1
|
Calic Z, Peric S, Vujnic M, Bjelica B, Bozovic I, Rakocevic‐Stojanovic V, Bradshaw A, Colebatch JG, Welgampola MS. Video head impulse gain is impaired in myotonic dystrophy types 1 and 2. Eur J Neurol 2024; 31:e16513. [PMID: 39403824 PMCID: PMC11554875 DOI: 10.1111/ene.16513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 11/13/2024]
Abstract
BACKGROUND AND PURPOSE This study was undertaken to examine vestibulo-ocular reflex (VOR) characteristics in myotonic dystrophy type 1 (DM1) and type 2 (DM2) using video head impulse testing (vHIT). METHODS VOR gain, refixation saccade prevalence, first saccade amplitude, onset latency, peak velocity, and duration were compared in DM1, DM2, age-matched normal controls, and patients with peripheral and central vestibulopathies. RESULTS Fifty percent of DM1 and 37.5% of DM2 patients demonstrated reduced VOR gain. Refixation saccade prevalence for horizontal canal (HC) and posterior canal (PC) was significantly higher in DM1 (101 ± 42%, 82 ± 47%) and DM2 (70 ± 45%, 61 ± 38%) compared to controls (40 ± 28% and 43 ± 33%, p < 0.05). The first saccade amplitudes and peak velocities were higher in HC and PC planes in DM1 and DM2 compared to controls (p < 0.05). HC slow phase eye velocity profiles in DM1 showed delayed peaks. The asymmetry ratio, which represents the percentage difference between the first and second halves of the slow phase eye velocity response, was therefore negative (-22.5 ± 17%, -2.3 ± 16%, and - 4.7 ± 8% in DM1, DM2, and controls). HC VOR gains were lower and gain asymmetry ratio was larger and negative in patients with DM1 with moderate to severe ptosis and a history of imbalance and falls compared to the remaining DM1 patients (p < 0.05). In peripheral vestibulopathies, saccade amplitude was larger, peak velocity was higher, and onset latency was shorter (p < 0.05) than in DM1. In central vestibulopathy (posterior circulation strokes), saccade peak velocity was higher, but amplitude and onset latency were not significantly different from DM1. CONCLUSIONS VOR impairment is common in DM1 and DM2. In DM1, refixation saccade characteristics are closer to central than peripheral vestibulopathies. Delayed peaks in the vHIT eye velocity profile observed in patients with DM1 may reflect extraocular muscle weakness. VOR impairment and VOR asymmetry in DM1 are associated with imbalance and falls.
Collapse
Affiliation(s)
- Zeljka Calic
- Department of Neurophysiology, Liverpool HospitalSydneyNew South WalesAustralia
- South Western Sydney Clinical SchoolUniversity of New South WalesSydneyNew South WalesAustralia
| | - Stojan Peric
- Neurology Clinic, Clinical Centre of Serbia, Faculty of MedicineUniversity of BelgradeBelgradeSerbia
| | - Milorad Vujnic
- Department of Pathophysiology, Faculty of MedicineUniversity of Banja Luka, Institute of Physical Medicine and Rehabilitation “Dr Miroslav Zotovic”Banja LukaBosnia and Herzegovina
| | - Bogdan Bjelica
- Neurology Clinic, Clinical Centre of Serbia, Faculty of MedicineUniversity of BelgradeBelgradeSerbia
- Department of NeurologyHannover Medical SchoolHannoverGermany
| | - Ivo Bozovic
- Neurology Clinic, Clinical Centre of Serbia, Faculty of MedicineUniversity of BelgradeBelgradeSerbia
| | | | - Andrew Bradshaw
- Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Central Clinical School, University of SydneySydneyNew South WalesAustralia
| | - James G. Colebatch
- Institute of Neurological Sciences, Prince of Wales Clinical School, University of New South WalesSydneyNew South WalesAustralia
| | - Miriam S. Welgampola
- Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Central Clinical School, University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
2
|
Pascual-Morena C, Martínez-Vizcaíno V, Cavero-Redondo I, Álvarez-Bueno C, Lucerón-Lucas-Torres M, Saz-Lara A, Martínez-García I. A meta-analysis of the prevalence of neuropsychiatric disorders and their association with disease onset in myotonic dystrophy. Acta Neuropsychiatr 2024:1-12. [PMID: 39376198 DOI: 10.1017/neu.2024.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
There is a high prevalence of neuropsychiatric disorders in myotonic dystrophy types 1 and 2 (DM1 and DM2), including autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) in DM1, and depression and anxiety in both DMs. The aim of this systematic review and meta-analysis was to estimate the prevalence of ASD, ADHD, depression and anxiety in the population with DM, and their association with disease onset. A systematic search of Medline, Scopus, Web of Science, and the Cochrane Library was conducted from inception to November 2023. Observational studies estimating the prevalence of these disorders in DM1 or DM2 were included. A meta-analysis of the prevalence of these disorders and an association study with disease onset by prevalence ratio meta-analysis were performed. Thirty-eight studies were included. In DM1, the prevalence of ASD was 14%, with congenital onset being 79% more common than juvenile onset, while the prevalence of ADHD was 21%, with no difference between congenital and juvenile onset, and the prevalence of depression and anxiety were 14% and 16%. Depression was more common in the adult onset. Finally, the prevalence of depression in DM2 was 16%. A higher prevalence of neuropsychiatric disorders is observed in individuals with DM1 and DM2 than in the general population. Therefore, actively screening for congenital and juvenile neurodevelopmental disorders in DM1 and emotional disorders in DM1 and DM2 may improve the quality of life of those affected.
Collapse
Affiliation(s)
- Carlos Pascual-Morena
- Health and Social Research Center, Universidad de Castilla-La Mancha, Cuenca, Spain
- Facultad de Enfermería de Albacete, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Vicente Martínez-Vizcaíno
- Health and Social Research Center, Universidad de Castilla-La Mancha, Cuenca, Spain
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | - Iván Cavero-Redondo
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
- CarVasCare Research Group, Facultad de Enfermería de Cuenca, Universidad de Castilla-La Mancha, Cuenca, Spain
| | - Celia Álvarez-Bueno
- Health and Social Research Center, Universidad de Castilla-La Mancha, Cuenca, Spain
- Universidad Politécnica y Artística del Paraguay, Asunción, Paraguay
| | | | - Alicia Saz-Lara
- CarVasCare Research Group, Facultad de Enfermería de Cuenca, Universidad de Castilla-La Mancha, Cuenca, Spain
| | - Irene Martínez-García
- CarVasCare Research Group, Facultad de Enfermería de Cuenca, Universidad de Castilla-La Mancha, Cuenca, Spain
| |
Collapse
|
3
|
Mijajlovic M, Bozovic I, Pavlovic A, Rakocevic-Stojanovic V, Gluscevic S, Stojanovic A, Basta I, Meola G, Peric S. Transcranial brain parenchyma sonographic findings in patients with myotonic dystrophy type 1 and 2. Heliyon 2024; 10:e26856. [PMID: 38434309 PMCID: PMC10907768 DOI: 10.1016/j.heliyon.2024.e26856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/06/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
Introduction Myotonic dystrophy type 1 (DM1) and 2 (DM2) are genetically determined progressive muscular disorders with multisystemic affection, including brain involvement. Transcranial sonography (TCS) is a reliable diagnostic tool for the investigation of deep brain structures. We sought to evaluate TCS findings in genetically confirmed DM1 and DM2 patients, and further correlate these results with patients' clinical features. Methods This cross-sectional study included 163 patients (102 DM1, 61 DM2). Echogenicity of the brainstem raphe (BR) and substantia nigra (SN) as well as the diameter of the third ventricle (DTV) were assessed by TCS. Patients were evaluated using the Hamilton Depression Rating Scale, Fatigue Severity Scale and Daytime Sleepiness Scale. Results SN hyperechogenicity was observed in 40% of DM1 and 34% of DM2 patients. SN hypoechogenicity was detected in 17% of DM1 and 7% of DM2 patients. BR hypoechogenicity was found in 36% of DM1 and 47% of DM2 subjects. Enlarged DTV was noted in 19% of DM1 and 15% of DM2 patients. Older, weaker, depressive, and fatigued DM1 patients were more likely to have BR hypoechogenicity (p < 0.05). DTV correlated with age and disease duration in DM1 (p < 0.01). In DM2 patients SN hyperechogenicity correlated with fatigue. Excessive daytime sleepiness was associated with hypoechogenic BR (p < 0.05) and enlarged DVT (p < 0.01) in DM2 patients. Conclusions TCS is an easy applicable and sensitive neuroimaging technique that could offer new information regarding several brainstem structures in DM1 and DM2. This may lead to better understanding of the pathogenesis of the brain involvement in DM with possible clinical implications.
Collapse
Affiliation(s)
- Milija Mijajlovic
- Neurology Clinic, University Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ivo Bozovic
- Neurology Clinic, University Clinical Center of Serbia, Belgrade, Serbia
| | - Aleksandra Pavlovic
- Neurology Clinic, University Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Faculty of Special Education and Rehabilitation, University of Belgrade, Belgrade, Serbia
| | - Vidosava Rakocevic-Stojanovic
- Neurology Clinic, University Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Sanja Gluscevic
- Neurology Clinic, Clinical Center of Montenegro, Podgorica, Montenegro
| | | | - Ivana Basta
- Neurology Clinic, University Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Giovanni Meola
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Department of Neurorehabilitation Sciences, Casa Di Cura del Policlinico, Milan, Italy
| | - Stojan Peric
- Neurology Clinic, University Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
4
|
Chawla T, Reddy N, Jankar R, Vengalil S, Polavarapu K, Arunachal G, Preethish-Kumar V, Nashi S, Bardhan M, Rajeshwaran J, Afsar M, Warrier M, Thomas PT, Thennarasu K, Nalini A. Myotonic Dystrophy Type 1 (DM1): Clinical Characteristics and Disease Progression in a Large Cohort. Neurol India 2024; 72:83-89. [PMID: 38443007 DOI: 10.4103/neuroindia.ni_1432_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 10/25/2021] [Indexed: 03/07/2024]
Abstract
BACKGROUND DM1 is a multisystem disorder caused by expansion of a CTG triplet repeat in the 3' non-coding region of DMPK. Neuropsychological consequences and sleep abnormalities are important associations in DM1. OBJECTIVE To describe the clinical phenotype, disease progression and characterize the sleep alterations and cognitive abnormalities in a sub-set of patients. MATERIALS AND METHODS A retrospective study on 120 genetically confirmed DM1 cases. Findings in neuropsychological assessment and multiple sleep questionnaires were compared with 14 age and sex matched healthy individuals. All 120 patients were contacted through letters/telephonic consultation/hospital visits to record their latest physical and functional disabilities. RESULTS The mean age at symptom onset was 23.1 ± 11.4 years, M: F = 3.8:1, mean duration of illness = 14.3 ± 9.5 years. Clinically 54.2% had adult onset form, juvenile = 27.5%, infantile = 10.8%, late adult onset = 7.5%. Paternal transmission occurred more frequently. The predominant initial symptoms were myotonia (37.5%), hand weakness (21.7%), lower limb weakness (23.3%) and bulbar (10%). Twenty patients completed sleep questionnaires (SQ). Abnormal scores were noted in Epworth sleepiness scale (55%); Pittsburgh sleep quality index (45%); Berlin SQ (30%); Rapid eye movement sleep Behaviour Disorder SQ (15%); Restless leg syndrome rating scale (10%). Neuropsychological assessment of 20 patients revealed frontal executive dysfunction, attention impairment and visuospatial dysfunction. Frontal lobe was most affected (72%) followed by parietal (16%) and temporal lobe (12%). CONCLUSIONS The current study provides a comprehensive account of the clinical characteristics in Indian patients with DM1. Hypersomnolence was most commonly seen. Excessive daytime sleepiness and Sleep disordered breathing were the most common sleep related abnormality. Cognitive impairment comprised predominantly of frontal lobe dysfunction.
Collapse
Affiliation(s)
- Tanushree Chawla
- Department of Neurology, Children's Hospital of Eastern Ontario Research Institute, The Ottawa Hospital, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Nishanth Reddy
- Department of Neurology, Children's Hospital of Eastern Ontario Research Institute, The Ottawa Hospital, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Rahul Jankar
- Department of Neurology, Children's Hospital of Eastern Ontario Research Institute, The Ottawa Hospital, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Seena Vengalil
- Department of Neurology, Children's Hospital of Eastern Ontario Research Institute, The Ottawa Hospital, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Kiran Polavarapu
- Department of Neurology, Children's Hospital of Eastern Ontario Research Institute, The Ottawa Hospital, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
- Department of Division of Neurology, Department of Medicine, Children's Hospital of Eastern Ontario Research Institute, The Ottawa Hospital, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Gautham Arunachal
- Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Veeramani Preethish-Kumar
- Department of Neurology, Children's Hospital of Eastern Ontario Research Institute, The Ottawa Hospital, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Saraswati Nashi
- Department of Neurology, Children's Hospital of Eastern Ontario Research Institute, The Ottawa Hospital, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Mainak Bardhan
- Department of Neurology, Children's Hospital of Eastern Ontario Research Institute, The Ottawa Hospital, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
- Department of Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Jamuna Rajeshwaran
- Department of Clinical Psychology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Mohammad Afsar
- Department of Clinical Psychology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Manjusha Warrier
- Department of Psychiatric Social Work, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Priya T Thomas
- Department of Psychiatric Social Work, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Kandavel Thennarasu
- Department of Biostatistics, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Atchayaram Nalini
- Department of Neurology, Children's Hospital of Eastern Ontario Research Institute, The Ottawa Hospital, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
5
|
Koscik TR, van der Plas E, Long JD, Cross S, Gutmann L, Cumming SA, Monckton DG, Shields RK, Magnotta V, Nopoulos PC. Longitudinal changes in white matter as measured with diffusion tensor imaging in adult-onset myotonic dystrophy type 1. Neuromuscul Disord 2023; 33:660-669. [PMID: 37419717 PMCID: PMC10529200 DOI: 10.1016/j.nmd.2023.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 05/17/2023] [Accepted: 05/31/2023] [Indexed: 07/09/2023]
Abstract
Myotonic dystrophy type 1 is characterized by neuromuscular degeneration. Our objective was to compare change in white matter microstructure (fractional anisotropy, radial and axial diffusivity), and functional/clinical measures. Participants underwent yearly neuroimaging and neurocognitive assessments over three-years. Assessments encompassed full-scale intelligence, memory, language, visuospatial skills, attention, processing speed, and executive function, as well as clinical symptoms of muscle/motor function, apathy, and hypersomnolence. Mixed effects models were used to examine differences. 69 healthy adults (66.2% women) and 41 DM1 patients (70.7% women) provided 156 and 90 observations, respectively. There was a group by elapsed time interaction for cerebral white matter, where DM1 patients exhibited declines in white matter (all p<0.05). Likewise, DM1 patients either declined (motor), improved more slowly (intelligence), or remained stable (executive function) for functional outcomes. White matter was associated with functional performance; intelligence was predicted by axial (r = 0.832; p<0.01) and radial diffusivity (r = 0.291, p<0.05), and executive function was associated with anisotropy (r = 0.416, p<0.001), and diffusivity (axial: r = 0.237, p = 0.05 and radial: r = 0.300, p<0.05). Indices of white matter health are sensitive to progression in DM1. These results are important for clinical trial design, which utilize short intervals to establish treatment efficacy.
Collapse
Affiliation(s)
- Timothy R Koscik
- Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, 13 Children's Way, Little Rock, AR 72202-3591, USA
| | - Ellen van der Plas
- Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, 13 Children's Way, Little Rock, AR 72202-3591, USA
| | - Jeffrey D Long
- Department of Psychiatry, Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA; Department of Biostatistics, College of Public Health, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - Stephen Cross
- Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, 13 Children's Way, Little Rock, AR 72202-3591, USA
| | - Laurie Gutmann
- Department of Neurology, School of Medicine, Indiana University, 362W 15th St, Indianapolis, IN 46202, USA
| | - Sarah A Cumming
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, UK
| | - Darren G Monckton
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, UK
| | - Richard K Shields
- Department of Radiology, Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - Vincent Magnotta
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - Peggy C Nopoulos
- Department of Psychiatry, Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA; Department of Neurology, School of Medicine, Indiana University, 362W 15th St, Indianapolis, IN 46202, USA; Department of Pediatrics, Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA.
| |
Collapse
|
6
|
Khandelwal A, Cushman J, Choi J, Zhuravka I, Rajbhandari A, Valiulahi P, Li X, Zhou C, Comai L, Reddy S. Mbnl2 loss alters novel context processing and impairs object recognition memory. iScience 2023; 26:106732. [PMID: 37216102 PMCID: PMC10193234 DOI: 10.1016/j.isci.2023.106732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/13/2023] [Accepted: 04/19/2023] [Indexed: 05/24/2023] Open
Abstract
Patients with myotonic dystrophy type I (DM1) demonstrate visuospatial dysfunction and impaired performance in tasks requiring recognition or memory of figures and objects. In DM1, CUG expansion RNAs inactivate the muscleblind-like (MBNL) proteins. We show that constitutive Mbnl2 inactivation in Mbnl2ΔE2/ΔE2 mice selectively impairs object recognition memory in the novel object recognition test. When exploring the context of a novel arena in which the objects are later encountered, the Mbnl2ΔE2/ΔE2 dorsal hippocampus responds with a lack of enrichment for learning and memory-related pathways, mounting instead transcriptome alterations predicted to impair growth and neuron viability. In Mbnl2ΔE2/ΔE2 mice, saturation effects may prevent deployment of a functionally relevant transcriptome response during novel context exploration. Post-novel context exploration alterations in genes implicated in tauopathy and dementia are observed in the Mbnl2ΔE2/ΔE2 dorsal hippocampus. Thus, MBNL2 inactivation in patients with DM1 may alter novel context processing in the dorsal hippocampus and impair object recognition memory.
Collapse
Affiliation(s)
- Abinash Khandelwal
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jesse Cushman
- UCLA Behavioral Testing Core, University of California Los Angeles, Los Angeles, CA 90095-1563, USA
| | - Jongkyu Choi
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Irina Zhuravka
- UCLA Behavioral Testing Core, University of California Los Angeles, Los Angeles, CA 90095-1563, USA
| | - Abha Rajbhandari
- UCLA Behavioral Testing Core, University of California Los Angeles, Los Angeles, CA 90095-1563, USA
| | - Parvin Valiulahi
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Xiandu Li
- . Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Chenyu Zhou
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Lucio Comai
- . Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Sita Reddy
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
7
|
Igreja L, Ribeiro L, Cardoso M, Vasconcelos C, Santos E. External Ophthalmoplegia and Brainstem White Matter Lesions: Presentation of Myotonic Dystrophy Type 1. Neurologist 2023; 28:54-56. [PMID: 35442941 DOI: 10.1097/nrl.0000000000000438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Myotonic dystrophy type 1 (DM1) is an autosomal dominant condition which phenotype can be extremely variable considering its multisystem involvement, including the central nervous system. Neuromuscular findings are facial and distal extremities muscle weakness, muscle atrophy and myotonia. Standard diagnosis is obtained with molecular testing to detect CTG expansions in the myotonic dystrophy protein of the kinase gene. Brain magnetic resonance imaging typically shows characteristic subcortical white matter (WM) abnormalities located within anterior temporal lobes. CASE REPORT We present a 39-year-old male patient with a progressive external ophthalmoplegia, facial and limb muscle weakness, percussion myotonia and atypical brain magnetic resonance imaging findings, showing confluent brainstem WM lesions, affecting the pons, a rare radiologic feature in this disorder. Genetic testing confirmed the diagnosis for DM1. CONCLUSION This presentation with external ophthalmoplegia and brainstem WM loss in DM1 can show an important correlation with clinical findings and have an important diagnostic and prognostic value.
Collapse
Affiliation(s)
| | - Luís Ribeiro
- Department of Neurology, Hospital Pedro Hispano-ULSM, Matosinhos, Portugal
| | | | | | - Ernestina Santos
- Neurology
- Clinical Immunology Unit, Centro Hospitalar Universitário do Porto
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto
| |
Collapse
|
8
|
Kassardjian C, Liewluck T. Systemic Complications of Muscular Dystrophies. CURRENT CLINICAL NEUROLOGY 2023:269-280. [DOI: 10.1007/978-3-031-44009-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
9
|
Fujino H, Suwazono S, Ueda Y, Kobayashi M, Nakayama T, Imura O, Matsumura T, Takahashi MP. Longitudinal Changes in Neuropsychological Functioning in Japanese Patients with Myotonic Dystrophy Type 1: A Five Year Follow-Up Study. J Neuromuscul Dis 2023; 10:1083-1092. [PMID: 37599536 PMCID: PMC10657671 DOI: 10.3233/jnd-230083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Myotonic dystrophy type 1 (DM1) is a form of muscular dystrophy that causes various symptoms, including those of the central nervous system. Some studies have reported cognitive decline in patients with DM1, although the available evidence is limited. OBJECTIVE This study aimed to describe longitudinal differences in neuropsychological function in patients with DM1. METHODS A total of 66 Japanese adult patients with DM1 were investigated using a neuropsychological battery to assess several cognitive domains, including memory, processing speed, and executive function. The patients underwent neuropsychological evaluation approximately five years after baseline (Times 1 and 2). RESULTS Thirty-eight patients underwent a second neuropsychological evaluation. The participants in the Time 2 evaluation were younger than those who did not participate in Time 2. Patients showed a decline in the Mini-Mental State Examination, Trail Making Test (TMT), Block Design, and Symbol Digit Modalities Test at Time 2 (P < 0.05). Age at Time 1 was associated with a decline in TMT-A and TMT-B scores (rho = 0.57 and 0.45, respectively). CONCLUSION These results suggest a cognitive decline in patients with DM1 and warrant further investigation into the possible effects of age-related changes.
Collapse
Affiliation(s)
- Haruo Fujino
- Department of Child Development, United Graduate School of Child Development, Osaka University, Suita, Japan
- Graduate School of Human Sciences, Osaka University, Suita, Japan
| | - Shugo Suwazono
- Center for Clinical Neuroscience, National Hospital Organization Okinawa National Hospital, Ginowan, Japan
| | | | - Michio Kobayashi
- Department of Neurology, National Hospital Organization Akita National Hospital, Yurihonjo, Japan
| | | | - Osamu Imura
- Faculty of Social Sciences, Nara University, Nara, Japan
| | - Tsuyoshi Matsumura
- Department of Neurology, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, Japan
| | - Masanori P. Takahashi
- Department of Clinical Laboratory and Biomedical Sciences, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
10
|
Li J, Li J, Huang P, Huang LN, Ding QG, Zhan L, Li M, Zhang J, Zhang H, Cheng L, Li H, Liu DQ, Zhou HY, Jia XZ. Increased functional connectivity of white-matter in myotonic dystrophy type 1. Front Neurosci 2022; 16:953742. [PMID: 35979335 PMCID: PMC9377538 DOI: 10.3389/fnins.2022.953742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/08/2022] [Indexed: 11/25/2022] Open
Abstract
Background Myotonic dystrophy type 1 (DM1) is the most common and dominant inherited neuromuscular dystrophy disease in adults, involving multiple organs, including the brain. Although structural measurements showed that DM1 is predominantly associated with white-matter damage, they failed to reveal the dysfunction of the white-matter. Recent studies have demonstrated that the functional activity of white-matter is of great significance and has given us insights into revealing the mechanisms of brain disorders. Materials and methods Using resting-state fMRI data, we adopted a clustering analysis to identify the white-matter functional networks and calculated functional connectivity between these networks in 16 DM1 patients and 18 healthy controls (HCs). A two-sample t-test was conducted between the two groups. Partial correlation analyzes were performed between the altered white-matter FC and clinical MMSE or HAMD scores. Results We identified 13 white-matter functional networks by clustering analysis. These white-matter functional networks can be divided into a three-layer network (superficial, middle, and deep) according to their spatial distribution. Compared to HCs, DM1 patients showed increased FC within intra-layer white-matter and inter-layer white-matter networks. For intra-layer networks, the increased FC was mainly located in the inferior longitudinal fasciculus, prefrontal cortex, and corpus callosum networks. For inter-layer networks, the increased FC of DM1 patients is mainly located in the superior corona radiata and deep networks. Conclusion Results demonstrated the abnormalities of white-matter functional connectivity in DM1 located in both intra-layer and inter-layer white-matter networks and suggested that the pathophysiology mechanism of DM1 may be related to the white-matter functional dysconnectivity. Furthermore, it may facilitate the treatment development of DM1.
Collapse
Affiliation(s)
- Jing Li
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Jie Li
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China
- Key Laboratory of Brain and Cognitive Neuroscience, Dalian, China
| | - Pei Huang
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Na Huang
- Department of Radiology, Changshu No. 2 People’s Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, China
| | - Qing-Guo Ding
- Department of Radiology, Changshu No. 2 People’s Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, China
| | - Linlin Zhan
- Faculty of Western Languages, Heilongjiang University, Harbin, China
| | - Mengting Li
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Jiaxi Zhang
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Hongqiang Zhang
- Department of Radiology, Changshu No. 2 People’s Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, China
| | - Lulu Cheng
- School of Foreign Studies, China University of Petroleum, Qingdao, China
- Shanghai Center for Research in English Language Education, Shanghai International Studies University, Shanghai, China
| | - Huayun Li
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Dong-Qiang Liu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China
- Key Laboratory of Brain and Cognitive Neuroscience, Dalian, China
| | - Hai-Yan Zhou
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi-Ze Jia
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
11
|
Jiang Q, Lin J, Li C, Hou Y, Shang H. Gray Matter Abnormalities in Myotonic Dystrophy Type 1: A Voxel-Wise Meta-Analysis. Front Neurol 2022; 13:891789. [PMID: 35873771 PMCID: PMC9301187 DOI: 10.3389/fneur.2022.891789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundA growing number of voxel-based morphometry (VBM) studies have demonstrated widespread gray matter (GM) abnormalities in myotonic dystrophy type 1 (DM1), but the findings are heterogeneous. This study integrated previous VBM studies to identify consistent GM changes in the brains of patients with DM1.MethodsSystematic retrieval was conducted in Web of Science, Pubmed, and Embase databases to identify VBM studies that met the inclusion requirements. Data were extracted. The Seed-based d Mapping with Permutation of Subject Images (SDM-PSI) software was used for meta-analysis of voxel aspects.ResultsA total of eight VBM studies were included, including 176 patients with DM1 and 198 healthy controls (HCs). GM volume in patients with DM1 was extensively reduced compared with HCs, including bilateral rolandic operculum, bilateral posterior central gyrus, bilateral precentral gyrus, right insula, right heschl gyrus, right superior temporal gyrus, bilateral supplementary motor area, bilateral middle cingulate gyrus/paracingulate gyrus, left paracentral lobule, and bilateral caudate nucleus. Meta-regression analysis found that regional GM abnormalities were associated with disease duration and Rey-Osterrieth Complex Figure (ROCF)-recall scores.ConclusionDM1 is not only a disease of muscle injury but also a multisystem disease involving brain motor and neuropsychiatric regions, providing a basis for the pathophysiological mechanism of DM1.
Collapse
|
12
|
Morin A, Funkiewiez A, Routier A, Le Bouc R, Borderies N, Galanaud D, Levy R, Pessiglione M, Dubois B, Eymard B, Michon CC, Angeard N, Behin A, Laforet P, Stojkovic T, Azuar C. Unravelling the impact of frontal lobe impairment for social dysfunction in myotonic dystrophy type 1. Brain Commun 2022; 4:fcac111. [PMID: 35611304 PMCID: PMC9123843 DOI: 10.1093/braincomms/fcac111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 01/14/2022] [Accepted: 05/13/2022] [Indexed: 01/18/2023] Open
Abstract
Abstract
Myotonic dystrophy type 1 is an autosomal dominant multisystemic disorder affecting muscular and extra muscular systems, including the central nervous system. Cerebral involvement in myotonic dystrophy type 1 is associated with subtle cognitive and behavioural disorders, of major impact on socio-professional adaptation. The social dysfunction and its potential relation to frontal lobe neuropsychology remain under-evaluated in this pathology. The neuroanatomical network underpinning that disorder is yet to disentangle. Twenty-eight myotonic dystrophy type 1 adult patients (mean age: 46 years old) and 18 age and sex-matched healthy controls were included in the study. All patients performed an exhaustive neuropsychological assessment with a specific focus on frontal lobe neuropsychology (motivation, social cognition and executive functions). Among them, 18 myotonic dystrophy type 1 patients and 18 healthy controls had a brain MRI with T1 and T2 Flair sequences. Grey matter segmentation, Voxel-based morphometry and cortical thickness estimation were performed with Statistical Parametric Mapping Software SPM12 and Freesurfer software. Furthermore, T2 white matter lesions and subcortical structures were segmented with Automated Volumetry Software. Most patients showed significant impairment in executive frontal functions (auditory working memory, inhibition, contextualization and mental flexibility). Patients showed only minor difficulties in social cognition tests mostly in cognitive Theory of Mind, but with relative sparing of affective Theory of Mind and emotion recognition. Neuroimaging analysis revealed atrophy mostly in the parahippocampal and hippocampal regions and to a lesser extent in basal ganglia, regions involved in social navigation and mental flexibility, respectively. Social cognition scores were correlated with right parahippocampal gyrus atrophy. Social dysfunction in myotonic dystrophy type 1 might be a consequence of cognitive impairment regarding mental flexibility and social contextualization rather than a specific social cognition deficit such as emotion recognition. We suggest that both white matter lesions and grey matter disease could account for this social dysfunction, involving, in particular, the frontal-subcortical network and the hippocampal/arahippocampal regions, brain regions known, respectively, to integrate contextualization and social navigation.
Collapse
Affiliation(s)
- Alexandre Morin
- Institut du Cerveau et de la Moelle épinière (ICM), UMRS 975, ICM-INSERM 1127, 75013 Paris, France
- Service de Neurologie, CHU Rouen, Centre National de Référence Maladie d’Alzheimer du sujet jeune, 76000 Rouen, France
| | - Aurelie Funkiewiez
- Institut du Cerveau et de la Moelle épinière (ICM), UMRS 975, ICM-INSERM 1127, 75013 Paris, France
- Département de Neurologie, Institut de la Mémoire et de la Maladie d’Alzheimer, Centre National Démences Rares, Hôpital Pitié-Salpêtrière, APHP, 75013 Paris, France
| | - Alexandre Routier
- Institut du Cerveau et de la Moelle épinière (ICM), UMRS 975, ICM-INSERM 1127, 75013 Paris, France
| | - Raphael Le Bouc
- Institut du Cerveau et de la Moelle épinière (ICM), UMRS 975, ICM-INSERM 1127, 75013 Paris, France
- Urgences cérébro-vasculaires, Hôpital de la Pitié-Salpêtrière, AP-HP, 75013 Paris, France
| | - Nicolas Borderies
- Institut du Cerveau et de la Moelle épinière (ICM), UMRS 975, ICM-INSERM 1127, 75013 Paris, France
| | - Damien Galanaud
- Institut du Cerveau et de la Moelle épinière (ICM), UMRS 975, ICM-INSERM 1127, 75013 Paris, France
- Service de Neuroradiologie, Hôpital Pitié-Salpêtrière, APHP, 75013 Paris, France
| | - Richard Levy
- Institut du Cerveau et de la Moelle épinière (ICM), UMRS 975, ICM-INSERM 1127, 75013 Paris, France
- Département de Neurologie, Institut de la Mémoire et de la Maladie d’Alzheimer, Centre National Démences Rares, Hôpital Pitié-Salpêtrière, APHP, 75013 Paris, France
- Unité de Neuro-Psychiatrie Comportementale (IHU), Hôpital de la Pitié-Salpêtrière, AP-HP, 75013 Paris, France
| | - Mathias Pessiglione
- Institut du Cerveau et de la Moelle épinière (ICM), UMRS 975, ICM-INSERM 1127, 75013 Paris, France
| | - Bruno Dubois
- Institut du Cerveau et de la Moelle épinière (ICM), UMRS 975, ICM-INSERM 1127, 75013 Paris, France
- Département de Neurologie, Institut de la Mémoire et de la Maladie d’Alzheimer, Centre National Démences Rares, Hôpital Pitié-Salpêtrière, APHP, 75013 Paris, France
| | - Bruno Eymard
- Centre de référence des maladies neuromusculaires Nord/Est/Ile de France, Institut de Myologie, Hospital Pitié-Salpêtrière, APHP, 75013 Paris, France
| | - Claire-Cecile Michon
- Centre de référence des maladies neuromusculaires Nord/Est/Ile de France, Institut de Myologie, Hospital Pitié-Salpêtrière, APHP, 75013 Paris, France
| | - Nathalie Angeard
- U1129, Paris Descartes University, Sorbonne Paris Cité, Paris, France
- Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, APHP, Paris, France
| | - Anthony Behin
- Centre de référence des maladies neuromusculaires Nord/Est/Ile de France, Institut de Myologie, Hospital Pitié-Salpêtrière, APHP, 75013 Paris, France
| | - Pascal Laforet
- Centre de référence des maladies neuromusculaires Nord/Est/Ile de France, Institut de Myologie, Hospital Raymond Poincaré, APHP, 92380 Garches, France
| | - Tanya Stojkovic
- Centre de référence des maladies neuromusculaires Nord/Est/Ile de France, Institut de Myologie, Hospital Pitié-Salpêtrière, APHP, 75013 Paris, France
| | - Carole Azuar
- Institut du Cerveau et de la Moelle épinière (ICM), UMRS 975, ICM-INSERM 1127, 75013 Paris, France
- Département de Neurologie, Institut de la Mémoire et de la Maladie d’Alzheimer, Centre National Démences Rares, Hôpital Pitié-Salpêtrière, APHP, 75013 Paris, France
| |
Collapse
|
13
|
Rosado Bartolomé A, Puertas Martín V, Domínguez González C, Ramos Miranda M. Alteración cognitiva en la distrofia miotónica tipo 1 (enfermedad de Steinert). Semergen 2022; 48:208-213. [DOI: 10.1016/j.semerg.2022.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 11/28/2022]
|
14
|
Labayru G, Camino B, Jimenez-Marin A, Garmendia J, Villanua J, Zulaica M, Cortes JM, López de Munain A, Sistiaga A. White matter integrity changes and neurocognitive functioning in adult-late onset DM1: a follow-up DTI study. Sci Rep 2022; 12:3988. [PMID: 35256728 PMCID: PMC8901711 DOI: 10.1038/s41598-022-07820-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 02/21/2022] [Indexed: 12/04/2022] Open
Abstract
Myotonic Dystrophy Type 1 (DM1) is a multisystemic disease that affects gray and white matter (WM) tissues. WM changes in DM1 include increased hyperintensities and altered tract integrity distributed in a widespread manner. However, the precise temporal and spatial progression of the changes are yet undetermined. MRI data were acquired from 8 adult- and late-onset DM1 patients and 10 healthy controls (HC) at two different timepoints over 9.06 years. Fractional anisotropy (FA) and mean diffusivity (MD) variations were assessed with Tract-Based Spatial Statistics. Transversal and longitudinal intra- and intergroup analyses were conducted, along with correlation analyses with clinical and neuropsychological data. At baseline, reduced FA and increased MD values were found in patients in the uncinate, anterior-thalamic, fronto-occipital, and longitudinal tracts. At follow-up, the WM disconnection was shown to have spread from the frontal part to the rest of the tracts in the brain. Furthermore, WM lesion burden was negatively correlated with FA values, while visuo-construction and intellectual functioning were positively correlated with global and regional FA values at follow-up. DM1 patients showed a pronounced WM integrity loss over time compared to HC, with a neurodegeneration pattern that suggests a progressive anterior-posterior disconnection. The visuo-construction domain stands out as the most sensitive neuropsychological measure for WM microstructural impairment.
Collapse
Affiliation(s)
- Garazi Labayru
- Department of Clinical and Health Psychology and Research Methodology, Psychology Faculty, University of the Basque Country (UPV/EHU), Avda. Tolosa, 70. 20018, Donostia-San Sebastián, Gipuzkoa, Spain.
- Neuroscience Area, Biodonostia Health Research Institute, Donostia-San Sebastián, Gipuzkoa, Spain.
- Center for Biomedical Research Network (CIBER), Institute of Health Carlos III, Madrid, Spain.
| | - Borja Camino
- Biocruces-Bizkaia Health Research Institute, Barakaldo, Spain
- Biomedical Research Doctorate Program, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Antonio Jimenez-Marin
- Biocruces-Bizkaia Health Research Institute, Barakaldo, Spain
- Biomedical Research Doctorate Program, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Joana Garmendia
- Department of Clinical and Health Psychology and Research Methodology, Psychology Faculty, University of the Basque Country (UPV/EHU), Avda. Tolosa, 70. 20018, Donostia-San Sebastián, Gipuzkoa, Spain
| | - Jorge Villanua
- Osatek, Donostia University Hospital, Donostia-San Sebastián, Gipuzkoa, Spain
| | - Miren Zulaica
- Neuroscience Area, Biodonostia Health Research Institute, Donostia-San Sebastián, Gipuzkoa, Spain
- Center for Biomedical Research Network (CIBER), Institute of Health Carlos III, Madrid, Spain
| | - Jesus M Cortes
- Biocruces-Bizkaia Health Research Institute, Barakaldo, Spain
- Department of Cell Biology and Histology, University of the Basque Country (UPV/EHU), Leioa, Spain
- IKERBASQUE, The Basque Foundation for Science, Bilbao, Spain
| | - Adolfo López de Munain
- Neuroscience Area, Biodonostia Health Research Institute, Donostia-San Sebastián, Gipuzkoa, Spain
- Center for Biomedical Research Network (CIBER), Institute of Health Carlos III, Madrid, Spain
- Neurology Department, Donostia University Hospital, Donostia-San Sebastián, Gipuzkoa, Spain
- Neuroscience Department, University of the Basque Country (UPV/EHU), Donostia-San Sebastián, Gipuzkoa, Spain
| | - Andone Sistiaga
- Department of Clinical and Health Psychology and Research Methodology, Psychology Faculty, University of the Basque Country (UPV/EHU), Avda. Tolosa, 70. 20018, Donostia-San Sebastián, Gipuzkoa, Spain.
- Neuroscience Area, Biodonostia Health Research Institute, Donostia-San Sebastián, Gipuzkoa, Spain.
- Center for Biomedical Research Network (CIBER), Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
15
|
De Serres-Bérard T, Pierre M, Chahine M, Puymirat J. Deciphering the mechanisms underlying brain alterations and cognitive impairment in congenital myotonic dystrophy. Neurobiol Dis 2021; 160:105532. [PMID: 34655747 DOI: 10.1016/j.nbd.2021.105532] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/24/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystemic and heterogeneous disorder caused by the expansion of CTG repeats in the 3' UTR of the myotonic dystrophy protein kinase (DMPK) gene. There is a congenital form (CDM1) of the disease characterized by severe hypotonia, respiratory insufficiency as well as developmental delays and intellectual disabilities. CDM1 infants manifest important brain structure abnormalities present from birth while, in contrast, older patients with adult-onset DM1 often present neurodegenerative features and milder progressive cognitive deficits. Promising therapies targeting central molecular mechanisms contributing to the symptoms of adult-onset DM1 are currently in development, but their relevance for treating cognitive impairment in CDM1, which seems to be a partially distinct neurodevelopmental disorder, remain to be elucidated. Here, we provide an update on the clinical presentation of CDM1 and review recent in vitro and in vivo models that have provided meaningful insights on its consequences in development, with a particular focus on the brain. We discuss how enhanced toxic gain-of-function of the mutated DMPK transcripts with larger CUG repeats and the resulting dysregulation of RNA-binding proteins may affect the developing cortex in utero. Because the methylation of CpG islets flanking the trinucleotide repeats has emerged as a strong biomarker of CDM1, we highlight the need to investigate the tissue-specific impacts of these chromatin modifications in the brain. Finally, we outline promising potential therapeutic treatments for CDM1 and propose future in vitro and in vivo models with great potential to shed light on this disease.
Collapse
Affiliation(s)
- Thiéry De Serres-Bérard
- LOEX, CHU de Québec-Université Laval Research Center, Quebec City, Canada; CERVO Brain Research Center, Institut universitaire en santé mentale de Québec, Quebec City, Canada
| | - Marion Pierre
- CERVO Brain Research Center, Institut universitaire en santé mentale de Québec, Quebec City, Canada
| | - Mohamed Chahine
- CERVO Brain Research Center, Institut universitaire en santé mentale de Québec, Quebec City, Canada; Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada.
| | - Jack Puymirat
- LOEX, CHU de Québec-Université Laval Research Center, Quebec City, Canada; Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| |
Collapse
|
16
|
Jimenez‐Marin A, Diez I, Labayru G, Sistiaga A, Caballero MC, Andres‐Benito P, Sepulcre J, Ferrer I, Lopez de Munain A, Cortes JM. Transcriptional signatures of synaptic vesicle genes define myotonic dystrophy type I neurodegeneration. Neuropathol Appl Neurobiol 2021; 47:1092-1108. [PMID: 33955002 PMCID: PMC9292638 DOI: 10.1111/nan.12725] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/08/2021] [Accepted: 04/19/2021] [Indexed: 01/09/2023]
Abstract
AIM To delineate the neurogenetic profiles of brain degeneration patterns in myotonic dystrophy type I (DM1). METHODS In two cohorts of DM1 patients, brain maps of volume loss (VL) and neuropsychological deficits (NDs) were intersected to large-scale transcriptome maps provided by the Allen Human Brain Atlas (AHBA). For validation, neuropathological and RNA analyses were performed in a small series of DM1 brain samples. RESULTS Twofold: (1) From a list of preselected hypothesis-driven genes, confirmatory analyses found that three genes play a major role in brain degeneration: dystrophin (DMD), alpha-synuclein (SNCA) and the microtubule-associated protein tau (MAPT). Neuropathological analyses confirmed a highly heterogeneous Tau-pathology in DM1, different to the one in Alzheimer's disease. (2) Exploratory analyses revealed gene clusters enriched for key biological processes in the central nervous system, such as synaptic vesicle recycling, localization, endocytosis and exocytosis, and the serotonin and dopamine neurotransmitter pathways. RNA analyses confirmed synaptic vesicle dysfunction. CONCLUSIONS The combination of large-scale transcriptome interactions with brain imaging and cognitive function sheds light on the neurobiological mechanisms of brain degeneration in DM1 that might help define future therapeutic strategies and research into this condition.
Collapse
Affiliation(s)
- Antonio Jimenez‐Marin
- Computational Neuroimaging GroupBiocruces‐Bizkaia Health Research InstituteBarakaldoSpain
- Biomedical Research Doctorate ProgramUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - Ibai Diez
- Department of RadiologyDivision of Nuclear Medicine and Molecular ImagingMassachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalHarvard Medical SchoolBostonMAUSA
| | - Garazi Labayru
- Neuroscience AreaBiodonostia Research InstituteSan SebastiánSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)Institute Carlos IIIMadridSpain
- Personality, Assessment and Psychological Treatment Department; Psychology FacultyUniversity of the Basque Country (UPV/EHU)San SebastianSpain
| | - Andone Sistiaga
- Neuroscience AreaBiodonostia Research InstituteSan SebastiánSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)Institute Carlos IIIMadridSpain
- Personality, Assessment and Psychological Treatment Department; Psychology FacultyUniversity of the Basque Country (UPV/EHU)San SebastianSpain
| | | | - Pol Andres‐Benito
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)Institute Carlos IIIMadridSpain
- Department of Pathology and Experimental TherapeuticsUniversity of BarcelonaBarcelonaSpain
- Institute of Biomedical Research of Bellvitge (IBIDELL)Hospitalet de LlobregatSpain
| | - Jorge Sepulcre
- Department of RadiologyDivision of Nuclear Medicine and Molecular ImagingMassachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalHarvard Medical SchoolBostonMAUSA
| | - Isidro Ferrer
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)Institute Carlos IIIMadridSpain
- Department of Pathology and Experimental TherapeuticsUniversity of BarcelonaBarcelonaSpain
- Institute of Biomedical Research of Bellvitge (IBIDELL)Hospitalet de LlobregatSpain
- Institute of NeurosciencesUniversity of BarcelonaHospitalet de LlobregatSpain
| | - Adolfo Lopez de Munain
- Neuroscience AreaBiodonostia Research InstituteSan SebastiánSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)Institute Carlos IIIMadridSpain
- Neurology DepartmentDonostia University HospitalDonostia‐San SebastianSpain
- Neurosciences DepartmentUniversity of the Basque Country (UPV/EHU) Donostia‐San SebastianSpain
| | - Jesus M. Cortes
- Computational Neuroimaging GroupBiocruces‐Bizkaia Health Research InstituteBarakaldoSpain
- Cell Biology and Histology DepartmentUniversity of the Basque Country (UPV/EHU)LeioaSpain
- IKERBASQUEThe Basque Foundation for ScienceBilbaoSpain
| |
Collapse
|
17
|
Abstract
Myotonic Dystrophy Type I (DM1) patients demonstrate widespread and variable brain structural alterations whose etiology is unclear. We demonstrate that inactivation of the Muscleblind-like proteins, Mbnl1 and Mbnl2, initiates brain structural defects. 2D FSE T2w MRIs on 4-month-old Mbnl1+/-/Mbnl2-/- mice demonstrate whole-brain volume reductions, ventriculomegaly and regional gray and white matter volume reductions. Comparative MRIs on 2-month-old Mbnl1-/-, Mbnl2-/- and Mbnl1-/-/Mbnl2+/- brains show genotype-specific reductions in white and gray matter volumes. In both cohorts, white matter volume reductions predominate, with Mbnl2 loss leading to more widespread alterations than Mbnl1 loss. Hippocampal volumes are susceptible to changes in either Mbnl1 or Mbnl2 levels, where both single gene and dual depletions result in comparable volume losses. In contrast, the cortex, inter/midbrain, cerebellum and hindbrain regions show both gene and dose-specific volume decreases. Our results provide a molecular explanation for phenotype intensification in congenital DM1 and the variability in the brain structural alterations reported in DM1.
Collapse
|
18
|
Liu J, Guo ZN, Yan XL, Yang Y, Huang S. Brain Pathogenesis and Potential Therapeutic Strategies in Myotonic Dystrophy Type 1. Front Aging Neurosci 2021; 13:755392. [PMID: 34867280 PMCID: PMC8634727 DOI: 10.3389/fnagi.2021.755392] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/20/2021] [Indexed: 12/17/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is the most common muscular dystrophy that affects multiple systems including the muscle and heart. The mutant CTG expansion at the 3'-UTR of the DMPK gene causes the expression of toxic RNA that aggregate as nuclear foci. The foci then interfere with RNA-binding proteins, affecting hundreds of mis-spliced effector genes, leading to aberrant alternative splicing and loss of effector gene product functions, ultimately resulting in systemic disorders. In recent years, increasing clinical, imaging, and pathological evidence have indicated that DM1, though to a lesser extent, could also be recognized as true brain diseases, with more and more researchers dedicating to develop novel therapeutic tools dealing with it. In this review, we summarize the current advances in the pathogenesis and pathology of central nervous system (CNS) deficits in DM1, intervention measures currently being investigated are also highlighted, aiming to promote novel and cutting-edge therapeutic investigations.
Collapse
Affiliation(s)
- Jie Liu
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Zhen-Ni Guo
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Xiu-Li Yan
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
| | - Yi Yang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Shuo Huang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| |
Collapse
|
19
|
Hanoun S, Sun Y, Ebrahimi F, Ghasemi M. Speech and language abnormalities in myotonic dystrophy: An overview. J Clin Neurosci 2021; 96:212-220. [PMID: 34789418 DOI: 10.1016/j.jocn.2021.10.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/30/2021] [Accepted: 10/24/2021] [Indexed: 12/26/2022]
Abstract
Myotonic dystrophy (DM) is an autosomal dominant neuromuscular and multisystem disease that is divided into two types, DM1 and DM2, according to mutations in DMPK and CNBP genes, respectively. DM patients may manifest with various speech and language abnormalities. In this review, we had an overview on speech and language abnormalities in both DM1 and DM2. Our literature search highlights that irrespective of age, all DM patients (i.e. congenital, juvenile, and adult onset DM1 as well as DM2 patients) exhibit various degrees of speech impairments. These problems are related to both cognitive dysfunction (e.g. difficulties in written and spoken language) and bulbar/vocal muscles weakness and myotonia. DM1 adult patients have also a significant decrease in speech rate and performance due to myotonia and flaccid dysarthria, which can improve with warming up. Weakness, tiredness, and hypotonia of oral and velopharyngeal muscles can cause flaccid dysarthria. Hearing impairment also plays a role in affecting speech recognition in DM2. A better understanding of different aspects of speech and language abnormalities in DM patients may provide better characterization of these abnormalities as markers that can be potentially used as outcome measures in natural history studies or clinical trials.
Collapse
Affiliation(s)
- Sakhaa Hanoun
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA; Department of Medicine, Al-Quds University, Jerusalem, Palestine
| | - Yuyao Sun
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Farzad Ebrahimi
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA; Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
20
|
Miller JN, Kruger A, Moser DJ, Gutmann L, van der Plas E, Koscik TR, Cumming SA, Monckton DG, Nopoulos PC. Cognitive Deficits, Apathy, and Hypersomnolence Represent the Core Brain Symptoms of Adult-Onset Myotonic Dystrophy Type 1. Front Neurol 2021; 12:700796. [PMID: 34276551 PMCID: PMC8280288 DOI: 10.3389/fneur.2021.700796] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022] Open
Abstract
Myotonic dystrophy type 1 is the most common form of muscular dystrophy in adults, and is primarily characterized by muscle weakness and myotonia, yet some of the most disabling symptoms of the disease are cognitive and behavioral. Here we evaluated several of these non-motor symptoms from a cross-sectional time-point in one of the largest longitudinal studies to date, including full-scale intelligence quotient, depression, anxiety, apathy, sleep, and cerebral white matter fractional anisotropy in a group of 39 adult-onset myotonic dystrophy type 1 participants (27 female) compared to 79 unaffected control participants (46 female). We show that intelligence quotient was significantly associated with depression (P < 0.0001) and anxiety (P = 0.018), but not apathy (P < 0.058) or hypersomnolence (P = 0.266) in the DM1 group. When controlling for intelligence quotient, cerebral white matter fractional anisotropy was significantly associated with apathy (P = 0.042) and hypersomnolence (P = 0.034), but not depression (P = 0.679) or anxiety (P = 0.731) in the myotonic dystrophy type 1 group. Finally, we found that disease duration was significantly associated with apathy (P < 0.0001), hypersomnolence (P < 0.001), IQ (P = 0.038), and cerebral white matter fractional anisotropy (P < 0.001), but not depression (P = 0.271) or anxiety (P = 0.508). Our results support the hypothesis that cognitive deficits, hypersomnolence, and apathy, are due to the underlying neuropathology of myotonic dystrophy type 1, as measured by cerebral white matter fractional anisotropy and disease duration. Whereas elevated symptoms of depression and anxiety in myotonic dystrophy type 1 are secondary to the physical symptoms and the emotional stress of coping with a chronic and debilitating disease. Results from this work contribute to a better understanding of disease neuropathology and represent important therapeutic targets for clinical trials.
Collapse
Affiliation(s)
- Jacob N Miller
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Alison Kruger
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - David J Moser
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Laurie Gutmann
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ellen van der Plas
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Timothy R Koscik
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Sarah A Cumming
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Darren G Monckton
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Peggy C Nopoulos
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, United States.,Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States.,Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
21
|
van der Plas E, Koscik TR, Magnotta V, Cumming SA, Monckton D, Gutmann L, Nopoulos P. Neurocognitive Features of Motor Premanifest Individuals With Myotonic Dystrophy Type 1. NEUROLOGY-GENETICS 2021; 7:e577. [PMID: 33912661 PMCID: PMC8075572 DOI: 10.1212/nxg.0000000000000577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/22/2021] [Indexed: 12/12/2022]
Abstract
Objective The goal of the study was to identify brain and functional features associated with premanifest phases of adult-onset myotonic dystrophy type 1 (i.e., PreDM1). Methods This cross-sectional study included 68 healthy adults (mean age = 43.4 years, SD = 12.9), 13 individuals with PreDM1 (mean age: 47.4 years, SD = 16.3), and 37 individuals with manifest DM1 (mean age = 45.2 years, SD = 9.3). The primary outcome measures included fractional anisotropy (FA), motor measures (Muscle Impairment Rating Scale, Grooved Pegboard, Finger-Tapping Test, and grip force), general cognitive abilities (Wechsler Adult Intelligence Scales), sleep quality (Scales for Outcomes in Parkinson's Disease–Sleep), and apathy (Apathy Evaluation Scale). Results Individuals with PreDM1 exhibited an intermediate level of white matter FA abnormality, where whole-brain FA was lower relative to healthy controls (difference of the estimated marginal mean [EMMdifference] = 0.02, 95% confidence interval (CI) 0.01–0.03, p < 0.001), but the PreDM1 group had significantly higher FA than did individuals with manifest DM1 (EMMdifference = 0.02, 95% CI 0.009–0.03, p < 0.001). Individuals with PreDM1 exhibited reduced performance on the finger-tapping task relative to control peers (EMMdifference = 5.70, 95% CI 0.51–11.00, p = 0.03), but performance of the PreDM1 group was better than that of the manifest DM1 group (EMMdifference = 5.60, 95% CI 0.11–11.00, p = 0.05). Hypersomnolence in PreDM1 was intermediate between controls (EMMdifference = −1.70, 95% CI −3.10–0.35, p = 0.01) and manifest DM1 (EMMdifference = −2.10, 95% CI −3.50–0.60, p = 0.006). Conclusions Our findings highlight key CNS and functional deficits associated with PreDM1, offering insight in early disease course.
Collapse
Affiliation(s)
- Ellen van der Plas
- Department of Psychiatry (E.v.d.P., T.R.K., P.N.), Department of Radiology (V.M.), and Department of Neurology (L.G.), University of Iowa Hospitals and Clinics; and Institute of Molecular, Cell and Systems Biology (S.A.C., D.M.), University of Glasgow, Scotland, United Kingdom
| | - Timothy R Koscik
- Department of Psychiatry (E.v.d.P., T.R.K., P.N.), Department of Radiology (V.M.), and Department of Neurology (L.G.), University of Iowa Hospitals and Clinics; and Institute of Molecular, Cell and Systems Biology (S.A.C., D.M.), University of Glasgow, Scotland, United Kingdom
| | - Vincent Magnotta
- Department of Psychiatry (E.v.d.P., T.R.K., P.N.), Department of Radiology (V.M.), and Department of Neurology (L.G.), University of Iowa Hospitals and Clinics; and Institute of Molecular, Cell and Systems Biology (S.A.C., D.M.), University of Glasgow, Scotland, United Kingdom
| | - Sarah A Cumming
- Department of Psychiatry (E.v.d.P., T.R.K., P.N.), Department of Radiology (V.M.), and Department of Neurology (L.G.), University of Iowa Hospitals and Clinics; and Institute of Molecular, Cell and Systems Biology (S.A.C., D.M.), University of Glasgow, Scotland, United Kingdom
| | - Darren Monckton
- Department of Psychiatry (E.v.d.P., T.R.K., P.N.), Department of Radiology (V.M.), and Department of Neurology (L.G.), University of Iowa Hospitals and Clinics; and Institute of Molecular, Cell and Systems Biology (S.A.C., D.M.), University of Glasgow, Scotland, United Kingdom
| | - Laurie Gutmann
- Department of Psychiatry (E.v.d.P., T.R.K., P.N.), Department of Radiology (V.M.), and Department of Neurology (L.G.), University of Iowa Hospitals and Clinics; and Institute of Molecular, Cell and Systems Biology (S.A.C., D.M.), University of Glasgow, Scotland, United Kingdom
| | - Peggy Nopoulos
- Department of Psychiatry (E.v.d.P., T.R.K., P.N.), Department of Radiology (V.M.), and Department of Neurology (L.G.), University of Iowa Hospitals and Clinics; and Institute of Molecular, Cell and Systems Biology (S.A.C., D.M.), University of Glasgow, Scotland, United Kingdom
| |
Collapse
|
22
|
Koscik TR, van der Plas E, Gutmann L, Cumming SA, Monckton DG, Magnotta V, Shields RK, Nopoulos PC. White matter microstructure relates to motor outcomes in myotonic dystrophy type 1 independently of disease duration and genetic burden. Sci Rep 2021; 11:4886. [PMID: 33649422 PMCID: PMC7921687 DOI: 10.1038/s41598-021-84520-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 02/15/2021] [Indexed: 11/09/2022] Open
Abstract
Deficits in white matter (WM) integrity and motor symptoms are among the most robust and reproducible features of myotonic dystrophy type 1 (DM1). In the present study, we investigate whether WM integrity, obtained from diffusion-weighted MRI, corresponds to quantifiable motor outcomes (e.g., fine motor skills and grip strength) and patient-reported, subjective motor deficits. Critically, we explore these relationships in the context of other potentially causative variables, including: disease duration, elapsed time since motor symptom onset; and genetic burden, the number of excessive CTG repeats causing DM1. We found that fractional anisotropy (a measure of WM integrity) throughout the cerebrum was the strongest predictor of grip strength independently of disease duration and genetic burden, while radial diffusivity predicted fine motor skill (peg board performance). Axial diffusivity did not predict motor outcomes. Our results are consistent with the notion that systemic degradation of WM in DM1 mediates the relationship between DM1 progression and genetic burden with motor outcomes of the disease. Our results suggest that tracking changes in WM integrity over time may be a valuable biomarker for tracking therapeutic interventions, such as future gene therapies, for DM1.
Collapse
Affiliation(s)
- Timothy R Koscik
- Department of Psychiatry, Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, USA.
| | - Ellen van der Plas
- Department of Psychiatry, Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| | - Laurie Gutmann
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Sarah A Cumming
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, Scotland
| | - Darren G Monckton
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, Scotland
| | - Vincent Magnotta
- Department of Radiology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Richard K Shields
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Peggy C Nopoulos
- Department of Psychiatry, Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, USA.,Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, USA.,Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, USA
| |
Collapse
|
23
|
Leddy S, Serra L, Esposito D, Vizzotto C, Giulietti G, Silvestri G, Petrucci A, Meola G, Lopiano L, Cercignani M, Bozzali M. Lesion distribution and substrate of white matter damage in myotonic dystrophy type 1: Comparison with multiple sclerosis. NEUROIMAGE-CLINICAL 2021; 29:102562. [PMID: 33516936 PMCID: PMC7848627 DOI: 10.1016/j.nicl.2021.102562] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 02/08/2023]
Abstract
The supratentorial distribution of lesions is similar in DM1 and MS. Patients with DM1 do not show infratentorial lesions. Quantitative magnetization transfer supports the presence of demyelination in DM1 lesions, but not in the NAWM. Anterior temporal lobe lesions in DM1 might have a different substrate than periventricular ones.
Myotonic Dystrophy type 1 (DM1) is an autosomal dominant condition caused by expansion of the CTG triplet repeats within the myotonic dystrophy protein of the kinase (DMPK) gene. The central nervous system is involved in the disease, with multiple symptoms including cognitive impairment. A typical feature of DM1 is the presence of widespread white matter (WM) lesions, whose total volume is associated with CTG triplet expansion. The aim of this study was to characterize the distribution and pathological substrate of these lesions as well as the normal appearing WM (NAWM) using quantitative magnetization transfer (qMT) MRI, and comparing data from DM1 patients with those from patients with multiple sclerosis (MS). Twenty-eight patients with DM1, 29 patients with relapsing-remitting MS, and 15 healthy controls had an MRI scan, including conventional and qMT imaging. The average pool size ratio (F), a proxy of myelination, was computed within lesions and NAWM for every participant. The lesion masks were warped into MNI space and lesion probability maps were obtained for each patient group. The lesion distribution, total lesion load and the tissue-specific mean F were compared between groups. The supratentorial distribution of lesions was similar in the 2 patient groups, although mean lesion volume was higher in MS than DM1. DM1 presented higher prevalence of anterior temporal lobe lesions, but none in the cerebellum and brainstem. Significantly reduced F values were found within DM1 lesions, suggesting a loss of myelin density. While F was reduced in the NAWM of MS patients, it did not differ between DM1 and controls. Our results provide further evidence for a need to compare histology and imaging using new MRI techniques in DM1 patients, in order to further our understanding of the underlying disease process contributing to WM disease.
Collapse
Affiliation(s)
- Sara Leddy
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton, United Kingdom; Brighton and Sussex University Hospital Trust, Brighton, United Kingdom
| | - Laura Serra
- Neuroimaging Laboratory, Santa Lucia Foundation, Rome, Italy
| | - Davide Esposito
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Camilla Vizzotto
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton, United Kingdom
| | | | - Gabriella Silvestri
- Department of Neuroscience, Fondazione Policlinico Gemelli IRCCS, Università Cattolica del S. Cuore, Rome, Italy
| | - Antonio Petrucci
- UOC Neurologia e Neurofisiopatologia, AO San Camillo Forlanini, Rome, Italy
| | - Giovanni Meola
- Department of Neurorehabilitation Sciences, Casa di Cura Policlinico, Milan, Italy; Department of Biomedical Science for Health, University of Milan, Milan, Italy
| | - Leonardo Lopiano
- 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Turin, Italy
| | - Mara Cercignani
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton, United Kingdom; Neuroimaging Laboratory, Santa Lucia Foundation, Rome, Italy
| | - Marco Bozzali
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton, United Kingdom; UOC Neurologia e Neurofisiopatologia, AO San Camillo Forlanini, Rome, Italy.
| |
Collapse
|
24
|
Adaptive skills and mental health in children and adolescents with neuromuscular diseases. Eur J Paediatr Neurol 2021; 30:134-143. [PMID: 33109477 DOI: 10.1016/j.ejpn.2020.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/26/2020] [Accepted: 10/18/2020] [Indexed: 01/11/2023]
Abstract
BACKGROUND Adaptive skills represent the ways that children and adolescents meet their basic needs for self-care, decision making, communication, and learning in their daily life. Having a neuromuscular disease (NMD) not only presents mental health issues, but also impacts these skills. AIMS Our study aimed to compare the adaptive skills and mental health of paediatric patients with the most common NMDs with their healthy peers and assess how NMDs shape the way patients form relationships with others, engage in leisure activities and take care of their daily living needs. METHODS We used the Adaptive Behaviour Assessment System (ABAS-3) and Achenbach Child Behaviour Checklist (CBCL) to compare the adaptive skills and mental health symptoms of 50 NMD patients to a demographically-matched control group of 298 peers. We examined specific outcomes of having myotonic dystrophy (DM), Duchenne muscular dystrophy (DMD), Becker muscular dystrophy (BMD), spinal muscular atrophy (SMA) or a mixed group of other NMDs. RESULTS All NMD patients displayed poor practical adaptive skills. When the disease was more likely to involve the central nervous system (DM, DMD) they also showed additional deficits in their conceptual and social skills. Contrary to previous research no increased rate of psychopathological symptoms was found in NMD patients, with the exception of difficulties in the social domain among patients with DM. CONCLUSIONS Although most children with NMDs displayed more limited practical skills, the specific profile of adaptive skills for each patient group needs to be taken into consideration when planning school support and other psychosocial interventions.
Collapse
|
25
|
Mental health and behavioral function in children with neuromuscular disorders. Eur J Paediatr Neurol 2021; 30:66-67. [PMID: 33444931 DOI: 10.1016/j.ejpn.2020.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/14/2020] [Indexed: 01/12/2023]
|
26
|
van der Plas E, Long JD, Koscik TR, Magnotta V, Monckton DG, Cumming SA, Gottschalk AC, Hefti M, Gutmann L, Nopoulos PC. Blood-Based Markers of Neuronal Injury in Adult-Onset Myotonic Dystrophy Type 1. Front Neurol 2021; 12:791065. [PMID: 35126292 PMCID: PMC8810511 DOI: 10.3389/fneur.2021.791065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/24/2021] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION The present study had four aims. First, neuronal injury markers, including neurofilament light (NF-L), total tau, glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase (UCH-L1), were compared between individuals with and without adult-onset myotonic dystrophy type 1 (DM1). Second, the impact of age and CTG repeat on brain injury markers was evaluated. Third, change in brain injury markers across the study period was quantified. Fourth, associations between brain injury markers and cerebral white matter (WM) fractional anisotropy (FA) were identified. METHODS Yearly assessments, encompassing blood draws and diffusion tensor imaging on a 3T scanner, were conducted on three occasions. Neuronal injury markers were quantified using single molecule array (Simoa). RESULTS The sample included 53 patients and 70 controls. NF-L was higher in DM1 patients than controls, with individuals in the premanifest phases of DM1 (PreDM1) exhibiting intermediate levels ( χ ( 2 ) 2 = 38.142, P < 0.001). Total tau was lower in DM1 patients than controls (Estimate = -0.62, 95% confidence interval [CI] -0.95: -0.28, P < 0.001), while GFAP was elevated in PreDM1 only (Estimate = 30.37, 95% CI 10.56:50.19, P = 0.003). Plasma concentrations of UCH-L1 did not differ between groups. The age by CTG interaction predicted NF-L: patients with higher estimated progenitor allelege length (ePAL) had higher NF-L at a younger age, relative to patients with lower CTG repeat; however, the latter exhibited faster age-related change (Estimate = -0.0021, 95% CI -0.0042: -0.0001, P = 0.045). None of the markers changed substantially over the study period. Finally, cerebral WM FA was significantly associated with NF-L (Estimate = -42.86, 95% CI -82.70: -3.02, P = 0.035). INTERPRETATION While NF-L appears sensitive to disease onset and severity, its utility as a marker of progression remains to be determined. The tau assay may have low sensitivity to tau pathology associated with DM1.
Collapse
Affiliation(s)
- Ellen van der Plas
- Department of Psychiatry, University of Iowa Hospital and Clinics, Iowa City, IA, United States
| | - Jeffrey D Long
- Department of Psychiatry, University of Iowa Hospital and Clinics, Iowa City, IA, United States
| | - Timothy R Koscik
- Department of Psychiatry, University of Iowa Hospital and Clinics, Iowa City, IA, United States
| | - Vincent Magnotta
- Department of Radiology, University of Iowa, Iowa City, IA, United States
| | - Darren G Monckton
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | - Sarah A Cumming
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | - Amy C Gottschalk
- Department of Pathology, University of Iowa Hospital and Clinics, Iowa City, IA, United States
| | - Marco Hefti
- Department of Pathology, University of Iowa Hospital and Clinics, Iowa City, IA, United States
| | - Laurie Gutmann
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Peggy C Nopoulos
- Department of Psychiatry, University of Iowa Hospital and Clinics, Iowa City, IA, United States
| |
Collapse
|
27
|
Breton É, Légaré C, Overend G, Guay SP, Monckton D, Mathieu J, Gagnon C, Richer L, Gallais B, Bouchard L. DNA methylation at the DMPK gene locus is associated with cognitive functions in myotonic dystrophy type 1. Epigenomics 2020; 12:2051-2064. [PMID: 33301350 DOI: 10.2217/epi-2020-0328] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: Myotonic dystrophy type 1 (DM1) is caused by an unstable trinucleotide (CTG) expansion at the DMPK gene locus. Cognitive dysfunctions are often observed in the condition. We investigated the association between DMPK blood DNA methylation (DNAm) and cognitive functions in DM1, considering expansion length and variant repeats (VRs). Method: Data were obtained from 115 adult-onset DM1 patients. Molecular analyses consisted of pyrosequencing, small pool PCR and Southern blot hybridization. Cognitive functions were assessed by validated neuropsychological tests. Results: For patients without VRs (n = 103), blood DNAm at baseline independently contributed to predict cognitive functions 9 years later. Patients with VRs (n = 12) had different DNAm and cognitive profiles. Conclusion: DNAm allows to better understand DM1-related cognitive dysfunction etiology.
Collapse
Affiliation(s)
- Édith Breton
- Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada.,Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital de Jonquière, Saguenay, Québec G7X 7X2, Canada
| | - Cécilia Légaré
- Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada.,Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital de Jonquière, Saguenay, Québec G7X 7X2, Canada
| | - Gayle Overend
- Institute of Molecular, Cell & Systems Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Simon-Pierre Guay
- Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada.,Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Darren Monckton
- Institute of Molecular, Cell & Systems Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Jean Mathieu
- Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital de Jonquière, Saguenay, Québec G7X 7X2, Canada.,Centre de recherche Charles-Le-Moyne-Saguenay-Lac-Saint-Jean sur les innovations en santé (CR-CSIS), Université de Sherbrooke, Saguenay, Québec G7H 5H6, Canada
| | - Cynthia Gagnon
- Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital de Jonquière, Saguenay, Québec G7X 7X2, Canada.,Centre de recherche Charles-Le-Moyne-Saguenay-Lac-Saint-Jean sur les innovations en santé (CR-CSIS), Université de Sherbrooke, Saguenay, Québec G7H 5H6, Canada
| | - Louis Richer
- Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital de Jonquière, Saguenay, Québec G7X 7X2, Canada.,Department of Health Sciences, Université du Québec à Chicoutimi (UQAC), Saguenay, Québec G7H 2B1, Canada
| | - Benjamin Gallais
- Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital de Jonquière, Saguenay, Québec G7X 7X2, Canada.,Centre de recherche Charles-Le-Moyne-Saguenay-Lac-Saint-Jean sur les innovations en santé (CR-CSIS), Université de Sherbrooke, Saguenay, Québec G7H 5H6, Canada.,ÉCOBES - Recherche et transfert, Cégep de Jonquière, Saguenay, Québec G7X 7W2, Canada
| | - Luigi Bouchard
- Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada.,Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital de Jonquière, Saguenay, Québec G7X 7X2, Canada.,Department of Medical Biology, Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital de Chicoutimi, Saguenay, Québec G7H 5H6, Canada
| |
Collapse
|
28
|
Longitudinal study in patients with myotonic dystrophy type 1: correlation of brain MRI abnormalities with cognitive performances. Neuroradiology 2020; 63:1019-1029. [PMID: 33237431 DOI: 10.1007/s00234-020-02611-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/16/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE Myotonic dystrophy type 1 (DM1) is a muscular dystrophy with neurological, cognitive, and radiological abnormalities. The developmental or degenerative nature of these abnormalities, and their progression over time, remains unclear. The aim of this study is to perform a longitudinal assessment of imaging and cognitive performances in a group of patients with DM1. METHODS A longitudinal observational study was conducted in a group of 33 DM1 patients. All patients underwent cognitive and MRI evaluation, including the use of structural and diffusion tensor imaging techniques, at baseline and follow-up evaluation (4 years). Longitudinal changes in white matter lesion (WML), volumetric analysis, and diffusivity values were assessed and correlated with neuropsychological test findings. RESULTS An increase in WML was observed in 16 patients (48.5%). An increase in ventricular system volume and a decrease in volume of the left thalamus, caudates, putamen, and hippocampus were observed (p < 0.001). Global cortical volume showed a significant decrease (p < 0.001), although no changes were observed in white matter volume. A significant increase in mean diffusivity and decrease in fractional anisotropy for the white matter were found (p < 0.001). Neuropsychological evaluation showed a significant deterioration in test performance that measures working memory (Letter-Number Sequencing, p = 0.049) and visuospatial skills (Benton Visual Retention Test, p = 0.001). These findings were significantly associated with WML load (working memory p = 0.002 and visuospatial skills p = 0.021) and mean diffusivity increase (visuospatial skills p = 0.003 in the corpus callosum and working memory p = 0.043 in the right cerebral white matter). CONCLUSION White matter and grey matter involvement in DM1 patients is progressive. Patients experience a worsening in cognitive impairment that correlates with white matter involvement. These findings support the neurodegenerative nature of this disease.
Collapse
|
29
|
Simoncini C, Spadoni G, Lai E, Santoni L, Angelini C, Ricci G, Siciliano G. Central Nervous System Involvement as Outcome Measure for Clinical Trials Efficacy in Myotonic Dystrophy Type 1. Front Neurol 2020; 11:624. [PMID: 33117249 PMCID: PMC7575726 DOI: 10.3389/fneur.2020.00624] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 05/28/2020] [Indexed: 01/18/2023] Open
Abstract
Increasing evidences indicate that in Myotonic Dystrophy type 1 (DM1 or Steinert disease), an autosomal dominant multisystem disorder caused by a (CTG)n expansion in DMPK gene on chromosome 19q13. 3, is the most common form of inherited muscular dystrophy in adult patients with a global prevalence of 1/8000, and involvement of the central nervous system can be included within the core clinical manifestations of the disease. Variable in its severity and progression rate over time, likely due to the underlying causative molecular mechanisms; this component of the clinical picture presents with high heterogeneity involving cognitive and behavioral alterations, but also sensory-motor neural integration, and in any case, significantly contributing to the disease burden projected to either specific functional neuropsychological domains or quality of life as a whole. Principle manifestations include alterations of the frontal lobe function, which is more prominent in patients with an early onset, such as in congenital and childhood onset forms, here associated with severe intellectual disabilities, speech and language delay and reduced IQ-values, while in adult onset DM1 cognitive and neuropsychological findings are usually not so severe. Different methods to assess central nervous system involvement in DM1 have then recently been developed, these ranging from more classical psychometric and cognitive functional instruments to sophisticated psycophysic, neurophysiologic and especially computerized neuroimaging techniques, in order to better characterize this disease component, at the same time underlining the opportunity to consider it a suitable marker on which measuring putative effectiveness of therapeutic interventions. This is the reason why, as outlined in the conclusive section of this review, the Authors are lead to wonder, perhaps in a provocative and even paradoxical way to arise the question, whether or not the myologist, by now the popular figure in charge to care of a patient with the DM1, needs to remain himself a neurologist to better appreciate, evaluate and speculate on this important aspect of Steinert disease.
Collapse
Affiliation(s)
- Costanza Simoncini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giulia Spadoni
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Elisa Lai
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Lorenza Santoni
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Giulia Ricci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
30
|
Labayru G, Jimenez‐Marin A, Fernández E, Villanua J, Zulaica M, Cortes JM, Díez I, Sepulcre J, López de Munain A, Sistiaga A. Neurodegeneration trajectory in pediatric and adult/late DM1: A follow-up MRI study across a decade. Ann Clin Transl Neurol 2020; 7:1802-1815. [PMID: 32881379 PMCID: PMC7545612 DOI: 10.1002/acn3.51163] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE To characterize the progression of brain structural abnormalities in adults with pediatric and adult/late onset DM1, as well as to examine the potential predictive markers of such progression. METHODS 21 DM1 patients (pediatric onset: N = 9; adult/late onset: N = 12) and 18 healthy controls (HC) were assessed longitudinally over 9.17 years through brain MRI. Additionally, patients underwent neuropsychological, genetic, and muscular impairment assessment. Inter-group comparisons of total and voxel-level regional brain volume were conducted through Voxel Based Morphometry (VBM); cross-sectionally and longitudinally, analyzing the associations between brain changes and demographic, clinical, and cognitive outcomes. RESULTS The percentage of GM loss did not significantly differ in any of the groups compared with HC and when assessed independently, adult/late DM1 patients and their HC group suffered a significant loss in WM volume. Regional VBM analyses revealed subcortical GM damage in both DM1 groups, evolving to frontal regions in the pediatric onset patients. Muscular impairment and the outcomes of certain neuropsychological tests were significantly associated with follow-up GM damage, while visuoconstruction, attention, and executive function tests showed sensitivity to WM degeneration over time. INTERPRETATION Distinct patterns of brain atrophy and its progression over time in pediatric and adult/late onset DM1 patients are suggested. Results indicate a possible neurodevelopmental origin of the brain abnormalities in DM1, along with the possible existence of an additional neurodegenerative process. Fronto-subcortical networks appear to be involved in the disease progression at young adulthood in pediatric onset DM1 patients. The involvement of a multimodal integration network in DM1 is discussed.
Collapse
Affiliation(s)
- Garazi Labayru
- Personality, Assessment and psychological treatment department; Psychology FacultyUniversity of the Basque Country (UPV/EHU)San SebastiánGipuzkoaSpain
- Neuroscience AreaBiodonostia Research Institute, OsakidetzaDonostia‐San SebastiánGipuzkoaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)Institute Carlos IIIMadridSpain
| | - Antonio Jimenez‐Marin
- Biocruces‐Bizkaia Health Research InstituteBarakaldoBizkaiaSpain
- Biomedical Research Doctorate ProgramUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - Esther Fernández
- OsatekDonostia University HospitalDonostia‐ San SebastiánGipuzkoaSpain
| | - Jorge Villanua
- OsatekDonostia University HospitalDonostia‐ San SebastiánGipuzkoaSpain
| | - Miren Zulaica
- Neuroscience AreaBiodonostia Research Institute, OsakidetzaDonostia‐San SebastiánGipuzkoaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)Institute Carlos IIIMadridSpain
| | - Jesus M. Cortes
- Biocruces‐Bizkaia Health Research InstituteBarakaldoBizkaiaSpain
- Cell Biology and Histology DepartmentUniversity of the Basque Country (UPV/EHU)LeioaSpain
- IKERBASQUEThe Basque Foundation for ScienceBilbaoSpain
| | - Ibai Díez
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Neurotechnology LaboratoryTecnalia Health DepartmentDerioSpain
| | - Jorge Sepulcre
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Adolfo López de Munain
- Neuroscience AreaBiodonostia Research Institute, OsakidetzaDonostia‐San SebastiánGipuzkoaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)Institute Carlos IIIMadridSpain
- Neurology DepartmentDonostia University HospitalDonostia‐ San SebastiánGipuzkoaSpain
- Neuroscience DepartmentUniversity of the Basque Country (UPV/EHU)Donostia‐San SebastiánGipuzkoaSpain
| | - Andone Sistiaga
- Personality, Assessment and psychological treatment department; Psychology FacultyUniversity of the Basque Country (UPV/EHU)San SebastiánGipuzkoaSpain
- Neuroscience AreaBiodonostia Research Institute, OsakidetzaDonostia‐San SebastiánGipuzkoaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)Institute Carlos IIIMadridSpain
| |
Collapse
|
31
|
Ramon-Duaso C, Gener T, Consegal M, Fernández-Avilés C, Gallego JJ, Castarlenas L, Swanson MS, de la Torre R, Maldonado R, Puig MV, Robledo P. Methylphenidate Attenuates the Cognitive and Mood Alterations Observed in Mbnl2 Knockout Mice and Reduces Microglia Overexpression. Cereb Cortex 2020; 29:2978-2997. [PMID: 30060068 DOI: 10.1093/cercor/bhy164] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 05/25/2018] [Indexed: 12/15/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystem disorder affecting muscle and central nervous system (CNS) function. The cellular mechanisms underlying CNS alterations are poorly understood and no useful treatments exist for the neuropsychological deficits observed in DM1 patients. We investigated the progression of behavioral deficits present in male and female muscleblind-like 2 (Mbnl2) knockout (KO) mice, a rodent model of CNS alterations in DM1, and determined the biochemical and electrophysiological correlates in medial prefrontal cortex (mPFC), striatum and hippocampus (HPC). Male KO exhibited more cognitive impairment and depressive-like behavior than female KO mice. In the mPFC, KO mice showed an overexpression of proinflammatory microglia, increased transcriptional levels of Dat, Drd1, and Drd2, exacerbated dopamine levels, and abnormal neural spiking and oscillatory activities in the mPFC and HPC. Chronic treatment with methylphenidate (MPH) (1 and 3 mg/kg) reversed the behavioral deficits, reduced proinflammatory microglia in the mPFC, normalized prefrontal Dat and Drd2 gene expression, and increased Bdnf and Nrf2 mRNA levels. These findings unravel the mechanisms underlying the beneficial effects of MPH on cognitive deficits and depressive-like behaviors observed in Mbnl2 KO mice, and suggest that MPH could be a potential candidate to treat the CNS deficiencies in DM1 patients.
Collapse
Affiliation(s)
- Carla Ramon-Duaso
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Thomas Gener
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Marta Consegal
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Cristina Fernández-Avilés
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Juan José Gallego
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Laura Castarlenas
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology and the Center for NeuroGenetics, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Rafael de la Torre
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Research Institute, Barcelona, Spain.,CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBERON), Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Maldonado
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Research Institute, Barcelona, Spain.,Laboratory of Neuropharmacology, Department of Experimental al Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | - M Victoria Puig
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Patricia Robledo
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Research Institute, Barcelona, Spain.,Laboratory of Neuropharmacology, Department of Experimental al Health Sciences, Pompeu Fabra University, Barcelona, Spain
| |
Collapse
|
32
|
Lopez-Titla MM, Chirino A, Cruz Solis SV, Hernandez-Castillo CR, Diaz R, Márquez-Quiroz LDC, Magaña JJ, Beltrán-Parrazal L, Fernandez-Ruiz J. Cognitive Decline and White Matter Integrity Degradation in Myotonic Dystrophy Type I. J Neuroimaging 2020; 31:192-198. [PMID: 32936994 DOI: 10.1111/jon.12786] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/29/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Myotonic Dystrophy Type I (DM1) is a neurodegenerative, genetic, and multisystemic disorder with a large variety of symptoms due to a CTG trinucleotide expansion located on Dystrophia Myotonica Protein Kinase (DMPK) gene. Previous reports have shown cognitive deterioration in these patients. Given that white matter (WM) degradation has also been reported in DM1 patients, here we explored if alterations in the cognitive profile of DM1 patients could be related to the deterioration of WM. METHODS A total of 22 classic DM1 patients with age range (18-56 years) and 22 matched healthy control subjects were neuropsychological evaluated by the Cambridge Neuropsychological Test Automated (CANTAB). Patients were evaluated with the Muscular Impairment Rating Scale (MIRS). We then evaluated the cerebral WM integrity using the Fractional Anisotropy (FA) index obtained from the Diffusion Tensor Imaging (DTI) data acquired with a 3T MR scanner. RESULTS DM1 patients showed generalized reduction of WM integrity across the brain. Similarly, patients' neuropsychological evaluation showed significant deficits in memory and problem-solving tasks. Correlation analyses showed a significant correlation between FA deterioration at frontal, temporomedial, and parietal lobes and delayed matched to sample deficits. CONCLUSIONS Our results suggest that despite the pervasive WM integrity loss in DM1 disorder, specific memory impairments can be associated to discreet areas of WM deterioration in these patients.
Collapse
Affiliation(s)
| | - Amanda Chirino
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| | - Sara Vanessa Cruz Solis
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| | | | - Rosalinda Diaz
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| | - Luz Del Carmen Márquez-Quiroz
- Laboratorio de Medicina Genómica, Departamento de Genética (CENIAQ), Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Ciudad de México, 14389, México
| | - Jonathan J Magaña
- Laboratorio de Medicina Genómica, Departamento de Genética (CENIAQ), Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Ciudad de México, 14389, México.,Escuela de Ingeniería, Departamento de Biotecnología, Instituto Tecnológico y de Estudios Superiores de Monterrey-Campus, Ciudad de México, 14380, México
| | - Luis Beltrán-Parrazal
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, 91190, México
| | - Juan Fernandez-Ruiz
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México.,Facultad de Psicología, Universidad Veracruzana, Xalapa, 91700, México
| |
Collapse
|
33
|
Serra L, Bianchi G, Bruschini M, Giulietti G, Domenico CD, Bonarota S, Petrucci A, Silvestri G, Perna A, Meola G, Caltagirone C, Bozzali M. Abnormal Cortical Thickness Is Associated With Deficits in Social Cognition in Patients With Myotonic Dystrophy Type 1. Front Neurol 2020; 11:113. [PMID: 32180756 PMCID: PMC7059122 DOI: 10.3389/fneur.2020.00113] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/31/2020] [Indexed: 12/15/2022] Open
Abstract
Aim: To investigate the cortical thickness in myotonic dystrophy type 1 (DM1) and its potential association with patients' genetic triplet expansion and social cognition deficits. Methods: Thirty patients with DM1 underwent the Social Cognition Battery Test and magnetic resonance imaging (MRI) scanning at 3 T. Twenty-five healthy subjects (HSs) were enrolled in the study to serve as a control group for structural MRI data. To assess changes in cortical thickness in DM1 patients, they were compared to HSs using a t-test model. Correlations were used to assess potential associations between genetic and clinical characteristics and social cognition performances in the patient group. Additionally, multiple regression models were used to explore associations between cortical thickness, CTG triplet expansion size, and scores obtained by DM1 patients on the Social Cognition Battery. Results: DM1 patients showed low performances in several subtests of the Social Cognition Battery. Specifically, they obtained pathological scores at Emotion Attribution Test (i.e., Sadness, Embarrassment, Happiness, and Anger) and at the Social Situations Test (i.e., recognition of normal situation, recognition of aberrant behavior). Significant negative correlations were found between CTG triplet expansion size and Embarrassment, and Severity of Aberrant Behavior. Similarly, a negative correlation was found between patients' MIRS scores and Sadness. DM1 patients compared to HSs showed reduced thickness in the right premotor cortex, angular gyrus, precuneus, and inferior parietal lobule. Significant associations were found between patients' CTG triplet expansion size and thickness in left postcentral gyrus and in the left primary somatosensory cortex, in the posterior cingulate cortex bilaterally, and in the right lingual gyrus. Finally, significant associations were found between cortical thickness and sadness in the superior temporal gyrus, the right precentral gyrus, the right angular gyrus, and the left medial frontal gyrus bilaterally. DM1 patients showed a negative correlation between cortical thickness in the bilateral precuneus and in the left lateral occipital cortex and performance at the Social Situations Test. Finally, DM1 patients showed a negative correlation between cortical thickness in the left precuneus and in the superior frontal gyrus and scores at the Moral Distinction Test. Discussion: The present study shows both cortical thickness changes in DM1 patients compared to controls and significant associations between cortical thickness and patients' social cognition performances. These data confirm the presence of widespread brain damages associated with cognitive impairment in DM1 patients.
Collapse
Affiliation(s)
- Laura Serra
- Neuroimaging Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy
| | | | | | | | | | - Sabrina Bonarota
- Neuroimaging Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Antonio Petrucci
- UOC Neurologia e Neurofisiopatologia, AO San Camillo Forlanini, Rome, Italy
| | - Gabriella Silvestri
- Department of Geriatrics, Orthopedic and Neuroscience, Institute of Neurology, Catholic University of Sacred Heart, Rome, Italy
| | - Alessia Perna
- Department of Geriatrics, Orthopedic and Neuroscience, Institute of Neurology, Catholic University of Sacred Heart, Rome, Italy
| | - Giovanni Meola
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, Milan, Italy
| | - Carlo Caltagirone
- Department of Clinical and Behavioral Neurology, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Marco Bozzali
- Neuroimaging Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy.,Brighton & Sussex Medical School, CISC, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
34
|
van der Plas E, Hamilton MJ, Miller JN, Koscik TR, Long JD, Cumming S, Povilaikaite J, Farrugia ME, McLean J, Jampana R, Magnotta VA, Gutmann L, Monckton DG, Nopoulos PC. Brain Structural Features of Myotonic Dystrophy Type 1 and their Relationship with CTG Repeats. J Neuromuscul Dis 2020; 6:321-332. [PMID: 31306140 PMCID: PMC7480174 DOI: 10.3233/jnd-190397] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Background Few adequately-powered studies have systematically evaluated brain morphology in adult-onset myotonic dystrophy type 1 (DM1). Objective The goal of the present study was to determine structural brain differences between individuals with and without adult-onset DM1 in a multi-site, case-controlled cohort. We also explored correlations between brain structure and CTG repeat length. Methods Neuroimaging data was acquired in 58 unaffected individuals (29 women) and 79 individuals with DM1 (50 women). CTG repeat length, expressed as estimated progenitor allele length (ePAL), was determined by small pool PCR. Statistical models were adjusted for age, sex, site, and intracranial volume (ICV). Results ICV was reduced in DM1 subjects compared with controls. Accounting for the difference in ICV, the DM1 group exhibited smaller volume in frontal grey and white matter, parietal grey matter as well as smaller volume of the corpus callosum, thalamus, putamen, and accumbens. In contrast, volumes of the hippocampus and amygdala were significantly larger in DM1. Greater ePAL was associated with lower volumes of the putamen, occipital grey matter, and thalamus. A positive ePAL association was observed for amygdala volume and cerebellar white matter. Conclusions Smaller ICV may be a marker of aberrant neurodevelopment in adult-onset DM1. Volumetric analysis revealed morphological differences, some associated with CTG repeat length, in structures with plausible links to key DM1 symptoms including cognitive deficits and excessive daytime somnolence. These data offer further insights into the basis of CNS disease in DM1, and highlight avenues for further work to identify therapeutic targets and imaging biomarkers.
Collapse
Affiliation(s)
- Ellen van der Plas
- Department of Psychiatry, University of Iowa Hospital and Clinics, Iowa City, IA, USA
| | - Mark J Hamilton
- West of Scotland Clinical Genetics Service, Queen Elizabeth University Hospital, Glasgow, UK.,Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jacob N Miller
- Department of Psychiatry, University of Iowa Hospital and Clinics, Iowa City, IA, USA
| | - Timothy R Koscik
- Department of Psychiatry, University of Iowa Hospital and Clinics, Iowa City, IA, USA
| | - Jeffrey D Long
- Department of Psychiatry, University of Iowa Hospital and Clinics, Iowa City, IA, USA.,Department of Biostatistics, University of Iowa, College of Public Health, Iowa City, IA, USA
| | - Sarah Cumming
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Julija Povilaikaite
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Maria Elena Farrugia
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, UK
| | - John McLean
- Department of Neuroradiology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, UK
| | - Ravi Jampana
- Department of Neuroradiology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, UK
| | - Vincent A Magnotta
- Department of Radiology, University of Iowa Hospital and Clinics, Iowa City, IA, USA
| | - Laurie Gutmann
- Department of Neurology, University of Iowa Hospital and Clinics, Iowa City, IA, USA
| | - Darren G Monckton
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Peggy C Nopoulos
- Department of Psychiatry, University of Iowa Hospital and Clinics, Iowa City, IA, USA
| |
Collapse
|
35
|
Langbehn KE, van der Plas E, Moser DJ, Long JD, Gutmann L, Nopoulos PC. Cognitive function and its relationship with brain structure in myotonic dystrophy type 1. J Neurosci Res 2020; 99:190-199. [PMID: 32056295 DOI: 10.1002/jnr.24595] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/06/2020] [Accepted: 02/02/2020] [Indexed: 11/09/2022]
Abstract
Studies have shown relationships between white matter abnormalities and cognitive dysfunction in myotonic dystrophy type 1 (DM1), but comprehensive analysis of potential structure-function relationships are lacking. Fifty adult-onset DM1 individuals (33 female) and 68 unaffected adults (45 female) completed the Wechsler Adult Intelligence Scale-IV (WAIS-IV) to determine the levels and patterns of intellectual functioning. Neuroimages were acquired with a 3T scanner and were processed with BrainsTools. Regional brain volumes (regions of interest, ROIs) were adjusted for inter-scanner variation and intracranial volume. Linear regression models were conducted to assess if group by ROI interaction terms significantly predicted WAIS-IV composite scores. Models were adjusted for age and sex. The DM1 group had lower Perceptual Reasoning Index (PRI), Working Memory Index (WMI), and Processing Speed Index (PSI) scores than the unaffected group (PRI t(113) = -3.28, p = 0.0014; WMI t(114) = -3.49, p = 0.0007; PSI t(114) = -2.98, p = 0.0035). The group by hippocampus interaction term was significant for both PRI and PSI (PRI (t(111) = -2.82, p = 0.0057; PSI (t(112) = -2.87, p = 0.0049)). There was an inverse association between hippocampal volume and both PRI and PSI in the DM1 group (the higher the volume, the lower the intelligence quotient scores), but no such association was observed in the unaffected group. Enlarged hippocampal volume may underlie some aspects of cognitive dysfunction in adult-onset DM1, suggesting that increased volume of the hippocampus may be pathological.
Collapse
Affiliation(s)
- Kathleen E Langbehn
- Psychiatry Department, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Ellen van der Plas
- Psychiatry Department, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - David J Moser
- Psychiatry Department, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Jeffrey D Long
- Psychiatry Department, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Laurie Gutmann
- Neurology Department, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Peggy C Nopoulos
- Psychiatry Department, University of Iowa Hospitals & Clinics, Iowa City, IA, USA.,Neurology Department, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| |
Collapse
|
36
|
Wang J, Liu M, Shang W, Chen Z, Peng G. Myotonic dystrophy type 1 accompanied with normal pressure hydrocephalus: a case report and literature review. BMC Neurol 2020; 20:53. [PMID: 32050933 PMCID: PMC7017494 DOI: 10.1186/s12883-020-01636-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/05/2020] [Indexed: 01/13/2023] Open
Abstract
Background Myotonic dystrophy type 1 (DM1) is the most common disease that can cause muscle weakness and atrophy among adults. Normal pressure hydrocephalus (NPH) is characterized by the triad of gait disturbance, cognitive impairment and urinary incontinence. The association between DM1 and NPH is extremely rare. We report a Chinese female patient with DM1 in association with NPH. Case presentation The patient presented with a history of 3-year of walking instability and cognitive impairment. Her brain MRI showed ventriculomegaly with normal cerebrospinal fluid (CSF) pressure and the CSF tap-test was positive, which indicated the diagnosis of probable NPH. DM1 was confirmed by genetic testing. Conclusions Four patients with DM1-NPH association were found before. The association between NPH and DM1 may not be just a coincidence, NPH may occur in DM1 later in life and it is vital to recognize the association as a shunt surgery may improve patients’ quality of life.
Collapse
Affiliation(s)
- Junyang Wang
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Ming Liu
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Wenjie Shang
- Department of Neurology, Shengzhou People's Hospital, 666 Dangui Road, Shengzhou, 312403, China
| | - Zhongqin Chen
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Guoping Peng
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China.
| |
Collapse
|
37
|
Abstract
There is increasing evidence of central nervous system involvement in numerous neuromuscular disorders primarily considered diseases of skeletal muscle. Our knowledge on cerebral affection in myopathies is expanding continuously due to a better understanding of the genetic background and underlying pathophysiological mechanisms. Intriguingly, there is a remarkable overlap of brain pathology in muscular diseases with pathomechanisms involved in neurodegenerative or neurodevelopmental disorders. A rapid progress in advanced neuroimaging techniques results in further detailed insight into structural and functional cerebral abnormalities. The spectrum of clinical manifestations is broad and includes movement disorders, neurovascular complications, paroxysmal neurological symptoms like migraine and epileptic seizures, but also behavioural abnormalities and cognitive dysfunction. Cerebral involvement implies a high socio-economic and personal burden in adult patients sometimes exceeding the everyday challenges associated with muscle weakness. It is especially important to clarify the nature and natural history of brain affection against the background of upcoming specific treatment regimen in hereditary myopathies that should address the brain as a secondary target. This review aims to highlight the character and extent of central nervous system involvement in patients with hereditary myopathies manifesting in adulthood, however also includes some childhood-onset diseases with brain abnormalities that transfer into adult neurological care.
Collapse
Affiliation(s)
- Jens Reimann
- Department of Neurology, Section of Neuromuscular Diseases, University Hospital Bonn, Germany
- Center for Rare Diseases, University Hospital Bonn, Germany
| | - Cornelia Kornblum
- Department of Neurology, Section of Neuromuscular Diseases, University Hospital Bonn, Germany
- Center for Rare Diseases, University Hospital Bonn, Germany
| |
Collapse
|
38
|
Labayru G, Diez I, Sepulcre J, Fernández E, Zulaica M, Cortés JM, López de Munain A, Sistiaga A. Regional brain atrophy in gray and white matter is associated with cognitive impairment in Myotonic Dystrophy type 1. NEUROIMAGE-CLINICAL 2019; 24:102078. [PMID: 31795042 PMCID: PMC6861566 DOI: 10.1016/j.nicl.2019.102078] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/28/2019] [Accepted: 11/04/2019] [Indexed: 11/28/2022]
Abstract
Predominance of white matter impairment in DM1 is questioned. Age poses vulnerability to grey matter loss in specific areas in DM1. White matter alterations in DM1 may be developmental. Muscular and genetic features are associated with brain abnormalities in DM1. Neuropsychology is an unspecific but strong predictor of gray matter damage in DM1.
Background Myotonic Dystrophy type 1 (DM1) is a slowly progressive myopathy characterized by varying multisystemic involvement. Several cerebral features such as brain atrophy, ventricular enlargement, and white matter lesions (WMLs) have frequently been described. The aim of this study is to investigate the structural organization of the brain that defines the disease through multimodal imaging analysis, and to analyze the relation between structural cerebral changes and DM1 clinical and neuropsychological profiles. Method 31 DM1 patients and 57 healthy controls underwent an MRI scan protocol, including T1, T2 and DTI. Global gray matter (GM), global white matter (WM), and voxel-level Voxel Based Morphometry (VBM) and voxel-level microstructural WM abnormalities through Diffusion Tensor Imaging (DTI) were assessed through group comparisons and linear regression analysis with age, degree of muscular impairment (MIRS score), CTG expansion size and neuropsychological outcomes from a comprehensive assessment. Results Compared with healthy controls, DM1 patients showed a reduction in both global GM and WM volume; and further regional GM decrease in specific primary sensory, multi-sensory and association cortical regions. Fractional anisotropy (FA) was reduced in both total brain and regional analysis, being most marked in frontal, paralimbic, temporal cortex, and subcortical regions. Higher ratings on muscular impairment and longer CTG expansion sizes predicted a greater volume decrease in GM and lower FA values. Age predicted global GM reduction, specifically in parietal regions. At the cognitive level, the DM1 group showed significant negative correlations between IQ estimate, visuoconstructive and executive neuropsychological scores and both global and regional volume decrease, mainly distributed in the frontal, parietal and subcortical regions. Conclusions In this study, we describe the structural brain signatures that delineate the involvement of the CNS in DM1. We show that specific sensory and multi-sensory — as well as frontal cortical areas — display potential vulnerability associated with the hypothesized neurodegenerative nature of DM1 brain abnormalities.
Collapse
Affiliation(s)
- Garazi Labayru
- Neuroscience Area, Biodonostia Research Institute, San Sebastián, Gipuzkoa, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Institute Carlos III, Madrid, Spain; Personality, Assessment and psychological treatment department; Psychology Faculty, University of the Basque Country (UPV/EHU), San Sebastian, Gipuzkoa, Spain.
| | - Ibai Diez
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; Neurotechnology Laboratory, Tecnalia Health Department, Derio, Spain
| | - Jorge Sepulcre
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Esther Fernández
- Neuroscience Area, Biodonostia Research Institute, San Sebastián, Gipuzkoa, Spain; Osatek, Donostia University Hospital, Donostia-San Sebastian, Gipuzkoa, Spain; Radiolody Department, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Gipuzkoa, Spain
| | - Miren Zulaica
- Neuroscience Area, Biodonostia Research Institute, San Sebastián, Gipuzkoa, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Institute Carlos III, Madrid, Spain
| | - Jesús M Cortés
- Biocruces Health Research Institute. Hospital Universitario de Cruces, Barakaldo, Spain; Cell Biology and Histology Department, University of the Basque Country (UPV/EHU), Leioa, Spain; IKERBASQUE, The Basque Foundation for Science, Bilbao, Spain
| | - Adolfo López de Munain
- Neuroscience Area, Biodonostia Research Institute, San Sebastián, Gipuzkoa, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Institute Carlos III, Madrid, Spain; Neurology Department, Donostia University Hospital, Donostia-San Sebastian, Gipuzkoa, Spain; Neurosciences Department, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Gipuzkoa, Spain
| | - Andone Sistiaga
- Neuroscience Area, Biodonostia Research Institute, San Sebastián, Gipuzkoa, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Institute Carlos III, Madrid, Spain; Personality, Assessment and psychological treatment department; Psychology Faculty, University of the Basque Country (UPV/EHU), San Sebastian, Gipuzkoa, Spain
| |
Collapse
|
39
|
Woo J, Lee HW, Park JS. Differences in the pattern of cognitive impairments between juvenile and adult onset myotonic dystrophy type 1. J Clin Neurosci 2019; 68:92-96. [PMID: 31371188 DOI: 10.1016/j.jocn.2019.07.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/06/2019] [Indexed: 02/01/2023]
Abstract
OBJECTIVE To understand the different patterns of neuropsychological dysfunction observed between juvenile onset (jDM1) and adult onset (aDM1) myotonic dystrophy type 1. METHOD We enrolled 19 genetically confirmed DM1 patients, and neuropsychological tests-Wechsler Adult Intelligence Scale-Revised short form; Rey-Kim memory test; and Executive Intelligence Test for evaluating intelligence, memory, and executive function-were performed. Clinical parameters including cytosine-thymine-guanine (CTG) repeats, creatinine kinase level, pulmonary function test, six-minute walk test, motor scales, and cardiac function were evaluated. RESULTS Verbal intelligence was significantly lower in the jDM1 than the aDM1 group (7.50 ± 1.64 vs. 11.00 ± 2.54, respectively; p = 0.009), while no difference was observed in performance intelligence. There was significant differences between the two groups (p = 0.022) with respect to memory function, as specifically revealed by the pattern of lower function in the verbal memory of the jDM1 group. However, the executive function test showed no intergroup differences. CONCLUSION Verbal memory impairment significantly deteriorated in the jDM1 group as compared to the aDM1 group, reflecting a more profound neurodevelopmental change in the juvenile type.
Collapse
Affiliation(s)
- Jungmin Woo
- Department of Psychiatry, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Ho-Won Lee
- Department of Neurology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, South Korea
| | - Jin-Sung Park
- Department of Neurology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, South Korea.
| |
Collapse
|
40
|
Angelini C, Pinzan E. Advances in imaging of brain abnormalities in neuromuscular disease. Ther Adv Neurol Disord 2019; 12:1756286419845567. [PMID: 31105770 PMCID: PMC6503605 DOI: 10.1177/1756286419845567] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 03/05/2019] [Indexed: 01/18/2023] Open
Abstract
Brain atrophy, white matter abnormalities, and ventricular enlargement have been described in different neuromuscular diseases (NMDs). We aimed to provide a comprehensive overview of the substantial advancement of brain imaging in neuromuscular diseases by consulting the main libraries (Pubmed, Scopus and Google Scholar) including the more common forms of muscular dystrophies such as dystrophinopathies, dystroglycanopathies, myotonic dystrophies, facioscapulohumeral dystrophy, limb-girdle muscular dystrophy, congenital myotonia, and congenital myopathies. A consistent, widespread cortical and subcortical involvement of grey and white matter was found. Abnormalities in the functional connectivity in brain networks and metabolic alterations were observed with positron emission tomography (PET) and single photon emission computed tomography (SPECT). Pathological brain changes with cognitive dysfunction seemed to be frequently associated in NMDs. In particular, in congenital muscular dystrophies (CMDs), skeletal muscular weakness, severe hypotonia, WM abnormalities, ventricular dilatation and abnormalities in cerebral gyration were observed. In dystroglycanopathy 2I subtype (LGMD2I), adult patients showed subcortical atrophy and a WM periventricular involvement, moderate ventriculomegaly, and enlargement of subarachnoid spaces. Correlations with clinical features have been observed with brain imaging characteristics and alterations were prominent in congenital or childhood onset cases. In myotonic dystrophy type 2 (DM2) symptoms seem to be less severe than in type 1 (DM1). In Duchenne and Becker muscular dystrophies (DMD, BMD) cortical atrophy is associated with minimal ventricular dilatation and WM abnormalities. Late-onset glycogenosis type II (GSD II) or Pompe infantile forms are characterized by delayed myelination. Only in a few cases of oculopharyngeal muscular dystrophy (OPMD) central nervous system involvement has been described and associated with executive functions impairment.
Collapse
Affiliation(s)
- Corrado Angelini
- Fondazione Ospedale San Camillo IRCCS, Via
Alberoni 70, Venezia, 30126, Italia
| | - Elena Pinzan
- Fondazione Ospedale San Camillo IRCCS, Venezia,
Italia
| |
Collapse
|
41
|
Tracking the brain in myotonic dystrophies: A 5-year longitudinal follow-up study. PLoS One 2019; 14:e0213381. [PMID: 30845252 PMCID: PMC6405094 DOI: 10.1371/journal.pone.0213381] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/19/2019] [Indexed: 12/05/2022] Open
Abstract
Objectives The aim of this study was to examine the natural history of brain involvement in adult-onset myotonic dystrophies type 1 and 2 (DM1, DM2). Methods We conducted a longitudinal observational study to examine functional and structural cerebral changes in myotonic dystrophies. We enrolled 16 adult-onset DM1 patients, 16 DM2 patients, and 17 controls. At baseline and after 5.5 ± 0.4 years participants underwent neurological, neuropsychological, and 3T-brain MRI examinations using identical study protocols that included voxel-based morphometry and diffusion tensor imaging. Data were analyzed by (i) group comparisons between patients and controls at baseline and follow-up, and (ii) group comparisons using difference maps (baseline–follow-up in each participant) to focus on disease-related effects over time. Results We found minor neuropsychological deficits with mild progression in DM1 more than DM2. Daytime sleepiness was restricted to DM1, whereas fatigue was present in both disease entities and stable over time. Comparing results of cross-sectional neuroimaging analyses at baseline and follow-up revealed an unchanged pattern of pronounced white matter alterations in DM1. There was mild additional gray matter reduction in DM1 at follow-up. In DM2, white matter reduction was of lesser extent, but there were some additional alterations at follow-up. Gray matter seemed unaffected in DM2. Intriguingly, longitudinal analyses using difference maps and comparing them between patients and controls did not reveal any significant differences of cerebral changes over time between patients and controls. Conclusion The lack of significant disease-related progression of gray and white matter involvement over a period of five years in our cohort of DM1 and DM2 patients suggests either a rather slowly progressive process or even a stable course of cerebral changes in middle-aged adult-onset patients. Being the first longitudinal neuroimaging trial in DM1 and DM2, this study provides useful additional information regarding the natural history of brain involvement.
Collapse
|
42
|
Park JS, Song H, Jang KE, Cha H, Lee SH, Hwang SK, Park D, Lee HJ, Kim JY, Chang Y. Diffusion tensor imaging and voxel-based morphometry reveal corticospinal tract involvement in the motor dysfunction of adult-onset myotonic dystrophy type 1. Sci Rep 2018; 8:15592. [PMID: 30349069 PMCID: PMC6197259 DOI: 10.1038/s41598-018-34048-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/09/2018] [Indexed: 12/30/2022] Open
Abstract
Magnetic resonance imaging (MRI) studies have demonstrated that patients with myotonic dystrophy type 1 (DM1) exhibit gray and white matter abnormalities that are correlated with various genetic and neuropsychological measures. However, few MRI studies have focused on the correlations between brain abnormalities and overall motor function including gait performance. Here, we investigated the correlations between brain abnormalities, as assessed with MRI including diffusion tensor imaging (DTI), and motor performance, as assessed with the Medical Research Council sum score (MRCSS), 6-minute walk test (6MWT), and hand grip power, in patients with DM1. Eighteen patients with DM1 and twenty healthy controls participated in this study. The MRCSS and 6MWT reflect patients’ general motor performance, particularly gait, while hand grip reflects the presence of myotonia. We found significant relationships between DTI parameters in the corticospinal tract (CST) and genetic factors and motor performance in patients with DM1. These findings suggest that CST involvement reflecting deterioration of the motor tracts may play a significant role in clinical myotonia. Further, a direct relationship between the cortical gray matter volume and DTI measures in the CST suggests that white matter abnormalities in the CST are strongly associated with volume reductions in the sensorimotor cortex of patients with DM1.
Collapse
Affiliation(s)
- Jin-Sung Park
- Department of Neurology, School of Medicine, Kyungpook National University, Daegu, Korea.,Department of Neurology, Kyungpook National University Chilgok Hospital, Daegu, Korea
| | - Huijin Song
- Institute of Biomedical Engineering Research, Kyungpook National University, Daegu, Korea
| | - Kyung Eun Jang
- Department of Medical & Biological Engineering, Kyungpook National University, Daegu, Korea
| | - Hyunsil Cha
- Department of Medical & Biological Engineering, Kyungpook National University, Daegu, Korea
| | - Sang-Hoon Lee
- Department of Medical & Biological Engineering, Kyungpook National University, Daegu, Korea
| | - Su-Keong Hwang
- Department of Pediatrics, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Donghwi Park
- Department of Rehabilitation, Daegu Fatima Hospital, Daegu, Korea
| | - Hui Joong Lee
- Department of Radiology, Kyungpook National University Hospital, Daegu, Korea.,Department of Radiology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jun-Young Kim
- Department of Orthopaedic Surgery, Daegu Catholic University College of Medicine, Daegu, Korea
| | - Yongmin Chang
- Department of Radiology, Kyungpook National University Hospital, Daegu, Korea. .,Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu, Korea.
| |
Collapse
|
43
|
Hamilton MJ, McLean J, Cumming S, Ballantyne B, McGhie J, Jampana R, Longman C, Evans JJ, Monckton DG, Farrugia ME. Outcome Measures for Central Nervous System Evaluation in Myotonic Dystrophy Type 1 May Be Confounded by Deficits in Motor Function or Insight. Front Neurol 2018; 9:780. [PMID: 30333784 PMCID: PMC6176265 DOI: 10.3389/fneur.2018.00780] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/30/2018] [Indexed: 01/18/2023] Open
Abstract
Background: Central nervous system involvement in myotonic dystrophy type 1 (DM1) is associated with cognitive deficits, impaired social performance and excessive somnolence, which greatly impact quality of life. With the advent of clinical trials in DM1, there is a pressing need to identify outcome measures for quantification of central symptoms that are feasible and valid. In this context, we sought to evaluate neuropsychological and self-reported measures currently recommended by expert consensus, with particular reference to their specificity for central nervous system involvement in a moderate-sized DM1 cohort. Methods: Forty-five adults with DM1 and 20 controls completed neuropsychology assessments and symptom questionnaires. Those without contraindication also underwent MRI brain, from which global gray matter volume and white matter lesion volume were quantified. CTG repeat was measured by small pool PCR, and was screened for the presence of variant repeat sequences. Results: The neuropsychology test battery was well tolerated and detected impairment across various domains in the DM1 group vs. controls. Large effect sizes in the Stroop and Trail Making Tests were however attenuated by correction for basic speed, which could be influenced by dysarthria and upper limb weakness, respectively. Low mood was strongly associated with increased self-reporting of central symptoms, including cognitive impairment. Conversely, self-reported cognitive impairment did not generally predict poorer performance in neuropsychology assessments, and there was a trend toward greater self-reporting of low mood and cognitive problems in those with milder white matter change on MRI. Global gray matter volume correlated with performance in several neuropsychology assessments in a multivariate model with age and sex, while white matter lesion volume was associated with executive dysfunction reported by a proxy. Screening for variant repeats was positive in three individuals, who reported mild muscle symptoms. Conclusions: Identification of outcome measures with good specificity for brain involvement in DM1 is challenging, since complex cognitive assessments may be compromised by peripheral muscle weakness and self-reported questionnaires may be influenced by mood and insight. This highlights the need for further large, longitudinal studies to identify and validate objective measures, which may include imaging biomarkers and cognitive measures not influenced by motor speed.
Collapse
Affiliation(s)
- Mark J Hamilton
- West of Scotland Clinical Genetics Service, Queen Elizabeth University Hospital, Glasgow, United Kingdom.,Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - John McLean
- Department of Neuroradiology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Sarah Cumming
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Bob Ballantyne
- West of Scotland Clinical Genetics Service, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Josephine McGhie
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Ravi Jampana
- Department of Neuroradiology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Cheryl Longman
- West of Scotland Clinical Genetics Service, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Jonathan J Evans
- Institute of Health and Wellbeing, Gartnavel Royal Hospital, University of Glasgow, Glasgow, United Kingdom
| | - Darren G Monckton
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Maria Elena Farrugia
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| |
Collapse
|
44
|
Callus E, Bertoldo EG, Beretta M, Boveri S, Cardani R, Fossati B, Brigonzi E, Meola G. Neuropsychological and Psychological Functioning Aspects in Myotonic Dystrophy Type 1 Patients in Italy. Front Neurol 2018; 9:751. [PMID: 30298045 PMCID: PMC6160752 DOI: 10.3389/fneur.2018.00751] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 08/17/2018] [Indexed: 12/12/2022] Open
Abstract
Introduction: Myotonic Dystrophy Type 1 (DM1) is an autosomal dominant genetic illness, characterized by a progressive loss of strength. Important deficits in cognitive functioning and a significant prevalence of psychiatric disorders have been previously reported. Methods:A neuropsychological and psychological assessment was carried out in 31 DM1 patients (61% males) in order to measure the cognitive functioning and explore their personality profiles. The MMSE Mini-Mental State Examination, Frontal Assessment Battery (FAB), ENB-2 Battery assessing memory (short term, long term and working memory), integration capacities, visual-spatial ability, attention (selective, divided, shifting/switching) executive functions, praxis, discrimination and logic capabilities and psychopathology Symptom Check List 90-R (SCL-90-R) were administered. The neuropsychological and psychological evaluation of DM1 patients was carried out taking into consideration the clinical parameters (CTG repeat, age at onset, disease duration, Muscular Impairment Rate Scale (MIRS), Medical Research Council Scale (MRC) and the Epworth Sleepiness Scales (EPS)). Results: Regarding psychopathology 19.4% of patients scored a moderate or high level of symptoms intensity index (GSI), 12.9% reported a high number of symptoms (PST) and 16.1% reported a high intensity level of the perceived symptoms (PSDI). Fatigue and daytime sleepiness resulted as being associated with higher levels of psychoticism (PSY). Only 1 patient reported a severe impairment in the spatial and temporal orientation, memory, language, praxis, attention and calculation. Longer disease duration was also associated with cognitive impairment evaluated through ENB-2 (p < 0.05). Discussions and Conclusions:There are indications of the utility of neuropsychological and psychological screening and support for these patients and their families due to the link between disease duration and cognitive performances. A proposal of a clinical protocol, with an illustration of a clinical case report of a family is presented.
Collapse
Affiliation(s)
- Edward Callus
- Clinical Psychology Service, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Enrico G Bertoldo
- Clinical Psychology Service, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Maria Beretta
- Clinical Psychology Service, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Sara Boveri
- Scientific Directorate, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Rosanna Cardani
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Barbara Fossati
- Department of Neurology, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Elisa Brigonzi
- Department of Neurology, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Giovanni Meola
- Department of Neurology, IRCCS Policlinico San Donato, San Donato Milanese, Italy.,Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| |
Collapse
|
45
|
Minnerop M, Gliem C, Kornblum C. Current Progress in CNS Imaging of Myotonic Dystrophy. Front Neurol 2018; 9:646. [PMID: 30186217 PMCID: PMC6110944 DOI: 10.3389/fneur.2018.00646] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/18/2018] [Indexed: 01/18/2023] Open
Abstract
Neuroimaging in myotonic dystrophies provided a major contribution to the insight into brain involvement which is highly prevalent in these multisystemic disorders. Particular in Myotonic Dystrophy Type 1, conventional MRI first revealed hyperintense white matter lesions, predominantly localized in the anterior temporal lobe. Brain atrophy and ventricle enlargement were additional early findings already described almost 30 years ago. Since then, more advanced and sophisticated imaging methods have been applied in Myotonic Dystrophy Types 1 and 2. Involvement of actually normal appearing white matter and widespread cortical affection in PET studies were key results toward the recognition of diffuse and not only focally localized brain pathology in vivo. Later, structural abnormalities of both, gray and white matter, have been found in both forms of the disorder, albeit more prominent in myotonic dystrophy type 1. In Type 1, a consistent widespread cortical and subcortical involvement of gray and white matter affecting all lobes, brainstem and cerebellum was observed. Spectroscopy studies gave additional evidence of neuronal and glial damage in both types. Central questions regarding the origin and spatiotemporal evolution of the CNS involvement and its relevance for clinical symptoms had already been raised 30 years ago, however are still not answered. Results of correlation analyses between neuroimaging and clinical parameters are diverse and with few exceptions not well reproducible across studies. It may be related to the fact that most of the reported studies included only small numbers of subjects, sometimes even not separating Myotonic Dystrophy Type 1 from Type 2. But this heterogeneity may also support the current point of view that the clinical impairments are not simply linked to specific and regionally circumscribed structural or functional brain alterations. It seems more convincing that disturbed networks build the functional and structural substrate of clinical symptoms in these disorders as it is proposed in other neuropsychiatric diseases. Consecutively, structural and functional network analyses may provide additional information regarding the link between brain pathology and clinical symptoms. Up to now, only cross-sectional neuroimaging studies have been published. To analyze the temporal evolution of brain affection, longitudinal studies are urgently needed, and systematic natural history data would be useful to identify potential biomarkers for therapeutic studies.
Collapse
Affiliation(s)
- Martina Minnerop
- Institute of Neuroscience and Medicine (INM-1), Research Center Juelich, Juelich, Germany.,Department of Neurology and Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Center for Movement Disorders and Neuromodulation, Heinrich-Heine University, Düsseldorf, Germany
| | - Carla Gliem
- Department of Neurology, University Hospital of Bonn, Bonn, Germany
| | - Cornelia Kornblum
- Department of Neurology, University Hospital of Bonn, Bonn, Germany.,Center for Rare Diseases Bonn (ZSEB), University Hospital of Bonn, Bonn, Germany
| |
Collapse
|
46
|
Wenninger S, Montagnese F, Schoser B. Core Clinical Phenotypes in Myotonic Dystrophies. Front Neurol 2018; 9:303. [PMID: 29770119 PMCID: PMC5941986 DOI: 10.3389/fneur.2018.00303] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/18/2018] [Indexed: 12/22/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) and type 2 (DM2) represent the most frequent multisystemic muscular dystrophies in adulthood. They are progressive, autosomal dominant diseases caused by an abnormal expansion of an unstable nucleotide repeat located in the non-coding region of their respective genes DMPK for DM1 and CNBP in DM2. Clinically, these multisystemic disorders are characterized by a high variability of muscular and extramuscular symptoms, often causing a delay in diagnosis. For both subtypes, many symptoms overlap, but some differences allow their clinical distinction. This article highlights the clinical core features of myotonic dystrophies, thus facilitating their early recognition and diagnosis. Particular attention will be given to signs and symptoms of muscular involvement, to issues related to respiratory impairment, and to the multiorgan involvement. This article is part of a Special Issue entitled “Beyond Borders: Myotonic Dystrophies—A European Perception.”
Collapse
Affiliation(s)
- Stephan Wenninger
- Friedrich-Baur-Institute, Klinikum der Universität München, Munich, Germany
| | | | - Benedikt Schoser
- Friedrich-Baur-Institute, Klinikum der Universität München, Munich, Germany
| |
Collapse
|
47
|
Cabada T, Iridoy M, Jericó I, Lecumberri P, Seijas R, Gargallo A, Gomez M. Brain Involvement in Myotonic Dystrophy Type 1: A Morphometric and Diffusion Tensor Imaging Study with Neuropsychological Correlation. Arch Clin Neuropsychol 2018; 32:401-412. [PMID: 28164212 DOI: 10.1093/arclin/acx008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 01/13/2017] [Indexed: 11/12/2022] Open
Abstract
Objective Myotonic dystrophy type 1 (DM1), the most prevalent inherited neuromuscular disease in adults, is a genetic multisystem disorder with a well-established but not well-characterized cerebral involvement. The aim of this study was to evaluate the presence of white matter and gray matter abnormalities in DM1 patients and to investigate their relationship with neurocognitive dysfunction. Methods A total of 42 DM1 patients and 42 healthy controls were included in the study. Clinical, cognitive, and magnetic resonance imaging evaluations, including the use of structural and diffusion tensor imaging (DTI) techniques, were performed. White matter lesion (WML) load, volumetric analysis, and diffusivity changes were assessed and correlated with clinical and neuropsychological test findings. Results WMLs were significantly more frequent in DM1 patients (p < .001), and anterior temporal lobe lesions were only found in the patient group. Global and regional cortical volume loss and corpus callosum atrophy were found. Diffuse white matter DTI abnormalities, including fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity were observed with sparing of the internal capsule. Subcortical structures showed volume loss and increased median diffusivity. Neuropsychological evaluation showed significant impairment in several cognitive functions, but only visuospatial impairment was correlated with white matter abnormalities and cortical atrophy. Daytime sleepiness was associated with WML and ventral diencephalon and pallidum volume loss. Conclusion DM1 produces a widespread involvement of white matter and gray matter, including cortical and subcortical structures. These structural abnormalities are involved in the progressive neuropsychological functional impairment in these patients.
Collapse
Affiliation(s)
- T Cabada
- Radiology Department, Complejo Hospitalario De Navarra,Spain
| | - M Iridoy
- Neurology Department, Complejo Hospitalario De Navarra, Spain
| | - I Jericó
- Neurology Department, Complejo Hospitalario De Navarra, Spain
| | - P Lecumberri
- Mathematics Department, Universidad Publica De Navarra, Spain
| | - R Seijas
- Neurology Department, Complejo Hospitalario De Navarra, Spain
| | - A Gargallo
- Radiology Department, Complejo Hospitalario De Navarra,Spain
| | - M Gomez
- Mathematics Department, Universidad Publica De Navarra, Spain
| |
Collapse
|
48
|
Graham CD, Kemp S, Radakovic R, Kapur N. Clinical neuropsychology in the management of myotonic dystrophy. Muscle Nerve 2018; 57:701-704. [DOI: 10.1002/mus.26085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 11/12/2022]
Affiliation(s)
| | - Steven Kemp
- Department of Clinical Neuropsychology; Leeds Teaching Hospitals NHS Trust, St. James University Hospital; Leeds UK
| | - Ratko Radakovic
- Faculty of Medicine and Health Sciences, Queens Building, University of East Anglia; Norwich UK
| | - Narinder Kapur
- Research Department of Clinical; Educational & Health Psychology, University College; London UK
| |
Collapse
|
49
|
Andrenelli E, Galli FL, Gesuita R, Skrami E, Logullo FO, Provinciali L, Capecci M, Ceravolo MG, Coccia M. Swallowing impairments in Amyotrophic Lateral Sclerosis and Myotonic Dystrophy type 1: Looking for the portrait of dysphagic patient in neuromuscular diseases. NeuroRehabilitation 2018; 42:93-102. [DOI: 10.3233/nre-172272] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Elisa Andrenelli
- Department of Experimental and Clinical Medicine, Neurorehabilitation Clinic, “Politecnica delle Marche” University, Ancona, Italy
| | - Federica Lucia Galli
- Department of Neuroscience, Neurorehabilitation Clinic, AziendaOspedaliero-Universitaria Ospedali Riuniti di Ancona, Ancona, Italy
| | - Rosaria Gesuita
- Center of Epidemiology, Biostatistics and Medical Information Technology, “Politecnica delle Marche” University, Ancona, Italy
| | - Edlira Skrami
- Center of Epidemiology, Biostatistics and Medical Information Technology, “Politecnica delle Marche” University, Ancona, Italy
| | - Francesco Ottavio Logullo
- Department of Experimental and Clinical Medicine, Neurological Clinic, “Politecnica delle Marche” University, Ancona, Italy
| | - Leandro Provinciali
- Department of Experimental and Clinical Medicine, Neurological Clinic, “Politecnica delle Marche” University, Ancona, Italy
| | - Marianna Capecci
- Department of Experimental and Clinical Medicine, Neurorehabilitation Clinic, “Politecnica delle Marche” University, Ancona, Italy
| | - Maria Gabriella Ceravolo
- Department of Experimental and Clinical Medicine, Neurorehabilitation Clinic, “Politecnica delle Marche” University, Ancona, Italy
| | - Michela Coccia
- Department of Neuroscience, Neurorehabilitation Clinic, AziendaOspedaliero-Universitaria Ospedali Riuniti di Ancona, Ancona, Italy
| |
Collapse
|
50
|
Fujino H, Shingaki H, Suwazono S, Ueda Y, Wada C, Nakayama T, Takahashi MP, Imura O, Matsumura T. Cognitive impairment and quality of life in patients with myotonic dystrophy type 1. Muscle Nerve 2017; 57:742-748. [PMID: 29193182 DOI: 10.1002/mus.26022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 11/25/2017] [Accepted: 11/27/2017] [Indexed: 01/25/2023]
Abstract
INTRODUCTION This study sought to clarify whether specific cognitive abilities are impaired in patients with myotonic dystrophy type 1 (DM1) as well as to investigate the relationships among quality of life (QoL), cognitive function, and psychological factors. METHODS Sixty patients with DM1 were evaluated on cognitive functioning (abstract reasoning, attention/working memory, executive function, processing speed, and visuoconstructive ability), apathy, depression, excessive daytime sleepiness, fatigue, and QoL. QoL was assessed by 2 domains of the Muscular Dystrophy Quality of Life Scale (Psychosocial Relationships and Physical Functioning and Health). RESULTS More than half of the patients exhibited cognitive impairment in attention/working memory, executive function, processing speed, and visuoconstructive ability. The Psychosocial Relationships factor was associated with processing speed, attention/working memory, and apathy, whereas depression and fatigue were associated with 2 QoL domains. DISCUSSION Our study identified specific cognitive impairments in DM1. Specific cognitive functions and psychological factors may be potential contributors to QoL. Muscle Nerve 57: 742-748, 2018.
Collapse
Affiliation(s)
- Haruo Fujino
- Department of Special Needs Education, Oita University, 700 Dannoharu, Oita, Japan, 870-1192.,Graduate School of Human Sciences, Osaka University, Osaka, Japan
| | - Honoka Shingaki
- Graduate School of Human Sciences, Osaka University, Osaka, Japan
| | - Shugo Suwazono
- Department of Neurology, National Hospital Organization Okinawa Hospital, Okinawa, Japan
| | | | - Chizu Wada
- Department of Neurology, National Hospital Organization Akita National Hospital, Yurihonjo, Japan
| | | | - Masanori P Takahashi
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Osamu Imura
- Graduate School of Human Sciences, Osaka University, Osaka, Japan
| | - Tsuyoshi Matsumura
- Department of Neurology, National Hospital Organization Toneyama National Hospital, Osaka, Japan
| |
Collapse
|