1
|
Rice AJ, Sword TT, Chengan K, Mitchell DA, Mouncey NJ, Moore SJ, Bailey CB. Cell-free synthetic biology for natural product biosynthesis and discovery. Chem Soc Rev 2025; 54:4314-4352. [PMID: 40104998 PMCID: PMC11920963 DOI: 10.1039/d4cs01198h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Indexed: 03/20/2025]
Abstract
Natural products have applications as biopharmaceuticals, agrochemicals, and other high-value chemicals. However, there are challenges in isolating natural products from their native producers (e.g. bacteria, fungi, plants). In many cases, synthetic chemistry or heterologous expression must be used to access these important molecules. The biosynthetic machinery to generate these compounds is found within biosynthetic gene clusters, primarily consisting of the enzymes that biosynthesise a range of natural product classes (including, but not limited to ribosomal and nonribosomal peptides, polyketides, and terpenoids). Cell-free synthetic biology has emerged in recent years as a bottom-up technology applied towards both prototyping pathways and producing molecules. Recently, it has been applied to natural products, both to characterise biosynthetic pathways and produce new metabolites. This review discusses the core biochemistry of cell-free synthetic biology applied to metabolite production and critiques its advantages and disadvantages compared to whole cell and/or chemical production routes. Specifically, we review the advances in cell-free biosynthesis of ribosomal peptides, analyse the rapid prototyping of natural product biosynthetic enzymes and pathways, highlight advances in novel antimicrobial discovery, and discuss the rising use of cell-free technologies in industrial biotechnology and synthetic biology.
Collapse
Affiliation(s)
- Andrew J Rice
- Department of Biochemistry, School of Medicine - Basic Sciences, Vanderbilt University Medical Research Building-IV, Nashville, Tennessee, 37232, USA
| | - Tien T Sword
- Department of Chemistry, University of Tennessee-Knoxville, Knoxville, TN, USA
| | | | - Douglas A Mitchell
- Department of Biochemistry, School of Medicine - Basic Sciences, Vanderbilt University Medical Research Building-IV, Nashville, Tennessee, 37232, USA
- Department of Chemistry, Vanderbilt University, Medical Research Building-IV, Nashville, Tennessee, 37232, USA
| | - Nigel J Mouncey
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Simon J Moore
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| | - Constance B Bailey
- School of Chemistry, University of Sydney, Camperdown, NSW, 2001, Australia.
| |
Collapse
|
2
|
Tomohara K, Minagawa Y, Noji H. Artificial cells with all-aqueous droplet-in-droplet structures for spatially separated transcription and translation. Nat Commun 2025; 16:627. [PMID: 39856089 PMCID: PMC11759700 DOI: 10.1038/s41467-024-55366-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/09/2024] [Indexed: 01/27/2025] Open
Abstract
The design of functional artificial cells involves compartmentalizing biochemical processes to mimic cellular organization. To emulate the complex chemical systems in biological cells, it is necessary to incorporate an increasing number of cellular functions into single compartments. Artificial organelles that spatially segregate reactions inside artificial cells will be beneficial in this context by rectifying biochemical pathways. Here, we develop artificial cells with all-aqueous droplet-in-droplet structures that separate transcription and translation processes like the nucleus and cytosol in eukaryotic cells. This architecture uses protein-based inner droplets and aqueous two-phase outer compartments, stabilized by colloidal emulsifiers. The inner droplet is designed to enrich DNA and RNA polymerase for transcription, coupled to translation at the outer droplet via mRNA-mediated cascade reactions. We show that these processes proceed independently within each compartment, maintaining genotype-phenotype correspondence. This approach provides a practical tool for exploring complex systems of artificial organelles within large ensembles of artificial cells.
Collapse
Affiliation(s)
- Kanji Tomohara
- Department of Applied Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yoshihiro Minagawa
- Department of Applied Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hiroyuki Noji
- Department of Applied Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
3
|
Hunt A, Rasor BJ, Seki K, Ekas HM, Warfel KF, Karim AS, Jewett MC. Cell-Free Gene Expression: Methods and Applications. Chem Rev 2025; 125:91-149. [PMID: 39700225 PMCID: PMC11719329 DOI: 10.1021/acs.chemrev.4c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/29/2024] [Accepted: 10/21/2024] [Indexed: 12/21/2024]
Abstract
Cell-free gene expression (CFE) systems empower synthetic biologists to build biological molecules and processes outside of living intact cells. The foundational principle is that precise, complex biomolecular transformations can be conducted in purified enzyme or crude cell lysate systems. This concept circumvents mechanisms that have evolved to facilitate species survival, bypasses limitations on molecular transport across the cell wall, and provides a significant departure from traditional, cell-based processes that rely on microscopic cellular "reactors." In addition, cell-free systems are inherently distributable through freeze-drying, which allows simple distribution before rehydration at the point-of-use. Furthermore, as cell-free systems are nonliving, they provide built-in safeguards for biocontainment without the constraints attendant on genetically modified organisms. These features have led to a significant increase in the development and use of CFE systems over the past two decades. Here, we discuss recent advances in CFE systems and highlight how they are transforming efforts to build cells, control genetic networks, and manufacture biobased products.
Collapse
Affiliation(s)
- Andrew
C. Hunt
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Blake J. Rasor
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Kosuke Seki
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Holly M. Ekas
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Katherine F. Warfel
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S. Karim
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United States
- Robert
H. Lurie Comprehensive Cancer Center, Northwestern
University, Chicago, Illinois 60611, United States
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
4
|
Sookhoo JRV, Schiffman Z, Ambagala A, Kobasa D, Pardee K, Babiuk S. Protein Expression Platforms and the Challenges of Viral Antigen Production. Vaccines (Basel) 2024; 12:1344. [PMID: 39772006 PMCID: PMC11680109 DOI: 10.3390/vaccines12121344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Several protein expression platforms exist for a wide variety of biopharmaceutical needs. A substantial proportion of research and development into protein expression platforms and their optimization since the mid-1900s is a result of the production of viral antigens for use in subunit vaccine research. This review discusses the seven most popular forms of expression systems used in the past decade-bacterial, insect, mammalian, yeast, algal, plant and cell-free systems-in terms of advantages, uses and limitations for viral antigen production in the context of subunit vaccine research. Post-translational modifications, immunogenicity, efficacy, complexity, scalability and the cost of production are major points discussed. Examples of licenced and experimental vaccines are included along with images which summarize the processes involved.
Collapse
Affiliation(s)
- Jamie R. V. Sookhoo
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3R2, Canada; (J.R.V.S.); (A.A.)
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Zachary Schiffman
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (Z.S.); (D.K.)
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Aruna Ambagala
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3R2, Canada; (J.R.V.S.); (A.A.)
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Darwyn Kobasa
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (Z.S.); (D.K.)
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Keith Pardee
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada;
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Shawn Babiuk
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3R2, Canada; (J.R.V.S.); (A.A.)
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| |
Collapse
|
5
|
Ganesh RB, Maerkl SJ. Towards Self-regeneration: Exploring the Limits of Protein Synthesis in the Protein Synthesis Using Recombinant Elements (PURE) Cell-free Transcription-Translation System. ACS Synth Biol 2024; 13:2555-2566. [PMID: 39066734 DOI: 10.1021/acssynbio.4c00304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Self-regeneration is a key function of living systems that needs to be recapitulated in vitro to create a living synthetic cell. A major limiting factor for protein self-regeneration in the PURE cell-free transcription-translation system is its high protein concentration, which far exceeds the system's protein synthesis rate. Here, we were able to drastically reduce the nonribosomal PURE protein concentration up to 97.3% while increasing protein synthesis efficiency. Although crowding agents were not effective in the original PURE formulation, we found that in highly dilute PURE formulations, addition of 6% dextran considerably increased protein synthesis rate and total protein yield. These new PURE formulations will be useful for many cell-free synthetic biology applications, and we estimate that PURE can now support the complete self-regeneration of all 36 nonribosomal proteins, which is a critical step toward the development of a universal biochemical constructor and living synthetic cell.
Collapse
Affiliation(s)
- Ragunathan B Ganesh
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Sebastian J Maerkl
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
6
|
Zhang C, Chen S, Fu X, Dedkova LM, Hecht SM. Enhancement of N-Methyl Amino Acid Incorporation into Proteins and Peptides Using Modified Bacterial Ribosomes and Elongation Factor P. ACS Chem Biol 2024; 19:1330-1338. [PMID: 38769080 DOI: 10.1021/acschembio.4c00165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
N-Methylated amino acids are constituents of natural bioactive peptides and proteins. Nα-methylated amino acids appear abundantly in natural cyclic peptides, likely due to their constraint of peptide conformation and contribution to peptide stability. Peptides containing Nα-methylated amino acids have long been prepared by chemical synthesis. While such natural peptides are not produced ribosomally, recent ribosomal strategies have afforded Nα-methylated peptides. Presently, we define new strategies for the ribosomal incorporation of Nα-methylated amino acids into peptides and proteins. First, we identify modified ribosomes capable of facilitating the incorporation of six N-methylated amino acids into antibacterial scorpion peptide IsCT. Also synthesized analogously was a protein domain (RRM1) from hnRNP LL; improved yields were observed for nearly all tested N-methylated amino acids. Computational modeling of the ribosomal assembly illustrated how the distortion imposed by N-methylation could be compensated by altering the nucleotides in key 23S rRNA positions. Finally, it is known that incorporation of multiple prolines (an N-alkylated amino acid) ribosomally can be facilitated by bacterial elongation factor P. We report that supplementing endogenous EF-P during IsCT peptide and RRM1 protein synthesis gave improved yields for most of the N-methylated amino acids studied.
Collapse
Affiliation(s)
- Chao Zhang
- Biodesign Center for BioEnergetics, Arizona State University, Tempe, Arizona 85287, United States
| | - Shengxi Chen
- Biodesign Center for BioEnergetics, Arizona State University, Tempe, Arizona 85287, United States
| | - Xuan Fu
- Biodesign Center for BioEnergetics, Arizona State University, Tempe, Arizona 85287, United States
| | - Larisa M Dedkova
- Biodesign Center for BioEnergetics, Arizona State University, Tempe, Arizona 85287, United States
| | - Sidney M Hecht
- Biodesign Center for BioEnergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
7
|
Rothschild LJ, Averesch NJH, Strychalski EA, Moser F, Glass JI, Cruz Perez R, Yekinni IO, Rothschild-Mancinelli B, Roberts Kingman GA, Wu F, Waeterschoot J, Ioannou IA, Jewett MC, Liu AP, Noireaux V, Sorenson C, Adamala KP. Building Synthetic Cells─From the Technology Infrastructure to Cellular Entities. ACS Synth Biol 2024; 13:974-997. [PMID: 38530077 PMCID: PMC11037263 DOI: 10.1021/acssynbio.3c00724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 03/27/2024]
Abstract
The de novo construction of a living organism is a compelling vision. Despite the astonishing technologies developed to modify living cells, building a functioning cell "from scratch" has yet to be accomplished. The pursuit of this goal alone has─and will─yield scientific insights affecting fields as diverse as cell biology, biotechnology, medicine, and astrobiology. Multiple approaches have aimed to create biochemical systems manifesting common characteristics of life, such as compartmentalization, metabolism, and replication and the derived features, evolution, responsiveness to stimuli, and directed movement. Significant achievements in synthesizing each of these criteria have been made, individually and in limited combinations. Here, we review these efforts, distinguish different approaches, and highlight bottlenecks in the current research. We look ahead at what work remains to be accomplished and propose a "roadmap" with key milestones to achieve the vision of building cells from molecular parts.
Collapse
Affiliation(s)
- Lynn J. Rothschild
- Space Science
& Astrobiology Division, NASA Ames Research
Center, Moffett
Field, California 94035-1000, United States
- Department
of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Nils J. H. Averesch
- Department
of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | | | - Felix Moser
- Synlife, One Kendall Square, Cambridge, Massachusetts 02139-1661, United States
| | - John I. Glass
- J.
Craig
Venter Institute, La Jolla, California 92037, United States
| | - Rolando Cruz Perez
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
- Blue
Marble
Space Institute of Science at NASA Ames Research Center, Moffett Field, California 94035-1000, United
States
| | - Ibrahim O. Yekinni
- Department
of Biomedical Engineering, University of
Minnesota, Minneapolis, Minnesota 55455, United States
| | - Brooke Rothschild-Mancinelli
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332-0150, United States
| | | | - Feilun Wu
- J. Craig
Venter Institute, Rockville, Maryland 20850, United States
| | - Jorik Waeterschoot
- Mechatronics,
Biostatistics and Sensors (MeBioS), KU Leuven, 3000 Leuven Belgium
| | - Ion A. Ioannou
- Department
of Chemistry, MSRH, Imperial College London, London W12 0BZ, U.K.
| | - Michael C. Jewett
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Allen P. Liu
- Mechanical
Engineering & Biomedical Engineering, Cellular and Molecular Biology,
Biophysics, Applied Physics, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Vincent Noireaux
- Physics
and Nanotechnology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Carlise Sorenson
- Department
of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Katarzyna P. Adamala
- Department
of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
8
|
Masse M, Hutchinson RB, Morgan CE, Allaman HJ, Guan H, Yu EW, Cavagnero S. Mapping Protein-Protein Interactions at Birth: Single-Particle Cryo-EM Analysis of a Ribosome-Nascent Globin Complex. ACS CENTRAL SCIENCE 2024; 10:385-401. [PMID: 38435509 PMCID: PMC10906257 DOI: 10.1021/acscentsci.3c00777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 03/05/2024]
Abstract
Interactions between ribosome-bound nascent chains (RNCs) and ribosomal components are critical to elucidate the mechanism of cotranslational protein folding. Nascent protein-ribosome contacts within the ribosomal exit tunnel were previously assessed mostly in the presence of C-terminal stalling sequences, yet little is known about contacts taking place in the absence of these strongly interacting motifs. Further, there is nearly no information about ribosomal proteins (r-proteins) interacting with nascent chains within the outer surface of the ribosome. Here, we combine chemical cross-linking, single-particle cryo-EM, and fluorescence anisotropy decays to determine the structural features of ribosome-bound apomyoglobin (apoMb). Within the ribosomal exit tunnel core, interactions are similar to those identified in previous reports. However, once the RNC enters the tunnel vestibule, it becomes more dynamic and interacts with ribosomal RNA (rRNA) and the L23 r-protein. Remarkably, on the outer surface of the ribosome, RNCs interact mainly with a highly conserved nonpolar patch of the L23 r-protein. RNCs also comprise a compact and dynamic N-terminal region lacking contact with the ribosome. In all, apoMb traverses the ribosome and interacts with it via its C-terminal region, while N-terminal residues sample conformational space and form a compact subdomain before the entire nascent protein sequence departs from the ribosome.
Collapse
Affiliation(s)
- Meranda
M. Masse
- Department
of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Rachel B. Hutchinson
- Department
of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Christopher E. Morgan
- Department
of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Heather J. Allaman
- Department
of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Hongqing Guan
- Department
of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Edward W. Yu
- Department
of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Silvia Cavagnero
- Department
of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
9
|
Kerestesy GN, Dods KK, McFeely CAL, Hartman MCT. Continuous Fluorescence Assay for In Vitro Translation Compatible with Noncanonical Amino Acids. ACS Synth Biol 2024; 13:119-128. [PMID: 38194520 PMCID: PMC11165968 DOI: 10.1021/acssynbio.3c00353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The tolerance of the translation apparatus toward noncanonical amino acids (ncAAs) has enabled the creation of diverse natural-product-like peptide libraries using mRNA display for use in drug discovery. Typical experiments testing for ribosomal ncAA incorporation involve radioactive end point assays to measure yield alongside mass spectrometry experiments to validate incorporation. These end point assays require significant postexperimental manipulation for analysis and prevent higher throughput analysis and optimization experiments. Continuous assays for in vitro translation involve the synthesis of fluorescent proteins which require the full complement of canonical AAs for function and are therefore of limited utility for testing of ncAAs. Here, we describe a new, continuous fluorescence assay for in vitro translation based on detection of a short peptide tag using an affinity clamp protein, which exhibits changes in its fluorescent properties upon binding. Using this assay in a 384-well format, we were able to validate the incorporation of a variety of ncAAs and also quickly test for the codon reading specificities of a variety of Escherichia coli tRNAs. This assay enables rapid assessment of ncAAs and optimization of translation components and is therefore expected to advance the engineering of the translation apparatus for drug discovery and synthetic biology.
Collapse
Affiliation(s)
- Gianna N Kerestesy
- Chemistry, Virginia Commonwealth University, 1001 W Main Street, Richmond, 23220 Virginia, United States
- Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, 23298-0037 Virginia, United States
| | - Kara K Dods
- Chemistry, Virginia Commonwealth University, 1001 W Main Street, Richmond, 23220 Virginia, United States
- Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, 23298-0037 Virginia, United States
| | - Clinton A L McFeely
- Chemistry, Virginia Commonwealth University, 1001 W Main Street, Richmond, 23220 Virginia, United States
- Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, 23298-0037 Virginia, United States
| | - Matthew C T Hartman
- Chemistry, Virginia Commonwealth University, 1001 W Main Street, Richmond, 23220 Virginia, United States
- Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, 23298-0037 Virginia, United States
| |
Collapse
|
10
|
Aleksashin NA, Chang STL, Cate JHD. A highly efficient human cell-free translation system. RNA (NEW YORK, N.Y.) 2023; 29:1960-1972. [PMID: 37793791 PMCID: PMC10653386 DOI: 10.1261/rna.079825.123] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023]
Abstract
Cell-free protein synthesis (CFPS) systems enable easy in vitro expression of proteins with many scientific, industrial, and therapeutic applications. Here we present an optimized, highly efficient human cell-free translation system that bypasses many limitations of currently used in vitro systems. This CFPS system is based on extracts from human HEK293T cells engineered to endogenously express GADD34 and K3L proteins, which suppress phosphorylation of translation initiation factor eIF2α. Overexpression of GADD34 and K3L proteins in human cells before cell lysate preparation significantly simplifies lysate preparation. We find that expression of the GADD34 and K3L accessory proteins before cell lysis maintains low levels of phosphorylation of eIF2α in the extracts. During in vitro translation reactions, eIF2α phosphorylation increases moderately in a GCN2-dependent fashion that can be inhibited by GCN2 kinase inhibitors. This new CFPS system should be useful for exploring human translation mechanisms in more physiological conditions outside the cell.
Collapse
Affiliation(s)
- Nikolay A Aleksashin
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, California 94720, USA
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, California 94720, USA
| | - Stacey Tsai-Lan Chang
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, California 94720, USA
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, California 94720, USA
| | - Jamie H D Cate
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, California 94720, USA
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, California 94720, USA
- Department of Chemistry, University of California-Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
11
|
Morey K, Thomas-Fenderson T, Watson A, Sebesta J, Peebles C, Gentry-Weeks C. Toehold switch plus signal amplification enables rapid detection. Biotechnol J 2023; 18:e2200607. [PMID: 37641181 PMCID: PMC10840733 DOI: 10.1002/biot.202200607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023]
Abstract
Recent world events have led to an increased interest in developing rapid and inexpensive clinical diagnostic platforms for viral detection. Here, the development of a cell-free toehold switch-based biosensor, which does not require upstream amplification of target RNA, is described for the detection of RNA viruses. Toehold switches were designed to avoid interfering secondary structure in the viral RNA binding region, mutational hotspots, and cross-reacting sequences of other coronaviruses. Using these design criteria, toehold switches were targeted to a low mutation region of the SARS-CoV-2 genome nonstructural protein 2 (nsp2). The designs were tested in a cell-free system using trigger RNA based on the viral genome and a highly sensitive fluorescent reporter gene, mNeonGreen. The detection sensitivity of our best toehold design, CSU 08, was in the low picomolar range of target (trigger) RNA. To increase the sensitivity of our cell-free biosensor to a clinically relevant level, we developed a modular downstream amplification system that utilizes toehold switch activation of tobacco etch virus (TEV) protease expression. The TEV protease cleaves a quenched fluorescent reporter, both increasing the signal fold change between control and sample and increasing the sensitivity to a clinically relevant low femtomolar range for target RNA detection.
Collapse
Affiliation(s)
- Kevin Morey
- Chemical and Biological Engineering Department, Colorado State University, Fort Collins, CO
| | - Tyler Thomas-Fenderson
- Microbiology, Immunology, and Pathology Department, Colorado State University, Fort Collins, CO
| | - Al Watson
- Chemical and Biological Engineering Department, Colorado State University, Fort Collins, CO
| | - Jacob Sebesta
- Chemical and Biological Engineering Department, Colorado State University, Fort Collins, CO
| | - Christie Peebles
- Chemical and Biological Engineering Department, Colorado State University, Fort Collins, CO
| | - Claudia Gentry-Weeks
- Microbiology, Immunology, and Pathology Department, Colorado State University, Fort Collins, CO
| |
Collapse
|
12
|
Melinek BJ, Tuck J, Probert P, Branton H, Bracewell DG. Designing of an extract production protocol for industrial application of cell-free protein synthesis technology: Building from a current best practice to a quality by design approach. ENGINEERING BIOLOGY 2023; 7:1-17. [PMID: 38094242 PMCID: PMC10715128 DOI: 10.1049/enb2.12029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/10/2023] [Accepted: 11/20/2023] [Indexed: 10/16/2024] Open
Abstract
Cell-Free Protein Synthesis (CFPS) has, over the past decade, seen a substantial increase in interest from both academia and industry. Applications range from fundamental research, through high-throughput screening to niche manufacture of therapeutic products. This review/perspective focuses on Quality Control in CFPS. The importance and difficulty of measuring the Raw Material Attributes (RMAs) of whole cell extract, such as constituent protein and metabolite concentrations, and of understanding and controlling these complicated enzymatic reactions is explored, for both centralised and distributed industrial production of biotherapeutics. It is suggested that a robust cell-free extract production process should produce cell extract of consistent quality; however, demonstrating this is challenging without a full understanding of the RMAs and their interaction with reaction conditions and product. Lack of technology transfer and knowledge sharing is identified as a key limiting factor in the development of CFPS. The article draws upon the experiences of industrial process specialists, discussions within the Future Targeted Healthcare Manufacturing Hub Specialist Working Groups and evidence drawn from various sources to identify sources of process variation and to propose an initial guide towards systematisation of CFPS process development and reporting. These proposals include the development of small scale screening tools, consistent reporting of selected process parameters and analytics and application of industrial thinking and manufacturability to protocol development.
Collapse
Affiliation(s)
| | - Jade Tuck
- CPIDarlingtonUK
- Merck KGaADarmstadtGermany
| | | | | | | |
Collapse
|
13
|
Bains J, Qureshi N, Ceylan B, Wacker A, Schwalbe H. Cell-free transcription-translation system: a dual read-out assay to characterize riboswitch function. Nucleic Acids Res 2023; 51:e82. [PMID: 37409574 PMCID: PMC10450168 DOI: 10.1093/nar/gkad574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/27/2023] [Accepted: 07/04/2023] [Indexed: 07/07/2023] Open
Abstract
Cell-free protein synthesis assays have become a valuable tool to understand transcriptional and translational processes. Here, we established a fluorescence-based coupled in vitro transcription-translation assay as a read-out system to simultaneously quantify mRNA and protein levels. We utilized the well-established quantification of the expression of shifted green fluorescent protein (sGFP) as a read-out of protein levels. In addition, we determined mRNA quantities using a fluorogenic Mango-(IV) RNA aptamer that becomes fluorescent upon binding to the fluorophore thiazole orange (TO). We utilized a Mango-(IV) RNA aptamer system comprising four subsequent Mango-(IV) RNA aptamer elements with improved sensitivity by building Mango arrays. The design of this reporter assay resulted in a sensitive read-out with a high signal-to-noise ratio, allowing us to monitor transcription and translation time courses in cell-free assays with continuous monitoring of fluorescence changes as well as snapshots of the reaction. Furthermore, we applied this dual read-out assay to investigate the function of thiamine-sensing riboswitches thiM and thiC from Escherichia coli and the adenine-sensing riboswitch ASW from Vibrio vulnificus and pbuE from Bacillus subtilis, which represent transcriptional and translational on- and off-riboswitches, respectively. This approach enabled a microplate-based application, a valuable addition to the toolbox for high-throughput screening of riboswitch function.
Collapse
Affiliation(s)
- Jasleen Kaur Bains
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University, Frankfurt am Main, Hesse 60438, Germany
| | - Nusrat Shahin Qureshi
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University, Frankfurt am Main, Hesse 60438, Germany
| | - Betül Ceylan
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University, Frankfurt am Main, Hesse 60438, Germany
| | - Anna Wacker
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University, Frankfurt am Main, Hesse 60438, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University, Frankfurt am Main, Hesse 60438, Germany
| |
Collapse
|
14
|
Maheshwari AJ, Calles J, Waterton SK, Endy D. Engineering tRNA abundances for synthetic cellular systems. Nat Commun 2023; 14:4594. [PMID: 37524714 PMCID: PMC10390467 DOI: 10.1038/s41467-023-40199-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 07/13/2023] [Indexed: 08/02/2023] Open
Abstract
Routinizing the engineering of synthetic cells requires specifying beforehand how many of each molecule are needed. Physics-based tools for estimating desired molecular abundances in whole-cell synthetic biology are missing. Here, we use a colloidal dynamics simulator to make predictions for how tRNA abundances impact protein synthesis rates. We use rational design and direct RNA synthesis to make 21 synthetic tRNA surrogates from scratch. We use evolutionary algorithms within a computer aided design framework to engineer translation systems predicted to work faster or slower depending on tRNA abundance differences. We build and test the so-specified synthetic systems and find qualitative agreement between expected and observed systems. First principles modeling combined with bottom-up experiments can help molecular-to-cellular scale synthetic biology realize design-build-work frameworks that transcend tinker-and-test.
Collapse
Affiliation(s)
| | - Jonathan Calles
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Sean K Waterton
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Drew Endy
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
15
|
Wagner L, Jules M, Borkowski O. What remains from living cells in bacterial lysate-based cell-free systems. Comput Struct Biotechnol J 2023; 21:3173-3182. [PMID: 37333859 PMCID: PMC10275740 DOI: 10.1016/j.csbj.2023.05.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/23/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023] Open
Abstract
Because they mimic cells while offering an accessible and controllable environment, lysate-based cell-free systems (CFS) have emerged as valuable biotechnology tools for synthetic biology. Historically used to uncover fundamental mechanisms of life, CFS are nowadays used for a multitude of purposes, including protein production and prototyping of synthetic circuits. Despite the conservation of fundamental functions in CFS like transcription and translation, RNAs and certain membrane-embedded or membrane-bound proteins of the host cell are lost when preparing the lysate. As a result, CFS largely lack some essential properties of living cells, such as the ability to adapt to changing conditions, to maintain homeostasis and spatial organization. Regardless of the application, shedding light on the black-box of the bacterial lysate is necessary to fully exploit the potential of CFS. Most measurements of the activity of synthetic circuits in CFS and in vivo show significant correlations because these only require processes that are preserved in CFS, like transcription and translation. However, prototyping circuits of higher complexity that require functions that are lost in CFS (cell adaptation, homeostasis, spatial organization) will not show such a good correlation with in vivo conditions. Both for prototyping circuits of higher complexity and for building artificial cells, the cell-free community has developed devices to reconstruct cellular functions. This mini-review compares bacterial CFS to living cells, focusing on functional and cellular process differences and the latest developments in restoring lost functions through complementation of the lysate or device engineering.
Collapse
|
16
|
Aleksashin NA, Chang STL, Cate JHD. A highly efficient human cell-free translation system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527910. [PMID: 36798401 PMCID: PMC9934684 DOI: 10.1101/2023.02.09.527910] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Cell-free protein synthesis (CFPS) systems enable easy in vitro expression of proteins with many scientific, industrial, and therapeutic applications. Here we present an optimized, highly efficient human cell-free translation system that bypasses many limitations of currently used in vitro systems. This CFPS system is based on extracts from human HEK293T cells engineered to endogenously express GADD34 and K3L proteins, which suppress phosphorylation of translation initiation factor eIF2α. Overexpression of GADD34 and K3L proteins in human cells significantly simplifies cell lysate preparation. The new CFPS system improves the translation of 5' cap-dependent mRNAs as well as those that use internal ribosome entry site (IRES) mediated translation initiation. We find that expression of the GADD34 and K3L accessory proteins before cell lysis maintains low levels of phosphorylation of eIF2α in the extracts. During in vitro translation reactions, eIF2α phosphorylation increases moderately in a GCN2-dependent fashion that can be inhibited by GCN2 kinase inhibitors. We also find evidence for activation of regulatory pathways related to eukaryotic elongation factor 2 (eEF2) phosphorylation and ribosome quality control in the extracts. This new CFPS system should be useful for exploring human translation mechanisms in more physiological conditions outside the cell.
Collapse
Affiliation(s)
- Nikolay A. Aleksashin
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, CA, USA
- Department of Molecular & Cell Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Stacey Tsai-Lan Chang
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, CA, USA
- Department of Molecular & Cell Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Jamie H. D. Cate
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, CA, USA
- Department of Molecular & Cell Biology, University of California-Berkeley, Berkeley, CA, USA
- Department of Chemistry, University of California-Berkeley, Berkeley, CA, USA
| |
Collapse
|
17
|
Yue K, Chen J, Li Y, Kai L. Advancing synthetic biology through cell-free protein synthesis. Comput Struct Biotechnol J 2023; 21:2899-2908. [PMID: 37216017 PMCID: PMC10196276 DOI: 10.1016/j.csbj.2023.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
The rapid development of synthetic biology has enabled the production of compounds with revolutionary improvements in biotechnology. DNA manipulation tools have expedited the engineering of cellular systems for this purpose. Nonetheless, the inherent constraints of cellular systems persist, imposing an upper limit on mass and energy conversion efficiencies. Cell-free protein synthesis (CFPS) has demonstrated its potential to overcome these inherent constraints and has been instrumental in the further advancement of synthetic biology. Via the removal of the cell membranes and redundant parts of cells, CFPS has provided flexibility in directly dissecting and manipulating the Central Dogma with rapid feedback. This mini-review summarizes recent achievements of the CFPS technique and its application to a wide range of synthetic biology projects, such as minimal cell assembly, metabolic engineering, and recombinant protein production for therapeutics, as well as biosensor development for in vitro diagnostics. In addition, current challenges and future perspectives in developing a generalized cell-free synthetic biology are outlined.
Collapse
Affiliation(s)
- Ke Yue
- School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China
| | - Junyu Chen
- School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China
| | - Yingqiu Li
- School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China
| | - Lei Kai
- School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China
| |
Collapse
|
18
|
De Capitani J, Mutschler H. The Long Road to a Synthetic Self-Replicating Central Dogma. Biochemistry 2023; 62:1221-1232. [PMID: 36944355 PMCID: PMC10077596 DOI: 10.1021/acs.biochem.3c00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/24/2023] [Indexed: 03/23/2023]
Abstract
The construction of a biochemical system capable of self-replication is a key objective in bottom-up synthetic biology. Throughout the past two decades, a rapid progression in the design of in vitro cell-free systems has provided valuable insight into the requirements for the development of a minimal system capable of self-replication. The main limitations of current systems can be attributed to their macromolecular composition and how the individual macromolecules use the small molecules necessary to drive RNA and protein synthesis. In this Perspective, we discuss the recent steps that have been taken to generate a minimal cell-free system capable of regenerating its own macromolecular components and maintaining the homeostatic balance between macromolecular biogenesis and consumption of primary building blocks. By following the flow of biological information through the central dogma, we compare the current versions of these systems to date and propose potential alterations aimed at designing a model system for self-replicative synthetic cells.
Collapse
Affiliation(s)
- Jacopo De Capitani
- Department of Chemistry and Chemical
Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| | - Hannes Mutschler
- Department of Chemistry and Chemical
Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| |
Collapse
|
19
|
Patterson AT, Styczynski MP. Rapid and Finely-Tuned Expression for Deployable Sensing Applications. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 186:141-161. [PMID: 37316621 DOI: 10.1007/10_2023_223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Organisms from across the tree of life have evolved highly efficient mechanisms for sensing molecules of interest using biomolecular machinery that can in turn be quite valuable for the development of biosensors. However, purification of such machinery for use in in vitro biosensors is costly, while the use of whole cells as in vivo biosensors often leads to long sensor response times and unacceptable sensitivity to the chemical makeup of the sample. Cell-free expression systems overcome these weaknesses by removing the requirements associated with maintaining living sensor cells, allowing for increased function in toxic environments and rapid sensor readout at a production cost that is often more reasonable than purification. Here, we focus on the challenge of implementing cell-free protein expression systems that meet the stringent criteria required for them to serve as the basis for field-deployable biosensors. Fine-tuning expression to meet these requirements can be achieved through careful selection of the sensing and output elements, as well as through optimization of reaction conditions via tuning of DNA/RNA concentrations, lysate preparation methods, and buffer conditions. Through careful sensor engineering, cell-free systems can continue to be successfully used for the production of tightly regulated, rapidly expressing genetic circuits for biosensors.
Collapse
Affiliation(s)
- Alexandra T Patterson
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mark P Styczynski
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
20
|
Krebs SK, Stech M, Jorde F, Rakotoarinoro N, Ramm F, Marinoff S, Bahrke S, Danielczyk A, Wüstenhagen DA, Kubick S. Synthesis of an Anti-CD7 Recombinant Immunotoxin Based on PE24 in CHO and E. coli Cell-Free Systems. Int J Mol Sci 2022; 23:ijms232213697. [PMID: 36430170 PMCID: PMC9697001 DOI: 10.3390/ijms232213697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
Recombinant immunotoxins (RITs) are an effective class of agents for targeted therapy in cancer treatment. In this article, we demonstrate the straight-forward production and testing of an anti-CD7 RIT based on PE24 in a prokaryotic and a eukaryotic cell-free system. The prokaryotic cell-free system was derived from Escherichia coli BL21 StarTM (DE3) cells transformed with a plasmid encoding the chaperones groEL/groES. The eukaryotic cell-free system was prepared from Chinese hamster ovary (CHO) cells that leave intact endoplasmic reticulum-derived microsomes in the cell-free reaction mix from which the RIT was extracted. The investigated RIT was built by fusing an anti-CD7 single-chain variable fragment (scFv) with the toxin domain PE24, a shortened variant of Pseudomonas Exotoxin A. The RIT was produced in both cell-free systems and tested for antigen binding against CD7 and cell killing on CD7-positive Jurkat, HSB-2, and ALL-SIL cells. CD7-positive cells were effectively killed by the anti-CD7 scFv-PE24 RIT with an IC50 value of 15 pM to 40 pM for CHO and 42 pM to 156 pM for E. coli cell-free-produced RIT. CD7-negative Raji cells were unaffected by the RIT. Toxin and antibody domain alone did not show cytotoxic effects on either CD7-positive or CD7-negative cells. To our knowledge, this report describes the production of an active RIT in E. coli and CHO cell-free systems for the first time. We provide the proof-of-concept that cell-free protein synthesis allows for on-demand testing of antibody−toxin conjugate activity in a time-efficient workflow without cell lysis or purification required.
Collapse
Affiliation(s)
- Simon K. Krebs
- Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology (IZI), Am Mühlenberg 13, 14476 Potsdam, Germany
- Institute for Biotechnology, Technical University of Berlin, Ackerstrasse 76, 13355 Berlin, Germany
| | - Marlitt Stech
- Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology (IZI), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Felix Jorde
- Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology (IZI), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Nathanaël Rakotoarinoro
- Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology (IZI), Am Mühlenberg 13, 14476 Potsdam, Germany
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Strasse 2 + 4, 14195 Berlin, Germany
| | - Franziska Ramm
- Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology (IZI), Am Mühlenberg 13, 14476 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Sophie Marinoff
- Glycotope GmbH, Robert-Roessle-Strasse 10, 13125 Berlin, Germany
| | - Sven Bahrke
- Glycotope GmbH, Robert-Roessle-Strasse 10, 13125 Berlin, Germany
| | - Antje Danielczyk
- Glycotope GmbH, Robert-Roessle-Strasse 10, 13125 Berlin, Germany
| | - Doreen A. Wüstenhagen
- Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology (IZI), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Stefan Kubick
- Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology (IZI), Am Mühlenberg 13, 14476 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, 14476 Potsdam, Germany
- Correspondence:
| |
Collapse
|
21
|
Ganesh RB, Maerkl SJ. Biochemistry of Aminoacyl tRNA Synthetase and tRNAs and Their Engineering for Cell-Free and Synthetic Cell Applications. Front Bioeng Biotechnol 2022; 10:918659. [PMID: 35845409 PMCID: PMC9283866 DOI: 10.3389/fbioe.2022.918659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Cell-free biology is increasingly utilized for engineering biological systems, incorporating novel functionality, and circumventing many of the complications associated with cells. The central dogma describes the information flow in biology consisting of transcription and translation steps to decode genetic information. Aminoacyl tRNA synthetases (AARSs) and tRNAs are key components involved in translation and thus protein synthesis. This review provides information on AARSs and tRNA biochemistry, their role in the translation process, summarizes progress in cell-free engineering of tRNAs and AARSs, and discusses prospects and challenges lying ahead in cell-free engineering.
Collapse
|
22
|
Thakur M, Breger JC, Susumu K, Oh E, Spangler JR, Medintz IL, Walper SA, Ellis GA. Self-assembled nanoparticle-enzyme aggregates enhance functional protein production in pure transcription-translation systems. PLoS One 2022; 17:e0265274. [PMID: 35298538 PMCID: PMC8929567 DOI: 10.1371/journal.pone.0265274] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/27/2022] [Indexed: 11/19/2022] Open
Abstract
Cell-free protein synthesis systems (CFPS) utilize cellular transcription and translation (TX-TL) machinery to synthesize proteins in vitro. These systems are useful for multiple applications including production of difficult proteins, as high-throughput tools for genetic circuit screening, and as systems for biosensor development. Though rapidly evolving, CFPS suffer from some disadvantages such as limited reaction rates due to longer diffusion times, significant cost per assay when using commercially sourced materials, and reduced reagent stability over prolonged periods. To address some of these challenges, we conducted a series of proof-of-concept experiments to demonstrate enhancement of CFPS productivity via nanoparticle assembly driven nanoaggregation of its constituent proteins. We combined a commercially available CFPS that utilizes purified polyhistidine-tagged (His-tag) TX-TL machinery with CdSe/CdS/ZnS core/shell/shell quantum dots (QDs) known to readily coordinate His-tagged proteins in an oriented fashion. We show that nanoparticle scaffolding of the CFPS cross-links the QDs into nanoaggregate structures while enhancing the production of functional recombinant super-folder green fluorescent protein and phosphotriesterase, an organophosphate hydrolase; the latter by up to 12-fold. This enhancement, which occurs by an undetermined mechanism, has the potential to improve CFPS in general and specifically CFPS-based biosensors (faster response time) while also enabling rapid detoxification/bioremediation through point-of-concern synthesis of similar catalytic enzymes. We further show that such nanoaggregates improve production in diluted CFPS reactions, which can help to save money and extend the amount of these costly reagents. The results are discussed in the context of what may contribute mechanistically to the enhancement and how this can be applied to other CFPS application scenarios.
Collapse
Affiliation(s)
- Meghna Thakur
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, District of Columbia, United States of America
- College of Science, George Mason University, Fairfax, Virginia, United States of America
| | - Joyce C. Breger
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, District of Columbia, United States of America
| | - Kimihiro Susumu
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington, District of Columbia, United States of America
- Jacobs Corporation, Dallas, Texas, United States of America
| | - Eunkeu Oh
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington, District of Columbia, United States of America
| | - Joseph R. Spangler
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, District of Columbia, United States of America
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, District of Columbia, United States of America
| | - Scott A. Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, District of Columbia, United States of America
| | - Gregory A. Ellis
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, District of Columbia, United States of America
- * E-mail:
| |
Collapse
|
23
|
Sheahan T, Wieden HJ. Ribosomal Protein S1 Improves the Protein Yield of an In Vitro Reconstituted Cell-Free Translation System. ACS Synth Biol 2022; 11:1004-1008. [PMID: 35044750 DOI: 10.1021/acssynbio.1c00514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cell-free expression systems, such as the highly purified in vitro reconstituted PURExpress, hold great promise for engineering biological and life-similar systems by exploiting the ability to perform transcription and translation (TX-TL) outside the constraints of living cells, including for example the expression of recombinant proteins that are difficult or toxic to produce in vivo. Currently, the scope of applications utilizing purified reconstituted TX-TL systems is challenged by poor system performance resulting from limitations in the ribosome and ribosome-associated processes, leading to low protein yields. Because of the transient nature of ribosomal protein S1's interaction with the ribosome, the ribosomes in a reconstituted translation system contain varying amounts of S1, potentially impacting translation initiation and the recruitment of mRNA to the 30S ribosomal subunit. Here we report that by being supplemented with purified recombinant S1 the protein yields can be doubled when using a commercial in vitro reconstituted TX-TL system. We hypothesize that the addition of S1 increases the fraction of functional ribosomes available in the in vitro reaction. Improved yields are shown for different reporter proteins (EYFP, sfGFP, and mRFP) and in different 5'UTR contexts (strong, medium, and weak ribosome binding site), including the expression of a highly structured RNA (PSIV IRES). Overall, fine-tuning the S1 concentration provides a previously overlooked venue to increase protein yield by targeting ribosome composition and translation initiation.
Collapse
Affiliation(s)
- Taylor Sheahan
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute (ARRTI), University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Hans-Joachim Wieden
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute (ARRTI), University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
24
|
El-Baky NA, EL-Fakharany EM, Sabry SA, El-Helow ER, Redwan EM, Sabry A. A De Novo Optimized Cell-Free System for the Expression of Soluble and Active Human Tumor Necrosis Factor-Alpha. BIOLOGY 2022; 11:157. [PMID: 35205024 PMCID: PMC8868817 DOI: 10.3390/biology11020157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 11/27/2022]
Abstract
Cell-free (in vitro) expression is a robust alternative platform to the cell-based (in vivo) system for recombinant protein production. Tumor necrosis factor-alpha (TNF-α) is an effective pro-inflammatory cytokine with pleiotropic effects. The aim of the current study was de novo optimized expression of soluble and active human TNF-α by an in vitro method in an E. coli-based cell-free protein synthesis (CFPS) system and its biological activity evaluation. The codon-optimized synthetic human TNF-α gene was constructed by a two-step PCR, cloned into pET101/D-TOPO vector and then expressed by the E. coli CFPS system. Cell-free expression of the soluble protein was optimized using a response surface methodology (RSM). The anticancer activity of purified human TNF-α was assessed against three human cancer cell lines: Caco-2, HepG-2 and MCF-7. Data from RSM revealed that the lowest value (7.2 µg/mL) of cell-free production of recombinant human TNF-α (rhTNF-α) was obtained at a certain incubation time (6 h) and incubation temperature (20 °C), while the highest value (350 µg/mL) was recorded at 4 h and 35 °C. This rhTNF-α showed a significant anticancer potency. Our findings suggest a cell-free expression system as an alternative platform for producing soluble and functionally active recombinant TNF-α for further research and clinical trials.
Collapse
Affiliation(s)
- Nawal Abd El-Baky
- Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria P.O. Box 21934, Egypt; (E.M.E.-F.); (A.S.)
| | - Esmail M. EL-Fakharany
- Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria P.O. Box 21934, Egypt; (E.M.E.-F.); (A.S.)
| | - Soraya A. Sabry
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria P.O. Box 21568, Egypt; (S.A.S.); (E.R.E.-H.)
| | - Ehab R. El-Helow
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria P.O. Box 21568, Egypt; (S.A.S.); (E.R.E.-H.)
| | - Elrashdy Mustafa Redwan
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah P.O. Box 80203, Saudi Arabia;
| | - Amira Sabry
- Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria P.O. Box 21934, Egypt; (E.M.E.-F.); (A.S.)
| |
Collapse
|
25
|
Danchin A. In vivo, in vitro and in silico: an open space for the development of microbe-based applications of synthetic biology. Microb Biotechnol 2022; 15:42-64. [PMID: 34570957 PMCID: PMC8719824 DOI: 10.1111/1751-7915.13937] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022] Open
Abstract
Living systems are studied using three complementary approaches: living cells, cell-free systems and computer-mediated modelling. Progresses in understanding, allowing researchers to create novel chassis and industrial processes rest on a cycle that combines in vivo, in vitro and in silico studies. This design-build-test-learn iteration loop cycle between experiments and analyses combines together physiology, genetics, biochemistry and bioinformatics in a way that keeps going forward. Because computer-aided approaches are not directly constrained by the material nature of the entities of interest, we illustrate here how this virtuous cycle allows researchers to explore chemistry which is foreign to that present in extant life, from whole chassis to novel metabolic cycles. Particular emphasis is placed on the importance of evolution.
Collapse
Affiliation(s)
- Antoine Danchin
- Kodikos LabsInstitut Cochin24 rue du Faubourg Saint‐JacquesParis75014France
| |
Collapse
|
26
|
Takahashi H, Ogawa A. Coupled in vitro transcription/translation based on wheat germ extract for efficient expression from PCR-generated templates in short-time batch reactions. Bioorg Med Chem Lett 2021; 52:128412. [PMID: 34634474 DOI: 10.1016/j.bmcl.2021.128412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/27/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
We successfully constructed a coupled in vitro transcription/translation (cIVTT) system based on wheat germ extract (WGE) for efficient expression from PCR-generated DNA templates in short-time (∼3-h) batch reactions. The productivity of this system under optimized conditions was 85 μg (2.8 nmol) per 1 mL of reaction solution (corresponding to 425 μg per 1 mL of WGE), which was about 9-fold higher than that by the conventional batch method using mRNA as a template. The DNA template concentration required for efficient cIVTT was as low as 2.5 nM, which is much lower than those required for other eukaryotic cIVTT systems to maximize their productivity (30-50 nM). The productivity of the present system with a 2.5 nM template was 80-fold and 4-fold higher than that of a commercially available WGE-based cIVTT system with a 2.5 nM and a 40 nM template, respectively. In addition, the present system functioned well in a liposome (i.e., in an artificial cell) without a loss of productivity. Given that WGE-based systems have the advantage of being suitable for the expression of a broad range of proteins, the present cIVTT system is expected to be widely used in future cell-free synthetic biology.
Collapse
Affiliation(s)
- Hajime Takahashi
- Proteo-Science Center, Ehime University, 3 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Atsushi Ogawa
- Proteo-Science Center, Ehime University, 3 Bunkyo, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
27
|
Vezeau GE, Salis HM. Tuning Cell-Free Composition Controls the Time Delay, Dynamics, and Productivity of TX-TL Expression. ACS Synth Biol 2021; 10:2508-2519. [PMID: 34498860 DOI: 10.1021/acssynbio.1c00136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The composition of cell-free expression systems (TX-TL) is adjusted by adding macromolecular crowding agents and salts. However, the effects of these cosolutes on the dynamics of individual gene expression processes have not been quantified. Here, we carry out kinetic mRNA and protein level measurements on libraries of genetic constructs using the common cosolutes PEG-8000, Ficoll-400, and magnesium glutamate. By combining these measurements with biophysical modeling, we show that cosolutes have differing effects on transcription initiation, translation initiation, and translation elongation rates with trade-offs between time delays, expression tunability, and maximum expression productivity. We also confirm that biophysical models can predict translation initiation rates in TX-TL using Escherichia coli lysate. We discuss how cosolute composition can be tuned to maximize performance across different cell-free applications, including biosensing, diagnostics, and biomanufacturing.
Collapse
Affiliation(s)
- Grace E. Vezeau
- Department of Biological Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Howard M. Salis
- Department of Biological Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
28
|
Abstract
A nonsense suppressor tRNA (sup-tRNA) allows a natural or non-natural amino acid to be assigned to a nonsense codon in mRNA. Sup-tRNAs were utilized initially for studying tRNA functions but lately are used more for protein engineering and gene regulation. In the latter application, a sup-tRNA that is aminoacylated with a natural amino acid by the corresponding aminoacyl-tRNA synthetase is used to express a full-length natural protein from its mutated gene with a nonsense codon in the middle. This type of sup-tRNA has recently been artificially evolved to develop biosensors. In these biosensors, an analyte induces the processing of an engineered premature sup-tRNA into a mature sup-tRNA, which suppresses the corresponding nonsense codon incorporated into a gene, encoding an easily detectable reporter protein. This review introduces sup-tRNA-based biosensors that the author's group has developed by utilizing bacterial and eukaryotic cell-free translation systems.
Collapse
|
29
|
In vitro synthesis of 32 translation-factor proteins from a single template reveals impaired ribosomal processivity. Sci Rep 2021; 11:1898. [PMID: 33479285 PMCID: PMC7820420 DOI: 10.1038/s41598-020-80827-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/24/2020] [Indexed: 12/20/2022] Open
Abstract
The Protein synthesis Using Recombinant Elements (PURE) system enables transcription and translation of a DNA template from purified components. Therefore, the PURE system-catalyzed generation of RNAs and proteins constituting the PURE system itself represents a major challenge toward a self-replicating minimal cell. In this work, we show that all translation factors (except elongation factor Tu) and 20 aminoacyl-tRNA synthetases can be expressed in the PURE system from a single plasmid encoding 32 proteins in 30 cistrons. Cell-free synthesis of all 32 proteins is confirmed by quantitative mass spectrometry-based proteomic analysis using isotopically labeled amino acids. We find that a significant fraction of the gene products consists of proteins missing their C-terminal ends. The per-codon processivity loss that we measure lies between 1.3 × 10-3 and 13.2 × 10-3, depending on the expression conditions, the version of the PURE system, and the coding sequence. These values are 5 to 50 times higher than those measured in vivo in E. coli. With such an impaired processivity, a considerable fraction of the biosynthesis capacity of the PURE system is wasted, posing an unforeseen challenge toward the development of a self-regenerating PURE system.
Collapse
|
30
|
Lavickova B, Laohakunakorn N, Maerkl SJ. A partially self-regenerating synthetic cell. Nat Commun 2020; 11:6340. [PMID: 33311509 PMCID: PMC7733450 DOI: 10.1038/s41467-020-20180-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/16/2020] [Indexed: 01/16/2023] Open
Abstract
Self-regeneration is a fundamental function of all living systems. Here we demonstrate partial molecular self-regeneration in a synthetic cell. By implementing a minimal transcription-translation system within microfluidic reactors, the system is able to regenerate essential protein components from DNA templates and sustain synthesis activity for over a day. By quantitating genotype-phenotype relationships combined with computational modeling we find that minimizing resource competition and optimizing resource allocation are both critically important for achieving robust system function. With this understanding, we achieve simultaneous regeneration of multiple proteins by determining the required DNA ratios necessary for sustained self-regeneration. This work introduces a conceptual and experimental framework for the development of a self-replicating synthetic cell.
Collapse
Affiliation(s)
- Barbora Lavickova
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nadanai Laohakunakorn
- Institute of Quantitative Biology, Biochemistry, and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Sebastian J Maerkl
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
31
|
Kim J, Copeland CE, Seki K, Vögeli B, Kwon YC. Tuning the Cell-Free Protein Synthesis System for Biomanufacturing of Monomeric Human Filaggrin. Front Bioeng Biotechnol 2020; 8:590341. [PMID: 33195157 PMCID: PMC7658397 DOI: 10.3389/fbioe.2020.590341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022] Open
Abstract
The modern cell-free protein synthesis (CFPS) system is expanding the opportunity of cell-free biomanufacturing as a versatile platform for synthesizing various therapeutic proteins. However, synthesizing human protein in the bacterial CFPS system remains challenging due to the low expression level, protein misfolding, inactivity, and more. These challenges limit the use of a bacterial CFPS system for human therapeutic protein synthesis. In this study, we demonstrated the improved performance of a customized CFPS platform for human therapeutic protein production by investigating the factors that limit cell-free transcription-translation. The improvement of the CFPS platform has been made in three ways. First, the cell extract was prepared from the rare tRNA expressed host strain, and CFPS was performed with a codon-optimized gene for Escherichia coli codon usage bias. The soluble protein yield was 15.2 times greater with the rare tRNA overexpressing host strain as cell extract and codon-optimized gene in the CFPS system. Next, we identify and prioritize the critical biomanufacturing factors for highly active crude cell lysate for human protein synthesis. Lastly, we engineer the CFPS reaction conditions to enhance protein yield. In this model, the therapeutic protein filaggrin expression was significantly improved by up to 23-fold, presenting 28 ± 5 μM of soluble protein yield. The customized CFPS system for filaggrin biomanufacturing described here demonstrates the potential of the CFPS system to be adapted for studying therapeutic proteins.
Collapse
Affiliation(s)
- Jeehye Kim
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, United States
| | - Caroline E Copeland
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, United States
| | - Kosuke Seki
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States.,Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, United States
| | - Bastian Vögeli
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
| | - Yong-Chan Kwon
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, United States.,Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| |
Collapse
|
32
|
Burgenson D, Linton J, Ge X, Kostov Y, Tolosa L, Szeto GL, Rao G. A Cell-Free Protein Expression System Derived from Human Primary Peripheral Blood Mononuclear Cells. ACS Synth Biol 2020; 9:2188-2196. [PMID: 32698572 DOI: 10.1021/acssynbio.0c00256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Historically, some of the first cell-free protein expression systems studied in vitro translation in various human blood cells. However, because of limited knowledge of eukaryotic translation and the advancement of cell line development, interest in these systems decreased. Eukaryotic translation is a complex system of factors that contribute to the overall translation of mRNA to produce proteins. The intracellular translateome of a cell can be modified by various factors and disease states, but it is impossible to individually measure all factors involved when there is no comprehensive understanding of eukaryotic translation. The present work outlines the use of a coupled transcription and translation cell-free protein expression system to produce recombinant proteins derived from human donor peripheral blood mononuclear cells (PBMCs) activated with phytohemagglutinin-M (PHA-M). The methods outlined here could result in tools to aid immunology, gene therapy, cell therapy, and synthetic biology research and provide a convenient and holistic method to study and assess the intracellular translation environment of primary immune cells.
Collapse
Affiliation(s)
- David Burgenson
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| | - Jonathan Linton
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| | - Xudong Ge
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| | - Yordan Kostov
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| | - Leah Tolosa
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| | - Gregory L. Szeto
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland 21201, United States
| | - Govind Rao
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| |
Collapse
|
33
|
Abstract
Cell-free systems are a widely used research tool in systems and synthetic biology and a promising platform for manufacturing of proteins and chemicals. In the past, cell-free biology was primarily used to better understand fundamental biochemical processes. Notably, E. coli cell-free extracts were used in the 1960s to decipher the sequencing of the genetic code. Since then, the transcription and translation capabilities of cell-free systems have been repeatedly optimized to improve energy efficiency and product yield. Today, cell-free systems, in combination with the rise of synthetic biology, have taken on a new role as a promising technology for just-in-time manufacturing of therapeutically important biologics and high-value small molecules. They have also been implemented at an industrial scale for the production of antibodies and cytokines. In this review, we discuss the evolution of cell-free technologies, in particular advancements in extract preparation, cell-free protein synthesis, and cell-free metabolic engineering applications. We then conclude with a discussion of the mathematical modeling of cell-free systems. Mathematical modeling of cell-free processes could be critical to addressing performance bottlenecks and estimating the costs of cell-free manufactured products.
Collapse
|
34
|
Laohakunakorn N, Grasemann L, Lavickova B, Michielin G, Shahein A, Swank Z, Maerkl SJ. Bottom-Up Construction of Complex Biomolecular Systems With Cell-Free Synthetic Biology. Front Bioeng Biotechnol 2020; 8:213. [PMID: 32266240 PMCID: PMC7105575 DOI: 10.3389/fbioe.2020.00213] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/03/2020] [Indexed: 12/16/2022] Open
Abstract
Cell-free systems offer a promising approach to engineer biology since their open nature allows for well-controlled and characterized reaction conditions. In this review, we discuss the history and recent developments in engineering recombinant and crude extract systems, as well as breakthroughs in enabling technologies, that have facilitated increased throughput, compartmentalization, and spatial control of cell-free protein synthesis reactions. Combined with a deeper understanding of the cell-free systems themselves, these advances improve our ability to address a range of scientific questions. By mastering control of the cell-free platform, we will be in a position to construct increasingly complex biomolecular systems, and approach natural biological complexity in a bottom-up manner.
Collapse
Affiliation(s)
- Nadanai Laohakunakorn
- School of Biological Sciences, Institute of Quantitative Biology, Biochemistry, and Biotechnology, University of Edinburgh, Edinburgh, United Kingdom
| | - Laura Grasemann
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Barbora Lavickova
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Grégoire Michielin
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Amir Shahein
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Zoe Swank
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sebastian J. Maerkl
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
35
|
Newton MS, Cabezas-Perusse Y, Tong CL, Seelig B. In Vitro Selection of Peptides and Proteins-Advantages of mRNA Display. ACS Synth Biol 2020; 9:181-190. [PMID: 31891492 DOI: 10.1021/acssynbio.9b00419] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
mRNA display is a robust in vitro selection technique that allows the selection of peptides and proteins with desired functions from libraries of trillions of variants. mRNA display relies upon a covalent linkage between a protein and its encoding mRNA molecule; the power of the technique stems from the stability of this link, and the large degree of control over experimental conditions afforded to the researcher. This article describes the major advantages that make mRNA display the method of choice among comparable in vivo and in vitro methods, including cell-surface display, phage display, and ribosomal display. We also describe innovative techniques that harness mRNA display for directed evolution, protein engineering, and drug discovery.
Collapse
Affiliation(s)
- Matilda S. Newton
- Department of Biochemistry, Molecular Biology and Biophysics & BioTechnology Institute, University of Minnesota, 1479 Gortner Avenue, St. Paul, Minnesota 55108, United States
- Department of Molecular, Cellular, and Developmental Biology & Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Yari Cabezas-Perusse
- Department of Biochemistry, Molecular Biology and Biophysics & BioTechnology Institute, University of Minnesota, 1479 Gortner Avenue, St. Paul, Minnesota 55108, United States
| | - Cher Ling Tong
- Department of Biochemistry, Molecular Biology and Biophysics & BioTechnology Institute, University of Minnesota, 1479 Gortner Avenue, St. Paul, Minnesota 55108, United States
| | - Burckhard Seelig
- Department of Biochemistry, Molecular Biology and Biophysics & BioTechnology Institute, University of Minnesota, 1479 Gortner Avenue, St. Paul, Minnesota 55108, United States
| |
Collapse
|
36
|
Hammerling MJ, Krüger A, Jewett MC. Strategies for in vitro engineering of the translation machinery. Nucleic Acids Res 2020; 48:1068-1083. [PMID: 31777928 PMCID: PMC7026604 DOI: 10.1093/nar/gkz1011] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/07/2019] [Accepted: 10/17/2019] [Indexed: 01/06/2023] Open
Abstract
Engineering the process of molecular translation, or protein biosynthesis, has emerged as a major opportunity in synthetic and chemical biology to generate novel biological insights and enable new applications (e.g. designer protein therapeutics). Here, we review methods for engineering the process of translation in vitro. We discuss the advantages and drawbacks of the two major strategies-purified and extract-based systems-and how they may be used to manipulate and study translation. Techniques to engineer each component of the translation machinery are covered in turn, including transfer RNAs, translation factors, and the ribosome. Finally, future directions and enabling technological advances for the field are discussed.
Collapse
Affiliation(s)
- Michael J Hammerling
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Antje Krüger
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| |
Collapse
|
37
|
Ge X, Xu J. Macromolecular crowding effects on transcription and translation are regulated by free magnesium ion. Biotechnol Appl Biochem 2020; 67:117-122. [PMID: 31576614 PMCID: PMC7263881 DOI: 10.1002/bab.1827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/28/2019] [Indexed: 12/21/2022]
Abstract
Cell-free metabolic engineering is an emerging and promising alternative platform for the production of fuels and chemicals. In recent years, macromolecular crowding effect, which is an important function in living cells but ignored in cell-free systems, has been transferred to cell-free protein synthesis (CFPS). However, inhibitory effects of crowding agents on CFPS were frequently observed, and the mechanism is unclear. In this study, free Mg2+ was found to be a key factor that can regulate the macromolecular crowding effect on in vitro transcription, in vitro translation, and coupled transcript/translation. Addition of crowding agents (20% of Ficoll-70 or Ficoll-400) enhanced in vitro transcription at an index of free Mg2+ concentration (IFMC) below 2 mM but inhibited the transcription when the IFMC was higher than 2 mM. Similarly, Ficoll-400 enhanced in vitro translation and coupled transcription/translation at a lower IFMC (0.1-2 mM) and inhibited the reactions at higher IFMC (>2 mM). Based on the results, CFPS systems could be further optimized by adjusting the content of crowding agents and the IFMC. Besides, the results also indicate that macromolecular crowding effect is important for maintaining the efficiency of in vivo transcription and translation which occur at a low intracellular IFMC (<1 mM).
Collapse
Affiliation(s)
- Xumeng Ge
- Arkansas Biosciences Institute and College of Agriculture and Technology, Arkansas State University, Jonesboro, AR, USA
- Quasar Energy Group, Independence, OH, USA
| | - Jianfeng Xu
- Arkansas Biosciences Institute and College of Agriculture and Technology, Arkansas State University, Jonesboro, AR, USA
| |
Collapse
|
38
|
Abstract
Cell-free systems (CFS) have recently evolved into key platforms for synthetic biology applications. Many synthetic biology tools have traditionally relied on cell-based systems, and while their adoption has shown great progress, the constraints inherent to the use of cellular hosts have limited their reach and scope. Cell-free systems, which can be thought of as programmable liquids, have removed many of these complexities and have brought about exciting opportunities for rational design and manipulation of biological systems. Here we review how these simple and accessible enzymatic systems are poised to accelerate the rate of advancement in synthetic biology and, more broadly, biotechnology.
Collapse
Affiliation(s)
- Aidan Tinafar
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., Toronto, ON, M5S 3M2, Canada
| | - Katariina Jaenes
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., Toronto, ON, M5S 3M2, Canada
| | - Keith Pardee
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., Toronto, ON, M5S 3M2, Canada.
| |
Collapse
|
39
|
Gao W, Cho E, Liu Y, Lu Y. Advances and Challenges in Cell-Free Incorporation of Unnatural Amino Acids Into Proteins. Front Pharmacol 2019; 10:611. [PMID: 31191324 PMCID: PMC6549004 DOI: 10.3389/fphar.2019.00611] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/15/2019] [Indexed: 12/17/2022] Open
Abstract
Incorporation of unnatural amino acids (UNAAs) into proteins currently is an active biological research area for various fundamental and applied science. In this context, cell-free synthetic biology (CFSB) has been developed and recognized as a robust testing and biomanufacturing platform for highly efficient UNAA incorporation. It enables the orchestration of unnatural biological machinery toward an exclusive user-defined objective of unnatural protein synthesis. This review aims to overview the principles of cell-free unnatural protein synthesis (CFUPS) systems, their advantages, different UNAA incorporation approaches, and recent achievements. These have catalyzed cutting-edge research and diverse emerging applications. Especially, present challenges and future trends are focused and discussed. With the development of CFSB and the fusion with other advanced next-generation technologies, CFUPS systems would explicitly deliver their values for biopharmaceutical applications.
Collapse
Affiliation(s)
- Wei Gao
- Department of Chemical Engineering, Tsinghua University, Beijing, China
- College of Life Science, Shenyang Normal University, Shenyang, China
| | - Eunhee Cho
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Yingying Liu
- Department of Chemical Engineering, Tsinghua University, Beijing, China
- College of Life Science, Shenyang Normal University, Shenyang, China
| | - Yuan Lu
- Department of Chemical Engineering, Tsinghua University, Beijing, China
- Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China
- Key Lab of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
40
|
Wick S, Walsh DI, Bobrow J, Hamad-Schifferli K, Kong DS, Thorsen T, Mroszczyk K, Carr PA. PERSIA for Direct Fluorescence Measurements of Transcription, Translation, and Enzyme Activity in Cell-Free Systems. ACS Synth Biol 2019; 8:1010-1025. [PMID: 30920800 PMCID: PMC6830305 DOI: 10.1021/acssynbio.8b00450] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Quantification of biology's central dogma (transcription and translation) is pursued by a variety of methods. Direct, immediate, and ongoing quantification of these events is difficult to achieve. Common practice is to use fluorescent or luminescent proteins to report indirectly on prior cellular events, such as turning on a gene in a genetic circuit. We present an alternative approach, PURExpress-ReAsH-Spinach In-vitro Analysis (PERSIA). PERSIA provides information on the production of RNA and protein during cell-free reactions by employing short RNA and peptide tags. Upon synthesis, these tags yield quantifiable fluorescent signal without interfering with other biochemical events. We demonstrate the applicability of PERSIA in measuring cell-free transcription, translation, and other enzymatic activity in a variety of applications: from sequence-structure-function studies, to genetic code engineering, to testing antiviral drug resistance.
Collapse
Affiliation(s)
- Scott Wick
- MIT Lincoln Laboratory , Lexington , Massachusetts 02421 , United States
| | - David I Walsh
- MIT Lincoln Laboratory , Lexington , Massachusetts 02421 , United States
| | - Johanna Bobrow
- MIT Lincoln Laboratory , Lexington , Massachusetts 02421 , United States
| | - Kimberly Hamad-Schifferli
- Department of Engineering , University of Massachusetts Boston , Boston , Massachusetts 02125 , United States
| | - David S Kong
- MIT Media Lab , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Todd Thorsen
- MIT Lincoln Laboratory , Lexington , Massachusetts 02421 , United States
| | - Keri Mroszczyk
- MIT Lincoln Laboratory , Lexington , Massachusetts 02421 , United States
| | - Peter A Carr
- MIT Lincoln Laboratory , Lexington , Massachusetts 02421 , United States
- Synthetic Biology Center at MIT , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
41
|
Lim HJ, Kim DM. Cell-Free Metabolic Engineering: Recent Developments and Future Prospects. Methods Protoc 2019; 2:mps2020033. [PMID: 31164613 PMCID: PMC6632161 DOI: 10.3390/mps2020033] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/21/2019] [Accepted: 04/24/2019] [Indexed: 02/03/2023] Open
Abstract
Due to the ongoing crises of fossil fuel depletion, climate change, and environmental pollution, microbial processes are increasingly considered as a potential alternative for cleaner and more efficient production of the diverse chemicals required for modern civilization. However, many issues, including low efficiency of raw material conversion and unintended release of genetically modified microorganisms into the environment, have limited the use of bioprocesses that rely on recombinant microorganisms. Cell-free metabolic engineering is emerging as a new approach that overcomes the limitations of existing cell-based systems. Instead of relying on metabolic processes carried out by living cells, cell-free metabolic engineering harnesses the metabolic activities of cell lysates in vitro. Such approaches offer several potential benefits, including operational simplicity, high conversion yield and productivity, and prevention of environmental release of microorganisms. In this article, we review the recent progress in this field and discuss the prospects of this technique as a next-generation bioconversion platform for the chemical industry.
Collapse
Affiliation(s)
- Hye Jin Lim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Korea.
| | - Dong-Myung Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Korea.
| |
Collapse
|
42
|
Stano P. Gene Expression Inside Liposomes: From Early Studies to Current Protocols. Chemistry 2019; 25:7798-7814. [DOI: 10.1002/chem.201806445] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA)University of Salento, Ecotekne 73100 Lecce Italy
| |
Collapse
|
43
|
Moriizumi Y, Tabata KV, Miyoshi D, Noji H. Osmolyte-Enhanced Protein Synthesis Activity of a Reconstituted Translation System. ACS Synth Biol 2019; 8:557-567. [PMID: 30763512 DOI: 10.1021/acssynbio.8b00513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecular crowding is receiving great attention in cell-free synthetic biology because molecular crowding is a critical feature of natural cell discrimination from artificial cells. Further, it has significant and generic influences on biomolecular functions. Although there are reports on how the macromolecular crowder reagents affect cell-free systems such as transcription and translation, the second class of molecular crowder reagents with low molecular weight, osmolyte, was much less studied in cell-free systems. In the present study, we focused on trimethylamine- N-oxide (TMAO) and betaine, methylamine osmolytes, and investigated the effectiveness of these osmolytes on gene expression activity of reconstituted cell-free protein synthesis. The gene expression activity of the fluorescent proteins Venus and tdTomato and the enzymes β-galactosidase and dihydrofolate reductase were tested. At 37 °C, 0.4 M TMAO showed the highest enhancement of translational activity by a factor of 1.6-3.8, regardless of protein type. In contrast, betaine showed only a moderate effect that was limited to fluorescent proteins. Excess amounts of osmolytes suppressed gene expression activity. An mRNA-start assay and SDS-PAGE quantitative analysis provided firm evidence that TMAO enhances the translation process, instead of transcription, folding, or the maturation of fluorescent proteins. Interestingly, at 26 °C, TMAO and betaine showed the highest enhancement of protein synthesis activity at lower concentrations than at 37 °C. These findings provide implications on how osmolytes assist translation in natural cells. Further, they provide guidelines for modulation of protein synthesis activity in artificial cells through osmolyte addition.
Collapse
Affiliation(s)
- Yoshiki Moriizumi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kazuhito V. Tabata
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Daisuke Miyoshi
- Department of Nanobiochemistry, Faculty of Frontiers of Innovative Research in Science and Technology (FIRST) and Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Hiroyuki Noji
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
44
|
Gregorio NE, Levine MZ, Oza JP. A User's Guide to Cell-Free Protein Synthesis. Methods Protoc 2019; 2:E24. [PMID: 31164605 PMCID: PMC6481089 DOI: 10.3390/mps2010024] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 02/06/2023] Open
Abstract
Cell-free protein synthesis (CFPS) is a platform technology that provides new opportunities for protein expression, metabolic engineering, therapeutic development, education, and more. The advantages of CFPS over in vivo protein expression include its open system, the elimination of reliance on living cells, and the ability to focus all system energy on production of the protein of interest. Over the last 60 years, the CFPS platform has grown and diversified greatly, and it continues to evolve today. Both new applications and new types of extracts based on a variety of organisms are current areas of development. However, new users interested in CFPS may find it challenging to implement a cell-free platform in their laboratory due to the technical and functional considerations involved in choosing and executing a platform that best suits their needs. Here we hope to reduce this barrier to implementing CFPS by clarifying the similarities and differences amongst cell-free platforms, highlighting the various applications that have been accomplished in each of them, and detailing the main methodological and instrumental requirement for their preparation. Additionally, this review will help to contextualize the landscape of work that has been done using CFPS and showcase the diversity of applications that it enables.
Collapse
Affiliation(s)
- Nicole E Gregorio
- Center for Applications in Biotechnology, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| | - Max Z Levine
- Center for Applications in Biotechnology, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| | - Javin P Oza
- Center for Applications in Biotechnology, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| |
Collapse
|
45
|
Lavickova B, Maerkl SJ. A Simple, Robust, and Low-Cost Method To Produce the PURE Cell-Free System. ACS Synth Biol 2019; 8:455-462. [PMID: 30632751 DOI: 10.1021/acssynbio.8b00427] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We demonstrate a simple, robust, and low-cost method for producing the PURE cell-free transcription-translation system. Our OnePot PURE system achieved a protein synthesis yield of 156 μg/mL at a cost of 0.09 USD/μL, leading to a 14-fold improvement in cost normalized protein synthesis yield over existing PURE systems. The one-pot method makes the PURE system easy to generate and allows it to be readily optimized and modified.
Collapse
Affiliation(s)
- Barbora Lavickova
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Sebastian J. Maerkl
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| |
Collapse
|
46
|
DeLey Cox VE, Cole MF, Gaucher EA. Incorporation of Modified Amino Acids by Engineered Elongation Factors with Expanded Substrate Capabilities. ACS Synth Biol 2019; 8:287-296. [PMID: 30609889 PMCID: PMC6379855 DOI: 10.1021/acssynbio.8b00305] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
Noncanonical
amino acid (ncAA) incorporation has led to significant
advances in protein science and engineering. Traditionally, in vivo incorporation of ncAAs is achieved via amber codon suppression using an engineered orthogonal aminoacyl-tRNA
synthetase:tRNA pair. However, as more complex protein products are
targeted, researchers are identifying additional barriers limiting
the scope of currently available ncAA systems. One barrier is elongation
factor Tu (EF-Tu), a protein responsible for proofreading aa-tRNAs,
which substantially restricts ncAA scope by limiting ncaa-tRNA delivery
to the ribosome. Researchers have responded by engineering ncAA-compatible
EF-Tus for key ncAAs. However, this approach fails to address the
extent to which EF-Tu inhibits efficient ncAA incorporation. Here,
we demonstrate an alternative strategy leveraging computational analysis
to broaden EF-Tu’s substrate specificity. Evolutionary analysis
of EF-Tu and a naturally evolved specialized elongation factor, SelB,
provide the opportunity to engineer EF-Tu by targeting amino acid
residues that are associated with functional divergence between the
two ancient paralogues. Employing amber codon suppression, in combination
with mass spectrometry, we identified two EF-Tu variants with non-native
substrate compatibility. Additionally, we present data showing these
EF-Tu variants contribute to host organismal fitness, working cooperatively
with components of native and engineered translation machinery. These
results demonstrate the viability of our computational method and
lend support to corresponding assumptions about molecular evolution.
This work promotes enhanced polyspecific EF-Tu behavior as a viable
strategy to expand ncAA scope and complements ongoing research emphasizing
the importance of a comprehensive approach to further expand the genetic
code.
Collapse
Affiliation(s)
- Vanessa E. DeLey Cox
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Megan F. Cole
- Department of Biology, Emory University, Atlanta, Georgia 30322, United States
| | - Eric A. Gaucher
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
47
|
Doerr A, de Reus E, van Nies P, van der Haar M, Wei K, Kattan J, Wahl A, Danelon C. Modelling cell-free RNA and protein synthesis with minimal systems. Phys Biol 2019; 16:025001. [DOI: 10.1088/1478-3975/aaf33d] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
48
|
Koch M, Faulon JL, Borkowski O. Models for Cell-Free Synthetic Biology: Make Prototyping Easier, Better, and Faster. Front Bioeng Biotechnol 2018; 6:182. [PMID: 30555825 PMCID: PMC6281764 DOI: 10.3389/fbioe.2018.00182] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/12/2018] [Indexed: 12/20/2022] Open
Abstract
Cell-free TX-TL is an increasingly mature and useful platform for prototyping, testing, and engineering biological parts and systems. However, to fully accomplish the promises of synthetic biology, mathematical models are required to facilitate the design and predict the behavior of biological components in cell-free extracts. We review here the latest models accounting for transcription, translation, competition, and depletion of resources as well as genome scale models for lysate-based cell-free TX-TL systems, including their current limitations. These models will have to find ways to account for batch-to-batch variability before being quantitatively predictive in cell-free lysate-based platforms.
Collapse
Affiliation(s)
- Mathilde Koch
- Micalis Institute, INRA, AgroParisTech, University of Paris-Saclay, Jouy-en-Josas, France
| | - Jean-Loup Faulon
- Micalis Institute, INRA, AgroParisTech, University of Paris-Saclay, Jouy-en-Josas, France
- Systems and Synthetic Biology Lab, CEA, CNRS, UMR 8030, Genomics Metabolics, University Paris-Saclay, Évry, France
- SYNBIOCHEM Center, School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Olivier Borkowski
- Micalis Institute, INRA, AgroParisTech, University of Paris-Saclay, Jouy-en-Josas, France
- Systems and Synthetic Biology Lab, CEA, CNRS, UMR 8030, Genomics Metabolics, University Paris-Saclay, Évry, France
| |
Collapse
|
49
|
Expanding biological applications using cell-free metabolic engineering: An overview. Metab Eng 2018; 50:156-172. [PMID: 30367967 DOI: 10.1016/j.ymben.2018.09.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/21/2018] [Accepted: 09/22/2018] [Indexed: 11/21/2022]
Abstract
Expanding the concept of cell-free biology, implemented both with purified components and crude extracts, is continuing to deepen our appreciation of biological fundamentals while enlarging the range of applications. We are no longer intimidated by the complexity of crude extracts and complicated reaction systems with hundreds of active components, and, instead, coordinately activate and inactivate metabolic processes to focus and expand the capabilities of natural biological processes. This, in turn, dramatically increases the range of benefits offered by new products, both natural and supernatural, that were previously infeasible and/or unimaginable. This overview of cell-free metabolic engineering provides a broad range of examples and insights to guide and motivate continued research that will further expand fundamental understanding and beneficial applications. However, this survey also reveals how far we are from fully unlocking the potential offered by natural and engineered biological components and systems. This is an exciting conclusion, but metabolic engineering by itself is not sufficient. Going forward, innovative metabolic engineering must be intimately combined with creative process engineering to fully realize potential contributions toward a sustainable global civilization.
Collapse
|
50
|
Pardee K. Perspective: Solidifying the impact of cell-free synthetic biology through lyophilization. Biochem Eng J 2018; 138:91-97. [PMID: 30740032 PMCID: PMC6358126 DOI: 10.1016/j.bej.2018.07.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/03/2018] [Accepted: 07/09/2018] [Indexed: 12/20/2022]
Abstract
Cell-free synthetic biology is an exciting and new branch in the field of synthetic biology. Based on in vitro transcription and translation systems, this application-focused domain builds on decades of cell-free biochemistry and protein expression to operate synthetic gene networks outside of cellular environments. This has brought new and perhaps even unexpected advantages. Chief among these is the ability to operate genetically encoded tools in a sterile and abiotic format. Recent work has extended this advantage by freeze-drying these cell-free systems into dried pellets or embedded paper-based reactions. Taken together, these new ideas have solved the longstanding challenge of how to deploy poised synthetic gene networks in a biosafe mode outside of the laboratory. There is significant excitement in the potential of this newfound venue and the community has begun to extend proof-of-concept demonstrations in important and creative ways. Here I explore these new efforts and provide my thoughts on the challenges and opportunities ahead for freeze-dried, cell-free synthetic biology.
Collapse
|