1
|
Liao Y, Ayala-Lujan JL, Liu L, Gong W, Zhu G, Nataro JP, Santiago AE, Ruiz-Perez F. CD45-mediated apoptosis and IL-2 receptor downregulation by serine proteases secreted from diarrheagenic bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.20.644266. [PMID: 40166318 PMCID: PMC11957166 DOI: 10.1101/2025.03.20.644266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Most enteropathogens secrete one or more members of the serine protease autotransporters of Enterobacteriaceae (SPATE). We previously demonstrated that SPATE cleaves various O-linked glycoproteins on leukocytes, including the tyrosine phosphatase CD45RO. SPATE impairs leukocyte functions and triggers apoptosis in activated T cells in vitro. Here, we show that SPATE produced by pathogenic E. coli, Shigella , and the mouse pathogen Citrobacter rodentium cleaves not only CD45RO but also CD45 isoforms containing exons A and B. We found that the cleavage of CD45 in primary T cells from both human and murine sources correlated with decreased IL2RA (CD25) surface expression in a concentration-dependent manner. SPATE did not cleave CD25 or affect T cell activation. However, SPATE requires CD45 expression for the depletion of CD25 in activated T cells, as SPATE did not significantly impact CD25 in the Jurkat J45.01 cell line, which lacks CD45. More importantly, we discovered that J45.01 cells resisted SPATE-mediated apoptosis, whereas apoptotic wild-type Jurkat cells exhibited decreased surface expression of CD25. Furthermore, we observed that mice infected with C. rodentium lacking SPATE displayed lower mortality, delayed intestinal colonization, reduced inflammatory cytokines, and decreased leukocyte infiltration in the lamina propria while having a higher number of CD25+ T cells compared to mice infected with wild-type CR or the CR SPATE mutant expressing Crc2 in trans. Our data suggest that SPATE-producing pathogens trigger T-cell apoptosis through CD45 via a mechanism akin to IL2 deprivation, demonstrating that SPATE can act as immunomodulators at various levels of the immune system. SIGNIFICANCE We have demonstrated for the first time that serine proteases (C2S) from clinically relevant pathogens, such as E. coli pathotypes and Shigella , can cleave leukocyte glycoproteins, including the tyrosine phosphatase CD45, which play crucial roles in cellular and immune functions. In this study, we discovered that C2S induces apoptosis in activated T cells through a previously unknown mechanism resembling IL-2 deprivation, mediated by CD45. Furthermore, we found that C2S is essential for bacterial virulence in vivo. This suggests that pathogens producing C2S may possess previously undescribed immunoregulatory functions that enhance their survival in the host and contribute to the disease process by eliminating T cells through the targeting of CD45 and the IL-2 receptor.
Collapse
|
2
|
Avdonin PP, Blinova MS, Generalova GA, Emirova KM, Avdonin PV. The Role of the Complement System in the Pathogenesis of Infectious Forms of Hemolytic Uremic Syndrome. Biomolecules 2023; 14:39. [PMID: 38254639 PMCID: PMC10813406 DOI: 10.3390/biom14010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/24/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Hemolytic uremic syndrome (HUS) is an acute disease and the most common cause of childhood acute renal failure. HUS is characterized by a triad of symptoms: microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney injury. In most of the cases, HUS occurs as a result of infection caused by Shiga toxin-producing microbes: hemorrhagic Escherichia coli and Shigella dysenteriae type 1. They account for up to 90% of all cases of HUS. The remaining 10% of cases grouped under the general term atypical HUS represent a heterogeneous group of diseases with similar clinical signs. Emerging evidence suggests that in addition to E. coli and S. dysenteriae type 1, a variety of bacterial and viral infections can cause the development of HUS. In particular, infectious diseases act as the main cause of aHUS recurrence. The pathogenesis of most cases of atypical HUS is based on congenital or acquired defects of complement system. This review presents summarized data from recent studies, suggesting that complement dysregulation is a key pathogenetic factor in various types of infection-induced HUS. Separate links in the complement system are considered, the damage of which during bacterial and viral infections can lead to complement hyperactivation following by microvascular endothelial injury and development of acute renal failure.
Collapse
Affiliation(s)
- Piotr P. Avdonin
- Koltzov Institute of Developmental Biology RAS, ul. Vavilova, 26, 119334 Moscow, Russia; (M.S.B.); (P.V.A.)
| | - Maria S. Blinova
- Koltzov Institute of Developmental Biology RAS, ul. Vavilova, 26, 119334 Moscow, Russia; (M.S.B.); (P.V.A.)
| | - Galina A. Generalova
- Saint Vladimir Moscow City Children’s Clinical Hospital, 107014 Moscow, Russia; (G.A.G.); (K.M.E.)
- Department of Pediatrics, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Khadizha M. Emirova
- Saint Vladimir Moscow City Children’s Clinical Hospital, 107014 Moscow, Russia; (G.A.G.); (K.M.E.)
- Department of Pediatrics, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Pavel V. Avdonin
- Koltzov Institute of Developmental Biology RAS, ul. Vavilova, 26, 119334 Moscow, Russia; (M.S.B.); (P.V.A.)
| |
Collapse
|
3
|
Navarro-Garcia F. Serine proteases autotransporter of Enterobacteriaceae: Structures, subdomains, motifs, functions, and targets. Mol Microbiol 2023; 120:178-193. [PMID: 37392318 DOI: 10.1111/mmi.15116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 07/03/2023]
Abstract
Serine protease autotransporters of Enterobacteriaceae (SPATE) constitute a superfamily of virulence factors, resembling the trypsin-like superfamily of serine proteases. SPATEs accomplish multiple functions associated to disease development of their hosts, which could be the consequence of SPATE cleavage of host cell components. SPATEs have been divided into class-1 and class-2 based on structural differences and biological effects, including similar substrate specificity, cytotoxic effects on cultured cells, and enterotoxin activity on intestinal tissues for class-1 SPATEs, whereas most class-2 SPATEs exhibit a lectin-like activity with a predilection to degrade a variety of mucins, including leukocyte surface O-glycoproteins and soluble host proteins, resulting in mucosal colonization and immune modulation. In this review, the structure of class-1 and class-2 are analyzed, making emphasis on their putative functional subdomains as well as a description of their function is provided, including prototypical mechanism of action.
Collapse
Affiliation(s)
- Fernando Navarro-Garcia
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN, Mexico, Mexico
| |
Collapse
|
4
|
Alhammadi MM, Godfrey RE, Ingram JO, Singh G, Bathurst CL, Busby SJW, Browning DF. Novel organisation and regulation of the pic promoter from enteroaggregative and uropathogenic Escherichia coli. Virulence 2022; 13:1393-1406. [PMID: 35971774 PMCID: PMC9387333 DOI: 10.1080/21505594.2022.2111754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The serine protease autotransporters of the Enterobacteriaceae (SPATEs) are a large family of virulence factors commonly found in enteric bacteria. These secreted virulence factors have diverse functions during bacterial infection, including adhesion, aggregation and cell toxicity. One such SPATE, the Pic mucinase (protein involved in colonisation) cleaves mucin, allowing enteric bacterial cells to utilise mucin as a carbon source and to penetrate the gut mucus lining, thereby increasing mucosal colonisation. The pic gene is widely distributed within the Enterobacteriaceae, being found in human pathogens, such as enteroaggregative Escherichia coli (EAEC), uropathogenic E. coli (UPEC) and Shigella flexneri 2a. As the pic promoter regions from EAEC strain 042 and UPEC strain CFT073 differ, we have investigated the regulation of each promoter. Here, using in vivo and in vitro techniques, we show that both promoters are activated by the global transcription factor, CRP (cyclic AMP receptor protein), but the architectures of the EAEC and the UPEC pic promoter differ. Expression from both pic promoters is repressed by the nucleoid-associated factor, Fis, and maximal promoter activity occurs when cells are grown in minimal medium. As CRP activates transcription in conditions of nutrient depletion, whilst Fis levels are maximal in nutrient-rich environments, the regulation of the EAEC and UPEC pic promoters is consistent with Pic’s nutritional role in scavenging mucin as a suitable carbon source during colonisation and infection.
Collapse
Affiliation(s)
- Munirah M Alhammadi
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK.,Biology Department, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Rita E Godfrey
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Joseph O Ingram
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Gurdamanjit Singh
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Camilla L Bathurst
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Stephen J W Busby
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Douglas F Browning
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK.,College of Health & Life Sciences, Aston University, Birmingham, UK
| |
Collapse
|
5
|
Clarke KR, Hor L, Pilapitiya A, Luirink J, Paxman JJ, Heras B. Phylogenetic Classification and Functional Review of Autotransporters. Front Immunol 2022; 13:921272. [PMID: 35860281 PMCID: PMC9289746 DOI: 10.3389/fimmu.2022.921272] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/06/2022] [Indexed: 11/30/2022] Open
Abstract
Autotransporters are the core component of a molecular nano-machine that delivers cargo proteins across the outer membrane of Gram-negative bacteria. Part of the type V secretion system, this large family of proteins play a central role in controlling bacterial interactions with their environment by promoting adhesion to surfaces, biofilm formation, host colonization and invasion as well as cytotoxicity and immunomodulation. As such, autotransporters are key facilitators of fitness and pathogenesis and enable co-operation or competition with other bacteria. Recent years have witnessed a dramatic increase in the number of autotransporter sequences reported and a steady rise in functional studies, which further link these proteins to multiple virulence phenotypes. In this review we provide an overview of our current knowledge on classical autotransporter proteins, the archetype of this protein superfamily. We also carry out a phylogenetic analysis of their functional domains and present a new classification system for this exquisitely diverse group of bacterial proteins. The sixteen phylogenetic divisions identified establish sensible relationships between well characterized autotransporters and inform structural and functional predictions of uncharacterized proteins, which may guide future research aimed at addressing multiple unanswered aspects in this group of therapeutically important bacterial factors.
Collapse
Affiliation(s)
- Kaitlin R. Clarke
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Lilian Hor
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Akila Pilapitiya
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Joen Luirink
- Department of Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit, Amsterdam, Netherlands
| | - Jason J. Paxman
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- *Correspondence: Begoña Heras, ; Jason J. Paxman,
| | - Begoña Heras
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- *Correspondence: Begoña Heras, ; Jason J. Paxman,
| |
Collapse
|
6
|
Abstract
Mucin domains are densely O-glycosylated modular protein domains found in various extracellular and transmembrane proteins. Mucin-domain glycoproteins play important roles in many human diseases, such as cancer and cystic fibrosis, but the scope of the mucinome remains poorly defined. Recently, we characterized a bacterial O-glycoprotease, StcE, and demonstrated that an inactive point mutant retains binding selectivity for mucin-domain glycoproteins. In this work, we leverage inactive StcE to selectively enrich and identify mucin-domain glycoproteins from complex samples like cell lysate and crude ovarian cancer patient ascites fluid. Our enrichment strategy is further aided by an algorithm to assign confidence to mucin-domain glycoprotein identifications. This mucinomics platform facilitates detection of hundreds of glycopeptides from mucin domains and highly overlapping populations of mucin-domain glycoproteins from ovarian cancer patients. Ultimately, we demonstrate our mucinomics approach can reveal key molecular signatures of cancer from in vitro and ex vivo sources. Mucin-domain glycoproteins are densely O-glycosylated proteins with unique secondary structure that imparts a large influence on cellular environments. Here, the authors develop a technique to selectively enrich and characterize mucin-domain glycoproteins from cell lysate and patient biofluids.
Collapse
|
7
|
Classification, structural biology, and applications of mucin domain-targeting proteases. Biochem J 2021; 478:1585-1603. [DOI: 10.1042/bcj20200607] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022]
Abstract
Epithelial surfaces throughout the body are coated by mucins, a class of proteins carrying domains characterized by a high density of O-glycosylated serine and threonine residues. The resulting mucosal layers form crucial host-microbe interfaces that prevent the translocation of microbes while also selecting for distinct bacteria via the presented glycan repertoire. The intricate interplay between mucus production and breakdown thus determines the composition of the microbiota maintained within these mucosal environments, which can have a large influence on the host during both homeostasis and disease. Most research to date on mucus breakdown has focused on glycosidases that trim glycan structures to release monosaccharides as a source of nutrients. More recent work has uncovered the existence of mucin-type O-glycosylation-dependent proteases that are secreted by pathogens, commensals, and mutualists to facilitate mucosal colonization and penetration. Additionally, immunoglobulin A (IgA) proteases promote bacterial colonization in the presence of neutralizing secretory IgA through selective cleavage of the heavily O-glycosylated hinge region. In this review, we summarize families of O-glycoproteases and IgA proteases, discuss known structural features, and review applications of these enzymes to glycobiology.
Collapse
|
8
|
An enzymatic toolkit for selective proteolysis, detection, and visualization of mucin-domain glycoproteins. Proc Natl Acad Sci U S A 2020; 117:21299-21307. [PMID: 32817557 PMCID: PMC7474620 DOI: 10.1073/pnas.2012196117] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Densely O-glycosylated mucin domains are found in a broad range of cell surface and secreted proteins, where they play key physiological roles. In addition, alterations in mucin expression and glycosylation are common in a variety of human diseases, such as cancer, cystic fibrosis, and inflammatory bowel diseases. These correlations have been challenging to uncover and establish because tools that specifically probe mucin domains are lacking. Here, we present a panel of bacterial proteases that cleave mucin domains via distinct peptide- and glycan-based motifs, generating a diverse enzymatic toolkit for mucin-selective proteolysis. By mutating catalytic residues of two such enzymes, we engineered mucin-selective binding agents with retained glycoform preferences. StcEE447D is a pan-mucin stain derived from enterohemorrhagic Escherichia coli that is tolerant to a wide range of glycoforms. BT4244E575A derived from Bacteroides thetaiotaomicron is selective for truncated, asialylated core 1 structures commonly associated with malignant and premalignant tissues. We demonstrated that these catalytically inactive point mutants enable robust detection and visualization of mucin-domain glycoproteins by flow cytometry, Western blot, and immunohistochemistry. Application of our enzymatic toolkit to ascites fluid and tissue slices from patients with ovarian cancer facilitated characterization of patients based on differences in mucin cleavage and expression patterns.
Collapse
|
9
|
Mucus layer modeling of human colonoids during infection with enteroaggragative E. coli. Sci Rep 2020; 10:10533. [PMID: 32601325 PMCID: PMC7324601 DOI: 10.1038/s41598-020-67104-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/02/2020] [Indexed: 12/25/2022] Open
Abstract
EAEC is a common cause of diarrheal illness worldwide. Pathogenesis is believed to occur in the ileum and colon, where the bacteria adhere and form a robust aggregating biofilm. Among the multiple virulence factors produced by EAEC, the Pic serine protease has been implicated in bacterial colonization by virtue of its mucinolytic activity. Hence, a potential role of Pic in mucus barrier disruption during EAEC infection has been long postulated. In this study, we used human colonoids comprising goblet cells and a thick mucin barrier as an intestinal model to investigate Pic's roles during infection with EAEC. We demonstrated the ability of purified Pic, but not a protease defective Pic mutant to degrade MUC2. Western blot and confocal microscopy analysis revealed degradation of the MUC2 layer in colonoids infected with EAEC, but not with its isogenic EAECpic mutant. Wild-type and MUC2-knockdown colonoids infected with EAEC strains exposed a differential biofilm distribution, greater penetration of the mucus layer and increased colonization of the colonic epithelium by Wild-type EAEC than its isogenic Pic mutant. Higher secretion of pro-inflammatory cytokines was seen in colonoids infected with EAEC than EAECpic. Although commensal E. coli expressing Pic degraded MUC2, it did not show improved mucus layer penetration or colonization of the colonic epithelium. Our study demonstrates a role of Pic in MUC2 barrier disruption in the human intestine and shows that colonoids are a reliable system to study the interaction of pathogens with the mucus layer.
Collapse
|
10
|
Dutra IL, Araújo LG, Assunção RG, Lima YA, Nascimento JR, Vale AAM, Alves PCS, Trovão LO, Santos ACM, Silva RM, Silva LA, Maciel MCG, de Sousa EM, Elias WP, Nascimento FRF, Abreu AG. Pic-Producing Escherichia coli Induces High Production of Proinflammatory Mediators by the Host Leading to Death by Sepsis. Int J Mol Sci 2020; 21:ijms21062068. [PMID: 32197297 PMCID: PMC7139334 DOI: 10.3390/ijms21062068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 11/30/2022] Open
Abstract
Escherichia coli is an important pathogen responsible for a variety of diseases. We have recently shown that Pic, a serine protease secreted by E. coli, mediates immune evasion by the direct cleavage of complement molecules. The aim of this study was to investigate the action of a Pic-producing bacteria in a murine model of sepsis. Mice were infected with Pic-producing E. coli (F5) or F5∆pic mutant. Animal survival was monitored for five days, and a subset of mice was euthanized after 12 h for sample acquisition. The inoculation of Pic-producing bacteria induced 100% death within 24 h. The colony forming units count in the organs was significantly higher in F5. Hematological analysis showed a decrease of total leukocytes. Nitric oxide and cytokines were detected in serum, as well as on peritoneal lavage of the F5 group in higher levels than those detected in the other groups. In addition, immunophenotyping showed a decrease of activated lymphocytes and macrophages in the F5 group. Therefore, Pic represents an important virulence factor, allowing the survival of the bacterium in the bloodstream and several organs, as well as inducing a high production of proinflammatory mediators by the host, and concomitantly a cellular immunosuppression, leading to sepsis and death.
Collapse
Affiliation(s)
- Itaynara L. Dutra
- Laboratório de Patogenicidade Microbiana, Universidade Ceuma, São Luís 65075-120, Brazil; (I.L.D.); (L.G.A.); (R.G.A.)
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil; (J.R.N.); (A.A.M.V.); (P.C.S.A.); (L.O.T.); (L.A.S.); (M.C.G.M.); (E.M.d.S.); (F.R.F.N.)
| | - Lorena G. Araújo
- Laboratório de Patogenicidade Microbiana, Universidade Ceuma, São Luís 65075-120, Brazil; (I.L.D.); (L.G.A.); (R.G.A.)
- Programa de Pós-Graduação em Biologia Microbiana, Universidade Ceuma, São Luís 65075-120, Brazil
| | - Raissa G. Assunção
- Laboratório de Patogenicidade Microbiana, Universidade Ceuma, São Luís 65075-120, Brazil; (I.L.D.); (L.G.A.); (R.G.A.)
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil; (J.R.N.); (A.A.M.V.); (P.C.S.A.); (L.O.T.); (L.A.S.); (M.C.G.M.); (E.M.d.S.); (F.R.F.N.)
| | - Yago A. Lima
- Laboratório de Imunofisiologia, Universidade Federal do Maranhão, São Luís 65080-805, Brazil;
| | - Johnny R. Nascimento
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil; (J.R.N.); (A.A.M.V.); (P.C.S.A.); (L.O.T.); (L.A.S.); (M.C.G.M.); (E.M.d.S.); (F.R.F.N.)
- Laboratório de Imunofisiologia, Universidade Federal do Maranhão, São Luís 65080-805, Brazil;
| | - André A. M. Vale
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil; (J.R.N.); (A.A.M.V.); (P.C.S.A.); (L.O.T.); (L.A.S.); (M.C.G.M.); (E.M.d.S.); (F.R.F.N.)
- Laboratório de Imunofisiologia, Universidade Federal do Maranhão, São Luís 65080-805, Brazil;
| | - Patrícia C. S. Alves
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil; (J.R.N.); (A.A.M.V.); (P.C.S.A.); (L.O.T.); (L.A.S.); (M.C.G.M.); (E.M.d.S.); (F.R.F.N.)
- Laboratório de Imunofisiologia, Universidade Federal do Maranhão, São Luís 65080-805, Brazil;
| | - Liana O. Trovão
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil; (J.R.N.); (A.A.M.V.); (P.C.S.A.); (L.O.T.); (L.A.S.); (M.C.G.M.); (E.M.d.S.); (F.R.F.N.)
- Laboratório de Imunofisiologia, Universidade Federal do Maranhão, São Luís 65080-805, Brazil;
| | - Ana Carolina M. Santos
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil; (A.C.M.S.); (R.M.S.)
| | - Rosa M. Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil; (A.C.M.S.); (R.M.S.)
| | - Lucilene A. Silva
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil; (J.R.N.); (A.A.M.V.); (P.C.S.A.); (L.O.T.); (L.A.S.); (M.C.G.M.); (E.M.d.S.); (F.R.F.N.)
- Laboratório de Imunofisiologia, Universidade Federal do Maranhão, São Luís 65080-805, Brazil;
| | - Márcia C. G. Maciel
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil; (J.R.N.); (A.A.M.V.); (P.C.S.A.); (L.O.T.); (L.A.S.); (M.C.G.M.); (E.M.d.S.); (F.R.F.N.)
- Departamento de Biologia Celular, Universidade de Brasília, Brasília 70878-040, Brazil
| | - Eduardo M. de Sousa
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil; (J.R.N.); (A.A.M.V.); (P.C.S.A.); (L.O.T.); (L.A.S.); (M.C.G.M.); (E.M.d.S.); (F.R.F.N.)
- Programa de Pós-Graduação em Biologia Microbiana, Universidade Ceuma, São Luís 65075-120, Brazil
| | - Waldir P. Elias
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo 05503-900, Brazil;
| | - Flávia R. F. Nascimento
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil; (J.R.N.); (A.A.M.V.); (P.C.S.A.); (L.O.T.); (L.A.S.); (M.C.G.M.); (E.M.d.S.); (F.R.F.N.)
- Laboratório de Imunofisiologia, Universidade Federal do Maranhão, São Luís 65080-805, Brazil;
| | - Afonso G. Abreu
- Laboratório de Patogenicidade Microbiana, Universidade Ceuma, São Luís 65075-120, Brazil; (I.L.D.); (L.G.A.); (R.G.A.)
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil; (J.R.N.); (A.A.M.V.); (P.C.S.A.); (L.O.T.); (L.A.S.); (M.C.G.M.); (E.M.d.S.); (F.R.F.N.)
- Programa de Pós-Graduação em Biologia Microbiana, Universidade Ceuma, São Luís 65075-120, Brazil
- Correspondence:
| |
Collapse
|
11
|
Pokharel P, Habouria H, Bessaiah H, Dozois CM. Serine Protease Autotransporters of the Enterobacteriaceae (SPATEs): Out and About and Chopping It Up. Microorganisms 2019; 7:E594. [PMID: 31766493 PMCID: PMC6956023 DOI: 10.3390/microorganisms7120594] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
Autotransporters are secreted proteins with multiple functions produced by a variety of Gram-negative bacteria. In Enterobacteriaceae, a subgroup of these autotransporters are the SPATEs (serine protease autotransporters of Enterobacteriaceae). SPATEs play a crucial role in survival and virulence of pathogens such as Escherichia coli and Shigella spp. and contribute to intestinal and extra-intestinal infections. These high molecular weight proteases are transported to the external milieu by the type Va secretion system and function as proteases with diverse substrate specificities and biological functions including adherence and cytotoxicity. Herein, we provide an overview of SPATEs and discuss recent findings on the biological roles of these secreted proteins, including proteolysis of substrates, adherence to cells, modulation of the immune response, and virulence in host models. In closing, we highlight recent insights into the regulation of expression of SPATEs that could be exploited to understand fundamental SPATE biology.
Collapse
Affiliation(s)
- Pravil Pokharel
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (P.P.); (H.H.); (H.B.)
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Hajer Habouria
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (P.P.); (H.H.); (H.B.)
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Hicham Bessaiah
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (P.P.); (H.H.); (H.B.)
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Charles M. Dozois
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (P.P.); (H.H.); (H.B.)
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Saint-Hyacinthe, QC J2S 2M2, Canada
- Institut Pasteur International Network, Laval, QC H7V 1B7, Canada
| |
Collapse
|
12
|
Enterohemorrhagic E. coli (EHEC)-Secreted Serine Protease EspP Stimulates Electrogenic Ion Transport in Human Colonoid Monolayers. Toxins (Basel) 2018; 10:toxins10090351. [PMID: 30200426 PMCID: PMC6162544 DOI: 10.3390/toxins10090351] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 08/23/2018] [Accepted: 08/29/2018] [Indexed: 01/29/2023] Open
Abstract
One of the characteristic manifestations of Shiga-toxin-producing Escherichia coli (E. coli) infection in humans, including EHEC and Enteroaggregative E. coli O104:H4, is watery diarrhea. However, neither Shiga toxin nor numerous components of the type-3 secretion system have been found to independently elicit fluid secretion. We used the adult stem-cell-derived human colonoid monolayers (HCM) to test whether EHEC-secreted extracellular serine protease P (EspP), a member of the serine protease family broadly expressed by diarrheagenic E. coli can act as an enterotoxin. We applied the Ussing chamber/voltage clamp technique to determine whether EspP stimulates electrogenic ion transport indicated by a change in short-circuit current (Isc). EspP stimulates Isc in HCM. The EspP-stimulated Isc does not require protease activity, is not cystic fibrosis transmembrane conductance regulator (CFTR)-mediated, but is partially Ca2+-dependent. EspP neutralization with a specific antibody reduces its potency in stimulating Isc. Serine Protease A, secreted by Enteroaggregative E. coli, also stimulates Isc in HCM, but this current is CFTR-dependent. In conclusion, EspP stimulates colonic CFTR-independent active ion transport and may be involved in the pathophysiology of EHEC diarrhea. Serine protease toxins from E. coli pathogens appear to serve as enterotoxins, potentially significantly contributing to watery diarrhea.
Collapse
|
13
|
Maldonado-Contreras A, Birtley JR, Boll E, Zhao Y, Mumy KL, Toscano J, Ayehunie S, Reinecker HC, Stern LJ, McCormick BA. Shigella depends on SepA to destabilize the intestinal epithelial integrity via cofilin activation. Gut Microbes 2017; 8:544-560. [PMID: 28598765 PMCID: PMC5730386 DOI: 10.1080/19490976.2017.1339006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Shigella is unique among enteric pathogens, as it invades colonic epithelia through the basolateral pole. Therefore, it has evolved the ability to breach the intestinal epithelial barrier to deploy an arsenal of effector proteins, which permits bacterial invasion and leads to a severe inflammatory response. However, the mechanisms used by Shigella to regulate epithelial barrier permeability remain unknown. To address this question, we used both an intestinal polarized model and a human ex-vivo model to further characterize the early events of host-bacteria interactions. Our results showed that secreted Serine Protease A (SepA), which belongs to the serine protease autotransporter of Enterobacteriaceae family, is responsible for critically disrupting the intestinal epithelial barrier. Such disruption facilitates bacterial transit to the basolateral pole of the epithelium, ultimately fostering the hallmarks of the disease pathology. SepA was found to cause a decrease in active LIM Kinase 1 (LIMK1) levels, a negative inhibitor of actin-remodeling proteins, namely cofilin. Correspondingly, we observed increased activation of cofilin, a major actin-polymerization factor known to control opening of tight junctions at the epithelial barrier. Furthermore, we resolved the crystal structure of SepA to elucidate its role on actin-dynamics and barrier disruption. The serine protease activity of SepA was found to be required for the regulatory effects on LIMK1 and cofilin, resulting in the disruption of the epithelial barrier during infection. Altogether, we demonstrate that SepA is indispensable for barrier disruption, ultimately facilitating Shigella transit to the basolateral pole where it effectively invades the epithelium.
Collapse
Affiliation(s)
- Ana Maldonado-Contreras
- Department of Microbiology and Physiological Systems, University of Massachusetts, Medical School, Worcester, MA, USA,CONTACT Beth A. McCormick ; Ana Maldonado-Contreras 55 Lake Ave N, Worcester, MA, 01655
| | - James R. Birtley
- Department of Pathology, University of Massachusetts, Medical School, Worcester, MA, USA
| | - Erik Boll
- Statens Serum Institut, Copenhagen, Denmark
| | - Yun Zhao
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Karen L. Mumy
- Naval Medical Research Unit Dayton, Wright-Patterson Air Force Base, Dayton, OH, USA
| | - Juan Toscano
- Department of Microbiology and Physiological Systems, University of Massachusetts, Medical School, Worcester, MA, USA
| | | | - Hans-Christian Reinecker
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lawrence J. Stern
- Department of Pathology, University of Massachusetts, Medical School, Worcester, MA, USA
| | - Beth A. McCormick
- Department of Microbiology and Physiological Systems, University of Massachusetts, Medical School, Worcester, MA, USA,CONTACT Beth A. McCormick ; Ana Maldonado-Contreras 55 Lake Ave N, Worcester, MA, 01655
| |
Collapse
|
14
|
Céspedes S, Saitz W, Del Canto F, De la Fuente M, Quera R, Hermoso M, Muñoz R, Ginard D, Khorrami S, Girón J, Assar R, Rosselló-Mora R, Vidal RM. Genetic Diversity and Virulence Determinants of Escherichia coli Strains Isolated from Patients with Crohn's Disease in Spain and Chile. Front Microbiol 2017; 8:639. [PMID: 28596755 PMCID: PMC5443141 DOI: 10.3389/fmicb.2017.00639] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 03/29/2017] [Indexed: 12/20/2022] Open
Abstract
Adherent-invasive Escherichia coli (AIEC) strains are genetically variable and virulence factors for AIEC are non-specific. FimH is the most studied pathogenicity-related protein, and there have been few studies on other proteins, such as Serine Protease Autotransporters of Enterobacteriacea (SPATEs). The goal of this study is to characterize E. coli strains isolated from patients with Crohn's disease (CD) in Chile and Spain, and identify genetic differences between strains associated with virulence markers and clonality. We characterized virulence factors and genetic variability by pulse field electrophoresis (PFGE) in 50 E. coli strains isolated from Chilean and Spanish patients with CD, and also determined which of these strains presented an AIEC phenotype. Twenty-six E. coli strains from control patients were also included. PFGE patterns were heterogeneous and we also observed a highly diverse profile of virulence genes among all E. coli strains obtained from patients with CD, including those strains defined as AIEC. Two iron transporter genes chuA, and irp2, were detected in various combinations in 68–84% of CD strains. We found that the most significant individual E. coli genetic marker associated with CD E. coli strains was chuA. In addition, patho-adaptative fimH mutations were absent in some of the highly adherent and invasive strains. The fimH adhesin, the iron transporter irp2, and Class-2 SPATEs did not show a significant association with CD strains. The V27A fimH mutation was detected in the most CD strains. This study highlights the genetic variability of E. coli CD strains from two distinct geographic origins, most of them affiliated with the B2 or D E. coli phylogroups and also reveals that nearly 40% of Chilean and Spanish CD patients are colonized with E.coli with a characteristic AIEC phenotype.
Collapse
Affiliation(s)
- Sandra Céspedes
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de ChileSantiago, Chile
| | - Waleska Saitz
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de ChileSantiago, Chile
| | - Felipe Del Canto
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de ChileSantiago, Chile
| | | | - Rodrigo Quera
- Gastroenterology Unit, Clínica Las CondesSantiago, Chile
| | - Marcela Hermoso
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de ChileSantiago, Chile
| | - Rául Muñoz
- Institut Mediterrani d'Estudis Avançats (CSIC-UIB)Illes Balears, Spain
| | - Daniel Ginard
- Department of Gastroenterology and Palma Health Research Institute, Hospital Universitario Son EspasesPalma de Mallorca, Spain
| | - Sam Khorrami
- Department of Gastroenterology and Palma Health Research Institute, Hospital Universitario Son EspasesPalma de Mallorca, Spain
| | - Jorge Girón
- Department of Pediatrics, University of Virginia School of MedicineCharlottesville, VA, USA
| | - Rodrigo Assar
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de ChileSantiago, Chile
| | | | - Roberto M Vidal
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de ChileSantiago, Chile
| |
Collapse
|
15
|
Recognition of protein-linked glycans as a determinant of peptidase activity. Proc Natl Acad Sci U S A 2017; 114:E679-E688. [PMID: 28096352 DOI: 10.1073/pnas.1615141114] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The vast majority of proteins are posttranslationally altered, with the addition of covalently linked sugars (glycosylation) being one of the most abundant modifications. However, despite the hydrolysis of protein peptide bonds by peptidases being a process essential to all life on Earth, the fundamental details of how peptidases accommodate posttranslational modifications, including glycosylation, has not been addressed. Through biochemical analyses and X-ray crystallographic structures we show that to hydrolyze their substrates, three structurally related metallopeptidases require the specific recognition of O-linked glycan modifications via carbohydrate-specific subsites immediately adjacent to their peptidase catalytic machinery. The three peptidases showed selectivity for different glycans, revealing protein-specific adaptations to particular glycan modifications, yet always cleaved the peptide bond immediately preceding the glycosylated residue. This insight builds upon the paradigm of how peptidases recognize substrates and provides a molecular understanding of glycoprotein degradation.
Collapse
|
16
|
Rocha-Ramírez LM, Hernández-Chiñas U, Baños-Rojas D, Xicohtencatl-Cortés J, Chávez-Berrocal ME, Rico-Rosillo G, Kretschmer R, Eslava CA. Pet serine protease from enteroaggregative Escherichia coli stimulates the inflammatory response activating human macrophages. BMC Microbiol 2016; 16:158. [PMID: 27439312 PMCID: PMC4955197 DOI: 10.1186/s12866-016-0775-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 07/12/2016] [Indexed: 01/09/2023] Open
Abstract
Background Pet is a toxin from the family of Serine Protease Autotransporters of Enterobacteriaceae which was initially identified in Enteroaggregative Escherichia coli strains. This protease exhibits enterotoxin properties, damages the cell cytoskeleton and induces intestinal epithelium alterations, which are associated with a severe inflammatory process. An in-vitro study was conducted to evaluate the effect of Pet on the migration of human peripheral blood monocytes-derived macrophages and its participation in the activation of the early inflammatory response and cytokine expression. Results In the macrophage migration activation assay, Pet produced a similar effect to that induced by opsonized zymosan (ZAS). Regarding the cytokine expression, an increase of IL-8, TNF-α (pro-inflammatory) and IL-10 (anti-inflammatory) was identified. In addition to the above results, the nuclear translocation of NF-kB pp65 was also identified. These events are probably related to the inflammatory response identified in the histological examination of intestine rat samples inoculated with Pet during a ligated loop assay. Conclusion The results showed that Pet participates as an immunostimulant molecule for macrophages, which activates both their mobility and cytokine expression. These observations suggest that the toxin participates in the inflammatory process that is observed during the host infection by EAEC Pet producing.
Collapse
Affiliation(s)
- L M Rocha-Ramírez
- Departamento de Infectología, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, Delegación Cuauhtémoc, 06720, C. de México.
| | - U Hernández-Chiñas
- Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Escolar S/N, Ciudad Universitaria, Coyoacán, 04510, C. de México.,Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación, Hospital Infantil de México Federico Gómez/Facultad de Medicina UNAM, Dr. Márquez No. 162, Col Doctores, Delegación Cuauhtémoc, 06720, C. de México
| | - D Baños-Rojas
- Departamento de Infectología, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, Delegación Cuauhtémoc, 06720, C. de México
| | - J Xicohtencatl-Cortés
- Laboratorio de Bacteriología Intestinal, Unidad de Hemato-Oncología e Investigación, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, Delegación Cuauhtémoc, 06720, C. de México
| | - M E Chávez-Berrocal
- Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Escolar S/N, Ciudad Universitaria, Coyoacán, 04510, C. de México.,Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación, Hospital Infantil de México Federico Gómez/Facultad de Medicina UNAM, Dr. Márquez No. 162, Col Doctores, Delegación Cuauhtémoc, 06720, C. de México
| | - G Rico-Rosillo
- Divisiòn de Investigación. Facultad de Medicina, UNAM. Circuito Escolar S/N, Ciudad Universitaria, Coyoacán, 04510, C. de México
| | - R Kretschmer
- Unidad de Investigación Médica en Inmunología, Hospital de Pediatría, CMN siglo XXI, IMSS, Av. Cuauhtémoc No. 330, Col Doctores, Delegación Cuauhtémoc, 06720, C. de México
| | - C A Eslava
- Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Escolar S/N, Ciudad Universitaria, Coyoacán, 04510, C. de México. .,Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación, Hospital Infantil de México Federico Gómez/Facultad de Medicina UNAM, Dr. Márquez No. 162, Col Doctores, Delegación Cuauhtémoc, 06720, C. de México.
| |
Collapse
|
17
|
Abreu AG, Abe CM, Nunes KO, Moraes CTP, Chavez-Dueñas L, Navarro-Garcia F, Barbosa AS, Piazza RMF, Elias WP. The serine protease Pic as a virulence factor of atypical enteropathogenic Escherichia coli. Gut Microbes 2016; 7:115-25. [PMID: 26963626 PMCID: PMC4856457 DOI: 10.1080/19490976.2015.1136775] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Autotransporter proteins (AT) are associated with bacterial virulence attributes. Originally identified in enteroaggregative Escherichia coli (EAEC), Shigella flexneri 2a and uropathogenic E. coli, the serine protease Pic is one of these AT. We have previously detected one atypical enteropathogenic E. coli strain (BA589) carrying the pic gene. In the present study, we characterized the biological activities of Pic produced by BA589 both in vitro and in vivo. Contrarily to other Pic-producers bacteria, pic in BA589 is located on a high molecular weight plasmid. PicBA589 was able to agglutinate rabbit erythrocytes, cleave mucin and degrade complement system molecules. BA589 was able to colonize mice intestines, and an intense mucus production was observed. The BA589Δpic mutant lost the capacity to colonize as well as the above-mentioned in vitro activities. Thus, Pic represents an additional virulence factor in aEPEC strain BA589, associated with adherence, colonization and evasion from the innate immune system.
Collapse
Affiliation(s)
- Afonso G. Abreu
- Laboratory of Bacteriology, Butantan Institute, São Paulo, Brazil,Programa de Pós-Graduação em Ciências da Saúde, Federal University of Maranhão, São Luís, Brazil
| | - Cecilia M. Abe
- Laboratory of Cell Biology, Butantan Institute, São Paulo, Brazil
| | - Kamila O. Nunes
- Laboratory of Bacteriology, Butantan Institute, São Paulo, Brazil
| | | | - Lucia Chavez-Dueñas
- Department of Cell Biology, Centro de Investigación y Estudios Avanzados del IPN (CINVESTAV), Mexico DF, Mexico
| | - Fernando Navarro-Garcia
- Department of Cell Biology, Centro de Investigación y Estudios Avanzados del IPN (CINVESTAV), Mexico DF, Mexico
| | | | | | - Waldir P. Elias
- Laboratory of Bacteriology, Butantan Institute, São Paulo, Brazil
| |
Collapse
|
18
|
Abstract
Hemolytic-uremic syndrome (HUS) is a thrombotic microangiopathy that is characterized by microangiopathic hemolytic anemia, thrombocytopenia, and renal failure. Excess complement activation underlies atypical HUS and is evident in Shiga toxin-induced HUS (STEC-HUS). This Spotlight focuses on new knowledge of the role of Escherichia coli-derived toxins and polyphosphate in modulating complement and coagulation, and how they affect disease progression and response to treatment. Such new insights may impact on current and future choices of therapies for STEC-HUS.
Collapse
|
19
|
The Serine Protease Autotransporter Pic Modulates Citrobacter rodentium Pathogenesis and Its Innate Recognition by the Host. Infect Immun 2015; 83:2636-50. [PMID: 25895966 DOI: 10.1128/iai.00025-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bacterial pathogens produce a number of autotransporters that possess diverse functions. These include the family of serine protease autotransporters of Enterobacteriaceae (SPATEs) produced by enteric pathogens such as Shigella flexneri and enteroaggregative Escherichia coli. Of these SPATEs, one termed "protein involved in colonization," or Pic, has been shown to possess mucinase activity in vitro, but to date, its role in in vivo enteric pathogenesis is unknown. Testing a pic null (ΔpicC) mutant in Citrobacter rodentium, a natural mouse pathogen, found that the C. rodentium ΔpicC strain was impaired in its ability to degrade mucin in vitro compared to the wild type. Upon infection of mice, the ΔpicC mutant exhibited a hypervirulent phenotype with dramatically heavier pathogen burdens found in intestinal crypts. ΔpicC mutant-infected mice suffered greater barrier disruption and more severe colitis and weight loss, necessitating their euthanization between 10 and 14 days postinfection. Notably, the virulence of the ΔpicC mutant was normalized when the picC gene was restored; however, a PicC point mutant causing loss of mucinase activity did not replicate the ΔpicC phenotype. Exploring other aspects of PicC function, the ΔpicC mutant was found to aggregate to higher levels in vivo than wild-type C. rodentium. Moreover, unlike the wild type, the C. rodentium ΔpicC mutant had a red, dry, and rough (RDAR) morphology in vitro and showed increased activation of the innate receptor Toll-like receptor 2 (TLR2). Interestingly, the C. rodentium ΔpicC mutant caused a degree of pathology similar to that of wild-type C. rodentium when infecting TLR2-deficient mice, showing that despite its mucinase activity, PicC's major role in vivo may be to limit C. rodentium's stimulation of the host's innate immune system.
Collapse
|
20
|
TleA, a Tsh-like autotransporter identified in a human enterotoxigenic Escherichia coli strain. Infect Immun 2015; 83:1893-903. [PMID: 25712927 DOI: 10.1128/iai.02976-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/15/2015] [Indexed: 12/13/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC), a leading cause of acute diarrhea, colonizes the intestine by means of adhesins. However, 15 to 50% of clinical isolates are negative for known adhesins, making it difficult to identify antigens for broad-coverage vaccines. The ETEC strain 1766a, obtained from a child with watery diarrhea in Chile, harbors the colonization factor CS23 but is negative for other known adhesins. One clone, derived from an ETEC 1766a genomic library (clone G10), did not produce CS23 yet was capable of adhering to Caco-2 cells. The goal of this study was to identify the gene responsible for this capacity. Random transposon-based mutagenesis allowed the identification of a 4,110-bp gene that codes for a homologue of the temperature-sensitive hemagglutinin (Tsh) autotransporter described in avian E. coli strains (97% identity, 90% coverage) and that is called TleA (Tsh-like ETEC autotransporter) herein. An isogenic ETEC 1766a strain with a tleA mutation showed an adhesion level similar to that of the wild-type strain, suggesting that the gene does not direct attachment to Caco-2 cells. However, expression of tleA conferred the capacity for adherence to nonadherent E. coli HB101. This effect coincided with the detection of TleA on the surface of nonpermeabilized bacteria, while, conversely, ETEC 1766a seems to secrete most of the produced autotransporter to the medium. On the other hand, TleA was capable of degrading bovine submaxillary mucin and leukocyte surface glycoproteins CD45 and P-selectin glycoprotein ligand 1 (PSGL-1). These results suggest that TleA promotes colonization of the intestinal epithelium and that it may modulate the host immune response.
Collapse
|