1
|
Kraehenbuehl L, Wolchok JD, Merghoub T, Hirschhorn D. Having the cake and eating it? Clofazimine boosts immunotherapy while limiting side effects. Cancer Cell 2024; 42:738-741. [PMID: 38579723 DOI: 10.1016/j.ccell.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 04/07/2024]
Abstract
Combined immune checkpoint blockade (ICB) for cancer exhibits good efficacy in a subset of patients but also associates with immune-related adverse events. Xue et al. use an elegant drug screening strategy to identify the antimicrobial drug clofazimine as an agent that both potentiates ICB efficacy and decreases immune-related adverse events.
Collapse
Affiliation(s)
- Lukas Kraehenbuehl
- Pharmacology Program, Weill Cornell Graduate School, New York, NY, USA; Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medical Center, New York, NY, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medical Center, New York, NY, USA; Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jedd D Wolchok
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medical Center, New York, NY, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medical Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical Center, New York, NY, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School, New York, NY, USA; Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, NY, USA
| | - Taha Merghoub
- Pharmacology Program, Weill Cornell Graduate School, New York, NY, USA; Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medical Center, New York, NY, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medical Center, New York, NY, USA; Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, NY, USA
| | - Daniel Hirschhorn
- Pharmacology Program, Weill Cornell Graduate School, New York, NY, USA; Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medical Center, New York, NY, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medical Center, New York, NY, USA.
| |
Collapse
|
2
|
Hipp AV, Bengsch B, Globig AM. Friend or Foe - Tc17 cell generation and current evidence for their importance in human disease. DISCOVERY IMMUNOLOGY 2023; 2:kyad010. [PMID: 38567057 PMCID: PMC10917240 DOI: 10.1093/discim/kyad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/12/2023] [Accepted: 07/19/2023] [Indexed: 04/04/2024]
Abstract
The term Tc17 cells refers to interleukin 17 (IL-17)-producing CD8+ T cells. While IL-17 is an important mediator of mucosal defense, it is also centrally involved in driving the inflammatory response in immune-mediated diseases, such as psoriasis, multiple sclerosis, and inflammatory bowel disease. In this review, we aim to gather the current knowledge on the phenotypic and transcriptional profile, the in vitro and in vivo generation of Tc17 cells, and the evidence pointing towards a relevant role of Tc17 cells in human diseases such as infectious diseases, cancer, and immune-mediated diseases.
Collapse
Affiliation(s)
- Anna Veronika Hipp
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Bertram Bengsch
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Anna-Maria Globig
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| |
Collapse
|
3
|
Segner H, Bailey C, Tafalla C, Bo J. Immunotoxicity of Xenobiotics in Fish: A Role for the Aryl Hydrocarbon Receptor (AhR)? Int J Mol Sci 2021; 22:ijms22179460. [PMID: 34502366 PMCID: PMC8430475 DOI: 10.3390/ijms22179460] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023] Open
Abstract
The impact of anthropogenic contaminants on the immune system of fishes is an issue of growing concern. An important xenobiotic receptor that mediates effects of chemicals, such as halogenated aromatic hydrocarbons (HAHs) and polyaromatic hydrocarbons (PAHs), is the aryl hydrocarbon receptor (AhR). Fish toxicological research has focused on the role of this receptor in xenobiotic biotransformation as well as in causing developmental, cardiac, and reproductive toxicity. However, biomedical research has unraveled an important physiological role of the AhR in the immune system, what suggests that this receptor could be involved in immunotoxic effects of environmental contaminants. The aims of the present review are to critically discuss the available knowledge on (i) the expression and possible function of the AhR in the immune systems of teleost fishes; and (ii) the impact of AhR-activating xenobiotics on the immune systems of fish at the levels of immune gene expression, immune cell proliferation and immune cell function, immune pathology, and resistance to infectious disease. The existing information indicates that the AhR is expressed in the fish immune system, but currently, we have little understanding of its physiological role. Exposure to AhR-activating contaminants results in the modulation of numerous immune structural and functional parameters of fish. Despite the diversity of fish species studied and the experimental conditions investigated, the published findings rather uniformly point to immunosuppressive actions of xenobiotic AhR ligands in fish. These effects are often associated with increased disease susceptibility. The fact that fish populations from HAH- and PAH-contaminated environments suffer immune disturbances and elevated disease susceptibility highlights that the immunotoxic effects of AhR-activating xenobiotics bear environmental relevance.
Collapse
Affiliation(s)
- Helmut Segner
- Centre for Fish and Wildlife Health, Department of Pathobiology and Infectious Diseases, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | | | | | - Jun Bo
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Xiamen 361005, China
| |
Collapse
|
4
|
Wrzosek L, Ciocan D, Hugot C, Spatz M, Dupeux M, Houron C, Lievin-Le Moal V, Puchois V, Ferrere G, Trainel N, Mercier-Nomé F, Durand S, Kroemer G, Voican CS, Emond P, Straube M, Sokol H, Perlemuter G, Cassard AM. Microbiota tryptophan metabolism induces aryl hydrocarbon receptor activation and improves alcohol-induced liver injury. Gut 2021; 70:1299-1308. [PMID: 33004548 DOI: 10.1136/gutjnl-2020-321565] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/20/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Chronic alcohol consumption is an important cause of liver-related deaths. Specific intestinal microbiota profiles are associated with susceptibility or resistance to alcoholic liver disease in both mice and humans. We aimed to identify the mechanisms by which targeting intestinal microbiota can improve alcohol-induced liver lesions. DESIGN We used human associated mice, a mouse model of alcoholic liver disease transplanted with the intestinal microbiota of alcoholic patients and used the prebiotic, pectin, to modulate the intestinal microbiota. Based on metabolomic analyses, we focused on microbiota tryptophan metabolites, which are ligands of the aryl hydrocarbon receptor (AhR). Involvement of the AhR pathway was assessed using both a pharmacological approach and AhR-deficient mice. RESULTS Pectin treatment modified the microbiome and metabolome in human microbiota-associated alcohol-fed mice, leading to a specific faecal signature. High production of bacterial tryptophan metabolites was associated with an improvement of liver injury. The AhR agonist Ficz (6-formylindolo (3,2-b) carbazole) reduced liver lesions, similarly to prebiotic treatment. Conversely, inactivation of the ahr gene in alcohol-fed AhR knock-out mice abrogated the beneficial effects of the prebiotic. Importantly, patients with severe alcoholic hepatitis have low levels of bacterial tryptophan derivatives that are AhR agonists. CONCLUSIONS Improvement of alcoholic liver disease by targeting the intestinal microbiota involves the AhR pathway, which should be considered as a new therapeutic target.
Collapse
Affiliation(s)
- Laura Wrzosek
- UMR996, Université Paris-Saclay, INSERM, Clamart, Île-de-France, France
| | - Dragos Ciocan
- UMR996, Université Paris-Saclay, INSERM, Clamart, Île-de-France, France.,Hepato-Gastroenterology and Nutrition, Antoine-Béclère Hospital, AP-HP, Clamart, Île-de-France, France
| | - Cindy Hugot
- UMR996, Université Paris-Saclay, INSERM, Clamart, Île-de-France, France
| | - Madeleine Spatz
- UMR996, Université Paris-Saclay, INSERM, Clamart, Île-de-France, France
| | - Margot Dupeux
- UMR996, Université Paris-Saclay, INSERM, Clamart, Île-de-France, France
| | - Camille Houron
- UMR996, Université Paris-Saclay, INSERM, Clamart, Île-de-France, France
| | | | - Virginie Puchois
- UMR996, Université Paris-Saclay, INSERM, Clamart, Île-de-France, France
| | - Gladys Ferrere
- UMR996, Université Paris-Saclay, INSERM, Clamart, Île-de-France, France
| | - Nicolas Trainel
- UMR996, Université Paris-Saclay, INSERM, Clamart, Île-de-France, France
| | - Françoise Mercier-Nomé
- Inserm, CNRS, Institut Paris Saclay d'Innovation thérapeutique, Paris-Saclay University, Chatenay-Malabry, Île-de-France, France
| | - Sylvere Durand
- Metabolomics and Cell Biology Platforms, Institut Gustave-Roussy, Villejuif, Île-de-France, France
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Institut Gustave-Roussy, Villejuif, Île-de-France, France.,U1138, INSERM, Paris, Île-de-France, France
| | - Cosmin Sebastian Voican
- UMR996, Université Paris-Saclay, INSERM, Clamart, Île-de-France, France.,Hepato-Gastroenterology and Nutrition, Antoine-Béclère Hospital, AP-HP, Clamart, Île-de-France, France
| | - Patrick Emond
- UMR 1253, iBrain, Université de Tours, Inserm, University of Tours, Tours, Centre-Val de Loire, France.,Service de Médecine Nucléaire In Vitro, CHRU Tours, Tours, Centre, France
| | - Marjolène Straube
- Centre de Recherche Saint-Antoine, CRSA, Sorbonne University, Paris, Île-de-France, France
| | - Harry Sokol
- Centre de Recherche Saint-Antoine, CRSA, Sorbonne University, Paris, Île-de-France, France.,Gastroenterology department, Saint-Antoine Hospital, AP-HP, Paris, Île-de-France, France
| | - Gabriel Perlemuter
- UMR996, Université Paris-Saclay, INSERM, Clamart, Île-de-France, France .,Hepato-Gastroenterology and Nutrition, Antoine-Béclère Hospital, AP-HP, Clamart, Île-de-France, France
| | | |
Collapse
|
5
|
Jiang Y, Xiao H, Sun L, Zhang Y, Liu S, Luo B. LMP2A suppresses the role of AHR pathway through ERK signal pathway in EBV-associated gastric cancer. Virus Res 2021; 297:198399. [PMID: 33753181 DOI: 10.1016/j.virusres.2021.198399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To investigate the function of the aryl hydrocarbon receptor (AHR) pathway in Epstein-Barr Virus (EBV)-associated gastric cancer (EBVaGC) and to explore the relationship between EBV and AHR expression. METHODS The expression of AHR in EBVaGC and EBV negative GC (EBVnGC) tissues was detected by immunohistochemistry (IHC). Real-time qPCR (RT-qPCR) and Western blot analysis were used to examine the expression of AHR, cytochrome P450 1A1 (CYP1A1), and cytochrome P450 1B1 (CYP1B1) in gastric cancer cells. The cell proliferation and migration assay were tested by CCK8 and transwell analysis. EBV-encoded latent membrane protein 2A (LMP2A) was over-expressed in SGC7901 cells and silenced in AGS-EBV cells to further identify its role in EBV positive GC cells. RESULTS It was found that EBV infection inhibited the expression of AHR in gastric cancer tissues and cell lines. We also found that the activation of AHR pathway can promote cell proliferation and migration. However, the function was restricted in EBVaGC cell lines compared with EBVnGC. LMP2A can suppress AHR expression and pathway activation by activating phosphorylation of extracellular signal-regulated kinase (ERK) in EBV positive GC cell lines. CONCLUSION EBV-encoded LMP2A regulated the function of the AHR pathway by activating the ERK signal pathway in EBV positive GC cell lines.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266021, China; Department of Medical Affairs of the Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266000, China
| | - Hua Xiao
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266021, China
| | - Lingling Sun
- Department of Pathology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Yan Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266021, China; Department of Clinical Laboratory, Central Hospital of Zibo, 19 Gongqingtuan Road, ZiBo, 255036, China
| | - Shuzhen Liu
- Department of Medical Affairs of the Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266000, China.
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266021, China
| |
Collapse
|
6
|
Yidana DB. Hidradenitis suppurativa - The role of interleukin-17, the aryl hydrocarbon receptor and the link to a possible fungal aetiology. Med Hypotheses 2021; 149:110530. [PMID: 33607406 DOI: 10.1016/j.mehy.2021.110530] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/14/2021] [Accepted: 02/04/2021] [Indexed: 12/19/2022]
Abstract
Hidradenitis Suppurativa (HS) is a chronic, recurrent, debilitating skin disease of the hair follicle that usually presents after puberty with painful, deep-seated, inflamed lesions in the apocrine gland bearing areas of the body, most commonly the axillae, inguinal and anogenital regions. The pathophysiology of the disease remains elusive, with newer therapies targeting various aspects of the dysregulated immune system. This presents a useful opportunity to look at the cytokine profile in HS and other inflammatory conditions that share similar patterns with the aim of teasing out less considered explanations for HS pathogenesis. It has been observed that IL-17 appears to be the most common denominator linking HS with other immune mediated diseases like Crohn, ulcerative colitis, multiple sclerosis and psoriasis. Given that IL-17 plays an important role in antifungal immunity, evidenced by the cytokine pattern in fungal disease and the bulk of data citing their potential involvement in Crohn, ulcerative colitis, multiple sclerosis and psoriasis; it is fair to suggest the need to explore the role that fungi play in the setting of HS going forward. The aryl hydrocarbon receptor (ahr) is a ubiquitous and largely conserved entity that is gaining interest in inflammatory conditions such as psoriasis and atopic dermatitis. It is well known to modulate autoimmune states. Its activation by both exogenous and endogenous agents result in secretion of IL-17 by Th17 cells. One of such agents is the tryptophan metabolite 6-formylindolo [3,2-b] carbazole (FICZ)-which can be produced by microorganisms such as fungi. It will be interesting to explore its usefulness in HS pathogenesis.
Collapse
Affiliation(s)
- Daniel B Yidana
- King's College London, St. John's Institute of Dermatology, Strand, London WC2R 2LS, United Kingdom.
| |
Collapse
|
7
|
Kitakaze T, Makiyama A, Nakai R, Kimura Y, Ashida H. Kaempferol modulates TCDD- and t-BHQ-induced drug-metabolizing enzymes and luteolin enhances this effect. Food Funct 2020; 11:3668-3680. [PMID: 32301455 DOI: 10.1039/c9fo02951f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The expression of drug-metabolizing enzymes is deeply involved in chemical-induced cancer progression and prevention. The aryl hydrocarbon receptor (AhR) induces phase I, and certain phase II drug-metabolizing enzymes after the binding of ligands, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). We have previously demonstrated that luteolin inhibited TCDD-induced AhR transformation, and modulated the expression of drug-metabolizing enzymes through not only the AhR, but also the nuclear factor-erythroid-2-related factor 2 (Nrf2). We have examined the effect of kaempferol on the expression of drug-metabolizing enzymes through modulation of the AhR- and Nrf2-pathways, and the effect of co-treatment with kaempferol and luteolin. Kaempferol dose-dependently inhibited not only the TCDD-induced expression of phase I and phase II drug-metabolizing enzymes, but also the tertiary butylhydroquinone (t-BHQ)-induced expression of phase II drug-metabolizing enzymes, by modulating the AhR- and Nrf2-pathways. Co-treatment with kaempferol and luteolin enhanced the inhibitory effect on the expression of drug-metabolizing enzymes, compared with either kaempferol or luteolin alone. Moreover, co-treatment with kaempferol and luteolin increased the cellular levels of kaempferol without affecting the levels of luteolin. An in vivo study was also performed and the results demonstrated that co-treatment with kaempferol and luteolin enhanced the inhibition of benzo[a]pyrene-induced drug-metabolizing enzymes compared with either kaempferol or luteolin alone, in the liver of ICR mice. These results suggest that luteolin promoted the incorporation of kaempferol into hepatocytes and enhanced the inhibitory effect of kaempferol on chemical-induced drug-metabolizing enzymes. Thus, luteolin enhances the kaempferol-inhibited expression of drug-metabolizing enzymes.
Collapse
Affiliation(s)
- Tomoya Kitakaze
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan.
| | - Atsushi Makiyama
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan.
| | - Rika Nakai
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan.
| | - Yuki Kimura
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan.
| | - Hitoshi Ashida
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan.
| |
Collapse
|
8
|
Martins S, Carvalheiro T, Laranjeira P, Martinho A, Elvas L, Gonçalves L, Tomaz C, António N, Paiva A. Impact of cardiac resynchronization therapy on circulating IL-17 producing cells in patients with advanced heart failure. J Interv Card Electrophysiol 2018; 54:257-265. [PMID: 30483979 DOI: 10.1007/s10840-018-0491-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/14/2018] [Indexed: 11/28/2022]
Abstract
PURPOSE IL-17-producing T cells have been implicated in the inflammatory milieu of chronic heart failure (CHF), which implies a dismal prognosis in affected patients. The aim of this study was to evaluate the impact of cardiac resynchronization therapy (CRT) on the frequency and functional activity of Th17 and Tc17 cells, as well as, on IL-17 mRNA expression in patients with CHF. METHODS Twenty-eight patients with CHF, analyzed before CRT (T0) and 6 months later (T6), and 15 healthy controls (HC) were enrolled in this study. Circulating Th17 and Tc17 cells were evaluated by flow cytometry. The quantification of IL-17A mRNA expression was performed by real-time PCR. RESULTS Circulating Tc17 cells tended to be higher in CHF patients submitted to CRT than in HC (0.92% (0.24-3.32) versus 0.60% (0.09-3.68), although not reaching statistical significance. The frequency of Tc17 cells in CHF patients significantly decreases after CRT reaching levels similar to those of HC (0.92% (0.24-3.32) at T0 versus 0.56% (0.21-4.20) at T6, P < 0.05), mainly due to responders to CRT. Additionally, the expression of IL-17 mRNA was detected in a few number of responder patients at T0 (27%) and only detected in one responder at T6 (7%). Conversely, in non-responders, the proportion of patients exhibiting IL-17 mRNA expression increases from baseline (17%) to T6 (42%). No significant differences were observed in Th17 cells between HC, CHF patients in T0 and patients in T6. CONCLUSION The inflammatory response mediated by circulating IL-17 producing cells seems to be suppressed by CRT, particularly in responders.
Collapse
Affiliation(s)
- Sílvia Martins
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal.,Coimbra Institute for Clinical and Biomedical Research, Faculdade de Medicina, Coimbra, Portugal
| | - Tiago Carvalheiro
- Centro do Sangue e da Transplantação de Coimbra, Instituto Português do Sangue e da Transplantação, Coimbra, Portugal
| | - Paula Laranjeira
- Coimbra Institute for Clinical and Biomedical Research, Faculdade de Medicina, Coimbra, Portugal.,Flow Cytometry Unit, Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - António Martinho
- Centro do Sangue e da Transplantação de Coimbra, Instituto Português do Sangue e da Transplantação, Coimbra, Portugal
| | - Luís Elvas
- Cardiology Department, Coimbra Hospital and Universitary Centre, Coimbra, Portugal.,Faculty of Medicine, Coimbra University, Coimbra, Portugal
| | - Lino Gonçalves
- Cardiology Department, Coimbra Hospital and Universitary Centre, Coimbra, Portugal.,Faculty of Medicine, Coimbra University, Coimbra, Portugal
| | - Cândida Tomaz
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal.,Departamento de Química, Universidade da Beira Interior, Covilhã, Portugal
| | - Natália António
- Cardiology Department, Coimbra Hospital and Universitary Centre, Coimbra, Portugal.,Faculty of Medicine, Coimbra University, Coimbra, Portugal
| | - Artur Paiva
- Coimbra Institute for Clinical and Biomedical Research, Faculdade de Medicina, Coimbra, Portugal. .,Flow Cytometry Unit, Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal. .,Instituto Politécnico de Coimbra, ESTESC - Coimbra Health School, Ciências Biomédicas Laboratoriais, Coimbra, Portugal. .,Unidade de Gestão Operacional de Citometria, Serviço de Patologia Clínica, Centro Hospitalar e Universitário de Coimbra, Ed. S. Jerónimo, Praceta Mota Pinto, 3001-301, Coimbra, Portugal.
| |
Collapse
|
9
|
Bennett JA, Singh KP, Welle SL, Boule LA, Lawrence BP, Gasiewicz TA. Conditional deletion of Ahr alters gene expression profiles in hematopoietic stem cells. PLoS One 2018; 13:e0206407. [PMID: 30388136 PMCID: PMC6214519 DOI: 10.1371/journal.pone.0206407] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 10/14/2018] [Indexed: 01/01/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand activated bHLH transcription factor that belongs to the Per-Arnt-Sim (PAS) superfamily of proteins involved in mediating responses to cellular environment regulating normal physiological and developmental pathways. The AHR binds a broad range of naturally derived and synthetic compounds, and plays a major role in mediating effects of certain environmental chemicals. Although our understanding of the physiological roles of the AHR in the immune system is evolving, there is little known about its role in hematopoiesis and hematopoietic diseases. Prior studies demonstrated that AHR null (AHR-KO) mice have impaired hematopoietic stem cell (HSC) function; they develop myeloproliferative changes in peripheral blood cells, and alterations in hematopoietic stem and progenitor cell populations in the bone marrow. We hypothesized mice lacking AHR expression only within hematopoietic cells (AHRVav1 mice) would develop similar changes. However, we did not observe a complete phenocopy of AHR-KO and AHRVav1 animals at 2 or 18 months of age. To illuminate the signaling mechanisms underlying the alterations in hematopoiesis observed in these mice, we sorted a population of cells highly enriched for HSC function (LSK cells: CD34-CD48-CD150+) and performed microarray analyses. Ingenuity Pathway and Gene Set Enrichment Analyses revealed that that loss of AHR within HSCs alters several gene and signaling networks important for HSC function. Differences in gene expression networks among HSCs from AHR-KO and AHRVav1 mice suggest that AHR in bone marrow stromal cells also contributes to HSC function. In addition, numerous studies have suggested a role for AHR in both regulation of hematopoietic cells, and in the development of blood diseases. More work is needed to define what these signals are, and how they act upon HSCs.
Collapse
Affiliation(s)
- John A. Bennett
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Kameshwar P. Singh
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Stephen L. Welle
- Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Lisbeth A. Boule
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - B. Paige Lawrence
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Thomas A. Gasiewicz
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| |
Collapse
|
10
|
Rannug A, Rannug U. The tryptophan derivative 6-formylindolo[3,2-b]carbazole, FICZ, a dynamic mediator of endogenous aryl hydrocarbon receptor signaling, balances cell growth and differentiation. Crit Rev Toxicol 2018; 48:555-574. [PMID: 30226107 DOI: 10.1080/10408444.2018.1493086] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The aryl hydrocarbon receptor (AHR) is not essential to survival, but does act as a key regulator of many normal physiological events. The role of this receptor in toxicological processes has been studied extensively, primarily employing the high-affinity ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). However, regulation of physiological responses by endogenous AHR ligands remains to be elucidated. Here, we review developments in this field, with a focus on 6-formylindolo[3,2-b]carbazole (FICZ), the endogenous ligand with the highest affinity to the receptor reported to date. The binding of FICZ to different isoforms of the AHR seems to be evolutionarily well conserved and there is a feedback loop that controls AHR activity through metabolic degradation of FICZ via the highly inducible cytochrome P450 1A1. Several investigations provide strong evidence that FICZ plays a critical role in normal physiological processes and can ameliorate immune diseases with remarkable efficiency. Low levels of FICZ are pro-inflammatory, providing resistance to pathogenic bacteria, stimulating the anti-tumor functions, and promoting the differentiation of cancer cells by repressing genes in cancer stem cells. In contrast, at high concentrations FICZ behaves in a manner similar to TCDD, exhibiting toxicity toward fish and bird embryos, immune suppression, and activation of cancer progression. The findings are indicative of a dual role for endogenously activated AHR in barrier tissues, aiding clearance of infections and suppressing immunity to terminate a vicious cycle that might otherwise lead to disease. There is not much support for the AHR ligand-specific immune responses proposed, the differences between FICZ and TCDD in this context appear to be explained by the rapid metabolism of FICZ.
Collapse
Affiliation(s)
- Agneta Rannug
- a Karolinska Institutet, Institute of Environmental Medicine , Stockholm , Sweden
| | - Ulf Rannug
- b Department of Molecular Biosciences , The Wenner-Gren Institute, Stockholm University , Stockholm , Sweden
| |
Collapse
|
11
|
Janosik T, Rannug A, Rannug U, Wahlström N, Slätt J, Bergman J. Chemistry and Properties of Indolocarbazoles. Chem Rev 2018; 118:9058-9128. [PMID: 30191712 DOI: 10.1021/acs.chemrev.8b00186] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The indolocarbazoles are an important class of nitrogen heterocycles which has evolved significantly in recent years, with numerous studies focusing on their diverse biological effects, or targeting new materials with potential applications in organic electronics. This review aims at providing a broad survey of the chemistry and properties of indolocarbazoles from an interdisciplinary point of view, with particular emphasis on practical synthetic aspects, as well as certain topics which have not been previously accounted for in detail, such as the occurrence, formation, biological activities, and metabolism of indolo[3,2- b]carbazoles. The literature of the past decade forms the basis of the text, which is further supplemented with older key references.
Collapse
Affiliation(s)
- Tomasz Janosik
- Research Institutes of Sweden , Bioscience and Materials, RISE Surface, Process and Formulation , SE-151 36 Södertälje , Sweden
| | - Agneta Rannug
- Institute of Environmental Medicine , Karolinska Institutet , SE-171 77 Stockholm , Sweden
| | - Ulf Rannug
- Department of Molecular Biosciences, The Wenner-Gren Institute , Stockholm University , SE-106 91 Stockholm , Sweden
| | | | - Johnny Slätt
- Department of Chemistry, Applied Physical Chemistry , KTH Royal Institute of Technology , SE-100 44 Stockholm , Sweden
| | - Jan Bergman
- Karolinska Institutet , Department of Biosciences and Nutrition , SE-141 83 Huddinge , Sweden
| |
Collapse
|
12
|
Murai M, Yamamura K, Hashimoto-Hachiya A, Tsuji G, Furue M, Mitoma C. Tryptophan photo-product FICZ upregulates AHR/MEK/ERK-mediated MMP1 expression: Implications in anti-fibrotic phototherapy. J Dermatol Sci 2018; 91:97-103. [PMID: 29703420 DOI: 10.1016/j.jdermsci.2018.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/26/2018] [Accepted: 04/17/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND Scleroderma is caused by aberrant transforming growth factor-ß signaling. The degradation of extracellular matrix proteins is regulated by matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). Ultraviolet (UV) radiation has been a therapy for scleroderma. 6-Formylindolo[3,2-b]carbazole (FICZ), an endogenous aryl hydrocarbon receptor (AHR) ligand, is a tryptophan metabolite generated by UV exposure. Nonetheless, whether FICZ regulates MMPs and TIMPs has not been investigated. OBJECTIVE To elucidate the regulatory roles of FICZ in the expression of MMPs and TIMPs in normal human dermal fibroblasts (NHDFs). METHODS Quantitative real-time polymerase chain reaction was performed to determine the expression of MMPs or TIMPs in the NHDFs treated with FICZ or UVB. The MMPs levels were measured by enzyme-linked immunosorbent assay. The actions of FICZ on MMPs were analyzed using AHR-knockdown NHDFs or selective inhibitors of mitogen-activated protein kinases (MAPKs). Microtubule-associated protein kinase (MEK) and extracellular signal-regulated kinase (ERK) phosphorylation was examined by western blotting. RESULTS UVB increased the mRNA and protein levels of MMP1 and MMP3 in NHDFs, while FICZ upregulated those of MMP1, but not MMP3. The effects of FICZ on TIMPs were negligible. FICZ increased MMP1 expression in an AHR-dependent manner. The FICZ-induced MMP1 upregulation was ameliorated with MEK/ERK inhibitors, whereas the effects of UVB were canceled with c-Jun N-terminal kinase (JNK) and p38-MAPK as well as MEK/ERK inhibitors. FICZ-induced ERK phosphorylation is dependent on AHR. CONCLUSION FICZ contributes to the UV-mediated anti-fibrotic effects via the AHR/MEK/ERK signal pathway in NHDFs. FICZ is a potential therapeutic agent for scleroderma.
Collapse
Affiliation(s)
- Mika Murai
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Kazuhiko Yamamura
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Akiko Hashimoto-Hachiya
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Gaku Tsuji
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Masutaka Furue
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka 812-8582, Japan.
| | - Chikage Mitoma
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka 812-8582, Japan.
| |
Collapse
|
13
|
An endogenous tryptophan photo-product, FICZ, is potentially involved in photo-aging by reducing TGF-β-regulated collagen homeostasis. J Dermatol Sci 2017; 89:19-26. [PMID: 29102224 DOI: 10.1016/j.jdermsci.2017.10.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/23/2017] [Accepted: 10/06/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Persistent ultraviolet (UV) radiation in the form of sunlight causes photo-aging of the skin by reducing the production of type I collagen, the major constituent of the extracellular matrix of the dermis. Transforming growth factor (TGF)-β transforms dermal fibroblasts into α2-smooth muscle actin (ACTA2)-expressing myofibroblasts. Myofibroblasts produce a precursor form of type I collagen, type I procollagen (collagen I), consisting of pro-alpha1 (produced by the COL1A1 gene) and pro-alpha2 chains (produced by the COL1A2 gene). Smad2/3 is a key downstream molecule of TGF-β signaling. The mechanisms through which UV inhibits collagen I synthesis are not fully understood. 6-Formylindolo[3,2-b]carbazole (FICZ) is an endogenous tryptophan photo-metabolite generated by UV irradiation. FICZ is well known as a high-affinity ligand for aryl hydrocarbon receptor (AHR). However, the physiological roles of FICZ in photo-aging have yet to be addressed. OBJECTIVE To evaluate the effects of FICZ on the TGF-β-mediated ACTA2 and collagen I expression in normal human dermal fibroblasts (NHDFs). METHODS Quantitative real-time polymerase chain reaction and western blot analysis were performed to determine the expression of ACTA2, COL1A1, and COL1A2 in NHDFs with or without FICZ and TGF-β. The phosphorylated Smad2/3 (pSmad2/3) protein levels in cytoplasmic or nuclear portions were investigated by western blot analysis. Immunofluorescence staining was conducted to evaluate pSmad2/3 localization, and F-actin staining with phalloidin was performed to visualize actin polymerization in myofibroblasts. The actions of FICZ on the TGF-β-mediated collagen I expression and nuclear translocation of pSmad2/3 were analyzed in the presence of selective AHR antagonists or in AHR-knockdown NHDFs. RESULTS We found that FICZ significantly inhibited the TGF-β-induced upregulation of mRNA and protein levels of ACTA2 and collagen I and actin polymerization in myofibroblasts. FICZ did not disturb the phosphorylation of Smad2/3. Notably, FICZ reduced the expression of pSmad2/3 in the nucleus, while it increased that in the cytoplasm, suggesting that it inhibits the nuclear translocation of pSmad2/3 induced by TGF-β. The inhibitory actions of FICZ on the TGF-β-mediated collagen I expression and nuclear translocation of pSmad2/3 were independent of AHR signaling. Another endogenous AHR agonist, kynurenine, also inhibited the TGF-β-mediated ACTA2 and collagen I upregulation in NHDFs in an AHR-independent manner; however, its effects were insignificant in comparison with those of FICZ. CONCLUSIONS These findings suggest that the endogenous photo-product FICZ may be a key chromophore that involves in photo-aging. Downregulation of FICZ signaling is thus a potential strategy to protect against photo-aging.
Collapse
|
14
|
Laquinimod arrests experimental autoimmune encephalomyelitis by activating the aryl hydrocarbon receptor. Proc Natl Acad Sci U S A 2016; 113:E6145-E6152. [PMID: 27671624 DOI: 10.1073/pnas.1607843113] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Laquinimod is an oral drug currently being evaluated for the treatment of relapsing, remitting, and primary progressive multiple sclerosis and Huntington's disease. Laquinimod exerts beneficial activities on both the peripheral immune system and the CNS with distinctive changes in CNS resident cell populations, especially astrocytes and microglia. Analysis of genome-wide expression data revealed activation of the aryl hydrocarbon receptor (AhR) pathway in laquinimod-treated mice. The AhR pathway modulates the differentiation and function of several cell populations, many of which play an important role in neuroinflammation. We therefore tested the consequences of AhR activation in myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) using AhR knockout mice. We demonstrate that the pronounced effect of laquinimod on clinical score, CNS inflammation, and demyelination in EAE was abolished in AhR-/- mice. Furthermore, using bone marrow chimeras we show that deletion of AhR in the immune system fully abrogates, whereas deletion within the CNS partially abrogates the effect of laquinimod in EAE. These data strongly support the idea that AhR is necessary for the efficacy of laquinimod in EAE and that laquinimod may represent a first-in-class drug targeting AhR for the treatment of multiple sclerosis and other neurodegenerative diseases.
Collapse
|
15
|
Kreitinger JM, Beamer CA, Shepherd DM. Environmental Immunology: Lessons Learned from Exposure to a Select Panel of Immunotoxicants. THE JOURNAL OF IMMUNOLOGY 2016; 196:3217-25. [PMID: 27044635 DOI: 10.4049/jimmunol.1502149] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/16/2016] [Indexed: 12/30/2022]
Abstract
Exposure to environmental contaminants can produce profound effects on the immune system. Many classes of xenobiotics can significantly suppress or enhance immune responsiveness depending on the levels (i.e., dose) and context (i.e., timing, route) of exposure. Although defining the effects that toxicants can have on the immune system is a valuable component to improving public health, environmental immunology has greatly enhanced our understanding of how the immune system functions and has provided innovative avenues to explore new immunotherapies. This Brief Review focuses on three examples of how immunotoxicology has benefitted the field of immunology, presenting information on the aryl hydrocarbon receptor signaling pathway, the immunomodulatory effects of nanomaterials, and the impact of xenobiotic exposure on the developing immune system. Collectively, contributions from immunotoxicology have significantly enhanced public health and spurred seminal advances in both basic and applied immunology.
Collapse
Affiliation(s)
- Joanna M Kreitinger
- Cellular, Molecular, and Microbial Biology Graduate Program, Division of Biological Sciences, University of Montana, Missoula, MT 59812; and
| | - Celine A Beamer
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812
| | - David M Shepherd
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812
| |
Collapse
|
16
|
Brandstätter O, Schanz O, Vorac J, König J, Mori T, Maruyama T, Korkowski M, Haarmann-Stemmann T, von Smolinski D, Schultze JL, Abel J, Esser C, Takeyama H, Weighardt H, Förster I. Balancing intestinal and systemic inflammation through cell type-specific expression of the aryl hydrocarbon receptor repressor. Sci Rep 2016; 6:26091. [PMID: 27184933 PMCID: PMC4869119 DOI: 10.1038/srep26091] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/25/2016] [Indexed: 12/28/2022] Open
Abstract
As a sensor of polyaromatic chemicals the aryl hydrocarbon receptor (AhR) exerts an important role in immune regulation besides its requirement for xenobiotic metabolism. Transcriptional activation of AhR target genes is counterregulated by the AhR repressor (AhRR) but the exact function of the AhRR in vivo is currently unknown. We here show that the AhRR is predominantly expressed in immune cells of the skin and intestine, different from other AhR target genes. Whereas AhRR antagonizes the anti-inflammatory function of the AhR in the context of systemic endotoxin shock, AhR and AhRR act in concert to dampen intestinal inflammation. Specifically, AhRR contributes to the maintenance of colonic intraepithelial lymphocytes and prevents excessive IL-1β production and Th17/Tc17 differentiation. In contrast, the AhRR enhances IFN-γ-production by effector T cells in the inflamed gut. Our findings highlight the physiologic importance of cell-type specific balancing of AhR/AhRR expression in response to microbial, nutritional and other environmental stimuli.
Collapse
Affiliation(s)
- Olga Brandstätter
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany.,IUF-Leibniz Research Institute for Environmental Medicine gGmbH, Auf´m Hennekamp 50, 40225 Düsseldorf, Germany
| | - Oliver Schanz
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany
| | - Julia Vorac
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany.,IUF-Leibniz Research Institute for Environmental Medicine gGmbH, Auf´m Hennekamp 50, 40225 Düsseldorf, Germany
| | - Jessica König
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany
| | - Tetsushi Mori
- Center for Advanced Biomedical Sciences (TWIns), Waseda University, 2-2, Wakamatsu-cho, Shinjuku-ku, 162-8480, Tokyo, Japan
| | - Toru Maruyama
- Center for Advanced Biomedical Sciences (TWIns), Waseda University, 2-2, Wakamatsu-cho, Shinjuku-ku, 162-8480, Tokyo, Japan
| | - Markus Korkowski
- IUF-Leibniz Research Institute for Environmental Medicine gGmbH, Auf´m Hennekamp 50, 40225 Düsseldorf, Germany
| | - Thomas Haarmann-Stemmann
- IUF-Leibniz Research Institute for Environmental Medicine gGmbH, Auf´m Hennekamp 50, 40225 Düsseldorf, Germany
| | - Dorthe von Smolinski
- Institut für Tierpathologie der FU Berlin, Robert von Ostertag Strasse 15, 14163 Berlin
| | - Joachim L Schultze
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany
| | - Josef Abel
- IUF-Leibniz Research Institute for Environmental Medicine gGmbH, Auf´m Hennekamp 50, 40225 Düsseldorf, Germany
| | - Charlotte Esser
- IUF-Leibniz Research Institute for Environmental Medicine gGmbH, Auf´m Hennekamp 50, 40225 Düsseldorf, Germany
| | - Haruko Takeyama
- Center for Advanced Biomedical Sciences (TWIns), Waseda University, 2-2, Wakamatsu-cho, Shinjuku-ku, 162-8480, Tokyo, Japan
| | - Heike Weighardt
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany.,IUF-Leibniz Research Institute for Environmental Medicine gGmbH, Auf´m Hennekamp 50, 40225 Düsseldorf, Germany
| | - Irmgard Förster
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany.,IUF-Leibniz Research Institute for Environmental Medicine gGmbH, Auf´m Hennekamp 50, 40225 Düsseldorf, Germany
| |
Collapse
|
17
|
Mulero-Navarro S, Fernandez-Salguero PM. New Trends in Aryl Hydrocarbon Receptor Biology. Front Cell Dev Biol 2016; 4:45. [PMID: 27243009 PMCID: PMC4863130 DOI: 10.3389/fcell.2016.00045] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 04/28/2016] [Indexed: 12/28/2022] Open
Abstract
Traditionally considered as a critical intermediate in the toxic and carcinogenic response to dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD), the Aryl hydrocarbon/Dioxin receptor (AhR) has proven to be also an important regulator of cell physiology and organ homeostasis. AhR has become an interesting and actual area of research mainly boosted by a significant number of recent studies analyzing its contribution to the proper functioning of the immune, hepatic, cardiovascular, vascular and reproductive systems. At the cellular level, AhR establishes functional interactions with signaling pathways governing cell proliferation and cell cycle, cell morphology, cell adhesion and cell migration. Two exciting new aspects in AhR biology deal with its implication in the control of cell differentiation and its more than likely involvement in cell pluripotency and stemness. In fact, it is possible that AhR could help modulate the balance between differentiation and pluripotency in normal and transformed tumor cells. At the molecular level, AhR regulates an increasingly large array of physiologically relevant genes either by traditional transcription-dependent mechanisms or by unforeseen processes involving genomic insulators, chromatin dynamics and the transcription of mobile genetic elements. AhR is also closely related to epigenetics, not only from the point of view of target gene expression but also with respect to its own regulation by promoter methylation. It is reasonable to consider that deregulation of these many functions could have a causative role, or at least contribute to, human disease. Consequently, several laboratories have proposed that AhR could be a valuable tool as diagnostic marker and/or therapeutic target in human pathologies. An additional point of interest is the possibility of regulating AhR activity by endogenous non-toxic low weight molecules agonist or antagonist molecules that could be present or included in the diet. In this review, we will address these molecular and functional features of AhR biology within physiological and pathological contexts.
Collapse
Affiliation(s)
- Sonia Mulero-Navarro
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura Badajoz, Spain
| | - Pedro M Fernandez-Salguero
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura Badajoz, Spain
| |
Collapse
|
18
|
Min HK, Kim SM, Baek SY, Woo JW, Park JS, Cho ML, Lee J, Kwok SK, Kim SW, Park SH. Anthocyanin Extracted from Black Soybean Seed Coats Prevents Autoimmune Arthritis by Suppressing the Development of Th17 Cells and Synthesis of Proinflammatory Cytokines by Such Cells, via Inhibition of NF-κB. PLoS One 2015; 10:e0138201. [PMID: 26544846 PMCID: PMC4636296 DOI: 10.1371/journal.pone.0138201] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 08/26/2015] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Oxidative stress plays a role in the pathogenesis of rheumatoid arthritis (RA). Anthocyanin is a plant antioxidant. We investigated the therapeutic effects of anthocyanin extracted from black soybean seed coats (AEBS) in a murine model of collagen-induced arthritis (CIA) and human peripheral blood mononuclear cells (PBMCs) and explored possible mechanisms by which AEBS might exert anti-arthritic effects. MATERIAL AND METHODS CIA was induced in DBA/1J mice. Cytokine levels were measured via enzyme-linked immunosorbent assays. Joints were assessed in terms of arthritis incidence, clinical arthritis scores, and histological features. The extent of oxidative stress in affected joints was determined by measuring the levels of nitrotyrosine and inducible nitric oxide synthase. NF-κB activity was assayed by measuring the ratio of phosphorylated IκB to total IκB via Western blotting. Th17 cells were stained with antibodies against CD4, IL-17, and STAT3. Osteoclast formation was assessed via TRAP staining and measurement of osteoclast-specific mRNA levels. RESULTS In the CIA model, AEBS decreased the incidence of arthritis, histological inflammation, cartilage scores, and oxidative stress. AEBS reduced the levels of proinflammatory cytokines in affected joints of CIA mice and suppressed NF-κB signaling. AEBS decreased Th17 cell numbers in spleen of CIA mice. Additionally, AEBS repressed differentiation of Th17 cells and expression of Th17-associated genes in vitro, in both splenocytes of naïve DBA/1J mice and human PBMCs. In vitro, the numbers of both human and mouse tartrate-resistant acid phosphatase+ (TRAP) multinucleated cells fell, in a dose-dependent manner, upon addition of AEBS. CONCLUSIONS The anti-arthritic effects of AEBS were associated with decreases in Th17 cell numbers, and the levels of proinflammatory cytokines synthesized by such cells, mediated via suppression of NF-κB signaling. Additionally, AEBS suppressed osteoclastogenesis and reduced oxidative stress levels.
Collapse
MESH Headings
- Animals
- Anthocyanins/pharmacology
- Arthritis, Experimental/chemically induced
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Autoimmune Diseases/chemically induced
- Autoimmune Diseases/drug therapy
- Autoimmune Diseases/metabolism
- Autoimmune Diseases/pathology
- Blotting, Western
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cell Differentiation/drug effects
- Cells, Cultured
- Collagen/toxicity
- Cytokines/genetics
- Cytokines/metabolism
- Enzyme-Linked Immunosorbent Assay
- Flow Cytometry
- Humans
- Immunoenzyme Techniques
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/metabolism
- Male
- Mice
- Mice, Inbred DBA
- NF-kappa B/antagonists & inhibitors
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Osteoclasts/cytology
- Osteoclasts/drug effects
- Osteoclasts/metabolism
- Plant Extracts/pharmacology
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Seeds/chemistry
- Signal Transduction/drug effects
- Glycine max/chemistry
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Th17 Cells/metabolism
Collapse
Affiliation(s)
- Hong Ki Min
- Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sung-Min Kim
- Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Seung-Ye Baek
- Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Jung-Won Woo
- Office of Clinical Development, Genexine Inc., Korea Bio Park, Seongnam, Gyeonggi-do, South Korea
| | - Jin-Sil Park
- Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Mi-La Cho
- Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Jennifer Lee
- Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seung-Ki Kwok
- Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sae Woong Kim
- Catholic Integrative Medicine Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sung-Hwan Park
- Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
19
|
Bennett JA, Singh KP, Unnisa Z, Welle SL, Gasiewicz TA. Deficiency in Aryl Hydrocarbon Receptor (AHR) Expression throughout Aging Alters Gene Expression Profiles in Murine Long-Term Hematopoietic Stem Cells. PLoS One 2015. [PMID: 26208102 PMCID: PMC4514744 DOI: 10.1371/journal.pone.0133791] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Dysregulation of hematopoietic stem cell (HSC) signaling can contribute to the development of diseases of the blood system. Lack of aryl hydrocarbon receptor (AhR) has been associated with alterations in gene expression related to HSC function and the subsequent development of a myeloproliferative disorder in aging female mice. We sorted the most primitive population of HSCs with the highest stem cell potential (Long-term, or LT-HSCs) from 18-month-old AhR-null-allele (AhR-KO) and WT mice and analyzed gene expression using microarray to determine alterations in gene expression and cell signaling networks in HSCs that could potentially contribute to the aging phenotype of AhR-KO mice. Comparisons with previous array data from 8-week old mice indicated that aging alone is sufficient to alter gene expression. In addition, a significant number of gene expression differences were observed in aged LT-HSCs that are dependent on both aging and lack of AhR. Pathway analysis of these genes revealed networks related to hematopoietic stem cell activity or function. qPCR was used to confirm the differential expression of a subset of these genes, focusing on genes that may represent novel AhR targets due to the presence of a putative AhR binding site in their upstream regulatory region. We verified differential expression of PDGF-D, Smo, Wdfy1, Zbtb37 and Zfp382. Pathway analysis of this subset of genes revealed overlap between cellular functions of the novel AhR targets and AhR itself. Lentiviral-mediated knockdown of AhR in lineage-negative hematopoietic cells was sufficient to induce changes in all five of the candidate AhR targets identified. Taken together, these data suggest a role for AhR in HSC functional regulation, and identify novel HSC AhR target genes that may contribute to the phenotypes observed in AhR-KO mice.
Collapse
Affiliation(s)
- John A. Bennett
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Kameshwar P. Singh
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Zeenath Unnisa
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Stephen L. Welle
- Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Thomas A. Gasiewicz
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
20
|
Khan D, Ansar Ahmed S. Regulation of IL-17 in autoimmune diseases by transcriptional factors and microRNAs. Front Genet 2015; 6:236. [PMID: 26236331 PMCID: PMC4500956 DOI: 10.3389/fgene.2015.00236] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 06/22/2015] [Indexed: 12/21/2022] Open
Abstract
In recent years, IL-17A (IL-17), a pro-inflammatory cytokine, has received intense attention of researchers and clinicians alike with documented effects in inflammation and autoimmune diseases. IL-17 mobilizes, recruits and activates different cells to increase inflammation. Although protective in infections, overproduction of IL-17 promotes inflammation in autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, psoriasis, among others. Regulating IL-17 levels or action by using IL-17-blocking antibodies or IL-17R antagonist has shown to attenuate experimental autoimmune diseases. It is now known that in addition to IL-17-specific transcription factor, RORγt, several other transcription factors and select microRNAs (miRNA) regulate IL-17. Given that miRNAs are dysregulated in autoimmune diseases, a better understanding of transcriptional factors and miRNA regulation of IL-17 expression and function will be essential for devising potential new therapies. In this review, we will overview IL-17 induction and function in relation to autoimmune diseases. In addition, current findings on transcriptional regulation of IL-17 induction and plausible interplay between IL-17 and miRNA in autoimmune diseases are highlighted.
Collapse
Affiliation(s)
- Deena Khan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University Blacksburg, VA, USA
| | - S Ansar Ahmed
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University Blacksburg, VA, USA
| |
Collapse
|
21
|
Liang Y, Pan HF, Ye DQ. IL-17A-producing CD8(+)T cells as therapeutic targets in autoimmunity. Expert Opin Ther Targets 2015; 19:651-61. [PMID: 25611933 DOI: 10.1517/14728222.2014.997710] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The involvement of IL-17-producing CD8(+)T cells (TC17) in various conditions, such as infection, cancer and autoimmune inflammation, has been documented in both humans and mice; however, TC17 cells have received only marginal attention. AREAS COVERED Here, we provide an overview of the cytokines, chemokines, and cytokine and chemokine receptors that characterize the murine and human TC17 cell phenotype. We also discuss signaling pathways, molecular interactions, and transcriptional and epigenetic events that contribute to TC17 differentiation and acquisition of effector functions. Heterogeneity and inherent phenotypic instability of TC17 cells were shown both in humans and murine models. Aberrant expression of TC17 cells was observed in many autoimmune conditions. Moreover, functional analysis demonstrated in vivo plasticity of TC17 cells may be a key feature of TC17 cell biology in autoimmune diseases. EXPERT OPINION Due to its important roles in inflammation and autoimmunity, TC17 cell pathway may have promise as a potential therapeutic target for autoimmune diseases. The strategies include the suppression of TC17 cell generation and migration and the blockade of TC17 cell instability and heterogeneity. TMP778 may open an avenue to novel therapeutic strategies.
Collapse
Affiliation(s)
- Yan Liang
- Anhui Medical University, School of Public Health, Department of Epidemiology and Biostatistics , 81 Meishan Road, Hefei, Anhui, 230032 , PR China . +86 551 65167726 ; +86 551 65161171 ;
| | | | | |
Collapse
|