1
|
Khan AF, Haynes G, Mohammadi E, Muhammad F, Hameed S, Smith ZA. Utility of MRI in Quantifying Tissue Injury in Cervical Spondylotic Myelopathy. J Clin Med 2023; 12:jcm12093337. [PMID: 37176777 PMCID: PMC10179707 DOI: 10.3390/jcm12093337] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Cervical spondylotic myelopathy (CSM) is a progressive disease that worsens over time if untreated. However, the rate of progression can vary among individuals and may be influenced by various factors, such as the age of the patients, underlying conditions, and the severity and location of the spinal cord compression. Early diagnosis and prompt treatment can help slow the progression of CSM and improve symptoms. There has been an increased use of magnetic resonance imaging (MRI) methods in diagnosing and managing CSM. MRI methods provide detailed images and quantitative structural and functional data of the cervical spinal cord and brain, allowing for an accurate evaluation of the extent and location of tissue injury. This review aims to provide an understanding of the use of MRI methods in interrogating functional and structural changes in the central nervous system in CSM. Further, we identified several challenges hindering the clinical utility of these neuroimaging methods.
Collapse
Affiliation(s)
- Ali Fahim Khan
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Grace Haynes
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Esmaeil Mohammadi
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Fauziyya Muhammad
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Sanaa Hameed
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Zachary A Smith
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
2
|
Joers JM, Adanyeguh IM, Deelchand DK, Hutter DH, Eberly LE, Iltis I, Bushara KO, Lenglet C, Henry PG. Spinal cord magnetic resonance imaging and spectroscopy detect early-stage alterations and disease progression in Friedreich ataxia. Brain Commun 2022; 4:fcac246. [PMID: 36300142 PMCID: PMC9581897 DOI: 10.1093/braincomms/fcac246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/04/2022] [Accepted: 09/23/2022] [Indexed: 02/01/2023] Open
Abstract
Friedreich ataxia is the most common hereditary ataxia. Atrophy of the spinal cord is one of the hallmarks of the disease. MRI and magnetic resonance spectroscopy are powerful and non-invasive tools to investigate pathological changes in the spinal cord. A handful of studies have reported cross-sectional alterations in Friedreich ataxia using MRI and diffusion MRI. However, to our knowledge no longitudinal MRI, diffusion MRI or MRS results have been reported in the spinal cord. Here, we investigated early-stage cross-sectional alterations and longitudinal changes in the cervical spinal cord in Friedreich ataxia, using a multimodal magnetic resonance protocol comprising morphometric (anatomical MRI), microstructural (diffusion MRI), and neurochemical (1H-MRS) assessments.We enrolled 28 early-stage individuals with Friedreich ataxia and 20 age- and gender-matched controls (cross-sectional study). Disease duration at baseline was 5.5 ± 4.0 years and Friedreich Ataxia Rating Scale total neurological score at baseline was 42.7 ± 13.6. Twenty-one Friedreich ataxia participants returned for 1-year follow-up, and 19 of those for 2-year follow-up (cohort study). Each visit consisted in clinical assessments and magnetic resonance scans. Controls were scanned at baseline only. At baseline, individuals with Friedreich ataxia had significantly lower spinal cord cross-sectional area (-31%, P = 8 × 10-17), higher eccentricity (+10%, P = 5 × 10-7), lower total N-acetyl-aspartate (tNAA) (-36%, P = 6 × 10-9) and higher myo-inositol (mIns) (+37%, P = 2 × 10-6) corresponding to a lower ratio tNAA/mIns (-52%, P = 2 × 10-13), lower fractional anisotropy (-24%, P = 10-9), as well as higher radial diffusivity (+56%, P = 2 × 10-9), mean diffusivity (+35%, P = 10-8) and axial diffusivity (+17%, P = 4 × 10-5) relative to controls. Longitudinally, spinal cord cross-sectional area decreased by 2.4% per year relative to baseline (P = 4 × 10-4), the ratio tNAA/mIns decreased by 5.8% per year (P = 0.03), and fractional anisotropy showed a trend to decrease (-3.2% per year, P = 0.08). Spinal cord cross-sectional area correlated strongly with clinical measures, with the strongest correlation coefficients found between cross-sectional area and Scale for the Assessment and Rating of Ataxia (R = -0.55, P = 7 × 10-6) and between cross-sectional area and Friedreich ataxia Rating Scale total neurological score (R = -0.60, P = 4 × 10-7). Less strong but still significant correlations were found for fractional anisotropy and tNAA/mIns. We report here the first quantitative longitudinal magnetic resonance results in the spinal cord in Friedreich ataxia. The largest longitudinal effect size was found for spinal cord cross-sectional area, followed by tNAA/mIns and fractional anisotropy. Our results provide direct evidence that abnormalities in the spinal cord result not solely from hypoplasia, but also from neurodegeneration, and show that disease progression can be monitored non-invasively in the spinal cord.
Collapse
Affiliation(s)
- James M Joers
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Isaac M Adanyeguh
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Dinesh K Deelchand
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Diane H Hutter
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Lynn E Eberly
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Isabelle Iltis
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Khalaf O Bushara
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Christophe Lenglet
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Pierre-Gilles Henry
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
3
|
Gradwell MA, Smith KM, Dayas CV, Smith DW, Hughes DI, Callister RJ, Graham BA. Altered Intrinsic Properties and Inhibitory Connectivity in Aged Parvalbumin-Expressing Dorsal Horn Neurons. Front Neural Circuits 2022; 16:834173. [PMID: 35874431 PMCID: PMC9305305 DOI: 10.3389/fncir.2022.834173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
The incidence of pain symptoms such as allodynia are known to increase with age. Parvalbumin expressing interneurons (PVINs) within the dorsal horn (DH) of the spinal cord play an important role in allodynia whereby their inhibitory connections prevent innocuous touch information from exciting nociceptive pathways. Here we ask whether the functional properties of PVINs are altered by aging, comparing their functional properties in adult (3–7 month) and aged mice (23–28 month). Patch clamp recordings were made from PVINs in laminae IIi-III of parasagittal spinal cord slices. The intrinsic excitability of PVINs changed with age. Specifically, AP discharge shifted from initial bursting to tonic firing, and firing duration during current injection increased. The nature of excitatory synaptic input to PVINs also changed with age with larger but less frequent spontaneous excitatory currents occurring in aged mice, however, the net effect of these differences produced a similar level of overall excitatory drive. Inhibitory drive was also remarkably similar in adult and aged PVINs. Photostimulation of ChR2 expressing PVINs was used to study inhibitory connections between PVINs and unidentified DH neurons and other PVINs. Based on latency and jitter, monosynaptic PVIN to unidentified-cell and PVIN-PVIN connections were compared in adult and aged mice, showing that PVIN to unidentified-cell connection strength increased with age. Fitting single or double exponentials to the decay phase of IPSCs showed there was also a shift from mixed (glycinergic and GABAergic) to GABAergic inhibitory transmission in aged animals. Overall, our data suggest the properties of PVIN neurons in aged animals enhance their output in spinal circuits in a manner that would blunt allodynia and help maintain normal sensory experience during aging.
Collapse
Affiliation(s)
- Mark A. Gradwell
- Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Kelly M. Smith
- Centre for Neuroscience, Science Tower, University of Pittsburgh, Pittsburgh, PA, United States
| | - Christopher V. Dayas
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Brain Neuromodulation Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Douglas W. Smith
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Brain Neuromodulation Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - David I. Hughes
- Institute of Neuroscience Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Robert J. Callister
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Brain Neuromodulation Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Brett A. Graham
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Brain Neuromodulation Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- *Correspondence: Brett A. Graham,
| |
Collapse
|
4
|
Lengu K, Ryan S, Peltier SJ, Tyszkowski T, Kairys A, Giordani B, Hampstead BM. Effects of High Definition-Transcranial Direct Current Stimulation on Local GABA and Glutamate Levels Among Older Adults with and without Mild Cognitive Impairment: An Exploratory Study. J Alzheimers Dis 2021; 84:1091-1102. [PMID: 34602464 DOI: 10.3233/jad-201091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Prior research, primarily with young adults, suggests transcranial direct current stimulation (tDCS) effects are driven by the primary excitatory and/or inhibitory neurotransmitters, glutamate, and gamma-aminobutyric acid (GABA), respectively. OBJECTIVE We examined the neurometabolic mechanisms of tDCS in older adults with and without mild cognitive impairment (MCI). METHODS We used data from a double-blind, cross-over, randomized controlled trial (NCT01958437) in 32 older adults to evaluate high definition (HD)-tDCS-induced changes in glutamate and GABA via magnetic resonance spectroscopy (MRS). Participants underwent MRS following two counterbalanced HD-tDCS sessions (one active, one sham) that targeted the right superior parietal cortex (center anode at P2) and delivered 2mA for 20 minutes. RESULTS Relative to sham, and when co-varying for MRS voxel overlap and right superior parietal volume, active HD-tDCS significantly increased GABA and decreased the ratio of glutamate to GABA. No changes were observed in a left prefrontal control MRS voxel. Although we did not find a significant correlation between strength of delivered current (measured via MRI-based computational modeling) and neurometabolite change, there was a robust positive relationship between the volume of right superior parietal cortex and neurometabolite change. CONCLUSION Our preliminary findings of increased GABA and reduced glutamate/GABA ratio raise the possibility that (HD-)tDCS effects differ by age. Moreover, age- and disease-related regional brain volume loss may be especially important to consider when planning future studies. Replication would emphasize the importance of developing population-specific tDCS parameters that consider structural and physiologic changes associated with "normal" and pathological aging.
Collapse
Affiliation(s)
- Ketrin Lengu
- Neuropsychology Section, Mental Health Service, VA Ann Arbor Healthcare System, Ann Arbor, MI, USA.,Research Program on Cognition and Neuromodulation-Based Interventions (RP-CNBI), Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Shannon Ryan
- Research Program on Cognition and Neuromodulation-Based Interventions (RP-CNBI), Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Scott J Peltier
- Functional MRI Laboratory, University of Michigan, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Troy Tyszkowski
- Research Program on Cognition and Neuromodulation-Based Interventions (RP-CNBI), Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Anson Kairys
- Research Program on Cognition and Neuromodulation-Based Interventions (RP-CNBI), Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Bruno Giordani
- Research Program on Cognition and Neuromodulation-Based Interventions (RP-CNBI), Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Benjamin M Hampstead
- Neuropsychology Section, Mental Health Service, VA Ann Arbor Healthcare System, Ann Arbor, MI, USA.,Research Program on Cognition and Neuromodulation-Based Interventions (RP-CNBI), Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
5
|
Mayhew JA, Cummins MJ, Cresswell ET, Callister RJ, Smith DW, Graham BA. Age-related gene expression changes in lumbar spinal cord: Implications for neuropathic pain. Mol Pain 2021; 16:1744806920971914. [PMID: 33241748 DOI: 10.1177/1744806920971914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Clinically, pain has an uneven incidence throughout lifespan and impacts more on the elderly. In contrast, preclinical models of pathological pain have typically used juvenile or young adult animals to highlight the involvement of glial populations, proinflammatory cytokines, and chemokines in the onset and maintenance of pathological signalling in the spinal dorsal horn. The potential impact of this mismatch is also complicated by the growing appreciation that the aged central nervous system exists in a state of chronic inflammation because of enhanced proinflammatory cytokine/chemokine signalling and glial activation. To address this issue, we investigated the impact of aging on the expression of genes that have been associated with neuropathic pain, glial signalling, neurotransmission and neuroinflammation. We used qRT-PCR to quantify gene expression and focussed on the dorsal horn of the spinal cord as this is an important perturbation site in neuropathic pain. To control for global vs region-specific age-related changes in gene expression, the ventral half of the spinal cord was examined. Our results show that expression of proinflammatory chemokines, pattern recognition receptors, and neurotransmitter system components was significantly altered in aged (24-32 months) versus young mice (2-4 months). Notably, the magnitude and direction of these changes were spinal-cord region dependent. For example, expression of the chemokine, Cxcl13, increased 119-fold in dorsal spinal cord, but only 2-fold in the ventral spinal cord of old versus young mice. Therefore, we propose the dorsal spinal cord of old animals is subject to region-specific alterations that prime circuits for the development of pathological pain, potentially in the absence of the peripheral triggers normally associated with these conditions.
Collapse
Affiliation(s)
- Jack A Mayhew
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, and Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Mitchell J Cummins
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, and Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Ethan T Cresswell
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, and Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Robert J Callister
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, and Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Doug W Smith
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, and Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Brett A Graham
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, and Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| |
Collapse
|
6
|
Fong AK, Allen MD, Waltzman D, Sarmiento K, Yeates KO, Suskauer S, Wintermark M, Lindberg DM, Tate DF, Wilde EA, Loewen JL. Neuroimaging in Pediatric Patients with Mild Traumatic Brain Injury: Relating the Current 2018 Centers for Disease Control Guideline and the Potential of Advanced Neuroimaging Modalities for Research and Clinical Biomarker Development. J Neurotrauma 2020; 38:44-52. [PMID: 32640874 DOI: 10.1089/neu.2020.7100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Center for Disease Control and Prevention (CDC)'s 2018 Guideline for current practices in pediatric mild traumatic brain injury (mTBI; also referred to as concussion herein) systematically identified the best up-to-date practices based on current evidence and, specifically, identified recommended practices regarding computed tomography (CT), magnetic resonance imaging (MRI), and skull radiograph imaging. In this article, we discuss types of neuroimaging not discussed in the guideline in terms of their safety for pediatric populations, their potential application, and the research investigating the future use of certain modalities to aid in the diagnosis and treatment of mTBI in children. The role of neuroimaging in pediatric mTBI cases should be considered for the potential contribution to children's neural and social development, in addition to the immediate clinical value (as in the case of acute structural findings). Selective use of specific neuroimaging modalities in research has already been shown to detect aspects of diffuse brain injury, disrupted cerebral blood flow, and correlate physiological factors with persistent symptoms, such as fatigue, cognitive decline, headache, and mood changes, following mTBI. However, these advanced neuroimaging modalities are currently limited to the research arena, and any future clinical application of advanced imaging modalities in pediatric mTBI will require robust evidence for each modality's ability to provide measurement of the subtle conditions of brain development, disease, damage, or degeneration, while accounting for variables at both non-injury and time-post-injury epochs. Continued collaboration and communication between researchers and healthcare providers is essential to investigate, develop, and validate the potential of advanced imaging modalities in pediatric mTBI diagnostics and management.
Collapse
Affiliation(s)
| | | | - Dana Waltzman
- Centers for Disease Control and Prevention (CDC), National Center for Injury Prevention and Control (NCIPC), Division of Injury Prevention, Atlanta, Georgia, USA
| | - Kelly Sarmiento
- Centers for Disease Control and Prevention (CDC), National Center for Injury Prevention and Control (NCIPC), Division of Injury Prevention, Atlanta, Georgia, USA
| | - Keith Owen Yeates
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | | | - Max Wintermark
- Department of Neuroradiology, Stanford University, Stanford, California, USA
| | - Daniel M Lindberg
- Emergency Medicine, University of Colorado Denver, Denver, Colorado, USA
| | - David F Tate
- Missouri Institute of Mental Health, University of Missouri-St. Louis, St. Louis, Missouri, USA
| | - Elizabeth A Wilde
- Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
7
|
Lee AM, Beasley MJ, Barrett ED, James JR, Gambino JM. Single-voxel and multi-voxel spectroscopy yield comparable results in the normal juvenile canine brain when using 3 Tesla magnetic resonance imaging. Vet Radiol Ultrasound 2018; 59:577-586. [PMID: 29886575 DOI: 10.1111/vru.12634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 02/14/2018] [Accepted: 02/17/2018] [Indexed: 11/29/2022] Open
Abstract
Conventional magnetic resonance imaging (MRI) characteristics of canine brain diseases are often nonspecific. Single- and multi-voxel spectroscopy techniques allow quantification of chemical biomarkers for tissues of interest and may help to improve diagnostic specificity. However, published information is currently lacking for the in vivo performance of these two techniques in dogs. The aim of this prospective, methods comparison study was to compare the performance of single- and multi-voxel spectroscopy in the brains of eight healthy, juvenile dogs using 3 Tesla MRI. Ipsilateral regions of single- and multi-voxel spectroscopy were performed in symmetric regions of interest of each brain in the parietal (n = 3), thalamic (n = 2), and piriform lobes (n = 3). In vivo single-voxel spectroscopy and multi-voxel spectroscopy metabolite ratios from the same size and multi-voxel spectroscopy ratios from different sized regions of interest were compared. No significant difference was seen between single-voxel spectroscopy and multi-voxel spectroscopy metabolite ratios for any lobe when regions of interest were similar in size and shape. Significant lobar single-voxel spectroscopy and multi-voxel spectroscopy differences were seen between the parietal lobe and thalamus (P = 0.047) for the choline to N-acetyl aspartase ratios when large multi-voxel spectroscopy regions of interest were compared to very small multi-voxel spectroscopy regions of interest within the same lobe; and for the N-acetyl aspartase to creatine ratios in all lobes when single-voxel spectroscopy was compared to combined (pooled) multi-voxel spectroscopy datasets. Findings from this preliminary study indicated that single- and multi-voxel spectroscopy techniques using 3T MRI yield comparable results for similar sized regions of interest in the normal canine brain. Findings also supported using the contralateral side as an internal control for dogs with brain lesions.
Collapse
Affiliation(s)
- Alison M Lee
- Department of Clinical Sciences, Mississippi State University College of Veterinary Medicine, Mississippi State, MS, 39762
| | - Michaela J Beasley
- Department of Clinical Sciences, Mississippi State University College of Veterinary Medicine, Mississippi State, MS, 39762
| | - Emerald D Barrett
- Department of Clinical Sciences, Mississippi State University College of Veterinary Medicine, Mississippi State, MS, 39762
| | - Judy R James
- Medical Physics Division, Department of Radiology, Mayo Clinic College of Medicine, Phoenix, AZ, 85054
| | - Jennifer M Gambino
- Department of Clinical Sciences, Mississippi State University College of Veterinary Medicine, Mississippi State, MS, 39762
| |
Collapse
|
8
|
Wyss PO, Hock A, Kollias S. The Application of Human Spinal Cord Magnetic Resonance Spectroscopy to Clinical Studies: A Review. Semin Ultrasound CT MR 2017; 38:153-162. [DOI: 10.1053/j.sult.2016.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Macrez R, Stys PK, Vivien D, Lipton SA, Docagne F. Mechanisms of glutamate toxicity in multiple sclerosis: biomarker and therapeutic opportunities. Lancet Neurol 2016; 15:1089-102. [PMID: 27571160 DOI: 10.1016/s1474-4422(16)30165-x] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 06/21/2016] [Accepted: 06/27/2016] [Indexed: 12/22/2022]
Abstract
Research advances support the idea that excessive activation of the glutamatergic pathway plays an important part in the pathophysiology of multiple sclerosis. Beyond the well established direct toxic effects on neurons, additional sites of glutamate-induced cell damage have been described, including effects in oligodendrocytes, astrocytes, endothelial cells, and immune cells. Such toxic effects could provide a link between various pathological aspects of multiple sclerosis, such as axonal damage, oligodendrocyte cell death, demyelination, autoimmunity, and blood-brain barrier dysfunction. Understanding of the mechanisms underlying glutamate toxicity in multiple sclerosis could help in the development of new approaches for diagnosis, treatment, and follow-up in patients with this debilitating disease. While several clinical trials of glutamatergic modulators have had disappointing results, our growing understanding suggests that there is reason to remain optimistic about the therapeutic potential of these drugs.
Collapse
Affiliation(s)
| | - Peter K Stys
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Denis Vivien
- INSERM U919, University of Caen Normandy, Caen, France
| | - Stuart A Lipton
- Scintillon Institute San Diego, CA, USA; Scripps Research Institute, La Jolla, CA, USA; School of Mecicine, University of California, San Diego, CA, USA
| | | |
Collapse
|
10
|
Taso M, Girard OM, Duhamel G, Le Troter A, Feiweier T, Guye M, Ranjeva JP, Callot V. Tract-specific and age-related variations of the spinal cord microstructure: a multi-parametric MRI study using diffusion tensor imaging (DTI) and inhomogeneous magnetization transfer (ihMT). NMR IN BIOMEDICINE 2016; 29:817-832. [PMID: 27100385 DOI: 10.1002/nbm.3530] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 02/17/2016] [Accepted: 03/09/2016] [Indexed: 06/05/2023]
Abstract
Being able to finely characterize the spinal cord (SC) microstructure and its alterations is a key point when investigating neural damage mechanisms encountered in different central nervous system (CNS) pathologies, such as multiple sclerosis, amyotrophic lateral sclerosis or myelopathy. Based on novel methods, including inhomogeneous magnetization transfer (ihMT) and dedicated SC probabilistic atlas post-processing, the present study focuses on the in vivo characterization of the healthy SC tissue in terms of regional microstructure differences between (i) upper and lower cervical vertebral levels and (ii) sensory and motor tracts, as well as differences attributed to normal aging. Forty-eight healthy volunteers aged from 20 to 70 years old were included in the study and scanned at 3 T using axial high-resolution T2 *-w imaging, diffusion tensor imaging (DTI) and ihMT, at two vertebral levels (C2 and C5). A processing pipeline with minimal user intervention, SC segmentation and spatial normalization into a reference space was implemented in order to assess quantitative morphological and structural parameters (cross-sectional areas, scalar DTI and MT/ihMT metrics) in specific white and gray matter regions of interest. The multi-parametric MRI metrics collected allowed upper and lower cervical levels to be distinguished, with higher ihMT ratio (ihMTR), higher axial diffusivity (λ∥ ) and lower radial diffusivity (λ⊥ ) at C2 compared with C5. Significant differences were also observed between white matter fascicles, with higher ihMTR and lower λ∥ in motor tracts compared with posterior sensory tracts. Finally, aging was found to be associated with significant metric alterations (decreased ihMTR and λ∥ ). The methodology proposed here, which can be easily transferred to the clinic, provides new insights for SC characterization. It bears great potential to study focal and diffuse SC damage in neurodegenerative and demyelinating diseases. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Manuel Taso
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339, Marseille, France
- AP-HM, Hôpital de la Timone, Pôle d'imagerie médicale, Centre d'Exploration Métabolique par Résonance Magnétique (CEMEREM), Marseille, France
- Aix-Marseille Université, IFSTTAR, Laboratoire de Biomécanique Appliquée (LBA), UMR T 24, Marseille, France
- Laboratoire International Associé iLab-Spine - Imagerie et Biomécanique du Rachis, Marseille, France/Montréal, Canada
| | - Olivier M Girard
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339, Marseille, France
- AP-HM, Hôpital de la Timone, Pôle d'imagerie médicale, Centre d'Exploration Métabolique par Résonance Magnétique (CEMEREM), Marseille, France
| | - Guillaume Duhamel
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339, Marseille, France
- AP-HM, Hôpital de la Timone, Pôle d'imagerie médicale, Centre d'Exploration Métabolique par Résonance Magnétique (CEMEREM), Marseille, France
| | - Arnaud Le Troter
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339, Marseille, France
- AP-HM, Hôpital de la Timone, Pôle d'imagerie médicale, Centre d'Exploration Métabolique par Résonance Magnétique (CEMEREM), Marseille, France
| | | | - Maxime Guye
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339, Marseille, France
- AP-HM, Hôpital de la Timone, Pôle d'imagerie médicale, Centre d'Exploration Métabolique par Résonance Magnétique (CEMEREM), Marseille, France
| | - Jean-Philippe Ranjeva
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339, Marseille, France
- AP-HM, Hôpital de la Timone, Pôle d'imagerie médicale, Centre d'Exploration Métabolique par Résonance Magnétique (CEMEREM), Marseille, France
- Laboratoire International Associé iLab-Spine - Imagerie et Biomécanique du Rachis, Marseille, France/Montréal, Canada
| | - Virginie Callot
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339, Marseille, France
- AP-HM, Hôpital de la Timone, Pôle d'imagerie médicale, Centre d'Exploration Métabolique par Résonance Magnétique (CEMEREM), Marseille, France
- Laboratoire International Associé iLab-Spine - Imagerie et Biomécanique du Rachis, Marseille, France/Montréal, Canada
| |
Collapse
|
11
|
Perturbed cholesterol homeostasis in aging spinal cord. Neurobiol Aging 2016; 45:123-135. [PMID: 27459933 DOI: 10.1016/j.neurobiolaging.2016.05.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 04/28/2016] [Accepted: 05/16/2016] [Indexed: 12/14/2022]
Abstract
The spinal cord is vital for the processing of sensorimotor information and for its propagation to and from both the brain and the periphery. Spinal cord function is affected by aging, however, the mechanisms involved are not well-understood. To characterize molecular mechanisms of spinal cord aging, microarray analyses of gene expression were performed on cervical spinal cords of aging rats. Of the metabolic and signaling pathways affected, cholesterol-associated pathways were the most comprehensively altered, including significant downregulation of cholesterol synthesis-related genes and upregulation of cholesterol transport and metabolism genes. Paradoxically, a significant increase in total cholesterol content was observed-likely associated with cholesterol ester accumulation. To investigate potential mechanisms for the perturbed cholesterol homeostasis, we quantified the expression of myelin and neuroinflammation-associated genes and proteins. Although there was minimal change in myelin-related expression, there was an increase in phagocytic microglial and astrogliosis markers, particularly in the white matter. Together, these results suggest that perturbed cholesterol homeostasis, possibly as a result of increased inflammatory activation in spinal cord white matter, may contribute to impaired spinal cord function with aging.
Collapse
|
12
|
De Leener B, Taso M, Cohen-Adad J, Callot V. Segmentation of the human spinal cord. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2016; 29:125-53. [PMID: 26724926 DOI: 10.1007/s10334-015-0507-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 11/03/2015] [Accepted: 11/03/2015] [Indexed: 12/14/2022]
Abstract
Segmenting the spinal cord contour is a necessary step for quantifying spinal cord atrophy in various diseases. Delineating gray matter (GM) and white matter (WM) is also useful for quantifying GM atrophy or for extracting multiparametric MRI metrics into specific WM tracts. Spinal cord segmentation in clinical research is not as developed as brain segmentation, however with the substantial improvement of MR sequences adapted to spinal cord MR investigations, the field of spinal cord MR segmentation has advanced greatly within the last decade. Segmentation techniques with variable accuracy and degree of complexity have been developed and reported in the literature. In this paper, we review some of the existing methods for cord and WM/GM segmentation, including intensity-based, surface-based, and image-based methods. We also provide recommendations for validating spinal cord segmentation techniques, as it is important to understand the intrinsic characteristics of the methods and to evaluate their performance and limitations. Lastly, we illustrate some applications in the healthy and pathological spinal cord. One conclusion of this review is that robust and automatic segmentation is clinically relevant, as it would allow for longitudinal and group studies free from user bias as well as reproducible multicentric studies in large populations, thereby helping to further our understanding of the spinal cord pathophysiology and to develop new criteria for early detection of subclinical evolution for prognosis prediction and for patient management. Another conclusion is that at the present time, no single method adequately segments the cord and its substructure in all the cases encountered (abnormal intensities, loss of contrast, deformation of the cord, etc.). A combination of different approaches is thus advised for future developments, along with the introduction of probabilistic shape models. Maturation of standardized frameworks, multiplatform availability, inclusion in large suite and data sharing would also ultimately benefit to the community.
Collapse
Affiliation(s)
- Benjamin De Leener
- Neuroimaging Research Laboratory (NeuroPoly), Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada.,Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, QC, Canada
| | - Manuel Taso
- Aix Marseille Université, IFSTTAR, LBA UMR_T 24, Marseille, France.,Aix Marseille Université, CNRS, CRMBM UMR 7339, Marseille, France.,APHM, Hôpital de la Timone, Pôle d'imagerie médicale, CEMEREM, Marseille, France
| | - Julien Cohen-Adad
- Neuroimaging Research Laboratory (NeuroPoly), Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada.,Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, QC, Canada
| | - Virginie Callot
- Aix Marseille Université, CNRS, CRMBM UMR 7339, Marseille, France. .,APHM, Hôpital de la Timone, Pôle d'imagerie médicale, CEMEREM, Marseille, France.
| |
Collapse
|
13
|
Abstract
Multiple sclerosis (MS) is an inflammatory disorder of the CNS that affects both the brain and the spinal cord. MRI studies in MS focus more often on the brain than on the spinal cord, owing to the technical challenges in imaging this smaller, mobile structure. However, spinal cord abnormalities at disease onset have important implications for diagnosis and prognosis. Furthermore, later in the disease course, in progressive MS, myelopathy becomes the primary characteristic of the clinical presentation, and extensive spinal cord pathology--including atrophy, diffuse abnormalities and numerous focal lesions--is common. Recent spinal cord imaging studies have employed increasingly sophisticated techniques to improve detection and quantification of spinal cord lesions, and to elucidate their relationship with physical disability. Quantitative MRI measures of cord size and tissue integrity could be more sensitive to the axonal loss and other pathological processes in the spinal cord than is conventional MRI, putting quantitative MRI in a key role to elucidate the association between disability and spinal cord abnormalities seen in people with MS. In this Review, we summarize the most recent MS spinal cord imaging studies and discuss the new insights they have provided into the mechanisms of neurological impairment. Finally, we suggest directions for further and future research.
Collapse
|
14
|
A reliable spatially normalized template of the human spinal cord--Applications to automated white matter/gray matter segmentation and tensor-based morphometry (TBM) mapping of gray matter alterations occurring with age. Neuroimage 2015; 117:20-8. [PMID: 26003856 DOI: 10.1016/j.neuroimage.2015.05.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/06/2015] [Accepted: 05/13/2015] [Indexed: 12/14/2022] Open
Abstract
Recently, a T2*-weighted template and probabilistic atlas of the white and gray matter (WM, GM) of the spinal cord (SC) have been reported. Such template can be used as tissue-priors for automated WM/GM segmentation but can also provide a common reference and normalized space for group studies. Here, a new template has been created (AMU40), and accuracy of automatic template-based WM/GM segmentation was quantified. The feasibility of tensor-based morphometry (TBM) for studying voxel-wise morphological differences of SC between young and elderly healthy volunteers was also investigated. Sixty-five healthy subjects were divided into young (n=40, age<40years old, mean age 28±5years old) and elderly (n=25, age>50years old, mean age 57±5years old) groups and scanned at 3T using an axial high-resolution T2*-weighted sequence. Inhomogeneity correction and affine intensity normalization of the SC and cerebrospinal fluid (CSF) signal intensities across slices were performed prior to both construction of the AMU40 template and WM/GM template-based segmentation. The segmentation was achieved using non-linear spatial normalization of T2*-w MR images to the AMU40 template. Validation of WM/GM segmentations was performed with a leave-one-out procedure by calculating DICE similarity coefficients between manual and automated WM/GM masks. SC morphological differences between young and elderly healthy volunteers were assessed using the same non-linear spatial normalization of the subjects' MRI to a common template, derivation of the Jacobian determinant maps from the warping fields, and a TBM analysis. Results demonstrated robust WM/GM automated segmentation, with mean DICE values greater than 0.8. Concerning the TBM analysis, an anterior GM atrophy was highlighted in elderly volunteers, demonstrating thereby, for the first time, the feasibility of studying local structural alterations in the SC using tensor-based morphometry. This holds great promise for studies of morphological impairment occurring in several central nervous system pathologies.
Collapse
|
15
|
Gass A, Rocca MA, Agosta F, Ciccarelli O, Chard D, Valsasina P, Brooks JCW, Bischof A, Eisele P, Kappos L, Barkhof F, Filippi M. MRI monitoring of pathological changes in the spinal cord in patients with multiple sclerosis. Lancet Neurol 2015; 14:443-54. [PMID: 25748099 DOI: 10.1016/s1474-4422(14)70294-7] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The spinal cord is a clinically important site that is affected by pathological changes in most patients with multiple sclerosis; however, imaging of the spinal cord with conventional MRI can be difficult. Improvements in MRI provide a major advantage for spinal cord imaging, with better signal-to-noise ratio and improved spatial resolution. Through the use of multiplanar MRI, identification of diffuse and focal changes in the whole spinal cord is now routinely possible. Corroborated by related histopathological analyses, several new techniques, such as magnetisation transfer, diffusion tension imaging, functional MRI, and proton magnetic resonance spectroscopy, can detect non-focal, spinal cord pathological changes in patients with multiple sclerosis. Additionally, functional MRI can reveal changes in the response pattern to sensory stimulation in patients with multiple sclerosis. Through use of these techniques, findings of cord atrophy, intrinsic cord damage, and adaptation are shown to occur largely independently of focal spinal cord lesion load, which emphasises their relevance in depiction of the true burden of disease. Combinations of magnetisation transfer ratio or diffusion tension imaging indices with cord atrophy markers seem to be the most robust and meaningful biomarkers to monitor disease evolution in early multiple sclerosis.
Collapse
Affiliation(s)
- Achim Gass
- Department of Neurology, Universitätsmedizin Mannheim UMM, University of Heidelberg, Germany.
| | - Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience and Department of Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience and Department of Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Olga Ciccarelli
- Department of Brain Repair and Rehabilitation, University College London, Institute of Neurology National Institute for Health Research, University College London Hospitals, Biomedical Research Centre, London, UK
| | - Declan Chard
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, University College London, Institute of Neurology National Institute for Health Research, University College London Hospitals, Biomedical Research Centre, London, UK
| | - Paola Valsasina
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience and Department of Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | | | - Antje Bischof
- Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Philipp Eisele
- Department of Neurology, Universitätsmedizin Mannheim UMM, University of Heidelberg, Germany
| | - Ludwig Kappos
- Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, Netherlands
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience and Department of Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | | |
Collapse
|