1
|
Kim N, Lukong KE. Treating ER-positive breast cancer: a review of the current FDA-approved SERMs and SERDs and their mechanisms of action. Oncol Rev 2025; 19:1564642. [PMID: 40275985 PMCID: PMC12018393 DOI: 10.3389/or.2025.1564642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025] Open
Abstract
Breast cancer is one of the most significant causes of mortality among women and the second most prevalent cancer worldwide. Estrogen receptor (ER)-positive breast cancers are the most common molecular subtype of breast cancer, comprising about 70% of breast carcinoma diagnoses worldwide. Endocrine therapy is the foremost strategy for the treatment of ER-positive breast cancer. In the United States, the Food and Drug Administration (FDA) has approved endocrine therapies for ER-positive breast cancers that include selective estrogen receptor modulators (SERMs), selective estrogen receptor downregulators/degraders (SERDs) and aromatase inhibitors (AIs). The approved SERMS, tamoxifen, toremifene and raloxifene, are the gold-standard treatments. The only FDA-approved SERD available for treating ER and hormone-positive breast cancers is fulvestrant, and various generations of AIs, including exemestane, letrozole, and anastrozole, have also received FDA approval. Herein, we review the major FDA-approved SERMs and SERDs for treating ER-positive breast cancer, focusing on their mechanisms of action. We also explore molecular events that contribute to the resistance of these drugs to endocrine therapies and combinational strategies with drugs such as cyclin-dependant kinases 4/6 (CDK4/6) inhibitors in clinical trials to combat endocrine drug resistance.
Collapse
Affiliation(s)
| | - Kiven Erique Lukong
- Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
2
|
Wang J, Lv F, Zhu Y, Lu X, Zhang B. Reversal of the tamoxifen‑resistant breast cancer malignant phenotype by proliferation inhibition with bromosulfonamidine amino‑podophyllotoxin. Oncol Lett 2024; 28:373. [PMID: 38910903 PMCID: PMC11190816 DOI: 10.3892/ol.2024.14506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/16/2024] [Indexed: 06/25/2024] Open
Abstract
One of the lignans isolated from plants within the genus Podophyllum is podophyllotoxin (PPT). PPT and its derivatives are pharmacologically active compounds with potential antiproliferative properties in several kinds of tumors. Although these compounds have been used to treat other malignancies, no PPT derivative-based chemotherapeutic agent has been used to cure tamoxifen (TAM)-resistant breast cancer in clinical trials, to the best of our knowledge. Thus, using TAM-resistant breast cancer as a disease model, the present study assessed the effects of a recently synthesized PPT derivative, bromosulfonamidine amino-PPT (BSAPPT), on TAM-resistant breast cancer. Using the tamoxifen-resistant breast cancer cell model (MCF-7/TAMR) in vitro, Cell Counting Kit-8 and colony formation assays were adopted to evaluate the effect of BSAPPT on cell proliferation. Cell apoptosis and cell cycle assays were used to assess the influence of BSAPPT on cell apoptosis and the cell cycle in MCF-7/TAMR. The targets of the potential mechanism of action were analyzed by RT-qPCR and western blotting. The present study demonstrated that BSAPPT suppressed MCF-7/TAMR cell proliferation in a dose-dependent manner. By modulating the level of expression of genes linked to both apoptosis and the cell cycle, BSAPPT triggered MCF-7/TAMR cells to undergo apoptosis and prevented them from entering the cell cycle. Consequently, BSAPPT blocked these cells from proliferating, thereby halting the malignant advancement of TAM-resistant breast cancer. Therefore, these findings indicate that new therapeutic agents involving BSAPPT may be developed to facilitate the treatment of TAM-resistant breast cancer.
Collapse
Affiliation(s)
- Jiayi Wang
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
- Medical Laboratory (Guangdong), Dongguan Eighth People's Hospital, Dongguan, Guangdong 523320, P.R. China
- Department of Genetics, Key Laboratory for Children's Genetics and Infectious Diseases of Dongguan, Dongguan, Guangdong 523320, P.R. China
| | - Fen Lv
- Medical Laboratory (Guangdong), Dongguan Eighth People's Hospital, Dongguan, Guangdong 523320, P.R. China
- Department of Genetics, Key Laboratory for Children's Genetics and Infectious Diseases of Dongguan, Dongguan, Guangdong 523320, P.R. China
| | - Yinghua Zhu
- Medical Laboratory (Guangdong), Dongguan Eighth People's Hospital, Dongguan, Guangdong 523320, P.R. China
- Department of Genetics, Key Laboratory for Children's Genetics and Infectious Diseases of Dongguan, Dongguan, Guangdong 523320, P.R. China
| | - Xiaomei Lu
- Medical Laboratory (Guangdong), Dongguan Eighth People's Hospital, Dongguan, Guangdong 523320, P.R. China
- Department of Genetics, Key Laboratory for Children's Genetics and Infectious Diseases of Dongguan, Dongguan, Guangdong 523320, P.R. China
| | - Bao Zhang
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
3
|
Yin Q, Gao X, Zhang H, Zhang Z, Yu X, He J, Shi G, Hao L. Fe 3O 4-Cy5.5-trastuzumab magnetic nanoparticles for magnetic resonance/near-infrared imaging targeting HER2 in breast cancer. Biomed Mater 2024; 19:035034. [PMID: 38626777 DOI: 10.1088/1748-605x/ad3f61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
This study developed a probe Fe3O4-Cy5.5-trastuzumab with fluorescence and magnetic resonance imaging functions that can target breast cancer with high HER2 expression, aiming to provide a new theoretical method for the diagnosis of early breast cancer. Fe3O4-Cy5.5-trastuzumab nanoparticles were combined with Fe3O4for T2imaging and Cy5.5 for near-infrared imaging, and coupled with trastuzumab for HER2 targeting. We characterized the nanoparticles used transmission electron microscopy, hydration particle size, Zeta potential, UV and Fourier transform infrared spectroscopy, and examined its magnetism, fluorescence, and relaxation rate related properties. CCK-8 and blood biochemistry analysis evaluated the biosafety and stability of the nanoparticles, and validated the targeting ability of Fe3O4-Cy5.5 trastuzumab nanoparticles throughin vitroandin vivocell and animal experiments. Characterization results showed the successful synthesis of Fe3O4-Cy5.5-trastuzumab nanoparticles with a diameter of 93.72 ± 6.34 nm. The nanoparticles showed a T2relaxation rate 42.29 mM-1s-1, magnetic saturation strength of 27.58 emg g-1. Laser confocal and flow cytometry uptake assay showed that the nanoparticles could effectively target HER2 expressed by breast cancer cells. As indicated byin vitroandin vivostudies, Fe3O4-Cy5.5-trastuzumab were specifically taken up and effectively aggregated to tumour regions with prominent NIRF/MR imaging properties. CCK-8, blood biochemical analysis and histological results suggested Fe3O4-Cy5.5-trastuzumab that exhibited low toxicity to major organs and goodin vivobiocompatibility. The prepared Fe3O4-Cy5.5-trastuzumab exhibited excellent targeting, NIRF/MR imaging performance. It is expected to serve as a safe and effective diagnostic method that lays a theoretical basis for the effective diagnosis of early breast cancer. This study successfully prepared a kind of nanoparticles with near-infrared fluorescence imaging and T2imaging properties, which is expected to serve as a new theory and strategy for early detection of breast cancer.
Collapse
Affiliation(s)
- Qiangqiang Yin
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, People's Republic of China
| | - Xiaolong Gao
- Department of Imaging, Fu Jin Hospital of Traditional Chinese Medicine, Jiamusi, Heilongjiang 156100, People's Republic of China
| | - Hao Zhang
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, People's Republic of China
| | - Zhichen Zhang
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, People's Republic of China
| | - Xiaoyang Yu
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, People's Republic of China
| | - Jialong He
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, People's Republic of China
| | - Guangyue Shi
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, People's Republic of China
| | - Liguo Hao
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, People's Republic of China
| |
Collapse
|
4
|
Tang N, Wang Y, Miao J, Zhao Y, Cao Y, Sun W, Zhang J, Sui H, Li B. Potential pharmacological mechanisms of tanshinone IIA in the treatment of human neuroblastoma based on network pharmacological and molecular docking Technology. Front Pharmacol 2024; 15:1363415. [PMID: 38533261 PMCID: PMC10964018 DOI: 10.3389/fphar.2024.1363415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
Tanshinone IIA (Tan-IIA) is the main bioactive component of Chinese herbal medicine salvia miltiorrhiza (Danshen). Sodium sulfonate of Tan-IIA is widely used in the treatment of cardiovascular and cerebrovascular diseases. Tan-IIA also has inhibitory effects on tumor cells such as gastric cancer, but its therapeutic effect and mechanism on human neuroblastoma have not been evaluated, so its pharmacological mechanism is systematically evaluated by the combined method of network pharmacology and molecular docking. PharmMapper and SwissTargetPrediction predicted 331 potential Tan-IIA-related targets, and 1,152 potential neuroblastoma-related targets were obtained from GeneCards, DisGeNET, DrugBank, OMIM and Therapeutic Target databases (TTD), 107 common targets for Tan-IIA and neuroblastoma. Through gene ontology (GO) functional annotation, Kyoto Encyclopedia of Genes and Genomesa (KEGG) pathway enrichment, protein-protein interaction (PPI) network and cytoHubba plug-in, 10 related signal pathways (Pathways in cancer, PI3K-Akt signaling pathway, Prostate cancer, etc.) and 10 hub genes were identified. The results of molecular docking showed that Tan-IIA could interact with 10 targets: GRB2, SRC, EGFR, PTPN1, ESR1, IGF1, MAPK1, PIK3R1, AKT1 and IGF1R. This study analyzed the related pathways and targets of Tan-IIA in the treatment of human neuroblastoma, as well as the potential anticancer and anti-tumor targets and related signaling pathways of Tan-IIA, which provides a reference for us to find and explore effective drugs for the treatment of human neuroblastoma.
Collapse
Affiliation(s)
- Ning Tang
- Department of Integrative Medicine, Liaoning University of Traditional Chinese Medicine Xinglin College, Shenyang, China
| | - Yan Wang
- Department of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Jiarui Miao
- Department of Acupuncture and Massage, Liaoning University of Traditional Chinese Medicine Xinglin College, Shenyang, China
| | - Yang Zhao
- Department of Integrative Medicine, Liaoning University of Traditional Chinese Medicine Xinglin College, Shenyang, China
| | - Yue Cao
- Department of Integrative Medicine, Liaoning University of Traditional Chinese Medicine Xinglin College, Shenyang, China
| | - Wentao Sun
- Department of Acupuncture and Massage, Liaoning University of Traditional Chinese Medicine Xinglin College, Shenyang, China
| | - Jingke Zhang
- Department of Integrative Medicine, Liaoning University of Traditional Chinese Medicine Xinglin College, Shenyang, China
| | - Hua Sui
- Department of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Bing Li
- Department of Integrative Medicine, Liaoning University of Traditional Chinese Medicine Xinglin College, Shenyang, China
| |
Collapse
|
5
|
Adchariyasakulchai P, Sakunrangsit N, Chokyakorn S, Suksanong C, Ketchart W. Anticancer effect of zoledronic acid in endocrine-resistant breast cancer cells via HER-2 signaling. Biomed Pharmacother 2024; 171:116142. [PMID: 38198953 DOI: 10.1016/j.biopha.2024.116142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/23/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024] Open
Abstract
HER-2 overexpression is a major mechanism involved in endocrine-resistant breast cancer, which has very limited treatment options. Zoledronic acid (ZA) is a drug in the bisphosphonate group used to treat osteoporosis. ZA was reported to exhibit activity in various cancers, with higher efficacy associated with estrogen-deprivation states. ZA inhibits cell proliferation in lung cancer through the epidermal growth factor receptor signaling pathway. Because endocrine-resistant breast cancer cells overexpress HER-2 and grow independently without estrogen, ZA may exert anticancer effects in these cell types. The inhibitory effects and mechanisms of ZA in endocrine-resistant cells through HER-2 signaling were investigated. The efficacy of ZA was higher in the endocrine-resistant breast cancer cells when compared with the wild-type cells. ZA also exhibited a synergistic effect with fulvestrant and may circumvent fulvestrant resistance. ZA decreased phosphorylated ERK (pERK) levels in resistant cell lines and attenuated HER-2 signaling in tamoxifen- and fulvestrant-resistant cells. ZA significantly decreased HER-2 levels and its downstream signaling molecules, including pAKT and pNF-κB in fulvestrant-resistant breast cancer cells. This inhibitory effect may explain the lower IC50 values of ZA in fulvestrant-resistant cells compared with tamoxifen-resistant cells. Moreover, ZA inhibited the migration and invasion in the resistant cell lines, suggesting an ability to inhibit tumor metastasis. The results indicate that ZA has potential for repurposing as an adjuvant treatment for patients with endocrine-resistant breast cancer.
Collapse
Affiliation(s)
| | - Nithidol Sakunrangsit
- Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sarun Chokyakorn
- Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chayanin Suksanong
- Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wannarasmi Ketchart
- Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
6
|
Yin L, Chen GL, Xiang Z, Liu YL, Li XY, Bi JW, Wang Q. Current progress in chimeric antigen receptor-modified T cells for the treatment of metastatic breast cancer. Biomed Pharmacother 2023; 162:114648. [PMID: 37023621 DOI: 10.1016/j.biopha.2023.114648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Breast cancer is the leading cancer in women. Around 20-30% breast cancer patients undergo invasion or metastasis after radical surgical resection and eventually die. Number of breast cancer patients show poor sensitivity toward treatments despite the advances in chemotherapy, endocrine therapy, and molecular targeted treatments. Therapeutic resistance and tumor recurrence or metastasis develop with the ongoing treatments. Conducive treatment strategies are thus required. Chimeric antigen receptor (CAR)-modified T-cell therapy has progressed as a part of tumor immunotherapy. However, CAR-T treatment has not been effective in solid tumors because of tumor microenvironment complexity, inhibitory effects of extracellular matrix, and lacking ideal tumor antigens. Herein, the prospects of CAR-T cell therapy for metastatic breast cancer are discussed, and the targets for CAR-T therapy in breast cancer (HER-2, C-MET, MSLN, CEA, MUC1, ROR1, EGFR) at clinical level are reviewed. Moreover, solutions are proposed for the challenges of breast cancer CAR-T therapy regarding off-target effects, heterogeneous antigen expression by tumor cells and immunosuppressive tumor microenvironment. Ideas for improving the therapeutics of CAR-T cell therapy in metastatic breast cancer are suggested.
Collapse
Affiliation(s)
- Li Yin
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China; Shandong University of Traditional Chinese Medicine, 250355 Jinan, China
| | - Gui-Lai Chen
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China
| | - Zhuo Xiang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China
| | - Yu-Lin Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China
| | - Xing-Yu Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 266003 Qingdao, China
| | - Jing-Wang Bi
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China.
| | - Qiang Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China; Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 266003 Qingdao, China.
| |
Collapse
|
7
|
Estrogenic flavonoids and their molecular mechanisms of action. J Nutr Biochem 2023; 114:109250. [PMID: 36509337 DOI: 10.1016/j.jnutbio.2022.109250] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Flavonoids are a major group of phytoestrogens associated with physiological effects, and ecological and social impacts. Although the estrogenic activity of flavonoids was reported by researchers in the fields of medical, environmental and food studies, their molecular mechanisms of action have not been comprehensively reviewed. The estrogenic activity of the respective classes of flavonoids, anthocyanidins/anthocyanins, 2-arylbenzofurans/3-arylcoumarins/α-methyldeoxybenzoins, aurones/chalcones/dihydrochalcones, coumaronochromones, coumestans, flavans/flavan-3-ols/flavan-4-ols, flavanones/dihydroflavonols, flavones/flavonols, homoisoflavonoids, isoflavans, isoflavanones, isoflavenes, isoflavones, neoflavonoids, oligoflavonoids, pterocarpans/pterocarpenes, and rotenone/rotenoids, was summarized through a comprehensive literature search, and their structure-activity relationship, biological activities, signaling pathways, and applications were discussed. Although the respective classes of flavonoids contained at least one chemical mimicking estrogen, the mechanisms varied, such as those with estrogenic, anti-estrogenic, non-estrogenic, and biphasic activities, and additional activities through crosstalk/bypassing, which exert biological activities through cell signaling pathways. Such mechanistic variations of estrogen action are not limited to flavonoids and are observed among other broad categories of chemicals, thus this group of chemicals can be termed as the "estrogenome". This review article focuses on the connection of estrogen action mainly between the outer and the inner environments, which represent variations of chemicals and biological activities/signaling pathways, respectively, and form the basis to understand their applications. The applications of chemicals will markedly progress due to emerging technologies, such as artificial intelligence for precision medicine, which is also true of the study of the estrogenome including estrogenic flavonoids.
Collapse
|
8
|
Pan X, Song Z, Cui Y, Qi M, Wu G, Wang M. Enhancement of Sensitivity to Tamoxifen by Berberine in Breast Cancer Cells by Inhibiting ER-α36 Expression. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e126919. [PMID: 36060924 PMCID: PMC9420211 DOI: 10.5812/ijpr-126919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 09/30/2020] [Accepted: 11/08/2020] [Indexed: 05/31/2023]
Abstract
Berberine, an isoquinoline alkaloid purified from Chinese herbs, was verified to have antitumor effects. It has also been reported that berberine can enhance the anticancer effect of tamoxifen (TAM) in estrogen receptor (ER)-positive breast cancer cells; however, the involved underlying mechanism is still unclear. In the present study, the role of one variant of ER-α, ER-α36, in the TAM sensitizing effect of berberine was explored in TAM-resistant breast cancer cells. This study demonstrated that berberine potently sensitized TAM-resistant breast cancer cells, including TAM-resistant MCF7 and BT-474 cells, to TAM treatment. Additionally, this study showed that berberine could simultaneously suppress ER-α36 expression in TAM-resistant cells. However, when ER-α36 was knocked down in TAM-resistant cells, there was no significant TAM-sensitizing effect by berberine. Therefore, this study indicated that ER-α36 is involved in berberine's TAM-sensitizing effect on ER-positive breast cancer cells, which provided supporting data for the application of berberine in cancer therapy as an adjuvant agent for TAM treatment.
Collapse
Affiliation(s)
- Xiaohua Pan
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Zhen Song
- Department of Obstetrics and Gynecology, Shandong University Qilu Hospital, Jinan, 250012, Shandong, China
| | - Yue Cui
- University of Jinan, Jinan, 250022, Shandong, China
| | - Ming Qi
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Guojun Wu
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Molin Wang
- Department of Genetics and Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
| |
Collapse
|
9
|
Das P, Gupta A, Desai KV. JMJD6 orchestrates a transcriptional program in favor of endocrine resistance in ER+ breast cancer cells. Front Endocrinol (Lausanne) 2022; 13:1028616. [PMID: 36419768 PMCID: PMC9678079 DOI: 10.3389/fendo.2022.1028616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022] Open
Abstract
High expression of Jumonji domain containing protein 6 (JMJD6) is strongly associated with poor prognosis in estrogen receptor positive (ER+) breast cancer. We overexpressed JMJD6 in MCF7 cells (JOE cells) and performed RNA-seq analysis. 76% of differentially expressed genes (DEGs) overlapped with ER target genes. Pathway analysis revealed that JMJD6 upregulated a larger subset of genes related to cell proliferation as compared to ER. Interestingly, JOE cells showed a decrease in ER target gene expression prompting us to check ER levels. Indeed, JOE cells showed a significant decrease in both ESR1 and ER levels and JMJD6 siRNA transfection increased the expression of both. Additionally, JOE cells showed increased RET and ERK1 expression, events associated with resistance to endocrine therapy. Accordingly, JOE cells displayed lower sensitivity and survived better at higher doses of 4-hydroxy tamoxifen (Tam) as compared to parental MCF-7 cells. Conversely, LTED-I and TAM R that resist Tam induced death, showed high expression of JMJD6. Further, JMJD6 siRNA treatment decreased growth and improved Tam sensitivity in TAM R. Comparison of JOE DEGs with known Tam signature genes showed a substantial overlap. Overall, these data suggest that blocking ER alone in patients may not eradicate proliferation of JMJD6 expressing ER+ cells and JMJD6 may predispose and sustain endocrine therapy resistance. We propose that immunostaining for JMJD6 could be developed as a potential marker for predicting endocrine therapy resistance. Further, antagonizing JMJD6 action in women expressing higher amounts of this protein, may offer a greater clinical benefit than endocrine therapy.
Collapse
|
10
|
Sahoo S, Mishra A, Kaur H, Hari K, Muralidharan S, Mandal S, Jolly MK. A mechanistic model captures the emergence and implications of non-genetic heterogeneity and reversible drug resistance in ER+ breast cancer cells. NAR Cancer 2021; 3:zcab027. [PMID: 34316714 PMCID: PMC8271219 DOI: 10.1093/narcan/zcab027] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/02/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023] Open
Abstract
Resistance to anti-estrogen therapy is an unsolved clinical challenge in successfully treating ER+ breast cancer patients. Recent studies have demonstrated the role of non-genetic (i.e. phenotypic) adaptations in tolerating drug treatments; however, the mechanisms and dynamics of such non-genetic adaptation remain elusive. Here, we investigate coupled dynamics of epithelial–mesenchymal transition (EMT) in breast cancer cells and emergence of reversible drug resistance. Our mechanism-based model for underlying regulatory network reveals that these two axes can drive one another, thus enabling non-genetic heterogeneity in a cell population by allowing for six co-existing phenotypes: epithelial-sensitive, mesenchymal-resistant, hybrid E/M-sensitive, hybrid E/M-resistant, mesenchymal-sensitive and epithelial-resistant, with the first two ones being most dominant. Next, in a population dynamics framework, we exemplify the implications of phenotypic plasticity (both drug-induced and intrinsic stochastic switching) and/or non-genetic heterogeneity in promoting population survival in a mixture of sensitive and resistant cells, even in the absence of any cell–cell cooperation. Finally, we propose the potential therapeutic use of mesenchymal–epithelial transition inducers besides canonical anti-estrogen therapy to limit the emergence of reversible drug resistance. Our results offer mechanistic insights into empirical observations on EMT and drug resistance and illustrate how such dynamical insights can be exploited for better therapeutic designs.
Collapse
Affiliation(s)
- Sarthak Sahoo
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Ashutosh Mishra
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Harsimran Kaur
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Kishore Hari
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Srinath Muralidharan
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India
| | - Susmita Mandal
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
11
|
Chen J, Wan R, Li Q, Rao Z, Wang Y, Zhang L, Teichmann AT. Utilizing the Hippo pathway as a therapeutic target for combating endocrine-resistant breast cancer. Cancer Cell Int 2021; 21:306. [PMID: 34112175 PMCID: PMC8194146 DOI: 10.1186/s12935-021-01999-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/27/2021] [Indexed: 12/14/2022] Open
Abstract
Drug resistance is always a great obstacle in any endocrine therapy of breast cancer. Although the combination of endocrine therapy and targeted therapy has been shown to significantly improve prognosis, refractory endocrine resistance is still common. Dysregulation of the Hippo pathway is often related to the occurrence and the development of many tumors. Targeted therapies of this pathway have played important roles in the study of triple negative breast cancer (TNBC). Targeting the Hippo pathway in combination with chemotherapy or other targeted therapies has been shown to significantly improve specific antitumor effects and reduce cancer antidrug resistance. Further exploration has shown that the Hippo pathway is closely related to endocrine resistance, and it plays a "co-correlation point" role in numerous pathways involving endocrine resistance, including related pathways in breast cancer stem cells (BCSCs). Agents and miRNAs targeting the components of the Hippo pathway are expected to significantly enhance the sensitivity of breast cancer cells to endocrine therapy. This review initially explains the possible mechanism of the Hippo pathway in combating endocrine resistance, and it concludes by recommending endocrine therapy in combination with therapies targeting the Hippo pathway in the study of endocrine-resistant breast cancers.
Collapse
Affiliation(s)
- Jing Chen
- Department of Gynaecology and Obstetrics, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Jiangyang District, Luzhou, 646000, People's Republic of China.,Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Runlan Wan
- Department of Gynaecology and Obstetrics, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Jiangyang District, Luzhou, 646000, People's Republic of China
| | - Qinqin Li
- Department of Gynaecology and Obstetrics, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Jiangyang District, Luzhou, 646000, People's Republic of China.,Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Zhenghuan Rao
- Department of Gynaecology and Obstetrics, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Jiangyang District, Luzhou, 646000, People's Republic of China.,Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yanlin Wang
- North Sichuan Medical College, Nanchong, 637000, China
| | - Lei Zhang
- Department of Gynaecology, The Second People's Hospital of Yibin, Yibin, 644000, China
| | - Alexander Tobias Teichmann
- Department of Gynaecology and Obstetrics, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Jiangyang District, Luzhou, 646000, People's Republic of China. .,Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
12
|
Wang Y, Pan X, Li Y, Wang R, Yang Y, Jiang B, Sun G, Shao C, Wang M, Gong Y. CUL4B renders breast cancer cells tamoxifen-resistant via miR-32-5p/ER-α36 axis. J Pathol 2021; 254:185-198. [PMID: 33638154 DOI: 10.1002/path.5657] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/28/2021] [Accepted: 02/24/2021] [Indexed: 12/24/2022]
Abstract
Tamoxifen (TAM) resistance is a significant clinical challenge in endocrine therapies for estrogen receptor (ER)-positive breast cancer patients. Cullin 4B (CUL4B), which acts as a scaffold protein in CUL4B-RING ubiquitin ligase complexes (CRL4B), is frequently overexpressed in cancer and represses tumor suppressors through diverse epigenetic mechanisms. However, the role and the underlying mechanisms of CUL4B in regulating drug resistance remain unknown. Here, we showed that CUL4B promotes TAM resistance in breast cancer cells through a miR-32-5p/ER-α36 axis. We found that upregulation of CUL4B correlated with decreased TAM sensitivity of breast cancer cells, and knockdown of CUL4B or expression of a dominant-negative CUL4B mutant restored the response to TAM in TAM-resistant MCF7-TAMR and T47D-TAMR cells. Mechanistically, we demonstrated that CUL4B renders breast cancer cells TAM-resistant by upregulating ER-α36 expression, which was mediated by downregulation of miR-32-5p. We further showed that CRL4B epigenetically represses the transcription of miR-32-5p by catalyzing monoubiquitination at H2AK119 and coordinating with PRC2 and HDAC complexes to promote trimethylation at H3K27 at the promoter of miR-32-5p. Pharmacologic or genetic inhibition of CRL4B/PRC2/HDAC complexes significantly increased TAM sensitivity in breast cancer cells in vitro and in vivo. Taken together, our findings thus establish a critical role for the CUL4B-miR-32-5p-ER-α36 axis in the regulation of TAM resistance and have important therapeutic implications for combined application of TAM and the inhibitors of CRL4B/PRC2/HDAC complex in breast cancer treatment. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yuxing Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Xiaohua Pan
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, PR China
| | - Yanjun Li
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Ru Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Yuanyuan Yang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Baichun Jiang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Gongping Sun
- Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Changshun Shao
- State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, PR China
| | - Molin Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Yaoqin Gong
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| |
Collapse
|
13
|
Mahboobifard F, Dargahi L, Jorjani M, Ramezani Tehrani F, Pourgholami MH. The role of ERα36 in cell type-specific functions of estrogen and cancer development. Pharmacol Res 2021; 163:105307. [PMID: 33246174 DOI: 10.1016/j.phrs.2020.105307] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023]
|
14
|
Yao J, Deng K, Huang J, Zeng R, Zuo J. Progress in the Understanding of the Mechanism of Tamoxifen Resistance in Breast Cancer. Front Pharmacol 2020; 11:592912. [PMID: 33362547 PMCID: PMC7758911 DOI: 10.3389/fphar.2020.592912] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/16/2020] [Indexed: 12/24/2022] Open
Abstract
Tamoxifen is a drug commonly used in the treatment of breast cancer, especially for postmenopausal patients. However, its efficacy is limited by the development of drug resistance. Downregulation of estrogen receptor alpha (ERα) is an important mechanism of tamoxifen resistance. In recent years, with progress in research into the protective autophagy of drug-resistant cells and cell cycle regulators, major breakthroughs have been made in research on tamoxifen resistance. For a better understanding of the mechanism of tamoxifen resistance, protective autophagy, cell cycle regulators, and some transcription factors and enzymes regulating the expression of the estrogen receptor are summarized in this review. In addition, recent progress in reducing resistance to tamoxifen is reviewed. Finally, we discuss the possible research directions into tamoxifen resistance in the future to provide assistance for the clinical treatment of breast cancer.
Collapse
Affiliation(s)
- Jingwei Yao
- Nanhua Hospital Affiliated to University of South China, Hengyang, China.,The Third Affiliated Hospital of University of South China, Hengyang, China
| | - Kun Deng
- Transformation Research Lab, Hengyang Medical School, University of South China, Hengyang, China
| | - Jialu Huang
- Transformation Research Lab, Hengyang Medical School, University of South China, Hengyang, China
| | - Ruimin Zeng
- Nanhua Hospital Affiliated to University of South China, Hengyang, China
| | - Jianhong Zuo
- Nanhua Hospital Affiliated to University of South China, Hengyang, China.,Transformation Research Lab, Hengyang Medical School, University of South China, Hengyang, China.,The Third Affiliated Hospital of University of South China, Hengyang, China
| |
Collapse
|
15
|
Thiebaut C, Konan HP, Guerquin MJ, Chesnel A, Livera G, Le Romancer M, Dumond H. The Role of ERα36 in Development and Tumor Malignancy. Int J Mol Sci 2020; 21:E4116. [PMID: 32526980 PMCID: PMC7312586 DOI: 10.3390/ijms21114116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Estrogen nuclear receptors, represented by the canonical forms ERα66 and ERβ1, are the main mediators of the estrogen-dependent pathophysiology in mammals. However, numerous isoforms have been identified, stimulating unconventional estrogen response pathways leading to complex cellular and tissue responses. The estrogen receptor variant, ERα36, was cloned in 2005 and is mainly described in the literature to be involved in the progression of mammary tumors and in the acquired resistance to anti-estrogen drugs, such as tamoxifen. In this review, we will first specify the place that ERα36 currently occupies within the diversity of nuclear and membrane estrogen receptors. We will then report recent data on the impact of ERα36 expression and/or activity in normal breast and testicular cells, but also in different types of tumors including mammary tumors, highlighting why ERα36 can now be considered as a marker of malignancy. Finally, we will explain how studying the regulation of ERα36 expression could provide new clues to counteract resistance to cancer treatments in hormone-sensitive tumors.
Collapse
Affiliation(s)
- Charlène Thiebaut
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; (C.T.); (A.C.)
| | - Henri-Philippe Konan
- Université de Lyon, F-69000 Lyon, France; (H.-P.K.); (M.L.R.)
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Marie-Justine Guerquin
- Laboratory of Development of the Gonads, UMRE008 Genetic Stability Stem Cells and Radiation, Université de Paris, Université Paris Saclay, CEA, F-92265 Fontenay aux Roses, France; (M.-J.G.); (G.L.)
| | - Amand Chesnel
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; (C.T.); (A.C.)
| | - Gabriel Livera
- Laboratory of Development of the Gonads, UMRE008 Genetic Stability Stem Cells and Radiation, Université de Paris, Université Paris Saclay, CEA, F-92265 Fontenay aux Roses, France; (M.-J.G.); (G.L.)
| | - Muriel Le Romancer
- Université de Lyon, F-69000 Lyon, France; (H.-P.K.); (M.L.R.)
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Hélène Dumond
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; (C.T.); (A.C.)
| |
Collapse
|
16
|
Li G, Zhang J, Xu Z, Li Z. ERα36 as a Potential Therapeutic Target for Tamoxifen-Resistant Breast Cancer Cell Line Through EGFR/ERK Signaling Pathway. Cancer Manag Res 2020; 12:265-275. [PMID: 32021441 PMCID: PMC6969677 DOI: 10.2147/cmar.s226410] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/16/2019] [Indexed: 01/08/2023] Open
Abstract
Background Acquired tamoxifen resistance is one of the major barriers to the successful treatment of breast cancer. Recently, overexpression of ERα36 was demonstrated to be a potential mechanism for the generation of acquired tamoxifen resistance. This study aims to evaluate the possibility of ERα36 being a therapeutic target for tamoxifen-resistant breast cancer. Methods A tamoxifen-resistant cell subline (MCF-7/TAM) was established by culturing MCF-7 cells in medium plus 1 μM tamoxifen over 6 months. Colony-forming assay was used to determine the sensitivity of MCF-7/TAM cells to tamoxifen. Stable transfection was used to knockdown ERα36 expression in MCF-7/TAM cells. MTT assay and Transwell migration assay were used to assess the in vitro proliferation and migration, respectively. Nude mouse tumorigenicity assay was used to evaluate in vivo tumorigenicity. Western blot analysis and quantitative real-time PCR (qRT-PCR) were used to examine the expression of ERα36, ERα, EGFR and phosphorylated ERK1/2. The dual-luciferase reporter assay was used to determine the effect of ERα36 on the activity of EGFR-promotor. Results MCF-7/TAM cells possessed greatly increased ERα36 expression and EGFR expression and exhibited significantly increased in vitro proliferation and migration ability, as well as increased in vivo tumor growth ability, compared to parental MCF-7 cells. Knockdown of ERα36 expression inhibited in vitro proliferation and migration, as well as in vivo tumor growth ability of MCF-7/TAM cells. ERα36 regulated EGFR expression at the transcriptional level, and knockdown of ERα36 in MCF-7/TAM cells downregulated EGFR expression and then blocked EGFR/ERK signaling pathway. Conclusion Knockdown of ERα36 inhibits the growth of MCF-7/TAM cells in vitro and in vivo by blocking EGFR/ERK signaling pathway. ERα36 may be a candidate therapeutic target for the treatment of tamoxifen-resistant breast cancer.
Collapse
Affiliation(s)
- Guangliang Li
- Institute of Cancer Research and Basic Medicine (ICBM), Chinese Academy of Sciences, Department of Medical Oncology (Breast), Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, People's Republic of China
| | - Jing Zhang
- Department of Surgical Oncology, The 1st Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, People's Republic of China
| | - Zhenzhen Xu
- Department of Surgical Oncology, The 1st Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, People's Republic of China
| | - Zhongqi Li
- Department of Surgical Oncology, The 1st Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, People's Republic of China
| |
Collapse
|
17
|
Zheng Y, Sowers JY, Houston KD. IGFBP-1 Expression Promotes Tamoxifen Resistance in Breast Cancer Cells via Erk Pathway Activation. Front Endocrinol (Lausanne) 2020; 11:233. [PMID: 32435229 PMCID: PMC7218143 DOI: 10.3389/fendo.2020.00233] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/31/2020] [Indexed: 01/18/2023] Open
Abstract
Insulin-like growth factor (IGF) system plays a significant role in many cellular processes, including proliferation, and survival. In estrogen receptor positive breast cancer, the level of circulating IGF-1 is positively associated with the incidence and at least 50% of cases have elevated IGF-1R signaling. Tamoxifen, a selective estrogen receptor modulator and antagonist for estrogen receptor alpha (ERα) in breast tissue, is a commonly prescribed adjuvant treatment for patients presenting with ERα-positive breast cancer. Unfortunately, tamoxifen resistance is a frequent occurrence in patients receiving treatment and the molecular mechanisms that underlie tamoxifen resistance not adequately defined. It has recently been reported that the inhibition of IGF-1R activation and the proliferation of breast cancer cells upon tamoxifen treatment is mediated by the accumulation of extracellular insulin-like growth factor binding protein 1 (IGFBP-1). Elevated IGFBP-1 expression was observed in tamoxifen-resistant (TamR) MCF-7 and T-47D cells lines suggesting that the tamoxifen-resistant state is associated with IGFBP-1 accumulation. MCF-7 and T-47D breast cancer cells stably transfected with and IGFBP-1 expression vector were generated (MCF7-BP1 and T47D-BP1) to determine the impact of breast cancer cell culture in the presence of increased IGFBP-1 expression. In these cells, the expression of IGF-1R was significantly reduced compared to controls and was similar to our observations in tamoxifen-resistant MCF-7 and T-47D cells. Also similar to TamR breast cancer cells, MCF7-BP1 and T47D-BP1 were resistant to tamoxifen treatment, had elevated epidermal growth factor receptor (EGFR) expression, increased phospho-EGFR (pEGFR), and phospho-Erk (pErk). Furthermore, tamoxifen sensitivity was restored in the MCF7-BP1 and T47D-BP1 upon inhibition of Erk phosphorylation. Lastly, the transient knockdown of IGFBP-1 in MCF7-BP1 and T47D-BP1 inhibited pErk accumulation and increased tamoxifen sensitivity. Taken together, these data support the conclusion that IGFBP-1 is a key component of the development of tamoxifen resistance in breast cancer cells.
Collapse
|
18
|
Endocrine resistant breast cancer cells with loss of ERα expression retain proliferative ability by reducing caspase7-mediated HDAC3 cleavage. Cell Oncol (Dordr) 2019; 43:65-80. [DOI: 10.1007/s13402-019-00439-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2019] [Indexed: 02/07/2023] Open
|
19
|
Estrogen Receptor-positive Ductal Carcinoma In Situ Frequently Overexpresses HER2 Protein Without Gene Amplification. Am J Surg Pathol 2019; 43:1221-1228. [DOI: 10.1097/pas.0000000000001300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
20
|
Chen J, Chen L, Lu T, Xie Y, Li C, Jia Z, Cao J. ERα36 is an effective target of epigallocatechin-3-gallate in hepatocellular carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:3222-3234. [PMID: 31934166 PMCID: PMC6949832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Epigallocatechin-3-gallate (EGCG) is a natural product with potential anti-cancer property whose direct target has not been identified. This study intended to investigate ERα36, a new isoform of estrogen receptor alpha (ERa), as a therapeutic target of EGCG in hepatocellular carcinoma (HCC). In this work, we examined the expression level of ERs in HCC cell lines and a normal human liver cell line, and evaluated inhibition effect of EGCG on these cells in vitro, and further on Hep3B in vivo. The results showed that ERα36 was the main ER in HCC cells and served as a biomarker of responsiveness to EGCG inhibition, and there was a positive correlation between ERα36 expression level and inhibitory effect of EGCG as indicated by IC50. In vivo experiments also showed dose-dependent inhibition of EGCG on ERα36 high-expressing Hep3B. EGCG exerted inhibition on Hep3B cells by both anti-proliferation and pro-apoptosis. ERα36-EGFR-Her-2 feedback loop, PI3K/Akt and MAPK/ERK pathways were inhibited, while caspase 3 was activated by EGCG in Hep3B cells, with p-ERK accumulated in cytoplasm. The inhibitory effect of EGCG was significantly attenuated when ERα36 was pre-activated. This is the first evidence that EGCG exerts its anti-cancer effect by inhibiting ERα36, followed with inhibition of the ERα36-EGFR-Her-2 feedback loop and PI3K/Akt, MAPK/ERK pathway, activation of caspase 3, and accumulation of p-ERK in cytoplasm. It suggests that ERα36 might be an efficient target of EGCG in HCC.
Collapse
Affiliation(s)
- Jing Chen
- Clinical Research Center, The Second Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310009, Zhejiang Province, China
| | - Lihong Chen
- Clinical Research Center, The Second Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310009, Zhejiang Province, China
| | - Ting Lu
- Clinical Research Center, The Second Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310009, Zhejiang Province, China
| | - Yuqiong Xie
- Clinical Research Center, The Second Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310009, Zhejiang Province, China
| | - Chunchun Li
- Clinical Research Center, The Second Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310009, Zhejiang Province, China
| | - Zhenyu Jia
- Institute of Occupational Diseases, Zhejiang Academy of Medical SciencesHangzhou 310013, Zhejiang Province, China
| | - Jiang Cao
- Clinical Research Center, The Second Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310009, Zhejiang Province, China
| |
Collapse
|
21
|
刘 敏, 谢 巍, 郑 维, 尹 丹, 罗 瑞, 郭 风. [Targeted binding of estradiol with ESR1 promotes proliferation of human chondrocytes in vitro by inhibiting activation of ERK signaling pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:134-143. [PMID: 30890499 PMCID: PMC6765635 DOI: 10.12122/j.issn.1673-4254.2019.02.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Indexed: 03/15/2024]
Abstract
OBJECTIVE To investigate the effect of estradiol (E2)/estrogen receptor 1 (ESR1) on the proliferation of human chondrocytes in vitro and explore the molecular mechanism. METHODS The Ad-Easy adenovirus packaging system was used to construct and package the ESR1-overexpressing adenovirus Ad-ESR1. Western blotting and qPCR were used to detect the expression of ESR1 protein and mRNA in human chondrocyte C28I2 cells. In the cells treated with different adenoviruses, the effects of E2 were tested on the expressions of proteins related with cell autophagy and apoptosis and the phosphorylation of ERK signaling pathway using Western blotting. Immunofluorescence assay was used to observe the intracellular autophagic flow, flow cytometry was performed to analyze the cell apoptosis rate and the cell cycle changes, and qPCR was used to detect the expressions of PCNA, cyclin B1 and cyclin D1 mRNAs. The inhibitory effect of the specific inhibitor of ERK on the expressions of autophagy- and apoptosis-related genes at both the protein and mRNA levels were detected using Western blotting and qPCR. RESULTS Transfection with the recombinant adenovirus overexpressing ESR1 and E2 treatment of C28I2 cells significantly enhanced the expressions of autophagy-related proteins LC3, ATG7, promoted the colocalization of LC3 and LAMP1 in the cytoplasm, increased the expressions of the proliferation-related marker genes PCNA, cyclin B1 and cyclin D1, and supressed the expressions of cleaved caspase-3, caspase-12 and pERK. RNA interference of ESR1 obviously lowered the expression levels of autophagy-related proteins in C28I2 cells, causing also suppression of the autophagic flow, increments of the expressions of apoptosis-related proteins and pERK, and down-regulated the expressions of the proliferation marker genes. Blocking ERK activation with the ERK inhibitor obviously inhibited the effects of E2/ESR1 on autophagy, proliferationrelated gene expressions and cell apoptosis. CONCLUSIONS The targeted binding of E2 with ESR1 promotes the proliferation of human chondrocytes in vitro possibly by inhibiting the activation of ERK signaling pathway to promote cell autophagy and induce cell apoptosis.
Collapse
Affiliation(s)
- 敏 刘
- />重庆医科大学基础医学院细胞生物学与遗传学教研室//发育生物学与模式动物平台,重庆 400016Department of Cell Biology and Genetics, Core Facility of Development Biology, Basic Medical Science of Chongqing Medical University, Chongqing 400016, China
| | - 巍伟 谢
- />重庆医科大学基础医学院细胞生物学与遗传学教研室//发育生物学与模式动物平台,重庆 400016Department of Cell Biology and Genetics, Core Facility of Development Biology, Basic Medical Science of Chongqing Medical University, Chongqing 400016, China
| | - 维 郑
- />重庆医科大学基础医学院细胞生物学与遗传学教研室//发育生物学与模式动物平台,重庆 400016Department of Cell Biology and Genetics, Core Facility of Development Biology, Basic Medical Science of Chongqing Medical University, Chongqing 400016, China
| | - 丹旸 尹
- />重庆医科大学基础医学院细胞生物学与遗传学教研室//发育生物学与模式动物平台,重庆 400016Department of Cell Biology and Genetics, Core Facility of Development Biology, Basic Medical Science of Chongqing Medical University, Chongqing 400016, China
| | - 瑞 罗
- />重庆医科大学基础医学院细胞生物学与遗传学教研室//发育生物学与模式动物平台,重庆 400016Department of Cell Biology and Genetics, Core Facility of Development Biology, Basic Medical Science of Chongqing Medical University, Chongqing 400016, China
| | - 风劲 郭
- />重庆医科大学基础医学院细胞生物学与遗传学教研室//发育生物学与模式动物平台,重庆 400016Department of Cell Biology and Genetics, Core Facility of Development Biology, Basic Medical Science of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
22
|
Zhu L, Zou J, Zhao Y, Jiang X, Wang Y, Wang X, Chen B. ER-α36 mediates cisplatin resistance in breast cancer cells through EGFR/HER-2/ERK signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:123. [PMID: 29940998 PMCID: PMC6019204 DOI: 10.1186/s13046-018-0798-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/15/2018] [Indexed: 11/26/2022]
Abstract
Background ER-α36, a novel ER-α66 variant, has been demonstrated to promote tamoxifen resistance in breast cancer cells. However, the role and mechanisms of ER-α36 in cisplatin resistance of breast cancer cells remain unclear. This study investigates the expression and role of ER-α36 in cisplatin resistance of breast cancer cells and elucidates its underlying mechanisms. Methods The expression of ER-α36 and the proteins involved in nongenomic estrogen signaling was evaluated by western blot analysis. Cisplatin sensitivity was explored by CCK-8 assay, monolayer colony formation assay and apoptosis assays, respectively. ER-α36 siRNAs/shRNAs and overexpression vector were transfected into cells to down-regulate or up-regulate ER-α36 expression. Loss-and gain-of function assays were performed to investigate the role of ER-α36 in cisplatin sensitivity. The interaction between ER-α36 and EGFR/HER-2 were detected using CoIP. A mouse xenograft model of breast cancer was established to verify the role of ER-α36 in vivo. Results ER-α36 is expressed at higher levels in cisplatin-resistant breast cancer cells compared to cisplatin sensitive cells. Cisplatin induced up-regulation of ER-α36 in a dose-dependent manner in breast cancer cells. Overexpression of ER-α36 leaded to cell resistant to cisplatin and knockdown of ER-α36 in cisplatin-resistant breast cancer cells restored cisplatin sensitivity. The up-regulation of ER-α36 resulted in increased activation of nongenomic estrogen signaling, which was responsible for cisplatin resistance. Disruption of ER-α36-mediated nongenomic estrogen signaling with kinase inhibitors significantly inhibited cisplatin-induced expression of ER-α36 and increased cisplatin sensitivity. The in vivo experiment also confirmed that up-regulation of ER-α36 attenuated cisplatin sensitivity in a mouse xenograft model of breast cancer. Conclusions The results for the first time demonstrated that ER-α36 mediates cisplatin resistance in breast cancer cells through nongenomic estrogen signaling, suggesting that ER-α36 may serve as a novel target for cisplatin resistance and a potential indicator of cisplatin sensitivity in breast cancer treatment.
Collapse
Affiliation(s)
- Linlin Zhu
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, 400038, China
| | - Jiao Zou
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, 400038, China
| | - Yuanyin Zhao
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, 400038, China
| | - Xiaomei Jiang
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, 400038, China
| | - Yang Wang
- Department of Clinical Laboratory, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Xiangwei Wang
- Department of Urology, Shenzhen University General Hospital, Shenzhen, 518060, Guangdong, China
| | - Bin Chen
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
23
|
Concomitant high expression of ERα36, EGFR and HER2 is associated with aggressive behaviors of papillary thyroid carcinomas. Sci Rep 2017; 7:12279. [PMID: 28947799 PMCID: PMC5612999 DOI: 10.1038/s41598-017-12478-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/08/2017] [Indexed: 12/20/2022] Open
Abstract
ERα, ERβ, PR, ERα36, EGFR and HER2 mRNA and protein expression in papillary thyroid carcinoma (PTC) were examined by real time RT-PCR and immunohistochemical staining. The mRNA and protein expression of ERα and PR were gradually increased and those of ERβ were gradually decreased from normal thyroid tissues to nodular hyperplasias (P < 0.05) and to PTCs (P < 0.05). However, the mRNA and protein expression of ERα36, EGFR and HER2 were only significantly increased in PTCs when compared with those in normal thyroid tissues (P < 0.001) and nodular hyperplasias (P < 0.001). There was some correlation between ERα, ERβ and PR, and between ERα36, EGFR and HER2 protein expression in PTCs. As for ERα, ERβ and PR, there was a significant positive correlation between ERα and PR, and a significant negative correlation between ERα and ERβ and between PR and ERβ protein expression. As for ERα36, EGFR and HER2, there was a significant positive correlation between ERα36, EGFR and HER2 protein expression in PTCs. Concomitant high expression of ERα36, EGFR and HER2 was strongly associated with aggressive behaviors including extrathyroidal extension (ETE), lymph node metastasis (LNM) and high TNM stage in PTCs (P < 0.001).
Collapse
|
24
|
Nishimura R, Toh U, Tanaka M, Saimura M, Okumura Y, Saito T, Tanaka T, Teraoka M, Shimada K, Katayama K, Koga T, Kurashita K, Hasegawa S, Todoroki H, Kai Y, Ohi Y, Toyoshima S, Arima N, Mitsuyama S, Tamura K. Role of HER2-Related Biomarkers (HER2, p95HER2, HER3, PTEN, and PIK3CA) in the Efficacy of Lapatinib plus Capecitabine in HER2-Positive Advanced Breast Cancer Refractory to Trastuzumab. Oncology 2017; 93:51-61. [PMID: 28478451 DOI: 10.1159/000468521] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/28/2017] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the correlation between human epidermal growth factor receptor 2 (HER2)-related biomarkers and the treatment outcomes using lapatinib plus capecitabine (LC) and to evaluate the influence of the estrogen receptor (ER) status in trastuzumab-refractory HER2-positive advanced breast cancer. METHOD Eighty patients were enrolled in this study. Total HER2, p95HER2, and total HER3 expression were quantified using the VeraTag assays. PTEN (phosphatase and tensin homolog) and p95 expression was evaluated using immunohistochemistry and PIK3CA mutation using direct sequencing. RESULTS The response rate to LC was 30%, clinical benefit rate was 51.3%, and the median progression-free survival (PFS) was 174.5 days. ER negativity significantly correlated with higher HER2 and p95HER2. The lower HER2 and PIK3CA mutations were often observed in the nonresponders. A high p95HER2 expression correlated with longer PFS especially in the high HER2- and ER-positive cases. Patients without the PIK3CA mutation showed longer PFS in the same subset. Overall survival after LC significantly correlated with the number of recurrence organs. CONCLUSION LC therapy is effective in trastuzumab-refractory HER2-positive breast cancer. Moreover, the biomarker expression differed depending on ER status, and a high p95HER2 expression and wild-type PIK3CA gene correlated with longer PFS especially in the ER-positive cases.
Collapse
Affiliation(s)
- Reiki Nishimura
- Department of Breast Oncology, Kumamoto Shinto General Hospital, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
ER-α36 Interactions With Cytosolic Molecular Network in Acquired Tamoxifen Resistance. Clin Breast Cancer 2017; 17:403-407. [PMID: 28433540 DOI: 10.1016/j.clbc.2017.03.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/12/2017] [Accepted: 03/23/2017] [Indexed: 01/04/2023]
Abstract
According to the World Health Organization (WHO) published data in 2015; breast cancer is the most prevalent and the second leading cause of cancer death among females. As approximately 70% of breast cancer tumor cells are estrogen receptor (ER) positive, primary therapeutic agents such as Anti-estrogens were produced mostly in a way to target this receptor. Anti-estrogen therapies mostly target Estrogen receptor and block its underlying signaling pathways. Nevertheless, resistance to these agents made the condition more complicated. Recently the role of one molecule in the resistance development has been studied in some cases: ER-α36 is a 36 kDa variant of estrogen receptor molecule which is mostly absent in normal breast cells. Its interactions with epidermal growth factor receptors and ER-α66 leads in over-activation and/or over-expression of estrogen-independent pathways and suppression of estrogen-dependent pathways; they all in turn, will maintain tumor cell's growth even in the presence of tamoxifen. In this mini-review, we mainly surveyed different pathways which ER-α36 could lead to tamoxifen resistance. We also briefly mentioned how ER-α36 could switch the growth cascades from estrogen dependent into independent and make this resistance network become even more complicated.
Collapse
|
26
|
Thiebaut C, Chamard-Jovenin C, Chesnel A, Morel C, Djermoune EH, Boukhobza T, Dumond H. Mammary epithelial cell phenotype disruption in vitro and in vivo through ERalpha36 overexpression. PLoS One 2017; 12:e0173931. [PMID: 28301550 PMCID: PMC5354400 DOI: 10.1371/journal.pone.0173931] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/28/2017] [Indexed: 12/16/2022] Open
Abstract
Estrogen receptor alpha 36 (ERα36) is a variant of the canonical estrogen receptor alpha (ERα66), widely expressed in hormone sensitive cancer cells and whose high expression level correlates with a poor survival prognosis for breast cancer patients. While ERα36 activity have been related to breast cancer progression or acquired resistance to treatment, expression level and location of ERα36 are poorly documented in the normal mammary gland. Therefore, we explored the consequences of a ERα36 overexpression in vitro in MCF-10A normal mammary epithelial cells and in vivo in a unique model of MMTV-ERα36 transgenic mouse strain wherein ERα36 mRNA was specifically expressed in the mammary gland. By a combination of bioinformatics and computational analyses of microarray data, we identified hierarchical gene networks, downstream of ERα36 and modulated by the JAK2/STAT3 signaling pathway. Concomitantly, ERα36 overexpression lowered proliferation rate but enhanced migration potential and resistance to staurosporin-induced apoptosis of the MCF-10A cell line. In vivo, ERα36 expression led to duct epithelium thinning and disruption in adult but not in prepubescent mouse mammary gland. These phenotypes correlated with a loss of E-cadherin expression. Here, we show that an enhanced expression of ERα36 is sufficient, by itself, to disrupt normal breast epithelial phenotype in vivo and in vitro through a dominant-positive effect on nongenomic estrogen signaling pathways. These results also suggest that, in the presence of adult endogenous steroid levels, ERα36 overexpression in vivo contributes to alter mammary gland architecture which may support pre-neoplastic lesion and augment breast cancer risk.
Collapse
Affiliation(s)
- Charlène Thiebaut
- CNRS-Université de Lorraine, UMR 7039, Centre de Recherche en Automatique de Nancy, BP70239, Vandœuvre-lès-Nancy, France
| | - Clémence Chamard-Jovenin
- CNRS-Université de Lorraine, UMR 7039, Centre de Recherche en Automatique de Nancy, BP70239, Vandœuvre-lès-Nancy, France
| | - Amand Chesnel
- CNRS-Université de Lorraine, UMR 7039, Centre de Recherche en Automatique de Nancy, BP70239, Vandœuvre-lès-Nancy, France
| | - Chloé Morel
- CNRS-Université de Lorraine, UMR 7039, Centre de Recherche en Automatique de Nancy, BP70239, Vandœuvre-lès-Nancy, France
| | - El-Hadi Djermoune
- CNRS-Université de Lorraine, UMR 7039, Centre de Recherche en Automatique de Nancy, BP70239, Vandœuvre-lès-Nancy, France
| | - Taha Boukhobza
- CNRS-Université de Lorraine, UMR 7039, Centre de Recherche en Automatique de Nancy, BP70239, Vandœuvre-lès-Nancy, France
| | - Hélène Dumond
- CNRS-Université de Lorraine, UMR 7039, Centre de Recherche en Automatique de Nancy, BP70239, Vandœuvre-lès-Nancy, France
- * E-mail:
| |
Collapse
|
27
|
Mansouri S, Naghavi-Al-Hosseini F, Farahmand L, Majidzadeh-A K. MED1 may explain the interaction between receptor tyrosine kinases and ERα66 in the complicated network of Tamoxifen resistance. Eur J Pharmacol 2017; 804:78-81. [PMID: 28322840 DOI: 10.1016/j.ejphar.2017.03.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/09/2017] [Accepted: 03/15/2017] [Indexed: 02/07/2023]
Abstract
According to the American Society of Clinical Oncology or ASCO's clinical practice guidelines, administration of Tamoxifen for hormone receptor positive patients improved outcomes. However, many studies have been conducted in this issue, with the rise of Tamoxifen resistance in recent decades. There are many alternative growth cascades that are activated in Tamoxifen resistant cells. The most common and well characterized components of such a resistant network are receptor tyrosine kinases, or RTKs, which can influence many other cellular processes. The interactions between estrogen dependent and independent pathways further complicate the networking. MED1, as a member of a mediator complex, which is activated by RTK growth pathways, plays role in co-activating ERα66 to transcribe genes and enhance cellular proliferation. Herein, we will discuss MED1, a novel biomarker which can explain how RTKs interact with ERα66 which results in Tamoxifen resistance.
Collapse
Affiliation(s)
- Sepideh Mansouri
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Fateme Naghavi-Al-Hosseini
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Leila Farahmand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Keivan Majidzadeh-A
- Cancer Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| |
Collapse
|
28
|
Zhang Y, Leonard M, Shu Y, Yang Y, Shu D, Guo P, Zhang X. Overcoming Tamoxifen Resistance of Human Breast Cancer by Targeted Gene Silencing Using Multifunctional pRNA Nanoparticles. ACS NANO 2017; 11:335-346. [PMID: 27966906 PMCID: PMC5488869 DOI: 10.1021/acsnano.6b05910] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Most breast cancers express estrogen receptor (ER) α, and the antiestrogen drug tamoxifen has been widely used for their treatment. Unfortunately, up to half of all ERα-positive tumors have intrinsic or acquired endocrine therapy resistance. Our recent studies revealed that the ER coactivator Mediator Subunit 1 (MED1) plays a critical role in tamoxifen resistance through cross-talk with HER2. Herein, we assembled a three-way junction (3-WJ) pRNA-HER2apt-siMED1 nanoparticle to target HER2-overexpressing human breast cancer via an HER2 RNA aptamer to silence MED1 expression. We found that these ultracompact RNA nanoparticles are very stable under RNase A, serum, and 8 M urea conditions. These nanoparticles specifically bound to HER2-overexpressing breast cancer cells, efficiently depleted MED1 expression, and significantly decreased ERα-mediated gene transcription, whereas point mutations of the HER2 RNA aptamer on these nanoparticles abolished such functions. The RNA nanoparticles not only reduced the growth, metastasis, and mammosphere formation of the HER2-overexpressing breast cancer cells but also sensitized them to tamoxifen treatment. These biosafe nanoparticles efficiently targeted and penetrated into HER2-overexpressing tumors after systemic administration in orthotopic xenograft mouse models. In addition to their ability to greatly inhibit tumor growth and metastasis, these nanoparticles also led to a dramatic reduction in the stem cell content of breast tumors when combined with tamoxifen treatment in vivo. Overall, we have generated multifunctional RNA nanoparticles that specifically targeted HER2-overexpressing human breast cancer, silenced MED1, and overcame tamoxifen resistance.
Collapse
Affiliation(s)
- Yijuan Zhang
- Department of Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States
| | - Marissa Leonard
- Department of Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States
- Graduate Program in Cancer and Cell Biology, Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States
| | - Yi Shu
- College of Pharmacy, Department of Physiology & Cell Biology, College of Medicine, and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yongguang Yang
- Department of Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States
| | - Dan Shu
- College of Pharmacy, Department of Physiology & Cell Biology, College of Medicine, and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, United States
| | - Peixuan Guo
- College of Pharmacy, Department of Physiology & Cell Biology, College of Medicine, and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xiaoting Zhang
- Department of Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States
- Graduate Program in Cancer and Cell Biology, Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States
- Corresponding Author: Tel: 513-558-3017. Fax: 513-558-4454.
| |
Collapse
|
29
|
The molecular mechanisms underlying the ERα-36-mediated signaling in breast cancer. Oncogene 2016; 36:2503-2514. [PMID: 27941878 PMCID: PMC5422711 DOI: 10.1038/onc.2016.415] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/30/2016] [Accepted: 10/03/2016] [Indexed: 12/12/2022]
Abstract
Alterations in estrogen-mediated cellular signaling have largely been implicated in the pathogenesis of breast cancer. Here, we investigated the signaling regulation of a splice variant of the estrogen receptor, namely estrogen receptor (ERα-36), associated with a poor prognosis in breast cancers. Coupling in vitro and in vivo approaches we determined the precise sequential molecular events of a new estrogen signaling network in an ERα-negative cell line and in an original patient-derived xenograft. After estrogen treatment, ERα-36 rapidly associates with Src at the level of the plasma membrane, initiating downstream cascades, including MEK1/ERK activation and paxillin phosphorylation on S126, which in turn triggers a higher expression of cyclin D1. Of note, the direct binding of ERα-36 to ERK2 prevents its dephosphorylation by MKP3 and enhances the downstream signaling. These findings improve our understanding of the regulation of non-genomic estrogen signaling and open new avenues for personalized therapeutic approaches targeting Src or MEK in ERα-36-positive patients.
Collapse
|
30
|
Yin L, Wang ZY. Roles of the ER-α36-EGFR/HER2 positive regulatory loops in tamoxifen resistance. Steroids 2016; 111:95-99. [PMID: 26884313 DOI: 10.1016/j.steroids.2016.01.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 01/28/2016] [Accepted: 01/28/2016] [Indexed: 11/16/2022]
Abstract
Tamoxifen provided a successful treatment for ER-positive breast cancer for the past four decades. However, most breast tumors are eventually resistant to tamoxifen therapy. Extensive researches were conducted to understand the molecular mechanisms involved in tamoxifen resistance, and have revealed that multiple signaling molecules and pathways such as EGFR and HER2 are involved in tamoxifen resistance. Currently, the mechanisms by which tamoxifen sensitive breast cancer cells acquire these signaling pathways and develop tamoxifen resistance have not been elucidated. The identification of ER-α36, a variant of ER-α, that is able to mediate agonist activity of tamoxifen provided great insights into the underlying mechanisms of tamoxifen resistance. In this review, we will discuss the biological function and the possible underlying mechanisms of ER-α36 in tamoxifen resistance and specifically illustrate a novel cross-talk mechanism; positive regulatory loops between the ER-α36 and EGFR/HER2 in tamoxifen resistance. The function and the underlying mechanisms of ER-α36 in tamoxifen resistance of the breast cancer stem/progenitor cells will also be discussed. Finally, we will postulate a novel approach to restore tamoxifen sensitivity in tamoxifen resistant breast cancer cells.
Collapse
Affiliation(s)
- Li Yin
- Department of Medical Microbiology and Immunology, Creighton University Medical School, 2500 California Plaza, Omaha, NE, USA
| | - Zhao-Yi Wang
- Department of Medical Microbiology and Immunology, Creighton University Medical School, 2500 California Plaza, Omaha, NE, USA.
| |
Collapse
|
31
|
Weitzenfeld P, Kossover O, Körner C, Meshel T, Wiemann S, Seliktar D, Legler DF, Ben-Baruch A. Chemokine axes in breast cancer: factors of the tumor microenvironment reshape the CCR7-driven metastatic spread of luminal-A breast tumors. J Leukoc Biol 2016; 99:1009-25. [PMID: 26936935 DOI: 10.1189/jlb.3ma0815-373r] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 02/04/2016] [Indexed: 12/16/2022] Open
Abstract
Chemokine axes have been shown to mediate site-specific metastasis in breast cancer, but their relevance to different subtypes has been hardly addressed. Here, with the focus on the CCR7-CCL21 axis, patient datasets demonstrated that luminal-A tumors express relatively low CCR7 levels compared with more aggressive disease subtypes. Furthermore, lymph node metastasis was not associated with high CCR7 levels in luminal-A patients. The metastatic pattern of luminal-A breast tumors may be influenced by the way luminal-A tumor cells interpret signals provided by factors of the primary tumor microenvironment. Thus, CCR7-expressing human luminal-A cells were stimulated simultaneously by factors representing 3 tumor microenvironment arms typical of luminal-A tumors, hormonal, inflammatory, and growth stimulating: estrogen + TNF-α + epidermal growth factor. Such tumor microenvironment stimulation down-regulated the migration of CCR7-expressing tumor cells toward CCL21 and inhibited the formation of directional protrusions toward CCL21 in a novel 3-dimensional hydrogel system. CCL21-induced migration of CCR7-expressing tumor cells depended on PI3K and MAPK activation; however, when CCR7-expressing cancer cells were prestimulated by tumor microenvironment factors, CCL21 could not effectively activate these signaling pathways. In vivo, pre-exposure of the tumor cells to tumor microenvironment factors has put restraints on CCL21-mediated lymph node-homing cues and shifted the metastatic pattern of CCR7-expressing cells to the aggressive phenotype of dissemination to bones. Several of the aspects were also studied in the CXCR4-CXCL12 system, demonstrating similar patient and in vitro findings. Thus, we provide novel evidence to subtype-specific regulation of the CCR7-CCL21 axis, with more general implications to chemokine-dependent patterns of metastatic spread, revealing differential regulation in the luminal-A subtype.
Collapse
Affiliation(s)
- Polina Weitzenfeld
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Olga Kossover
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Cindy Körner
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany; and
| | - Tsipi Meshel
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany; and
| | - Dror Seliktar
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Daniel F Legler
- Biotechnology Institute Thurgau at the University of Konstanz, Konstanz, Germany
| | - Adit Ben-Baruch
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel;
| |
Collapse
|
32
|
Wang ZY, Yin L. Estrogen receptor alpha-36 (ER-α36): A new player in human breast cancer. Mol Cell Endocrinol 2015; 418 Pt 3:193-206. [PMID: 25917453 DOI: 10.1016/j.mce.2015.04.017] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 04/20/2015] [Accepted: 04/20/2015] [Indexed: 01/16/2023]
Abstract
Prevailing wisdom is that estrogen receptor (ER)-α mediated genomic estrogen signaling is responsible for estrogen-stimulated cell proliferation and development of ER-positive breast cancer. However, accumulating evidence indicates that another estrogen signaling pathway, non-genomic or rapid estrogen signaling, also plays an important role in mitogenic estrogen signaling. Previously, our laboratory cloned a 36 kDa variant of ER-α, ER-α36, and found that ER-α36 is mainly expressed in the cytoplasm and at the plasma membrane. ER-α36 mediates rapid estrogen signaling and inhibits genomic estrogen signaling. In this review, we review and update the biological function of ER-α36 in ER-positive and -negative breast cancer, breast cancer stem/progenitor cells and tamoxifen resistance, potential interaction and cross-talk of ER-α36 with other ERs and growth factor receptors, and intracellular pathways of ER-α36-mediated rapid estrogen signaling. The potential function and underlying mechanism of ER-α in development of ER-positive breast cancer will also be discussed.
Collapse
Affiliation(s)
- Zhao-Yi Wang
- Department of Medical Microbiology & Immunology, Creighton University Medical School, 2500 California Plaza, Omaha, NE 68178, USA.
| | - Li Yin
- Department of Medical Microbiology & Immunology, Creighton University Medical School, 2500 California Plaza, Omaha, NE 68178, USA
| |
Collapse
|
33
|
Sołtysik K, Czekaj P. ERα36--Another piece of the estrogen puzzle. Eur J Cell Biol 2015; 94:611-25. [PMID: 26522827 DOI: 10.1016/j.ejcb.2015.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 09/03/2015] [Accepted: 10/09/2015] [Indexed: 12/22/2022] Open
Abstract
Although the nuclear action of estrogen receptors (ER) is a well-known fact, evidence supporting membrane estrogen receptors is steadily accumulating. New ER variants of unrecognized function have been discovered. ERα is a product of the ESR1 gene. It serves not only as a template for the full-length 66kDa protein, but also for smaller isoforms which exist as independent receptors. The recently discovered ERα36 (36kDa), consisting of 310 amino acids of total 595 ERα66 protein residues, is an example of that group. The transcription initiation site is identified in the first intron of the ESR1 gene. C-Terminal 27 amino acids are encoded by previously unknown exon 9. The presence of this unique C-terminal sequence creates an opportunity for the production of selective antibodies. ERα36 has been shown to have a high affinity to the cell membrane and as much as 90% of the protein can be bound with it. Post-translational palmitoylation is suspected to play a crucial role in ERα36 anchoring to the cell membrane. In silico analysis suggests the existence of a potential transmembrane domain in ERα36. ERα36 was found in most cells of animals at various ages, but its exact physiological function remains to be fully elucidated. It seems that cells traditionally considered as being deprived of ER are able to respond to hormonal stimulation via the ERα36 receptor. Moreover, ERα36 displays unique pharmacological properties and its action may be behind antiestrogen resistance. The use of ERα36 in cancer diagnosis gives rise to great expectations.
Collapse
Affiliation(s)
- Kamil Sołtysik
- Students Scientific Society, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Piotr Czekaj
- Department of Cytophysiology, Chair of Histology and Embryology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland.
| |
Collapse
|
34
|
Chamard-Jovenin C, Jung AC, Chesnel A, Abecassis J, Flament S, Ledrappier S, Macabre C, Boukhobza T, Dumond H. From ERα66 to ERα36: a generic method for validating a prognosis marker of breast tumor progression. BMC SYSTEMS BIOLOGY 2015; 9:28. [PMID: 26080803 PMCID: PMC4469423 DOI: 10.1186/s12918-015-0178-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 06/08/2015] [Indexed: 01/11/2023]
Abstract
Background Estrogen receptor alpha36 (ERalpha36), a variant of estrogen receptor alpha (ER) is expressed in about half of breast tumors, independently of the [ER+]/[ER-] status. In vitro, ERalpha36 triggers mitogenic non-genomic signaling and migration ability in response to 17beta-estradiol and tamoxifen. In vivo, highly ERalpha36 expressing tumors are of poor outcome especially as [ER+] tumors are submitted to tamoxifen treatment which, in turn, enhances ERalpha36 expression. Results Our study aimed to validate ERalpha36 expression as a reliable prognostic factor for cancer progression from an estrogen dependent proliferative tumor toward an estrogen dispensable metastatic disease. In a retrospective study, we tried to decipher underlying mechanisms of cancer progression by using an original modeling of the relationships between ERalpha36, other estrogen and growth factor receptors and metastatic marker expression. Nonlinear correlation analyses and mutual information computations led to characterize a complex network connecting ERalpha36 to either non-genomic estrogen signaling or to metastatic process. Conclusions This study identifies ERalpha36 expression level as a relevant classifier which should be taken into account for breast tumors clinical characterization and [ER+] tumor treatment orientation, using a generic approach for the rapid, cheap and relevant evaluation of any candidate gene expression as a predictor of a complex biological process. Electronic supplementary material The online version of this article (doi:10.1186/s12918-015-0178-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Clémence Chamard-Jovenin
- CNRS-Université de Lorraine, UMR 7039, Centre de Recherche en Automatique de Nancy, BP70239, F-54506, Vandœuvre-lès-Nancy, France.
| | - Alain C Jung
- EA 3430, Centre Paul Strauss, 3 rue Porte de l'Hôpital, 67000, Strasbourg, France.
| | - Amand Chesnel
- CNRS-Université de Lorraine, UMR 7039, Centre de Recherche en Automatique de Nancy, BP70239, F-54506, Vandœuvre-lès-Nancy, France.
| | - Joseph Abecassis
- EA 3430, Centre Paul Strauss, 3 rue Porte de l'Hôpital, 67000, Strasbourg, France.
| | - Stéphane Flament
- CNRS-Université de Lorraine, UMR 7039, Centre de Recherche en Automatique de Nancy, BP70239, F-54506, Vandœuvre-lès-Nancy, France.
| | - Sonia Ledrappier
- EA 3430, Centre Paul Strauss, 3 rue Porte de l'Hôpital, 67000, Strasbourg, France.
| | - Christine Macabre
- EA 3430, Centre Paul Strauss, 3 rue Porte de l'Hôpital, 67000, Strasbourg, France.
| | - Taha Boukhobza
- CNRS-Université de Lorraine, UMR 7039, Centre de Recherche en Automatique de Nancy, BP70239, F-54506, Vandœuvre-lès-Nancy, France.
| | - Hélène Dumond
- CNRS-Université de Lorraine, UMR 7039, Centre de Recherche en Automatique de Nancy, BP70239, F-54506, Vandœuvre-lès-Nancy, France.
| |
Collapse
|