1
|
Kuo JCH, Colville MJ, Sorkin MR, Kuo JLK, Huang LT, Thornlow DN, Beacham GM, Hollopeter G, DeLisa MP, Alabi CA, Paszek MJ. Bio-orthogonal Glycan Imaging of Cultured Cells and Whole Animal C. elegans with Expansion Microscopy. ACS CENTRAL SCIENCE 2025; 11:193-207. [PMID: 40028367 PMCID: PMC11868961 DOI: 10.1021/acscentsci.4c01061] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 03/05/2025]
Abstract
Complex carbohydrates called glycans play crucial roles in regulating cell and tissue physiology, but how they map to nanoscale anatomical features must still be resolved. Here, we present the first nanoscale map of mucin-type O-glycans throughout the entirety of the Caenorhabditis elegans model organism. We constructed a library of multifunctional linkers to probe and anchor metabolically labeled glycans in expansion microscopy (ExM). A flexible strategy was demonstrated for the chemical synthesis of linkers with a broad inventory of bio-orthogonal functional groups, fluorophores, anchorage chemistries, and linker arms. Employing C. elegans as a test bed, metabolically labeled O-glycans were resolved on the gut microvilli and other nanoscale anatomical features. Transmission electron microscopy images of C. elegans nanoanatomy validated the fidelity and isotropy of gel expansion. Whole organism maps of C. elegans O-glycosylation in the first larval stage revealed O-glycan "hotspots" in unexpected anatomical locations, including the body wall furrows. Beyond C. elegans, we validated ExM protocols for nanoscale imaging of metabolically labeled glycans on cultured mammalian cells. Together, our results suggest the broad applicability of the multifunctional reagents for imaging glycans and other metabolically labeled biomolecules at enhanced resolutions with ExM.
Collapse
Affiliation(s)
- Joe Chin-Hun Kuo
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Marshall J. Colville
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Michelle R. Sorkin
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Jacky Lok Ka Kuo
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Ling Ting Huang
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Dana N. Thornlow
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Gwendolyn M. Beacham
- Department
of Molecular Medicine, Cornell University, Ithaca, New York 14853, United States
| | - Gunther Hollopeter
- Department
of Molecular Medicine, Cornell University, Ithaca, New York 14853, United States
| | - Matthew P. DeLisa
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
- Meinig
School of Biomedical Engineering, Cornell
University, Ithaca, New York 14853, United States
- Cornell
Institute of Biotechnology, Cornell University, Ithaca, New York 14853, United States
| | - Christopher A. Alabi
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Matthew J. Paszek
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
- Meinig
School of Biomedical Engineering, Cornell
University, Ithaca, New York 14853, United States
- Field
of Biophysics, Cornell University, Ithaca, New York 14853, United States
- Kavli
Institute
at Cornell for Nanoscale Science, Ithaca, New York 14853, United States
| |
Collapse
|
2
|
Sundaram MV, Pujol N. The Caenorhabditis elegans cuticle and precuticle: a model for studying dynamic apical extracellular matrices in vivo. Genetics 2024; 227:iyae072. [PMID: 38995735 PMCID: PMC11304992 DOI: 10.1093/genetics/iyae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/25/2024] [Indexed: 07/14/2024] Open
Abstract
Apical extracellular matrices (aECMs) coat the exposed surfaces of animal bodies to shape tissues, influence social interactions, and protect against pathogens and other environmental challenges. In the nematode Caenorhabditis elegans, collagenous cuticle and zona pellucida protein-rich precuticle aECMs alternately coat external epithelia across the molt cycle and play many important roles in the worm's development, behavior, and physiology. Both these types of aECMs contain many matrix proteins related to those in vertebrates, as well as some that are nematode-specific. Extensive differences observed among tissues and life stages demonstrate that aECMs are a major feature of epithelial cell identity. In addition to forming discrete layers, some cuticle components assemble into complex substructures such as ridges, furrows, and nanoscale pillars. The epidermis and cuticle are mechanically linked, allowing the epidermis to sense cuticle damage and induce protective innate immune and stress responses. The C. elegans model, with its optical transparency, facilitates the study of aECM cell biology and structure/function relationships and all the myriad ways by which aECM can influence an organism.
Collapse
Affiliation(s)
- Meera V Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Nathalie Pujol
- Aix Marseille University, INSERM, CNRS, CIML, Turing Centre for Living Systems, 13009 Marseille, France
| |
Collapse
|
3
|
Kuo JCH, Colville MJ, Sorkin MR, Kuo JLK, Huang LT, Thornlow DN, Beacham GM, Hollopeter G, DeLisa MP, Alabi CA, Paszek MJ. Bio-orthogonal Glycan Imaging of Culture Cells and Whole Animal C. elegans with Expansion Microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.578333. [PMID: 38352588 PMCID: PMC10862801 DOI: 10.1101/2024.02.01.578333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2025]
Abstract
Complex carbohydrates called glycans play crucial roles in the regulation of cell and tissue physiology, but how glycans map to nanoscale anatomical features must still be resolved. Here, we present the first nanoscale map of mucin-type O -glycans throughout the entirety of the Caenorhabditis elegans model organism. We construct a library of multifunctional linkers to probe and anchor metabolically labelled glycans in expansion microscopy (ExM), an imaging modality that overcomes the diffraction limit of conventional optical microscopes through the physical expansion of samples embedded in a polyelectrolyte gel matrix. A flexible strategy is demonstrated for the chemical synthesis of linkers with a broad inventory of bio-orthogonal functional groups, fluorophores, anchorage chemistries, and linker arms. Employing C. elegans as a test bed, we resolve metabolically labelled O -glycans on the gut microvilli and other nanoscale anatomical features using our ExM reagents and optimized protocols. We use transmission electron microscopy images of C. elegans nano-anatomy as ground truth data to validate the fidelity and isotropy of gel expansion. We construct whole organism maps of C. elegans O -glycosylation in the first larval stage and identify O -glycan "hotspots" in unexpected anatomical locations, including the body wall furrows. Beyond C. elegans , we provide validated ExM protocols for nanoscale imaging of metabolically labelled glycans on cultured mammalian cells. Together, our results suggest the broad applicability of the multifunctional reagents for imaging glycans and other metabolically labelled biomolecules at enhanced resolutions with ExM. Graphical abstract
Collapse
|
4
|
Eckmair B, Gao C, Mehta AY, Dutkiewicz Z, Vanbeselaere J, Cummings RD, Paschinger K, Wilson IBH. Recognition of Highly Branched N-Glycans of the Porcine Whipworm by the Immune System. Mol Cell Proteomics 2024; 23:100711. [PMID: 38182041 PMCID: PMC10850124 DOI: 10.1016/j.mcpro.2024.100711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024] Open
Abstract
Glycans are key to host-pathogen interactions, whereby recognition by the host and immunomodulation by the pathogen can be mediated by carbohydrate binding proteins, such as lectins of the innate immune system, and their glycoconjugate ligands. Previous studies have shown that excretory-secretory products of the porcine nematode parasite Trichuris suis exert immunomodulatory effects in a glycan-dependent manner. To better understand the mechanisms of these interactions, we prepared N-glycans from T. suis and both analyzed their structures and used them to generate a natural glycan microarray. With this array, we explored the interactions of glycans with C-type lectins, C-reactive protein, and sera from T. suis-infected pigs. Glycans containing LacdiNAc and phosphorylcholine-modified glycans were associated with the highest binding by most of these proteins. In-depth analysis revealed not only fucosylated LacdiNAc motifs with and without phosphorylcholine moieties but phosphorylcholine-modified mannose and N-acetylhexosamine-substituted fucose residues, in the context of maximally tetraantennary N-glycan scaffolds. Furthermore, O-glycans also contained fucosylated motifs. In summary, the glycans of T. suis are recognized by both the innate and adaptive immune systems and also exhibit species-specific features distinguishing its glycome from those of other nematodes.
Collapse
Affiliation(s)
- Barbara Eckmair
- Department für Chemie, Institut für Biochemie, Universität für Bodenkultur, Wien, Austria
| | - Chao Gao
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Akul Y Mehta
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Zuzanna Dutkiewicz
- Department für Chemie, Institut für Biochemie, Universität für Bodenkultur, Wien, Austria
| | - Jorick Vanbeselaere
- Department für Chemie, Institut für Biochemie, Universität für Bodenkultur, Wien, Austria
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Katharina Paschinger
- Department für Chemie, Institut für Biochemie, Universität für Bodenkultur, Wien, Austria
| | - Iain B H Wilson
- Department für Chemie, Institut für Biochemie, Universität für Bodenkultur, Wien, Austria.
| |
Collapse
|
5
|
Davies KG, Mohan S, Phani V, Srivastava A. Exploring the mechanisms of host-specificity of a hyperparasitic bacterium ( Pasteuria spp.) with potential to control tropical root-knot nematodes ( Meloidogyne spp.): insights from Caenorhabditis elegans. Front Cell Infect Microbiol 2023; 13:1296293. [PMID: 38173791 PMCID: PMC10761439 DOI: 10.3389/fcimb.2023.1296293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024] Open
Abstract
Plant-parasitic nematodes are important economic pests of a range of tropical crops. Strategies for managing these pests have relied on a range of approaches, including crop rotation, the utilization of genetic resistance, cultural techniques, and since the 1950's the use of nematicides. Although nematicides have been hugely successful in controlling nematodes, their toxicity to humans, domestic animals, beneficial organisms, and the environment has raised concerns regarding their use. Alternatives are therefore being sought. The Pasteuria group of bacteria that form endospores has generated much interest among companies wanting to develop microbial biocontrol products. A major challenge in developing these bacteria as biocontrol agents is their host-specificity; one population of the bacterium can attach to and infect one population of plant-parasitic nematode but not another of the same species. Here we will review the mechanism by which infection is initiated with the adhesion of endospores to the nematode cuticle. To understand the genetics of the molecular processes between Pasteuria endospores and the nematode cuticle, the review focuses on the nature of the bacterial adhesins and how they interact with the nematode cuticle receptors by exploiting new insights gained from studies of bacterial infections of Carnorhabditis elegans. A new Velcro-like multiple adhesin model is proposed in which the cuticle surface coat, which has an important role in endospore adhesion, is a complex extracellular matrix containing glycans originating in seam cells. The genes associated with these seam cells appear to have a dual role by retaining some characteristics of stem cells.
Collapse
Affiliation(s)
- Keith G. Davies
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Sharad Mohan
- Division of Nematology, Indian Agricultural Research Institute, New Delhi, India
| | - Victor Phani
- Department of Agricultural Entomology, College of Agriculture, Uttar Banga Krishi Viswavidyalaya, Dakshin Dinajpur, West Bengal, India
| | - Arohi Srivastava
- Dr. D. Y Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| |
Collapse
|
6
|
O’Rourke D, Gravato-Nobre MJ, Stroud D, Pritchett E, Barker E, Price RL, Robinson SA, Spiro S, Kuwabara P, Hodgkin J. Isolation and molecular identification of nematode surface mutants with resistance to bacterial pathogens. G3 (BETHESDA, MD.) 2023; 13:jkad056. [PMID: 36911920 PMCID: PMC10151413 DOI: 10.1093/g3journal/jkad056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 03/14/2023]
Abstract
Numerous mutants of the nematode Caenorhabditis elegans with surface abnormalities have been isolated by utilizing their resistance to a variety of bacterial pathogens (Microbacterium nematophilum, Yersinia pseudotuberculosis, and 2 Leucobacter strains), all of which are able to cause disease or death when worms are grown on bacterial lawns containing these pathogens. Previous work led to the identification of 9 srf or bus genes; here, we report molecular identification and characterization of a further 10 surface-affecting genes. Three of these were found to encode factors implicated in glycosylation (srf-2, bus-5, and bus-22), like several of those previously reported; srf-2 belongs to the GT92 family of putative galactosyltransferases, and bus-5 is homologous to human dTDP-D-glucose 4,6-dehydratase, which is implicated in Catel-Manzke syndrome. Other genes encoded proteins with sequence similarity to phosphatidylinositol phosphatases (bus-6), Patched-related receptors (ptr-15/bus-13), steroid dehydrogenases (dhs-5/bus-21), or glypiation factors (bus-24). Three genes appeared to be nematode-specific (srf-5, bus-10, and bus-28). Many mutants exhibited cuticle fragility as revealed by bleach and detergent sensitivity; this fragility was correlated with increased drug sensitivity, as well as with abnormal skiddy locomotion. Most of the genes examined were found to be expressed in epidermal seam cells, which appear to be important for synthesizing nematode surface coat. The results reveal the genetic and biochemical complexity of this critical surface layer, and provide new tools for its analysis.
Collapse
Affiliation(s)
- Delia O’Rourke
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | | | - Dave Stroud
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Emily Pritchett
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Emily Barker
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Rebecca L Price
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Sarah A Robinson
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Simon Spiro
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | | | - Jonathan Hodgkin
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
7
|
Parsons LM, Cipollo JF. Assign-MALDI - A free software for assignment of MALDI-TOF MS spectra of glycans derivatized using common and novel labeling strategies. Proteomics 2023; 23:e2200320. [PMID: 36427241 DOI: 10.1002/pmic.202200320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/26/2022]
Abstract
Matrix Assisted Laser Desorption/Ionization Time-of-flight (MALDI-ToF) MS is a popular method to analyze glycans released from proteins, cell lines, and tissue samples. Chemical modification of glycans (derivatization) can enhance ionization, enable semi-quantitation, and assist in linkage identification. However, the mass changes incurred by novel and more recently developed derivatizations are not accommodated by most spectral assignment programs, necessitating manual assignment which increases both the difficultly and the likelihood of error. AssignMALDI is a software tool designed to create glycan databases with customized derivatizations (labels) and automatically assign glycan masses in MALDI-TOF spectra using the new database. It can also average peak intensities across multiple spectra and prepare publication-ready assignment tables. To make it easy to use with different platforms, all input files and most output files are in text format. An interactive display enables users to inspect and edit peak assignments prior to producing charts and tables for publication. The program is freely available through GitHUB and Python-savvy users can add or adjust features as needed.
Collapse
Affiliation(s)
- Lisa M Parsons
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - John F Cipollo
- United States Pharmacopeia Science-Global Biologics Department, Rockville, Maryland, USA
| |
Collapse
|
8
|
Wilson IBH, Yan S, Jin C, Dutkiewicz Z, Rendić D, Palmberger D, Schnabel R, Paschinger K. Increasing Complexity of the N-Glycome During Caenorhabditis Development. Mol Cell Proteomics 2023; 22:100505. [PMID: 36717059 PMCID: PMC7614267 DOI: 10.1016/j.mcpro.2023.100505] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/06/2023] [Accepted: 01/24/2023] [Indexed: 01/30/2023] Open
Abstract
Caenorhabditis elegans is a frequently employed genetic model organism and has been the object of a wide range of developmental, genetic, proteomic, and glycomic studies. Here, using an off-line MALDI-TOF-MS approach, we have analyzed the N-glycans of mixed embryos and liquid- or plate-grown L4 larvae. Of the over 200 different annotatable N-glycan structures, variations between the stages as well as the mode of cultivation were observed. While the embryonal N-glycome appears less complicated overall, the liquid- and plate-grown larvae differ especially in terms of methylation of bisecting fucose, α-galactosylation of mannose, and di-β-galactosylation of core α1,6-fucose. Furthermore, we analyzed the O-glycans by LC-electrospray ionization-MS following β-elimination; especially the embryonal O-glycomes included a set of phosphorylcholine-modified structures, previously not shown to exist in nematodes. However, the set of glycan structures cannot be clearly correlated with levels of glycosyltransferase transcripts in developmental RNA-Seq datasets, but there is an indication for coordinated expression of clusters of potential glycosylation-relevant genes. Thus, there are still questions to be answered in terms of how and why a simple nematode synthesizes such a diverse glycome.
Collapse
Affiliation(s)
- Iain B H Wilson
- Department für Chemie, Universität für Bodenkultur, Wien, Austria.
| | - Shi Yan
- Department für Chemie, Universität für Bodenkultur, Wien, Austria; Institut für Parasitologie, Veterinärmedizinische Universität Wien, Wien, Austria
| | - Chunsheng Jin
- Institutionen för Biomedicin, Göteborgs universitet, Göteborg, Sweden
| | | | - Dubravko Rendić
- Department für Chemie, Universität für Bodenkultur, Wien, Austria
| | | | - Ralf Schnabel
- Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany
| | | |
Collapse
|
9
|
Subramanian SP, Lakshmanan V, Palakodeti D, Subramanian R. Glycomic and glycotranscriptomic profiling of mucin-type O-glycans in planarian Schmidtea mediterranea. Glycobiology 2021; 32:36-49. [PMID: 34499167 DOI: 10.1093/glycob/cwab097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/21/2021] [Accepted: 08/21/2021] [Indexed: 11/14/2022] Open
Abstract
O-Glycans on cell surfaces play important roles in cell-cell, cell-matrix, and receptor-ligand interaction. Therefore, glycan-based interactions are important for tissue regeneration and homeostasis. Free-living flatworm Schmidtea mediterranea, because of its robust regenerative potential, is of great interest in the field of stem cell biology and tissue regeneration. Nevertheless, information on the composition and structure of O-glycans in planaria is unknown. Using mass spectrometry and in silico approaches, we characterized the glycome and the related transcriptome of mucin-type O-glycans of planarian S. mediterranea. Mucin-type O-glycans were composed of multiple isomeric, methylated, and unusually extended mono- and di-substituted O-GalNAc structures. Extensions made of hexoses and 3-O methyl hexoses were the glycoforms observed. From glycotranscriptomic analysis, sixty genes belonging to five distinct enzyme classes were identified to be involved in mucin-type O-glycan biosynthesis. These genes shared homology with those in other invertebrate systems. While a majority of the genes involved in mucin-type O-glycan biosynthesis was highly expressed during organogenesis and in differentiated cells, a few select genes in each enzyme class were specifically enriched during early embryogenesis. Our results indicate a unique temporal and spatial role for mucin-type O-glycans during embryogenesis and organogenesis and in adulthood. In summary, this is the first report on O-glycans in planaria. This study expands the structural and biosynthetic possibilities in cellular glycosylation in the invertebrate glycome and provides a framework towards understanding the biological role of mucin-type O-glycans in tissue regeneration using planarians.
Collapse
Affiliation(s)
- Sabarinath Peruvemba Subramanian
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post Office, Bellary Road, Bangalore-560065, Karnataka, India
| | - Vairavan Lakshmanan
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post Office, Bellary Road, Bangalore-560065, Karnataka, India
| | - Dasaradhi Palakodeti
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post Office, Bellary Road, Bangalore-560065, Karnataka, India
| | - Ramaswamy Subramanian
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post Office, Bellary Road, Bangalore-560065, Karnataka, India.,Department of Biological Sciences and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
10
|
Cohen JD, Sundaram MV. C. elegans Apical Extracellular Matrices Shape Epithelia. J Dev Biol 2020; 8:E23. [PMID: 33036165 PMCID: PMC7712855 DOI: 10.3390/jdb8040023] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023] Open
Abstract
Apical extracellular matrices (aECMs) coat exposed surfaces of epithelia to shape developing tissues and protect them from environmental insults. Despite their widespread importance for human health, aECMs are poorly understood compared to basal and stromal ECMs. The nematode Caenorhabditis elegans contains a variety of distinct aECMs, some of which share many of the same types of components (lipids, lipoproteins, collagens, zona pellucida domain proteins, chondroitin glycosaminoglycans and proteoglycans) with mammalian aECMs. These aECMs include the eggshell, a glycocalyx-like pre-cuticle, both collagenous and chitin-based cuticles, and other understudied aECMs of internal epithelia. C. elegans allows rapid genetic manipulations and live imaging of fluorescently-tagged aECM components, and is therefore providing new insights into aECM structure, trafficking, assembly, and functions in tissue shaping.
Collapse
Affiliation(s)
| | - Meera V. Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine 415 Curie Blvd, Philadelphia, PA 19104-6145, USA;
| |
Collapse
|
11
|
Ma J, Gao B, Wang R, Li X, Chen S. Transcriptome analyses of Ditylenchus destructor in responses to cold and desiccation stress. Genet Mol Biol 2020; 43:e20180057. [PMID: 32232317 PMCID: PMC7198036 DOI: 10.1590/1678-4685-gmb-2018-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/03/2019] [Indexed: 11/22/2022] Open
Abstract
The objective of this study was to identify molecular responses in Ditylenchus destructor to cold and desiccation by means of transcriptomes analyses. A total of 102,517 unigenes were obtained, with an average length of 1,076 bp, in which 58,453 (57%) had a functional annotation. A total of 1154 simple sequence repeats (SSRs) distributed over 1078 unigenes were detected. Gene expression profiles in response to cold and desiccation stress and the expression of specific stress-related genes were compared. Gene ontology analysis and pathway-based analysis were used to further investigate the functions of the differentially expressed genes. The reliability of the sequencing data was verified through quantitative real-time PCR analysis of 19 stress-related genes. RNA interference used to further assess the functions of the cold-related unigenes 15628 and 15596 showed that the knockdown of each of these genes led to decreased cold tolerance of D. destructor. Hence, this study revealed molecular processes and pathways active in cold- or dessication-treated nematodes. The transcriptome profiles presented in this study provide insight into the transcriptome complexity and will contribute to further understand stress tolerance in D. destructor.
Collapse
Affiliation(s)
- Juan Ma
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences /IPM centre of Hebei Province/ Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, Baoding, China
| | - Bo Gao
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences /IPM centre of Hebei Province/ Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, Baoding, China
| | - Rongyan Wang
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences /IPM centre of Hebei Province/ Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, Baoding, China
| | - Xiuhua Li
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences /IPM centre of Hebei Province/ Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, Baoding, China
| | - Shulong Chen
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences /IPM centre of Hebei Province/ Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, Baoding, China
| |
Collapse
|
12
|
Mohan S, Kiran Kumar K, Sutar V, Saha S, Rowe J, Davies KG. Plant Root-Exudates Recruit Hyperparasitic Bacteria of Phytonematodes by Altered Cuticle Aging: Implications for Biological Control Strategies. FRONTIERS IN PLANT SCIENCE 2020; 11:763. [PMID: 32582268 PMCID: PMC7296116 DOI: 10.3389/fpls.2020.00763] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/13/2020] [Indexed: 05/21/2023]
Abstract
Phytonematodes are globally important functional components of the belowground ecology in both natural and agricultural soils; they are a diverse group of which some species are economically important pests, and environmentally benign control strategies are being sought to control them. Using eco-evolutionary theory, we test the hypothesis that root-exudates of host plants will increase the ability of a hyperparasitic bacteria, Pasteuria penetrans and other closely related bacteria, to infect their homologous pest nematodes, whereas non-host root exudates will not. Plant root-exudates from good hosts, poor hosts and non-hosts were characterized by gas chromatography-mass spectrometry (GC/MS) and we explore their interaction on the attachment of the hyperparasitic bacterial endospores to homologous and heterologous pest nematode cuticles. Although GC/MS did not identify any individual compounds as responsible for changes in cuticle susceptibility to endospore adhesion, standardized spore binding assays showed that Pasteuria endospore adhesion decreased with nematode age, and that infective juveniles pre-treated with homologous host root-exudates reduced the aging process and increased attachment of endospores to the nematode cuticle, whereas non-host root-exudates did not. We develop a working model in which plant root exudates manipulate the nematode cuticle aging process, and thereby, through increased bacterial endospore attachment, increase bacterial infection of pest nematodes. This we suggest would lead to a reduction of plant-parasitic nematode burden on the roots and increases plant fitness. Therefore, by the judicious manipulation of environmental factors produced by the plant root and by careful crop rotation this knowledge can help in the development of environmentally benign control strategies.
Collapse
Affiliation(s)
- Sharad Mohan
- Division of Nematology, Indian Council of Agricultural Research, Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Sharad Mohan,
| | - K. Kiran Kumar
- Indian Council of Agricultural Research, Central Citrus Research Institute, Nagpur, India
| | - Vivek Sutar
- Division of Nematology, Indian Council of Agricultural Research, Indian Agricultural Research Institute, New Delhi, India
| | - Supradip Saha
- Division of Agricultural Chemicals, Indian Council of Agricultural Research, Indian Agricultural Research Institute, New Delhi, India
| | - Janet Rowe
- Plant Pathology and Microbiology, Rothamsted Research, Harpenden, United Kingdom
| | - Keith G. Davies
- Department of Biological and Environmental Sciences, University of Hertfordshire, Hatfield, United Kingdom
- Norwegian Institute of Bioeconomy Research, Ås, Norway
- Keith G. Davies,
| |
Collapse
|
13
|
Schifano E, Ficociello G, Vespa S, Ghosh S, Cipollo JF, Talora C, Lotti LV, Mancini P, Uccelletti D. Pmr-1 gene affects susceptibility of Caenorhabditis elegans to Staphylococcus aureus infection through glycosylation and stress response pathways' alterations. Virulence 2019; 10:1013-1025. [PMID: 31771413 PMCID: PMC6930020 DOI: 10.1080/21505594.2019.1697118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Calcium signaling can elicit different pathways involved in an extreme variety of biological processes. Calcium levels must be tightly regulated in a spatial and temporal manner in order to be efficiently and properly utilized in the host physiology. The Ca2+-ATPase, encoded by pmr-1 gene, was first identified in yeast and localized to the Golgi and it appears to be involved in calcium homeostasis. PMR-1 function is evolutionary conserved from yeast to human, where mutations in the orthologous gene ATP2C1 cause Hailey-Hailey disease. In this work, we used the Caenorhabditis elegans model system to gain insight into the downstream response elicited by the loss of pmr-1 gene. We found that pmr-1 knocked down animals not only showed defects in the oligosaccharide structure of glycoproteins at the cell surface but also were characterized by reduced susceptibility to bacterial infection. Although increased resistance to the infection might be related to lack of regular recognition of C. elegans surface glycoproteins by microbial agents, we provide genetic evidence that pmr-1 interfered nematodes mounted a stronger innate immune response to Gram-positive bacterial infection. Thus, our observations indicate pmr-1 as a candidate gene implicated in mediating the worm's innate immune response.
Collapse
Affiliation(s)
- Emily Schifano
- Department of Biology and Biotechnology "Charles Darwin", University of Rome, Rome, Italy
| | - Graziella Ficociello
- Department of Biology and Biotechnology "Charles Darwin", University of Rome, Rome, Italy
| | - Simone Vespa
- Department of Experimental Medicine, University of Rome, Rome, Italy
| | - Salil Ghosh
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - John F Cipollo
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Claudio Talora
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Patrizia Mancini
- Department of Experimental Medicine, University of Rome, Rome, Italy
| | - Daniela Uccelletti
- Department of Biology and Biotechnology "Charles Darwin", University of Rome, Rome, Italy
| |
Collapse
|
14
|
Sheikh MO, Tayyari F, Zhang S, Judge MT, Weatherly DB, Ponce FV, Wells L, Edison AS. Correlations Between LC-MS/MS-Detected Glycomics and NMR-Detected Metabolomics in Caenorhabditis elegans Development. Front Mol Biosci 2019; 6:49. [PMID: 31316996 PMCID: PMC6611444 DOI: 10.3389/fmolb.2019.00049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 06/11/2019] [Indexed: 01/19/2023] Open
Abstract
This study examined the relationship between glycans, metabolites, and development in C. elegans. Samples of N2 animals were synchronized and grown to five different time points ranging from L1 to a mixed population of adults, gravid adults, and offspring. Each time point was replicated seven times. The samples were each assayed by a large particle flow cytometer (Biosorter) for size distribution data, LC-MS/MS for targeted N- and O-linked glycans, and NMR for metabolites. The same samples were utilized for all measurements, which allowed for statistical correlations between the data. A new protocol was developed to correlate Biosorter developmental data with LC-MS/MS data to obtain stage-specific information of glycans. From the five time points, four distinct sizes of worms were observed from the Biosorter distributions, ranging from the smallest corresponding to L1 to adult animals. A network model was constructed using the four binned sizes of worms as starting nodes and adding glycans and metabolites that had correlations with r ≥ 0.5 to those nodes. The emerging structure of the network showed distinct patterns of N- and O-linked glycans that were consistent with previous studies. Furthermore, some metabolites that were correlated to these glycans and worm sizes showed interesting interactions. Of note, UDP-GlcNAc had strong positive correlations with many O-glycans that were expressed in the largest animals. Similarly, phosphorylcholine correlated with many N-glycans that were expressed in L1 animals.
Collapse
Affiliation(s)
- M Osman Sheikh
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Fariba Tayyari
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Sicong Zhang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Michael T Judge
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States.,Department of Genetics, University of Georgia, Athens, GA, United States
| | - D Brent Weatherly
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Francesca V Ponce
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Arthur S Edison
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States.,Department of Genetics, University of Georgia, Athens, GA, United States.,Institute of Bioinformatics, University of Georgia, Athens, GA, United States
| |
Collapse
|
15
|
Feucherolles M, Poppert S, Utzinger J, Becker SL. MALDI-TOF mass spectrometry as a diagnostic tool in human and veterinary helminthology: a systematic review. Parasit Vectors 2019; 12:245. [PMID: 31101120 PMCID: PMC6525464 DOI: 10.1186/s13071-019-3493-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/06/2019] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (MS) has become a widely used technique for the rapid and accurate identification of bacteria, mycobacteria and certain fungal pathogens in the clinical microbiology laboratory. Thus far, only few attempts have been made to apply the technique in clinical parasitology, particularly regarding helminth identification. METHODS We systematically reviewed the scientific literature on studies pertaining to MALDI-TOF MS as a diagnostic technique for helminths (cestodes, nematodes and trematodes) of medical and veterinary importance. Readily available electronic databases (i.e. PubMed/MEDLINE, ScienceDirect, Cochrane Library, Web of Science and Google Scholar) were searched from inception to 10 October 2018, without restriction on year of publication or language. The titles and abstracts of studies were screened for eligibility by two independent reviewers. Relevant articles were read in full and included in the systematic review. RESULTS A total of 84 peer-reviewed articles were considered for the final analysis. Most papers reported on the application of MALDI-TOF for the study of Caenorhabditis elegans, and the technique was primarily used for identification of specific proteins rather than entire pathogens. Since 2015, a small number of studies documented the successful use of MALDI-TOF MS for species-specific identification of nematodes of human and veterinary importance, such as Trichinella spp. and Dirofilaria spp. However, the quality of available data and the number of examined helminth samples was low. CONCLUSIONS Data on the use of MALDI-TOF MS for the diagnosis of helminths are scarce, but recent evidence suggests a potential role for a reliable identification of nematodes. Future research should explore the diagnostic accuracy of MALDI-TOF MS for identification of (i) adult helminths, larvae and eggs shed in faecal samples; and (ii) helminth-related proteins that are detectable in serum or body fluids of infected individuals.
Collapse
Affiliation(s)
- Maureen Feucherolles
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg/Saar, Germany
- Luxembourg Institute of Science and Technology, Environmental Research and Innovation, Belvaux, Luxembourg
| | - Sven Poppert
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Jürg Utzinger
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sören L Becker
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg/Saar, Germany.
- Swiss Tropical and Public Health Institute, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
16
|
Paschinger K, Yan S, Wilson IBH. N-glycomic Complexity in Anatomical Simplicity: Caenorhabditis elegans as a Non-model Nematode? Front Mol Biosci 2019; 6:9. [PMID: 30915340 PMCID: PMC6422873 DOI: 10.3389/fmolb.2019.00009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/12/2019] [Indexed: 12/28/2022] Open
Abstract
Caenorhabditis elegans is a genetically well-studied model nematode or "worm"; however, its N-glycomic complexity is actually baffling and still not completely unraveled. Some features of its N-glycans are, to date, unique and include bisecting galactose and up to five fucose residues associated with the asparagine-linked Man2-3GlcNAc2 core; the substitutions include galactosylation of fucose, fucosylation of galactose and methylation of mannose or fucose residues as well as phosphorylcholine on antennal (non-reducing) N-acetylglucosamine. Only some of these modifications are shared with various other nematodes, while others have yet to be detected in any other species. Thus, C. elegans can be used as a model for some aspects of N-glycan function, but its glycome is far from identical to those of other organisms and is actually far from simple. Possibly the challenges of its native environment, which differ from those of parasitic or necromenic species, led to an anatomically simple worm possessing a complex glycome.
Collapse
Affiliation(s)
| | - Shi Yan
- Institut für Parasitologie, Veterinärmedizinische Universität, Wien, Austria
| | | |
Collapse
|
17
|
Abstract
Parasitic nematodes (roundworms) and platyhelminths (flatworms) cause debilitating chronic infections of humans and animals, decimate crop production and are a major impediment to socioeconomic development. Here we report a broad comparative study of 81 genomes of parasitic and non-parasitic worms. We have identified gene family births and hundreds of expanded gene families at key nodes in the phylogeny that are relevant to parasitism. Examples include gene families that modulate host immune responses, enable parasite migration though host tissues or allow the parasite to feed. We reveal extensive lineage-specific differences in core metabolism and protein families historically targeted for drug development. From an in silico screen, we have identified and prioritized new potential drug targets and compounds for testing. This comparative genomics resource provides a much-needed boost for the research community to understand and combat parasitic worms.
Collapse
|
18
|
Jankowska E, Parsons LM, Song X, Smith DF, Cummings RD, Cipollo JF. A comprehensive Caenorhabditis elegans N-glycan shotgun array. Glycobiology 2018; 28:223-232. [PMID: 29325093 DOI: 10.1093/glycob/cwy002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/05/2018] [Indexed: 01/09/2023] Open
Abstract
Here we present a Caenorhabditis elegans N-glycan shotgun array. This nematode serves as a model organism for many areas of biology including but not limited to tissue development, host-pathogen interactions, innate immunity, and genetics. Caenorhabditis elegans N-glycans contain structural motifs that are also found in other nematodes as well as trematodes and lepidopteran species. Glycan binding toxins that interact with C. elegans glycoconjugates also do so with some agriculturally relevant species, such as Haemonchus contortus, Ascaris suum, Oesophagostomum dentatum and Trichoplusia ni. This situation implies that protein-carbohydrate interactions seen with C. elegans glycans may also occur in other species with related glycan structures. Therefore, this array may be useful to study these relationships in other nematodes as well as trematode and insect species. The array contains 134 distinct glycomers spanning a wide range of C. elegans N-glycans including the subclasses high mannose, pauci mannose, high fucose, mammalian-like complex and phosphorylcholine substituted forms. The glycans presented on the array have been characterized by two-dimensional separation, ion trap mass spectrometry, and lectin affinity. High fucose glycans were well represented and contain many novel core structures found in C. elegans as well as other species. This array should serve as an investigative platform for carbohydrate binding proteins that interact with N-glycans of C. elegans and over a range of organisms that contain glycan motifs conserved with this nematode.
Collapse
Affiliation(s)
- Ewa Jankowska
- Center for Biologics Evaluation and Research, Division of Bacterial, Parasitic and Allergenic Products, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993-0002, USA
| | - Lisa M Parsons
- Center for Biologics Evaluation and Research, Division of Bacterial, Parasitic and Allergenic Products, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993-0002, USA
| | - Xuezheng Song
- Emory Comprehensive Glycomics Core, Emory University School of Medicine, Room 105H, Whitehead Biomedical Res. Bldg., 615 Michael Street, Atlanta, GA 30322, USA
| | - Dave F Smith
- Emory Comprehensive Glycomics Core, Emory University School of Medicine, Room 105H, Whitehead Biomedical Res. Bldg., 615 Michael Street, Atlanta, GA 30322, USA
| | - Richard D Cummings
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA 02115, USA
| | - John F Cipollo
- Center for Biologics Evaluation and Research, Division of Bacterial, Parasitic and Allergenic Products, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993-0002, USA
| |
Collapse
|
19
|
Phani V, Shivakumara TN, Davies KG, Rao U. Knockdown of a mucin-like gene in Meloidogyne incognita (Nematoda) decreases attachment of endospores of Pasteuria penetrans to the infective juveniles and reduces nematode fecundity. MOLECULAR PLANT PATHOLOGY 2018; 19:2370-2383. [PMID: 30011135 PMCID: PMC6638177 DOI: 10.1111/mpp.12704] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/14/2018] [Accepted: 06/08/2018] [Indexed: 05/30/2023]
Abstract
Mucins are highly glycosylated polypeptides involved in many host-parasite interactions, but their function in plant-parasitic nematodes is still unknown. In this study, a mucin-like gene was cloned from Meloidogyne incognita (Mi-muc-1, 1125 bp) and characterized. The protein was found to be rich in serine and threonine with numerous O-glycosylation sites in the sequence. Quantitative real-time polymerase chain reaction (qRT-PCR) showed the highest expression in the adult female and in situ hybridization revealed the localization of Mi-muc-1 mRNA expression in the tail area in the region of the phasmid. Knockdown of Mi-muc-1 revealed a dual role: (1) immunologically, there was a significant decrease in attachment of Pasteuria penetrans endospores and a reduction in binding assays with human red blood cells (RBCs), suggesting that Mi-MUC-1 is a glycoprotein present on the surface coat of infective second-stage juveniles (J2s) and is involved in cellular adhesion to the cuticle of infective J2s; pretreatment of J2s with different carbohydrates indicated that the RBCs bind to J2 cuticle receptors different from those involved in the interaction of Pasteuria endospores with Mi-MUC-1; (2) the long-term effect of RNA interference (RNAi)-mediated knockdown of Mi-muc-1 led to a significant reduction in nematode fecundity, suggesting a possible function for this mucin as a mediator in the interaction between the nematode and the host plant.
Collapse
Affiliation(s)
- Victor Phani
- Division of NematologyICAR‐Indian Agricultural Research InstituteNew Delhi110012India
| | | | - Keith G Davies
- Department of Biological and Environmental SciencesUniversity of HertfordshireHatfieldAL10 9ABUnited Kingdom
- Norwegian Institute of Bioeconomy ResearchÅs115, 1431Norway
| | - Uma Rao
- Division of NematologyICAR‐Indian Agricultural Research InstituteNew Delhi110012India
| |
Collapse
|
20
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2013-2014. MASS SPECTROMETRY REVIEWS 2018; 37:353-491. [PMID: 29687922 DOI: 10.1002/mas.21530] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/29/2016] [Indexed: 06/08/2023]
Abstract
This review is the eighth update of the original article published in 1999 on the application of Matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2014. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly- saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2018 Wiley Periodicals, Inc. Mass Spec Rev 37:353-491, 2018.
Collapse
Affiliation(s)
- David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
21
|
Affiliation(s)
- Tomoharu Takeuchi
- Laboratory of Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| |
Collapse
|
22
|
Takeuchi T. Galectins in Invertebrates with a focus on <i>Caenorhabditis elegans</i>. TRENDS GLYCOSCI GLYC 2018. [DOI: 10.4052/tigg.1735.1sj] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Tomoharu Takeuchi
- Laboratory of Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| |
Collapse
|
23
|
Battisti JM, Watson LA, Naung MT, Drobish AM, Voronina E, Minnick MF. Analysis of the Caenorhabditis elegans innate immune response to Coxiella burnetii. Innate Immun 2016; 23:111-127. [PMID: 27884946 DOI: 10.1177/1753425916679255] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The nematode Caenorhabditis elegans is well established as a system for characterization and discovery of molecular mechanisms mediating microbe-specific inducible innate immune responses to human pathogens. Coxiella burnetii is an obligate intracellular bacterium that causes a flu-like syndrome in humans (Q fever), as well as abortions in domesticated livestock, worldwide. Initially, when wild type C. elegans (N2 strain) was exposed to mCherry-expressing C. burnetii (CCB) a number of overt pathological manifestations resulted, including intestinal distension, deformed anal region and a decreased lifespan. However, nematodes fed autoclave-killed CCB did not exhibit these symptoms. Although vertebrates detect C. burnetii via TLRs, pathologies in tol-1(-) mutant nematodes were indistinguishable from N2, and indicate nematodes do not employ this orthologue for detection of C. burnetii. sek-1(-) MAP kinase mutant nematodes succumbed to infection faster, suggesting that this signaling pathway plays a role in immune activation, as previously shown for orthologues in vertebrates during a C. burnetii infection. C. elegans daf-2(-) mutants are hyper-immune and exhibited significantly reduced pathological consequences during challenge. Collectively, these results demonstrate the utility of C. elegans for studying the innate immune response against C. burnetii and could lead to discovery of novel methods for prevention and treatment of disease in humans and livestock.
Collapse
Affiliation(s)
- James M Battisti
- Program in Cellular, Molecular and Microbial Biology, Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Lance A Watson
- Program in Cellular, Molecular and Microbial Biology, Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Myo T Naung
- Program in Cellular, Molecular and Microbial Biology, Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Adam M Drobish
- Program in Cellular, Molecular and Microbial Biology, Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Ekaterina Voronina
- Program in Cellular, Molecular and Microbial Biology, Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Michael F Minnick
- Program in Cellular, Molecular and Microbial Biology, Division of Biological Sciences, University of Montana, Missoula, MT, USA
| |
Collapse
|
24
|
Analysis of zwitterionic and anionic N-linked glycans from invertebrates and protists by mass spectrometry. Glycoconj J 2016; 33:273-83. [PMID: 26899268 PMCID: PMC4891362 DOI: 10.1007/s10719-016-9650-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/11/2015] [Accepted: 01/18/2016] [Indexed: 11/04/2022]
Abstract
Glycomic analyses over the years have revealed that non-vertebrate eukaryotes express oligosaccharides with inorganic and zwitterionic modifications which are either occurring in different contexts as compared to, or are absent from, mammals. Examples of anionic N-glycans (carrying sulphate or phosphate) are known from amoebae, fungi, molluscs and insects, while zwitterionic modifications by phosphorylcholine, phosphoethanolamine and aminoethylphosphonate occur on N-, O- and lipid-linked glycans from trichomonads, annelids, fungi, molluscs, insects, cestodes and nematodes. For detection of zwitterionic and anionic glycans, mass spectrometry has been a key method, but their ionic character affects the preparation and purification; therefore, as part of a glycomic strategy, the possibility of their presence must be considered in advance. On the other hand, their ionisation and fragmentation in positive and negative ion mode mass spectrometry as well as specific chemical or enzymatic treatments can prove diagnostic to their analysis. In our laboratory, we combine solid-phase extraction, reversed and normal phase HPLC, MALDI-TOF MS, exoglycosidase digests and hydrofluoric acid treatment to reveal N-glycans modified with anionic and zwitterionic moieties in a wide range of organisms. It is to be anticipated that, as more species are glycomically analysed, zwitterionic and anionic modifications of N-glycans will prove rather widespread. This knowledge is - in the longer term - then the basis for understanding the function of this cornucopia of glycan modifications.
Collapse
|
25
|
Ghosh SK, Bond MR, Love DC, Ashwell GG, Krause MW, Hanover JA. Disruption of O-GlcNAc Cycling in C. elegans Perturbs Nucleotide Sugar Pools and Complex Glycans. Front Endocrinol (Lausanne) 2014; 5:197. [PMID: 25505447 PMCID: PMC4241842 DOI: 10.3389/fendo.2014.00197] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 11/10/2014] [Indexed: 12/23/2022] Open
Abstract
The carbohydrate modification of serine and threonine residues with O-linked beta- N-acetylglucosamine (O-GlcNAc) is ubiquitous and governs cellular processes ranging from cell signaling to apoptosis. The O-GlcNAc modification along with other carbohydrate modifications, including N-linked and O-linked glycans, glycolipids, and sugar polymers, all require the use of the nucleotide sugar UDP-GlcNAc, the end product of the hexosamine biosynthetic pathway (HBP). In this paper, we describe the biochemical consequences resulting from perturbation of the O-GlcNAc pathway in C. elegans lacking O-GlcNAc transferase and O-GlcNAcase activities. In ogt-1 null animals, steady-state levels of UDP-GlcNAc/UDP-GalNAc and UDP-glucose were substantially elevated. Transcripts of genes encoding for key members in the HBP (gfat-2, gna-2, C36A4.4) and trehalose metabolism (tre-1, tre-2, tps-2) were elevated in ogt-1 null animals. While there is no evidence to suggest changes in the profile of N-linked glycans in the ogt-1 and oga-1 mutants, glycans insensitive to PNGase digestion (including O-linked glycans, glycolipids, and glycopolymers) were altered in these strains. Our data support that changes in O-GlcNAcylation alters nucleotide sugar production, overall glycan composition, and transcription of genes encoding glycan processing enzymes. These data along with our previous findings that disruption in O-GlcNAc cycling alters macronutrient storage underscores the noteworthy influence this posttranslational modification plays in nutrient sensing.
Collapse
Affiliation(s)
- Salil K. Ghosh
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michelle R. Bond
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dona C. Love
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - G. Gilbert Ashwell
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael W. Krause
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John A. Hanover
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
- *Correspondence: John A. Hanover, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 8 Room B127, 9000 Rockville Pike, Bethesda, MD 20892, USA e-mail:
| |
Collapse
|