1
|
Ausserhofer P, Kiss I, Witte A, Klein R. Anti-Adenoviral Effect of Human Argonaute 2 Alone and in Combination with Artificial microRNAs. Cells 2024; 13:1117. [PMID: 38994969 PMCID: PMC11240694 DOI: 10.3390/cells13131117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/15/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024] Open
Abstract
During infection, adenoviruses inhibit the cellular RNA interference (RNAi) machinery by saturating the RNA-induced silencing complex (RISC) of the host cells with large amounts of virus-derived microRNAs (mivaRNAs) that bind to the key component of the complex, Argonaute 2 (AGO2). In the present study, we investigated AGO2 as a prominent player at the intersection between human adenovirus 5 (HAdV-5) and host cells because of its ability to interfere with the HAdV-5 life cycle. First, the ectopic expression of AGO2 had a detrimental effect on the ability of the virus to replicate. In addition, in silico and in vitro analyses suggested that endogenous microRNAs (miRNAs), particularly hsa-miR-7-5p, have similar effects. This miRNA was found to be able to target the HAdV-5 DNA polymerase mRNA. The inhibitory effect became more pronounced upon overexpression of AGO2, likely due to elevated AGO2 levels, which abolished the competition between cellular miRNAs and mivaRNAs for RISC incorporation. Collectively, our data suggest that endogenous miRNAs would be capable of significantly inhibiting viral replication if adenoviruses had not developed a mechanism to counteract this function. Eventually, AGO2 overexpression-mediated relief of the RISC-saturating action of mivaRNAs strongly enhanced the effectiveness of artificial miRNAs (amiRNAs) directed against the HAdV-5 preterminal protein (pTP) mRNA, suggesting a substantial benefit of co-expressing amiRNAs and AGO2 in RNAi-based strategies for the therapeutic inhibition of adenoviruses.
Collapse
Affiliation(s)
- Philipp Ausserhofer
- Institute of Biotechnology, IMC University of Applied Sciences Krems, Piaristengasse 1, 3500 Krems, Austria; (P.A.)
| | - Izabella Kiss
- Institute of Biotechnology, IMC University of Applied Sciences Krems, Piaristengasse 1, 3500 Krems, Austria; (P.A.)
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Straße 10, 1090 Vienna, Austria
| | - Angela Witte
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Dr. Bohr-Gasse 9, 1090 Vienna, Austria
| | - Reinhard Klein
- Institute of Biotechnology, IMC University of Applied Sciences Krems, Piaristengasse 1, 3500 Krems, Austria; (P.A.)
| |
Collapse
|
2
|
Brachtlova T, Li J, van der Meulen-Muileman IH, Sluiter F, von Meijenfeldt W, Witte I, Massaar S, van den Oever R, de Vrij J, van Beusechem VW. Quantitative Virus-Associated RNA Detection to Monitor Oncolytic Adenovirus Replication. Int J Mol Sci 2024; 25:6551. [PMID: 38928259 PMCID: PMC11203762 DOI: 10.3390/ijms25126551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Oncolytic adenoviruses are in development as immunotherapeutic agents for solid tumors. Their efficacy is in part dependent on their ability to replicate in tumors. It is, however, difficult to obtain evidence for intratumoral oncolytic adenovirus replication if direct access to the tumor is not possible. Detection of systemic adenovirus DNA, which is sometimes used as a proxy, has limited value because it does not distinguish between the product of intratumoral replication and injected virus that did not replicate. Therefore, we investigated if detection of virus-associated RNA (VA RNA) by RT-qPCR on liquid biopsies could be used as an alternative. We found that VA RNA is expressed in adenovirus-infected cells in a replication-dependent manner and is secreted by these cells in association with extracellular vesicles. This allowed VA RNA detection in the peripheral blood of a preclinical in vivo model carrying adenovirus-injected human tumors and on liquid biopsies from a human clinical trial. Our results confirm that VA RNA detection in liquid biopsies can be used for minimally invasive assessment of oncolytic adenovirus replication in solid tumors in vivo.
Collapse
Affiliation(s)
- Tereza Brachtlova
- Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (T.B.); (J.L.)
- ORCA Therapeutics BV, 5223 DE ‘s-Hertogenbosch, The Netherlands
- Cancer Biology and Immunology, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
- Cancer Immunology, Amsterdam Institute for Infection and Immunity, 1081 HV Amsterdam, The Netherlands
| | - Jing Li
- Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (T.B.); (J.L.)
- Cancer Biology and Immunology, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Ida H. van der Meulen-Muileman
- Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (T.B.); (J.L.)
- Cancer Biology and Immunology, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Femke Sluiter
- Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (T.B.); (J.L.)
| | - Willem von Meijenfeldt
- Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (T.B.); (J.L.)
| | - Isabella Witte
- Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (T.B.); (J.L.)
| | - Sanne Massaar
- Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (T.B.); (J.L.)
| | | | - Jeroen de Vrij
- Department of Neurosurgery, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- ExoVectory BV, Biopartner 2 Building, 2333 CH Leiden, The Netherlands
| | - Victor W. van Beusechem
- Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (T.B.); (J.L.)
- ORCA Therapeutics BV, 5223 DE ‘s-Hertogenbosch, The Netherlands
- Cancer Biology and Immunology, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
- Cancer Immunology, Amsterdam Institute for Infection and Immunity, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
3
|
MacNeil KM, Dodge MJ, Evans AM, Tessier TM, Weinberg JB, Mymryk JS. Adenoviruses in medicine: innocuous pathogen, predator, or partner. Trends Mol Med 2023; 29:4-19. [PMID: 36336610 PMCID: PMC9742145 DOI: 10.1016/j.molmed.2022.10.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/09/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
The consequences of human adenovirus (HAdV) infections are generally mild. However, despite the perception that HAdVs are harmless, infections can cause severe disease in certain individuals, including newborns, the immunocompromised, and those with pre-existing conditions, including respiratory or cardiac disease. In addition, HAdV outbreaks remain relatively common events and the recent emergence of more pathogenic genomic variants of various genotypes has been well documented. Coupled with evidence of zoonotic transmission, interspecies recombination, and the lack of approved AdV antivirals or widely available vaccines, HAdVs remain a threat to public health. At the same time, the detailed understanding of AdV biology garnered over nearly 7 decades of study has made this group of viruses a molecular workhorse for vaccine and gene therapy applications.
Collapse
Affiliation(s)
- Katelyn M MacNeil
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Mackenzie J Dodge
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Andris M Evans
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Tanner M Tessier
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Jason B Weinberg
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
| | - Joe S Mymryk
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada; Department of Otolaryngology, Head & Neck Surgery, The University of Western Ontario, London, ON, Canada; Department of Oncology, The University of Western Ontario, London, ON, Canada; London Regional Cancer Program, Lawson Health Research Institute, London, ON, Canada.
| |
Collapse
|
4
|
Characterization of Viral miRNAs during Adenovirus 14 Infection and Their Differential Expression in the Emergent Strain Adenovirus 14p1. Viruses 2022; 14:v14050898. [PMID: 35632641 PMCID: PMC9145648 DOI: 10.3390/v14050898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
Human adenoviruses (HAdV) express either one or two virus-associated RNAs (VA RNAI or VA RNAII). The structure of VA RNA resembles human precursor microRNAs (pre-miRNA), and, like human pre-miRNA, VA RNA can be processed by DICER into small RNAs that resemble human miRNA. VA RNA-derived miRNA (mivaRNA) can mimic human miRNA post-transcriptional gene repression by binding to complementary sequences in the 3′ UTR of host mRNA. HAdV14 is a member of the B2 subspecies of species B adenovirus, and the emergent strain HAdV14p1 is associated with severe respiratory illness that can lead to acute respiratory distress syndrome. Utilizing small RNA sequencing, we identified four main mivaRNAs generated from the HAdV14/p1 VA RNA gene, two from each of the 5′ and 3′ regions of the terminal stem. There were temporal expression changes in the abundance of 5′ and 3′ mivaRNAs, with 3′ mivaRNAs more highly expressed early in infection and 5′ mivaRNAs more highly expressed later in infection. In addition, there are differences in expression between the emergent and reference strains, with HAdV14 expressing more mivaRNAs early during infection and HAdV14p1 having higher expression later during infection. HAdV14/p1 mivaRNAs were also shown to repress gene expression in a luciferase gene reporter system. Our results raise the question as to whether differential expression of mivaRNAs during HAdV14p1 infection could play a role in the increased pathogenesis associated with the emergent strain.
Collapse
|
5
|
Structural Insights into Human Adenovirus Type 4 Virus-Associated RNA I. Int J Mol Sci 2022; 23:ijms23063103. [PMID: 35328524 PMCID: PMC8949993 DOI: 10.3390/ijms23063103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 11/17/2022] Open
Abstract
RNA molecules can adopt specific RNA triplex structures to execute critical biological functions. Human adenoviruses (HAdVs) are abundant pathogens encoding the essential, noncoding virus-associated RNA I (VA RNAI). Here, we employ a triplex-specific probing assay, based on the intercalating and cleaving agent benzoquinoquinoxaline 1, 10-phenanthroline (BQQ–OP), to unravel a potential RNA triplex formation in VA RNAI. The BQQ–OP cleavage of the pathogenic HAdV type 4 (HAdV-4) VA RNAI indicates that a potential triplex is formed involving the highly conserved stem 4 of the central domain and side stem 7. Further, the integrity of the HAdV-4 VA RNAI side stem 7 contributes to a potential triplex formation in vitro and virus growth in vivo. Collectively, we propose that the HAdV-4 VA RNAI can potentially form a biologically relevant triplex structure.
Collapse
|
6
|
Abstract
We have used the Nanopore long-read sequencing platform to demonstrate how amazingly complex the human adenovirus type 2 (Ad2) transcriptome is with a flexible splicing machinery producing a range of novel mRNAs both from the early and late transcription units. In total we report more than 900 alternatively spliced mRNAs produced from the Ad2 transcriptome whereof more than 850 are novel mRNAs. A surprising finding was that more than 50% of all E1A transcripts extended upstream of the previously defined transcriptional start site. The novel start sites mapped close to the inverted terminal repeat (ITR) and within the E1A enhancer region. We speculate that novel promoters or enhancer driven transcription, so-called eRNA transcription, is responsible for producing these novel mRNAs. Their existence was verified by a peptide in the Ad2 proteome that was unique for the E1A ITR mRNA. Although we show a high complexity of alternative splicing from most early and late regions, the E3 region was by far the most complex when expressed at late times of infection. More than 400 alternatively spliced mRNAs were observed in this region alone. These mRNAs included extended L4 mRNAs containing E3 and L5 sequences and readthrough mRNAs combining E3 and L5 sequences. Our findings demonstrate that the virus has a remarkable capacity to produce novel exon combinations, which will offer the virus an evolutionary advantage to change the gene expression repertoire and protein production in an evolving environment.IMPORTANCE Work in the adenovirus system led to the groundbreaking discovery of RNA splicing and alternative RNA splicing in 1977. These mechanisms are essential in mammalian evolution by increasing the coding capacity of a genome. Here, we have used a long-read sequencing technology to characterize the complexity of human adenovirus pre-mRNA splicing in detail. It is mindboggling that the viral genome, which only houses around 36,000 bp, not being much larger than a single cellular gene, generates more than 900 alternatively spliced mRNAs. Recently, adenoviruses have been used as the backbone in several promising SARS-CoV-2 vaccines. Further improvement of adenovirus-based vaccines demands that the virus can be tamed into an innocent carrier of foreign genes. This requires a full understanding of the components that govern adenovirus replication and gene expression.
Collapse
|
7
|
Guo F, Xing L. RNA helicase A as co-factor for DNA viruses during replication. Virus Res 2020; 291:198206. [PMID: 33132162 DOI: 10.1016/j.virusres.2020.198206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 11/30/2022]
Abstract
RNA helicase A (RHA) is a ubiquitously expressed DExH-box helicase enzyme that is involved in a wide range of biological processes including transcription, translation, and RNA processing. A number of RNA viruses recruit RHA to the viral RNA to facilitate virus replication. DNA viruses contain a DNA genome and replicate using a DNA-dependent DNA polymerase. RHA has also been reported to associate with some DNA viruses during replication, in which the enzyme acts on the viral RNA or protein products. As shown for Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus, RHA has potential to allow the virus to control a switch in cellular gene expression to modulate the antiviral response. While the study of the interaction of RHA with DNA viruses is still at an early stage, preliminary evidence indicates that the underlying molecular mechanisms are diverse. We now review the current status of this emerging field.
Collapse
Affiliation(s)
- Fan Guo
- Institute of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi province, PR China
| | - Li Xing
- Institute of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi province, PR China.
| |
Collapse
|
8
|
Punga T, Darweesh M, Akusjärvi G. Synthesis, Structure, and Function of Human Adenovirus Small Non-Coding RNAs. Viruses 2020; 12:E1182. [PMID: 33086737 PMCID: PMC7589676 DOI: 10.3390/v12101182] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/25/2022] Open
Abstract
Human adenoviruses (HAdVs) are common pathogens causing a variety of respiratory, ocular and gastrointestinal diseases. To accomplish their efficient replication, HAdVs take an advantage of viral small non-coding RNAs (sncRNAs), which have multiple roles during the virus lifecycle. Three of the best-characterized HAdV sncRNAs; VA RNA, mivaRNA and MLP-TSS-sRNA will be discussed in the present review. Even though VA RNA has been extensively characterized during the last 60 years, this multifunctional molecule continues to surprise us as more of its structural secrets unfold. Likely, the recent developments on mivaRNA and MLP-TSS-sRNA synthesis and function highlight the importance of these sncRNA in virus replication. Collectively, we will summarize the old and new knowledge about these three viral sncRNAs with focus on their synthesis, structure and functions.
Collapse
Affiliation(s)
- Tanel Punga
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75123 Uppsala, Sweden; (M.D.); (G.A.)
| | | | | |
Collapse
|
9
|
Zhao H, Punga T, Pettersson U. Adenovirus in the omics era - a multipronged strategy. FEBS Lett 2020; 594:1879-1890. [PMID: 31811727 DOI: 10.1002/1873-3468.13710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/21/2019] [Accepted: 11/28/2019] [Indexed: 01/15/2023]
Abstract
Human adenoviruses (HAdVs) are common pathogens associated with a wide variety of respiratory, ocular, and gastrointestinal diseases. To achieve its effective lytic mode of replication, HAdVs have to reprogram host-cell gene expression and fine-tune viral gene expression in a temporal manner. In two decades, omics revolution has advanced our knowledge about the HAdV and host-cell interplay at the RNA and protein levels. This review summarizes the current knowledge from large-scale datasets on how HAdV infections adjust coding and noncoding RNA expression, as well as how they reprogram host-cell proteome during the lytic course of infection.
Collapse
Affiliation(s)
- Hongxing Zhao
- Beijer Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Tanel Punga
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden
| | - Ulf Pettersson
- Beijer Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| |
Collapse
|
10
|
Darweesh M, Kamel W, Gavrilin MA, Akusjärvi G, Svensson C. Adenovirus VA RNAI Blocks ASC Oligomerization and Inhibits NLRP3 Inflammasome Activation. Front Immunol 2019; 10:2791. [PMID: 31849970 PMCID: PMC6901988 DOI: 10.3389/fimmu.2019.02791] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/14/2019] [Indexed: 01/10/2023] Open
Abstract
Virus infected immune cells can rapidly respond to the invader by activating the inflammasome and as a consequence release proinflammatory cytokines and eventually die by pyroptosis. In human adenovirus-5 (Ad5) infected THP-1 cells, inhibition of NLRP3 inflammasome activation was demonstrated by a decreased secretion of HMGB1 and matured forms of caspase-1and IL-1ß. An Ad5 mutant virus defective in expression of the non-coding VA RNAI failed to inhibit the NLRP3 inflammasome and in addition displayed formation of ASC specks and increased cell lysis. Importantly, in vitro synthesized VA RNAI was able to inhibit the NLRP3 inflammasome activity in THP-1 cells in the absence of an Ad5 infection, suggesting that VA RNAI binding to PKR and blocking its function is sufficient for inhibition of the NLRP3 inflammasome. Although the inhibition of NLRP3 inflammasome activation required the phylogenetically conserved base paired tetranucleotide sequence in the central stem of VA RNAI, we demonstrate that PKR binding to VA RNAI primarily protected the apical stem, but not the tetranucleotide sequence itself. VA RNAI did not influence the interaction between PKR and NLRP3. In contrast, we describe a novel interaction between PKR and ASC and further show that VA RNAI inhibited ASC phosphorylation and oligomerization. Collectively, our results indicate a novel role for Ad5 VA RNAI as an inhibitor of NLRP3 inflammasome activation by targeting the cellular pro-inflammatory protein PKR.
Collapse
Affiliation(s)
- Mahmoud Darweesh
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Department of Microbiology and Immunology, Al-Azhr University, Assiut, Egypt
| | - Wael Kamel
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Mikhail A Gavrilin
- Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Göran Akusjärvi
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Catharina Svensson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
11
|
Wakabayashi K, Machitani M, Tachibana M, Sakurai F, Mizuguchi H. A MicroRNA Derived from Adenovirus Virus-Associated RNAII Promotes Virus Infection via Posttranscriptional Gene Silencing. J Virol 2019; 93:e01265-18. [PMID: 30355689 PMCID: PMC6321910 DOI: 10.1128/jvi.01265-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/11/2018] [Indexed: 12/18/2022] Open
Abstract
The adenovirus (Ad) serotype 5 genome encodes two noncoding small RNAs (virus-associated RNAs I and II [VA-RNAI and -II]), which are approximately 160-nucleotide (nt) RNAs transcribed by RNA polymerase III. It is well known that VA-RNAI supports Ad infection via the inhibition of double-stranded RNA-dependent protein kinase (PKR), which recognizes double-stranded RNA and acts as an antiviral system. Recent studies revealed that VA-RNAs are processed into VA-RNA-derived microRNAs (miRNAs) (mivaRNAI and -II); however, we and another group recently demonstrated that mivaRNAI does not promote Ad replication. On the other hand, the roles of VA-RNAII and mivaRNAII in Ad replication have remained to be clarified. In this study, we demonstrated mivaRNAII-mediated promotion of Ad replication. Transfection with chemically synthesized 3'-mivaRNAII-138, one of the most abundant forms of mivaRNAII, significantly enhanced Ad replication, while the other species of mivaRNAII did not. We identified 8 putative target genes of 3'-mivaRNAII-138 by microarray analysis and in silico analysis. Among the 8 candidates, knockdown of the cullin 4A (CUL4A) gene, which encodes a component of the ubiquitin ligase complex, most significantly enhanced Ad replication. CUL4A expression was significantly suppressed by 3'-mivaRNAII-138 via posttranscriptional gene silencing, indicating that CUL4A is a target gene of 3'-mivaRNAII-138 and mivaRNAII functions as a viral miRNA promoting Ad infection. It has been reported that CUL4A is involved in degradation of c-Jun, which acts as a transcription factor in the Jun-N-terminal kinase (JNK) signaling cascade. Treatment with JNK inhibitors dramatically suppressed Ad replication, suggesting that mivaRNAII-mediated downregulation of CUL4A enhanced JNK signaling and thereby promoted Ad infection.IMPORTANCE Several types of viruses encode viral miRNAs which regulate host and/or viral gene expression via posttranscriptional gene silencing, leading to efficient viral infection. Adenovirus (Ad) expresses miRNAs derived from VA-RNAs (mivaRNAI and -II); however, recent studies have revealed that processing of VA-RNAI into mivaRNAI inhibits Ad replication. Conversely, we demonstrate here that mivaRNAII significantly promotes Ad replication and that mivaRNAII-mediated suppression of CUL4A expression via posttranscriptional gene silencing induces accumulation of c-Jun, leading to promotion of Ad infection. These results exhibited the significance of VA-RNAII for supporting Ad infection through a mechanism complementary to that of VA-RNAI. These observations could provide important clues toward a new perspective on host-virus interaction. Moreover, Ad is widely used as a basic framework for viral vectors and oncolytic viruses. Our findings will help to regulate Ad infection and will promote the development of novel Ad vectors and oncolytic Ad.
Collapse
Affiliation(s)
- K Wakabayashi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - M Machitani
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - M Tachibana
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka, Japan
| | - F Sakurai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Laboratory of Regulatory Sciences for Oligonucleotide Therapeutics, Clinical Drug Development Unit, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - H Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka, Japan
- Laboratory of Hepatocyte Differentiation, National Institute of Biomedical Innovation, Osaka, Japan
| |
Collapse
|
12
|
Kamel W, Akusjärvi G. An Ago2-associated capped transcriptional start site small RNA suppresses adenovirus DNA replication. RNA (NEW YORK, N.Y.) 2017; 23:1700-1711. [PMID: 28839112 PMCID: PMC5648037 DOI: 10.1261/rna.061291.117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/14/2017] [Indexed: 06/07/2023]
Abstract
Here we show that the adenovirus major late promoter produces a 31-nucleotide transcriptional start site small RNA (MLP-TSS-sRNA) that retains the 7-methylguanosine (m7G)-cap and is incorporated onto Ago2-containing RNA-induced silencing complexes (RISC) in human adenovirus-37 infected cells. RNA polymerase II CLIP (UV-cross linking immunoprecipitation) experiments suggest that the MLP-TSS-sRNA is produced by promoter proximal stalling/termination of RNA polymerase II transcription at the site of the small RNA 3' end. The MLP-TSS-sRNA is highly stable in cells and functionally active, down-regulating complementary targets in a sequence and dose-dependent manner. The MLP-TSS-sRNA is transcribed from the opposite strand to the adenoviral DNA polymerase and preterminal protein mRNAs, two essential viral replication proteins. We show that the MLP-TSS-sRNA act in trans to reduce DNA polymerase and preterminal protein mRNA expression. As a consequence of this, the MLP-TSS-sRNA has an inhibitory effect on the efficiency of viral DNA replication. Collectively, our results suggest that this novel sRNA may serve a regulatory function controlling viral genome replication during a lytic and/or persistent adenovirus infection in its natural host.
Collapse
Affiliation(s)
- Wael Kamel
- Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Göran Akusjärvi
- Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, SE-751 23 Uppsala, Sweden
| |
Collapse
|
13
|
Assadian F, Kamel W, Laurell G, Svensson C, Punga T, Akusjärvi G. Expression profile of Epstein-Barr virus and human adenovirus small RNAs in tonsillar B and T lymphocytes. PLoS One 2017; 12:e0177275. [PMID: 28542273 PMCID: PMC5444648 DOI: 10.1371/journal.pone.0177275] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/25/2017] [Indexed: 12/24/2022] Open
Abstract
We have used high-throughput small RNA sequencing to characterize viral small RNA expression in purified tonsillar B and T lymphocytes isolated from patients tested positive for Epstein-Barr virus (EBV) or human adenovirus (HAdV) infections, respectively. In the small set of patients analyzed, the expression profile of EBV and HAdV miRNAs could not distinguish between patients diagnosed with tonsillar hypertrophy or chronic/recurrent tonsillitis. The EBV miR-BART expression profile among the patients diagnosed with tonsillar diseases resembles most closely the pattern seen in EBV+ tumors (Latency II/I). The miR-BARTs that appear to be absent in normal EBV infected cells are essentially all detectable in the diseased tonsillar B lymphocytes. In the EBV+ B cells we detected 44 EBV miR-BARTs derived from the proposed BART precursor hairpins whereof five are not annotated in miRBase v21. One previously undetected miRNA, BART16b-5p, originates from the miR-BART16 precursor hairpin as an alternative 5´ miR-BART16 located precisely upstream of the annotated miR-BART16-5p. Further, our analysis revealed an extensive sequence variation among the EBV miRNAs with isomiRs having a constant 5´ end but alternative 3´ ends. A range of small RNAs was also detected from the terminal stem of the EBER RNAs and the 3´ part of v-snoRNA1. During a lytic HAdV infection in established cell lines the terminal stem of the viral non-coding VA RNAs are processed to highly abundant viral miRNAs (mivaRNAs). In contrast, mivaRNA expression in HAdV positive tonsillar T lymphocytes was very low. The small RNA profile further showed that the 5´ mivaRNA from VA RNAI and the 3´ mivaRNA from VA RNAII were as predicted, whereas the 3´ mivaRNA from VA RNAI showed an aberrant processing upstream of the expected Dicer cleavage site.
Collapse
Affiliation(s)
- Farzaneh Assadian
- Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Wael Kamel
- Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Göran Laurell
- Department of Surgical Sciences, Otorhinolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden
| | - Catharina Svensson
- Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Tanel Punga
- Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Göran Akusjärvi
- Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
14
|
Lan S, Kamel W, Punga T, Akusjärvi G. The adenovirus L4-22K protein regulates transcription and RNA splicing via a sequence-specific single-stranded RNA binding. Nucleic Acids Res 2017; 45:1731-1742. [PMID: 27899607 PMCID: PMC5389519 DOI: 10.1093/nar/gkw1145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 11/11/2016] [Indexed: 01/30/2023] Open
Abstract
The adenovirus L4-22K protein both activates and suppresses transcription from the adenovirus major late promoter (MLP) by binding to DNA elements located downstream of the MLP transcriptional start site: the so-called DE element (positive) and the R1 region (negative). Here we show that L4-22K preferentially binds to the RNA form of the R1 region, both to the double-stranded RNA and the single-stranded RNA of the same polarity as the nascent MLP transcript. Further, L4-22K binds to a 5΄-CAAA-3΄ motif in the single-stranded RNA, which is identical to the sequence motif characterized for L4-22K DNA binding. L4-22K binding to single-stranded RNA results in an enhancement of U1 snRNA recruitment to the major late first leader 5΄ splice site. This increase in U1 snRNA binding results in a suppression of MLP transcription and a concurrent stimulation of major late first intron splicing.
Collapse
Affiliation(s)
- Susan Lan
- Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center, Uppsala University, S-751 23 Uppsala, Sweden
| | - Wael Kamel
- Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center, Uppsala University, S-751 23 Uppsala, Sweden
| | - Tanel Punga
- Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center, Uppsala University, S-751 23 Uppsala, Sweden
| | - Göran Akusjärvi
- Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center, Uppsala University, S-751 23 Uppsala, Sweden
| |
Collapse
|
15
|
Inturi R, Kamel W, Akusjärvi G, Punga T. Complementation of the human adenovirus type 5 VA RNAI defect by the Vaccinia virus E3L protein and serotype-specific VA RNAIs. Virology 2015. [PMID: 26196231 DOI: 10.1016/j.virol.2015.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human adenoviruses (HAdVs) encode for multifunctional non-coding virus-associated (VA) RNAs, which function as powerful suppressors of the cellular interferon (IFN) and RNA interference (RNAi) systems. In this study we tested the ability of various plant and animal virus encoded RNAi and IFN suppressor proteins to functionally substitute for the HAdV-5 VA RNAI. Our results revealed that only the Vaccinia virus (VACV) E3L protein was able to substitute for the HAdV-5 VA RNAI functions in virus-infected cells. Interestingly, the E3L protein rescues the translational defect but does not stimulate viral capsid mRNA accumulation observed with VA RNA. We further show that the E3L C-terminal region containing the dsRNA-binding domain is needed to enhance VA RNAI mutant virus replication. Additionally, we show that the HAdV-4 and HAdV-37 VA RNAI are more effective than the HAdV-5 VA RNAI in rescuing virus replication.
Collapse
Affiliation(s)
- Raviteja Inturi
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, BMC, Box 582, Uppsala, Sweden
| | - Wael Kamel
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, BMC, Box 582, Uppsala, Sweden
| | - Göran Akusjärvi
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, BMC, Box 582, Uppsala, Sweden
| | - Tanel Punga
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, BMC, Box 582, Uppsala, Sweden.
| |
Collapse
|
16
|
Vachon VK, Conn GL. Adenovirus VA RNA: An essential pro-viral non-coding RNA. Virus Res 2015; 212:39-52. [PMID: 26116898 DOI: 10.1016/j.virusres.2015.06.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 12/25/2022]
Abstract
Adenovirus (AdV) 'virus-associated' RNAs (VA RNAs) are exceptionally abundant (up to 10(8)copies/cell), heterogeneous, non-coding RNA transcripts (∼ 150-200 nucleotides). The predominant species, VA RNAI, is best recognized for its essential function in relieving the cellular anti-viral blockade of protein synthesis through inhibition of the double-stranded RNA-activated protein kinase (PKR). More recent evidence has revealed that VA RNAs also interfere with several other host cell processes, in part by virtue of the high level to which they accumulate. Following transcription by cellular RNA polymerase III, VA RNAs saturate the nuclear export protein Exportin 5 (Exp5) and the cellular endoribonculease Dicer, interfering with pre-micro (mi)RNA export and miRNA biogenesis, respectively. Dicer-processed VA RNA fragments are incorporated into the RNA-induced silencing complex (RISC) as 'mivaRNAs', where they may specifically target cellular genes. VA RNAI also interacts with other innate immune proteins, including OAS1. While intact VA RNAI has the paradoxical effect of activating OAS1, a non-natural VA RNAI construct lacking the entire Terminal Stem has been reported to be a pseudoinhibitor of OAS1. Here, we show that a VA RNAI construct corresponding to an authentic product of Dicer processing similarly fails to activate OAS1 but also retains only a modest level of inhibitory activity against PKR in contrast to the non-natural deletion construct. These findings underscore the complexity of the arms race between virus and host, and highlight the need for further exploration of the impact of VA RNAI interactions with host defenses on the outcome of AdV infection beyond that of well-established PKR inhibition. Additional contributions of VA RNAI heterogeneity resulting from variations in transcription initiation and termination to each of these functions remain open questions that are discussed here.
Collapse
Affiliation(s)
- Virginia K Vachon
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA; Microbiology and Molecular Genetics (MMG) Program, Graduate Division of Biological and Biomedical Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
17
|
Pickl JMA, Kamel W, Ciftci S, Punga T, Akusjärvi G. Opposite expression of CYP51A1 and its natural antisense transcript AluCYP51A1 in adenovirus type 37 infected retinal pigmented epithelial cells. FEBS Lett 2015; 589:1383-8. [PMID: 25907535 DOI: 10.1016/j.febslet.2015.04.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/26/2015] [Accepted: 04/10/2015] [Indexed: 11/29/2022]
Abstract
Cytochrome P450 family member CYP51A1 is a key enzyme in cholesterol biosynthesis whose deregulation is implicated in numerous diseases, including retinal degeneration. Here we describe that HAdV-37 infection leads to downregulation of CYP51A1 expression and overexpression of its antisense non-coding Alu element (AluCYP51A1) in retinal pigment epithelium (RPE) cells. This change in gene expression is associated with a reversed accumulation of a positive histone mark at the CYP51A1 and AluCYP51A1 promoters. Further, transient AluCYP51A1 RNA overexpression correlates with reduced CYP51A1 mRNA accumulation. Collectively, our data suggest that AluCYP51A1 might control CYP51A1 gene expression in HAdV-37-infected RPE cells.
Collapse
Affiliation(s)
- Julia Maria Anna Pickl
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, BMC, Box 582, 75123 Uppsala, Sweden
| | - Wael Kamel
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, BMC, Box 582, 75123 Uppsala, Sweden
| | - Sibel Ciftci
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, BMC, Box 582, 75123 Uppsala, Sweden
| | - Tanel Punga
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, BMC, Box 582, 75123 Uppsala, Sweden
| | - Göran Akusjärvi
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, BMC, Box 582, 75123 Uppsala, Sweden.
| |
Collapse
|