead to numerous compounds with different biological activities. These metabolites may be highly active, partially active in specific processes or inactive. Hydroxylation, carboxylation and sulfation inactivate JA signaling. The precursor of JA biosynthesis, 12-oxo-phytodienoic acid (OPDA), has been identified as a JA-independent signaling compound. An increasing number of OPDA-specific processes is being identified. To conclude, the numerous JA compounds and their different modes of action allow plants to respond specifically and flexibly to alterations in the environment.
Collapse
Affiliation(s)
- Claus Wasternack
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Institute of Experimental Botany AS CR, Šlechtitelů 11, CZ 78371 Olomouc, Czech Republic.
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Institute of Experimental Botany AS CR, Šlechtitelů 11, CZ 78371 Olomouc, Czech Republic
| |
Collapse
|
40
|
Pavlovič A, Saganová M. A novel insight into the cost-benefit model for the evolution of botanical carnivory. ANNALS OF BOTANY 2015; 115:1075-92. [PMID: 25948113 PMCID: PMC4648460 DOI: 10.1093/aob/mcv050] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 03/02/2015] [Accepted: 03/20/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND The cost-benefit model for the evolution of botanical carnivory provides a conceptual framework for interpreting a wide range of comparative and experimental studies on carnivorous plants. This model assumes that the modified leaves called traps represent a significant cost for the plant, and this cost is outweighed by the benefits from increased nutrient uptake from prey, in terms of enhancing the rate of photosynthesis per unit leaf mass or area (AN) in the microsites inhabited by carnivorous plants. SCOPE This review summarizes results from the classical interpretation of the cost-benefit model for evolution of botanical carnivory and highlights the costs and benefits of active trapping mechanisms, including water pumping, electrical signalling and accumulation of jasmonates. Novel alternative sequestration strategies (utilization of leaf litter and faeces) in carnivorous plants are also discussed in the context of the cost-benefit model. CONCLUSIONS Traps of carnivorous plants have lower AN than leaves, and the leaves have higher AN after feeding. Prey digestion, water pumping and electrical signalling represent a significant carbon cost (as an increased rate of respiration, RD) for carnivorous plants. On the other hand, jasmonate accumulation during the digestive period and reprogramming of gene expression from growth and photosynthesis to prey digestion optimizes enzyme production in comparison with constitutive secretion. This inducibility may have evolved as a cost-saving strategy beneficial for carnivorous plants. The similarities between plant defence mechanisms and botanical carnivory are highlighted.
Collapse
Affiliation(s)
- Andrej Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Šlechtitelů 11, CZ-783 71, Olomouc, Czech Republic and Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B2, SK-842 15, Bratislava, Slovakia Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Šlechtitelů 11, CZ-783 71, Olomouc, Czech Republic and Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B2, SK-842 15, Bratislava, Slovakia
| | - Michaela Saganová
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Šlechtitelů 11, CZ-783 71, Olomouc, Czech Republic and Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B2, SK-842 15, Bratislava, Slovakia
| |
Collapse
|
41
|
Buch F, Kaman WE, Bikker FJ, Yilamujiang A, Mithöfer A. Nepenthesin protease activity indicates digestive fluid dynamics in carnivorous nepenthes plants. PLoS One 2015; 10:e0118853. [PMID: 25750992 PMCID: PMC4353617 DOI: 10.1371/journal.pone.0118853] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/16/2015] [Indexed: 12/03/2022] Open
Abstract
Carnivorous plants use different morphological features to attract, trap and digest prey, mainly insects. Plants from the genus Nepenthes possess specialized leaves called pitchers that function as pitfall-traps. These pitchers are filled with a digestive fluid that is generated by the plants themselves. In order to digest caught prey in their pitchers, Nepenthes plants produce various hydrolytic enzymes including aspartic proteases, nepenthesins (Nep). Knowledge about the generation and induction of these proteases is limited. Here, by employing a FRET (fluorescent resonance energy transfer)-based technique that uses a synthetic fluorescent substrate an easy and rapid detection of protease activities in the digestive fluids of various Nepenthes species was feasible. Biochemical studies and the heterologously expressed Nep II from Nepenthes mirabilis proved that the proteolytic activity relied on aspartic proteases, however an acid-mediated auto-activation mechanism was necessary. Employing the FRET-based approach, the induction and dynamics of nepenthesin in the digestive pitcher fluid of various Nepenthes plants could be studied directly with insect (Drosophila melanogaster) prey or plant material. Moreover, we observed that proteolytic activity was induced by the phytohormone jasmonic acid but not by salicylic acid suggesting that jasmonate-dependent signaling pathways are involved in plant carnivory.
Collapse
Affiliation(s)
- Franziska Buch
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans Knöll Straße 8, D-07745, Jena, Germany
| | - Wendy E. Kaman
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, `s-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | - Floris J. Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | - Ayufu Yilamujiang
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans Knöll Straße 8, D-07745, Jena, Germany
| | - Axel Mithöfer
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans Knöll Straße 8, D-07745, Jena, Germany
| |
Collapse
|