1
|
Zhuang B, Zhong C, Ma Y, Wang A, Quan H, Hong L. Innovative Therapeutic Strategies for Myocardial Infarction Across Various Stages: Non-Coding RNA and Stem Cells. Int J Mol Sci 2024; 26:231. [PMID: 39796085 PMCID: PMC11720039 DOI: 10.3390/ijms26010231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/22/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Myocardial infarction (MI) is a highly challenging and fatal disease, with diverse challenges arising at different stages of its progression. As such, non-coding RNAs (ncRNAs), which can broadly regulate cell fate, and stem cells with multi-differentiation potential are emerging as novel therapeutic approaches for treating MI across its various stages. NcRNAs, including microRNAs (miRNAs) and long non-coding RNAs (LncRNAs), can directly participate in regulating intracellular signaling pathways, influence cardiac angiogenesis, and promote the repair of infarcted myocardium. Currently, stem cells commonly used in medicine, such as mesenchymal stem cells (MSCs) and induced pluripotent stem cells (iPSCs), can differentiate into various human cell types without ethical concerns. When combined with ncRNAs, these stem cells can more effectively induce directed differentiation, promote angiogenesis in the infarcted heart, and replenish normal cardiac cells. Additionally, stem cell-derived exosomes, which contain various ncRNAs, can improve myocardial damage in the infarcted region through paracrine mechanisms. However, our understanding of the specific roles and mechanisms of ncRNAs, stem cells, and exosomes secreted by stem cells during different stages of MI remains limited. Therefore, this review systematically categorizes the different stages of MI, aiming to summarize the direct regulatory effects of ncRNAs on an infarcted myocardium at different points of disease progression. Moreover, it explores the specific roles and mechanisms of stem cell therapy and exosome therapy in this complex pathological evolution process. The objective of this review was to provide novel insights into therapeutic strategies for different stages of MI and open new research directions for the application of stem cells and ncRNAs in the field of MI repair.
Collapse
Affiliation(s)
- Bingqi Zhuang
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji 133002, China; (B.Z.); (C.Z.); (Y.M.)
| | - Chongning Zhong
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji 133002, China; (B.Z.); (C.Z.); (Y.M.)
| | - Yuting Ma
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji 133002, China; (B.Z.); (C.Z.); (Y.M.)
| | - Ao Wang
- Experimental Teaching Center, College of Pharmacy, Yanbian University, Yanji 133002, China;
| | - Hailian Quan
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji 133002, China; (B.Z.); (C.Z.); (Y.M.)
| | - Lan Hong
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji 133002, China; (B.Z.); (C.Z.); (Y.M.)
| |
Collapse
|
2
|
Illési Á, Fejes Z, Pócsi M, Debreceni IB, Hodosi K, Nagy Jr. B, Kappelmayer J, Kőszegi Z, Csanádi Z, Szük T. Technically Challenging Percutaneous Interventions of Chronic Total Occlusions Are Associated with Enhanced Platelet Activation. J Clin Med 2023; 12:6829. [PMID: 37959293 PMCID: PMC10648871 DOI: 10.3390/jcm12216829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/14/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Percutaneous coronary intervention (PCI) is a frequently performed treatment option for recanalization in patients with chronic total occlusion (CTO). As CTO-PCIs are often complicated and challenging for interventionalists, the stressful and damaging nature of the procedure can be remarkable, thus platelets can be easily activated. Our aim was to investigate the effect of CTO-PCI on platelet activation and the expression of selected circulating microRNAs (miR) of platelet and endothelium origin after CTO-PCI. In this study, 50 subjects after CTO-PCI were enrolled. Blood samples were obtained before PCI, at 2 days and 3-6 months after the procedure to measure the degree of platelet activation and the level of plasma miR-223, miR-181b, and miR-126. Patients were divided based on the characteristics of the intervention. Patients with higher Japanese CTO scores and longer duration of PCI showed significantly elevated platelet P-selectin positivity (p = 0.004 and p = 0.013, respectively) 2 days after the procedure compared to pre-PCI and increased concentration of soluble P-selectin 3-6 months after the intervention (higher Japanese CTO score: p = 0.028 and longer duration of PCI: p = 0.023) compared to baseline values. Shorter total stent length caused a significantly lower miR-181b expression at 3-6 months after the intervention (p = 0.031), while no difference was observed in miR-223 and miR-126. One stent thrombosis occurred during the follow-up period. Although these technically challenging CTO-PCIs may cause enhanced platelet activation right after the intervention and long-term endothelial cell dysfunction, these interventions are not associated with more adverse clinical events.
Collapse
Affiliation(s)
- Ádám Illési
- Department of Cardiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Á.I.); (Z.K.); (Z.C.)
- Doctoral School of Kálmán Laki, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Zsolt Fejes
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.F.); (M.P.); (I.B.D.); (B.N.J.); (J.K.)
| | - Marianna Pócsi
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.F.); (M.P.); (I.B.D.); (B.N.J.); (J.K.)
| | - Ildikó Beke Debreceni
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.F.); (M.P.); (I.B.D.); (B.N.J.); (J.K.)
| | - Katalin Hodosi
- Institute of Internal Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Béla Nagy Jr.
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.F.); (M.P.); (I.B.D.); (B.N.J.); (J.K.)
| | - János Kappelmayer
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.F.); (M.P.); (I.B.D.); (B.N.J.); (J.K.)
| | - Zsolt Kőszegi
- Department of Cardiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Á.I.); (Z.K.); (Z.C.)
- Doctoral School of Kálmán Laki, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- András Jósa University Teaching Hospital, 4400 Nyiregyhaza, Hungary
| | - Zoltán Csanádi
- Department of Cardiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Á.I.); (Z.K.); (Z.C.)
- Doctoral School of Kálmán Laki, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Tibor Szük
- Department of Cardiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Á.I.); (Z.K.); (Z.C.)
- Doctoral School of Kálmán Laki, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
3
|
Wang Y, Wang H, Zhang L, Zhang J, Liu N, Zhao P. A novel identified circular RNA, circSnap47, promotes heart failure progression via regulation of miR-223-3p/MAPK axis. Mol Cell Biochem 2023; 478:459-469. [PMID: 35900666 DOI: 10.1007/s11010-022-04523-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/05/2022] [Indexed: 11/26/2022]
Abstract
The aim of this study was to investigate the effect of circSnap47 on heart failure (HF) and its potential mechanisms. Quantitative real-time PCR (qRT-PCR) was performed to detect the mRNA expression levels of circSnap47 and miR-233-3p. The viability and apoptosis of H9C2 cells were assessed using CCK-8 and TUNEL assays. The expressions of interleukin (IL)-6, IL-1β, IL-18, and tumor necrosis factor-alpha were determined using ELISA and qRT-PCR. In addition, the expression of apoptosis-related proteins and mitogen-activated protein kinase (MAPK) signaling pathway-related proteins was analyzed using western blot. Moreover, HF-related circRNAs and miRNAs were predicted via bioinformatics analysis. The relationship between circSnap47 and miR-233-3p was further confirmed using a dual-luciferase reporter gene assay. In HF tissues and H9C2 cells treated with oxygen-glucose deprivation (OGD), circSnap47 was upregulated. Silencing circSnap47 increased cell viability and inhibited apoptosis. Besides, silencing circSnap47 alleviated OGD-induced inflammation in H9C2 cells. Moreover, we found that miR-233-3p was the downstream target gene of circSnap47. Our results also revealed that silencing circSnap47 relieved OGD-induced H9C2 cell damage by inactivating the miR-223-3p/MAPK axis. We confirmed that circSnap47 silencing inhibited HF progression via regulation of miR-223/MAPK axis, which will provide for a new therapeutic direction for the treatment of HF.
Collapse
Affiliation(s)
- Yunkai Wang
- Department of Cardiac Surgery ICU, Yantai Yuhuangding Hospital, Yantai, 264000, Shandong, People's Republic of China
| | - Hongqiang Wang
- Department of Cardiac Surgery II, Yantai Yuhuangding Hospital, Yantai, 264000, Shandong, People's Republic of China
| | - Luping Zhang
- Department of Reproductive Medicine, Yantai Yuhuangding Hospital, Yantai, 264000, Shandong, People's Republic of China
| | - Jinhua Zhang
- Department of Physical Examination, Yantai Yuhuangding Hospital, Yantai, 264000, Shandong, People's Republic of China
| | - Ning Liu
- Department I of Obstetrics, Yantai Yuhuangding Hospital, Yantai, 264000, Shandong, People's Republic of China
| | - Peng Zhao
- Department of Cardiac Surgery I, Yantai Yuhuangding Hospital, No.20 Yuhuangding East Road, Zhifu District, Yantai, 264000, Shandong, People's Republic of China.
| |
Collapse
|
4
|
Cánovas-Cervera I, Nacher-Sendra E, Osca-Verdegal R, Dolz-Andrés E, Beltrán-García J, Rodríguez-Gimillo M, Ferrando-Sánchez C, Carbonell N, García-Giménez JL. The Intricate Role of Non-Coding RNAs in Sepsis-Associated Disseminated Intravascular Coagulation. Int J Mol Sci 2023; 24:ijms24032582. [PMID: 36768905 PMCID: PMC9916911 DOI: 10.3390/ijms24032582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Disseminated Intravascular Coagulation (DIC) is a type of tissue and organ dysregulation in sepsis, due mainly to the effect of the inflammation on the coagulation system. Unfortunately, the underlying molecular mechanisms that lead to this disorder are not fully understood. Moreover, current biomarkers for DIC, including biological and clinical parameters, generally provide a poor diagnosis and prognosis. In recent years, non-coding RNAs have been studied as promising and robust biomarkers for a variety of diseases. Thus, their potential in the diagnosis and prognosis of DIC should be further studied. Specifically, the relationship between the coagulation cascade and non-coding RNAs should be established. In this review, microRNAs, long non-coding RNAs, and circular RNAs are studied in relation to DIC. Specifically, the axis between these non-coding RNAs and the corresponding affected pathway has been identified, including inflammation, alteration of the coagulation cascade, and endothelial damage. The main affected pathway identified is PI3K/AKT/mTOR axis, where several ncRNAs participate in its regulation, including miR-122-5p which is sponged by circ_0005963, ciRS-122, and circPTN, and miR-19a-3p which is modulated by circ_0000096 and circ_0063425. Additionally, both miR-223 and miR-24 were found to affect the PI3K/AKT pathway and were regulated by lncGAS5 and lncKCNQ1OT1, respectively. Thus, this work provides a useful pipeline of inter-connected ncRNAs that future research on their impact on DIC can further explore.
Collapse
Affiliation(s)
- Irene Cánovas-Cervera
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- Health Research Institute INCLIVA, 46010 Valencia, Spain
| | - Elena Nacher-Sendra
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- Health Research Institute INCLIVA, 46010 Valencia, Spain
| | - Rebeca Osca-Verdegal
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- Health Research Institute INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Research Network on Rare Diseases (CIBERER), Carlos III Health Institute, 46010 Valencia, Spain
| | - Enric Dolz-Andrés
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| | - Jesús Beltrán-García
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- Health Research Institute INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Research Network on Rare Diseases (CIBERER), Carlos III Health Institute, 46010 Valencia, Spain
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, CA 92093, USA
| | - María Rodríguez-Gimillo
- Health Research Institute INCLIVA, 46010 Valencia, Spain
- Intensive Care Unit, Clinical University Hospital of Valencia, 46010 Valencia, Spain
| | - Carolina Ferrando-Sánchez
- Health Research Institute INCLIVA, 46010 Valencia, Spain
- Intensive Care Unit, Clinical University Hospital of Valencia, 46010 Valencia, Spain
| | - Nieves Carbonell
- Health Research Institute INCLIVA, 46010 Valencia, Spain
- Intensive Care Unit, Clinical University Hospital of Valencia, 46010 Valencia, Spain
| | - José Luis García-Giménez
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- Health Research Institute INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Research Network on Rare Diseases (CIBERER), Carlos III Health Institute, 46010 Valencia, Spain
- Correspondence: ; Tel.: +34-963-864-646
| |
Collapse
|
5
|
Fu J, Niu H, Gao G, Wang L, Yu K, Guo R, Zhang J. Naringenin promotes angiogenesis of ischemic myocardium after myocardial infarction through miR-223-3p/IGF1R axis. Regen Ther 2022; 21:362-371. [PMID: 36161098 PMCID: PMC9471969 DOI: 10.1016/j.reth.2022.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 07/15/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction Naringenin exerts a protective effect on myocardial ischemia and reperfusion. It has been reported that miR-223-3p is a potential target for the treatment of myocardial infarction (MI). In view of the unreported correlation between Naringenin and miR-223-3p, this study was designed to confirm that the ameliorative effects of Naringenin on MI is directly related to the regulation of miR-223-3p. Methods Through electrocardiogram detection, Masson pathological staining and immunohistochemistry of angiogenesis-related factors, alleviative effects of Naringenin on heart function, myocardial injury and angiogenesis in MI mice were observed individually. Hypoxic HUVECs were selected in the in vitro experimental model. The cell viability, angiogenesis and migration ability were analyzed to fathom out the pro-angiogenesis potential of Naringenin. The effect of Naringenin on miR-223-3p, as well as the downstream molecular mechanism was verified through bioinformatics analysis and rescue experiments. Results Naringenin improved heart functions of MI mice, reduced degree of myocardial fibrosis, stimulated expressions of angiogenic factors and down-regulated level of miR-223-3p in myocardial tissue. In in vitro experiments, Naringenin increased the viability of hypoxic HUVECs, as well as the abilities of tube formation and migration, and further inhibited the expression of miR-223-3p. In the rescue trial, miR-223-3p mimic reversed the therapeutic effect of Naringenin. Type 1 insulin-like growth factor receptor (IGF1R), as a downstream target gene of miR-223-3p, partially offset the cellular regulatory effects of miR-223-3p after overexpression of IGF1R. Conclusions Naringenin improves the angiogenesis of hypoxic HUVECs by regulating the miR-223-3p/IGF1R axis, and has the potential to promote myocardial angiogenesis in MI mice.
Collapse
Affiliation(s)
- Jinguo Fu
- Department of Cardiology, Cangzhou Central Hospital, China
| | - Heping Niu
- Department of Cardiology, Cangzhou Central Hospital, China
| | - Guangren Gao
- Department of Cardiology, Cangzhou Central Hospital, China
| | - Lei Wang
- Department of Cardiology, Cangzhou Central Hospital, China
| | - Kai Yu
- Department of Cardiology, Cangzhou Central Hospital, China
| | - Run Guo
- Department of Cardiology, Cangzhou Central Hospital, China
| | - Jun Zhang
- Department of Cardiology, Cangzhou Central Hospital, China
| |
Collapse
|
6
|
Yao J, Cai L, Chen Y, Zhang J, Zhuang W, Liang J, Li H. Exosomes: mediators regulating the phenotypic transition of vascular smooth muscle cells in atherosclerosis. Cell Commun Signal 2022; 20:153. [PMID: 36221105 PMCID: PMC9555104 DOI: 10.1186/s12964-022-00949-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/31/2022] [Indexed: 11/10/2022] Open
Abstract
Cardiovascular disease is one of the leading causes of human mortality worldwide, mainly due to atherosclerosis (AS), and the phenotypic transition of vascular smooth muscle cells (VSMCs) is a key event in the development of AS. Exosomes contain a variety of specific nucleic acids and proteins that mediate intercellular communication. The role of exosomes in AS has attracted attention. This review uses the VSMC phenotypic transition in AS as the entry point, introduces the effect of exosomes on AS from different perspectives, and discusses the status quo, deficiencies, and potential future directions in this field to provide new ideas for clinical research and treatment of AS. Video Abstract.
Collapse
Affiliation(s)
- Jiali Yao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Linqian Cai
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yingrui Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jie Zhang
- Department of Neurology, Afliated Hospital of Yangzhou University, Yangzhou, 225001, China
| | - Wenwen Zhuang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jingyan Liang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Experimental and Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Hongliang Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Key Laboratory of Experimental and Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
7
|
Candidate microRNAs as prognostic biomarkers in heart failure: A systematic review. Rev Port Cardiol 2022; 41:865-885. [DOI: 10.1016/j.repc.2021.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 11/24/2022] Open
|
8
|
Majka M, Kleibert M, Wojciechowska M. Impact of the Main Cardiovascular Risk Factors on Plasma Extracellular Vesicles and Their Influence on the Heart's Vulnerability to Ischemia-Reperfusion Injury. Cells 2021; 10:3331. [PMID: 34943838 PMCID: PMC8699798 DOI: 10.3390/cells10123331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
The majority of cardiovascular deaths are associated with acute coronary syndrome, especially ST-elevation myocardial infarction. Therapeutic reperfusion alone can contribute up to 40 percent of total infarct size following coronary artery occlusion, which is called ischemia-reperfusion injury (IRI). Its size depends on many factors, including the main risk factors of cardiovascular mortality, such as age, sex, systolic blood pressure, smoking, and total cholesterol level as well as obesity, diabetes, and physical effort. Extracellular vesicles (EVs) are membrane-coated particles released by every type of cell, which can carry content that affects the functioning of other tissues. Their role is essential in the communication between healthy and dysfunctional cells. In this article, data on the variability of the content of EVs in patients with the most prevalent cardiovascular risk factors is presented, and their influence on IRI is discussed.
Collapse
Affiliation(s)
- Miłosz Majka
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
| | - Marcin Kleibert
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
| | - Małgorzata Wojciechowska
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
- Invasive Cardiology Unit, Independent Public Specialist Western Hospital John Paul II, Daleka 11, 05-825 Grodzisk Mazowiecki, Poland
| |
Collapse
|
9
|
Alterations in microRNA Expression during Hematopoietic Stem Cell Mobilization. BIOLOGY 2021; 10:biology10070668. [PMID: 34356523 PMCID: PMC8301406 DOI: 10.3390/biology10070668] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 01/01/2023]
Abstract
Simple Summary Lymphoproliferative disorders comprise a heterogeneous group of hematological malignancies characterized by abnormal lymphocyte proliferation. Autologous hematopoietic stem cell transplantation plays a very important role in the treatment of lymphoproliferative diseases. The key element in this process is the effective mobilization of hematopoietic cells from the marrow niche to the peripheral blood. Mobilization of HSC is regulated by many factors, out of which miRNAs present in the hematopoietic niche via targeting cytokines, and signaling pathways may play an important regulatory role. This study investigated the expression of selected miRNAs in patients with multiple myeloma, Hodgkin’s lymphomas, and non-Hodgkin’s lymphomas undergoing mobilization procedures. The aim of the study was to evaluate the expression of hsa-miR-15a-5p, hsa-miR-16-5p, hsa-miR-34a-5p, hsa-miR-126-3p, hsa-miR-146a-5p, hsa-miR-155-5p, and hsa-miR-223-3p during the mobilization procedure, and to assess their role in mobilization efficacy. The level of miRNAs was tested at two time points before the initiation of mobilization and on the day of the first apheresis. Our results suggest that the investigated miRNAs, especially hsa-miR-146a-5p, may influence the efficacy of HSC mobilization. Abstract microRNAs play an important role in the regulation of gene expression, cell fate, hematopoiesis, and may influence the efficacy of CD34+ cell mobilization. The present study examines the role of hsa-miR-15a-5p, hsa-miR-16-5p, hsa-miR-34a-5p, hsa-miR-126-3p, hsa-miR-146a-5p, hsa-miR-155-5p, and hsa-miR-223-3p in the course of hematopoietic stem cell mobilization. The numbers of CD34+ cells collected in patients with hematological malignancies (39 multiple myelomas, 11 lymphomas) were determined during mobilization for an autologous hematopoietic stem cell transplantation. The miRNA level was evaluated by RT-PCR. Compared to baseline, a significant decline in hsa-miR-15a-5p, hsa-miR-16-5p, hsa-miR-126-3p, hsa-miR-146a-5p, and hsa-miR-155-5p was observed on the day of the first apheresis (day A). An increase was observed only in the expression of hsa-miR-34a-5p. On day A, a negative correlation was found between hsa-miR-15a-5p and hsa-miR-146a-5p levels and the number of CD34+ cells in peripheral blood. A negative correlation was observed between hsa-miR-146a-5p and the number of collected CD34+ cells after the first apheresis. Good mobilizers, defined according to GITMO criteria, demonstrated a lower hsa-miR-146a-5p level on day A than poor mobilizers. Patients from the hsa-miR-146a-5p “low expressors” collected more CD34+ cells than “high expressors”. Our results suggest that the investigated miRNAs, especially hsa-miR-146a-5p, may influence the efficacy of HSC mobilization.
Collapse
|
10
|
Kinget L, Roussel E, Verbiest A, Albersen M, Rodríguez-Antona C, Graña-Castro O, Inglada-Pérez L, Zucman-Rossi J, Couchy G, Job S, de Reyniès A, Laenen A, Baldewijns M, Beuselinck B. MicroRNAs Targeting HIF-2α, VEGFR1 and/or VEGFR2 as Potential Predictive Biomarkers for VEGFR Tyrosine Kinase and HIF-2α Inhibitors in Metastatic Clear-Cell Renal Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13123099. [PMID: 34205829 PMCID: PMC8235409 DOI: 10.3390/cancers13123099] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/13/2022] Open
Abstract
Metastatic clear-cell renal cell carcinoma (m-ccRCC) is characterized by increased hypoxia-induced factor (HIF)-2α and vascular endothelial growth factor receptor (VEGFR)-dependent angiogenesis through loss of function of the von Hippel-Lindau protein. VEGFR tyrosine kinase inhibitors (VEGFR-TKIs) are a cornerstone of m-ccRCC treatment, and new treatments targeting HIF-2α are currently under investigation. However, predictive biomarkers for these treatments are lacking. In this retrospective cohort study including 109 patients treated with VEGFR-targeted therapies as first-line treatment, we aimed to study the possible predictive function of microRNAs (miRNAs) targeting HIF-2α, VEGFR1 and VEGFR2. We selected miRNAs inversely correlated with HIF-2α, VEGFR1 and/or VEGFR2 expression and with predicted target sites in the respective genes and subsequently studied their impact on therapeutic outcomes. We identified four miRNAs (miR-34c-5p, miR-221-3p, miR-222-3p and miR-3529-3p) inversely correlated with VEGFR1 and/or VEGFR2 expression and associated with tumor shrinkage and progression-free survival (PFS) upon treatment with VEGFR-TKIs, highlighting the potential predictive value of these miRNAs. Moreover, we identified three miRNAs (miR-185-5p, miR-223-3p and miR-3529-3p) inversely correlated with HIF-2α expression and associated with tumor shrinkage and PFS upon treatment with VEGFR-TKIs. These three miRNAs can have a predictive value not only upon treatment with VEGFR-TKIs but possibly also upon treatment with the upcoming HIF-2α inhibitor belzutifan.
Collapse
Affiliation(s)
- Lisa Kinget
- Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, 3000 Leuven, Belgium; (L.K.); (A.V.)
| | - Eduard Roussel
- Department of Urology, University Hospitals Leuven, 3000 Leuven, Belgium; (E.R.); (M.A.)
| | - Annelies Verbiest
- Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, 3000 Leuven, Belgium; (L.K.); (A.V.)
| | - Maarten Albersen
- Department of Urology, University Hospitals Leuven, 3000 Leuven, Belgium; (E.R.); (M.A.)
| | - Cristina Rodríguez-Antona
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (C.R.-A.); (O.G.-C.)
| | - Osvaldo Graña-Castro
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (C.R.-A.); (O.G.-C.)
| | - Lucía Inglada-Pérez
- Department of Statistics and Operational Research, Faculty of Medicine, Complutense University, 28040 Madrid, Spain;
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Functional Genomics of Solid Tumors Laboratory, équipe Labellisée Ligue Nationale Contre le Cancer, Labex OncoImmunology, F-75006 Paris, France; (J.Z.-R.); (G.C.)
| | - Gabrielle Couchy
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Functional Genomics of Solid Tumors Laboratory, équipe Labellisée Ligue Nationale Contre le Cancer, Labex OncoImmunology, F-75006 Paris, France; (J.Z.-R.); (G.C.)
| | - Sylvie Job
- Programme Cartes d’Identité des Tumeurs, Ligue Nationale Contre le Cancer, F-75006 Paris, France; (S.J.); (A.d.R.)
| | - Aurélien de Reyniès
- Programme Cartes d’Identité des Tumeurs, Ligue Nationale Contre le Cancer, F-75006 Paris, France; (S.J.); (A.d.R.)
| | | | | | - Benoit Beuselinck
- Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, 3000 Leuven, Belgium; (L.K.); (A.V.)
- Correspondence: ; Tel.: +32-16-34-6900
| |
Collapse
|
11
|
Morrison KR, Solly EL, Shemesh T, Psaltis PJ, Nicholls SJ, Brown A, Bursill CA, Tan JTM. Elevated HDL-bound miR-181c-5p level is associated with diabetic vascular complications in Australian Aboriginal people. Diabetologia 2021; 64:1402-1411. [PMID: 33651121 DOI: 10.1007/s00125-021-05414-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022]
Abstract
AIMS/HYPOTHESIS Diabetes is a major burden on Australia's Indigenous population, with high rates of disease and vascular complications. Diabetic vascular complications are associated with impaired ischaemia-driven angiogenesis. MicroRNAs (miRNAs) are key players in the regulation of angiogenesis. HDL-cholesterol (HDL-c) levels are inversely associated with the risk of developing diabetic complications and HDL can carry miRNAs. HDL-miRNA profiles differ in disease states and may present as biomarkers with the capacity to act as bioactive signalling molecules. Recent studies have demonstrated that HDL becomes dysfunctional in a diabetic environment, losing its vasculo-protective effects and becoming more pro-atherogenic. We sought to determine whether HDL-associated miRNA profiles and HDL functionality were predictive of the severity of diabetic vascular complications in Australia's Indigenous population. METHODS HDL was isolated from plasma samples from Indigenous participants without diabetes ('Healthy'), with type 2 diabetes mellitus ('T2DM') and with diabetes-associated macrovascular complications (specifically peripheral artery disease, 'T2DM+Comp'). To assess HDL angiogenic capacity, human coronary artery endothelial cells were treated with PBS, reconstituted HDL (rHDL, positive control) or isolated HDL and then exposed to high-glucose (25 mmol/l) conditions. The expression levels of two anti-angiogenic miRNAs (miR-181c-5p and miR-223-3p) and one pro-angiogenic miRNA (miR-27b-3p) were measured in the HDL fraction, plasma and treated human coronary artery endothelial cells by quantitative real-time PCR. In vitro endothelial tubule formation was assessed using the Matrigel tubulogenesis assay. RESULTS Strikingly, we found that the levels of the anti-angiogenic miRNA miR-181c-5p were 14-fold higher (1454 ± 1346%) in the HDL from Aboriginal people with diabetic complications compared with both the Healthy (100 ± 121%, p < 0.05) and T2DM (82 ± 77%, p < 0.05) groups. Interestingly, we observed a positive correlation between HDL-associated miR-181c-5p levels and disease severity (p = 0.0020). Under high-glucose conditions, cells treated with rHDL, Healthy HDL and T2DM HDL had increased numbers of tubules (rHDL: 136 ± 8%, p < 0.01; Healthy HDL: 128 ± 6%, p < 0.01; T2DM HDL: 124 ± 5%, p < 0.05) and branch points (rHDL: 138 ± 8%, p < 0.001; Healthy HDL: 128 ± 6%, p < 0.01; T2DM HDL: 127 ± 5%, p < 0.01) concomitant with elevations in mRNA levels of the key hypoxia angiogenic transcription factor HIF1A (rHDL: 140 ± 10%, p < 0.01; Healthy HDL: 136 ± 8%, p < 0.01; T2DM HDL: 133 ± 9%, p < 0.05). However, this increase in angiogenic capacity was not observed in cells treated with T2DM + Comp HDL (tubule numbers: 113 ± 6%, p = 0.32; branch points: 113 ± 5%, p = 0.28; HIF1A: 117 ± 6%, p = 0.43), which could be attributed to the increase in cellular miR-181c-5p levels (T2DM + Comp HDL: 136 ± 7% vs PBS: 100 ± 9%, p < 0.05). CONCLUSIONS/INTERPRETATION In conclusion, HDL from Aboriginal people with diabetic complications had reduced angiogenic capacity. This impairment is associated with an increase in the expression of anti-angiogenic miR-181c-5p. These findings provide the rationale for a new way to better inform clinical diagnosis of disease severity with the potential to incorporate targeted, personalised HDL-miRNA intervention therapies to prevent further development of, or to reverse, diabetic vascular complications in Australian Aboriginal people.
Collapse
Affiliation(s)
- Kaitlin R Morrison
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Emma L Solly
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Tomer Shemesh
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Peter J Psaltis
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Stephen J Nicholls
- Monash Cardiovascular Research Centre, Victorian Heart Institute, Monash University, Melbourne, VIC, Australia
| | - Alex Brown
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Christina A Bursill
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Joanne T M Tan
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
12
|
Szilágyi B, Fejes Z, Rusznyák Á, Fenyvesi F, Pócsi M, Halmi S, Griger Z, Kunapuli SP, Kappelmayer J, Nagy B. Platelet Microparticles Enriched in miR-223 Reduce ICAM-1-Dependent Vascular Inflammation in Septic Conditions. Front Physiol 2021; 12:658524. [PMID: 34135769 PMCID: PMC8201999 DOI: 10.3389/fphys.2021.658524] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/21/2021] [Indexed: 12/19/2022] Open
Abstract
In the process of sepsis, activated platelets shed microvesicles containing microRNAs (miRNAs), which can be internalized by distinct recipient cells in circulation, consequently eliciting a potent capability to regulate their cellular functions in different diseases. In the present study, activated human platelets transferring miR-223 into endothelial cells via platelet-derived microparticles (PMPs) was investigated in vitro during septic conditions with a proposed mechanism involving in downregulation of the enhanced expression of intercellular adhesion molecule-1 (ICAM-1). The uptake of PMPs encasing miR-223 and the adhesion of peripheral blood mononuclear cells (PBMCs) on human coronary artery endothelial cells (HCAECs) were observed by immunofluorescence microscopy upon co-culture with PMPs isolated from sepsis or control plasma. The expression of miR-223-3p and its gene target ICAM1 in HCAECs were quantified by RT-qPCR and ELISA after the cells were incubated with septic or control PMPs, whose levels were induced with thrombin-receptor activating peptide (TRAP). Leukocyte-depleted platelets (LDPs) from septic patients showed a decreased miR-223 level, while septic plasma and PMPs revealed an elevated miRNA level compared to control samples. Similarly, TRAP-activated LDPs demonstrated a reduced intracellular miR-223 expression, while increased levels in the supernatant and PMP isolates were observed vs. untreated samples. Furthermore, TNF-α alone resulted in decreased miR-223 and elevated ICAM1 levels in HCAECs, while PMPs raised the miRNA level that was associated with downregulated ICAM1 expression at both mRNA and protein levels under TNF-α treatment. Importantly, miR-223 was turned out not to be newly synthesized as shown in unchanged pre-miR-223 level, and mature miR-223 expression was also elevated in the presence of PMPs in HCAECs after transfection with Dicer1 siRNA. In addition, septic PMPs containing miR-223 decreased ICAM1 with a reduction of PBMC binding to HCAECs. In conclusion, septic platelets released PMPs carrying functional miR-223 lower ICAM1 expression in endothelial cells, which may be a protective role against excessive sepsis-induced vascular inflammation.
Collapse
Affiliation(s)
- Bernadett Szilágyi
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Kálmán Laki Doctoral School of Biomedical and Clinical Sciences, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsolt Fejes
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Kálmán Laki Doctoral School of Biomedical and Clinical Sciences, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ágnes Rusznyák
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary.,Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, Hungary
| | - Ferenc Fenyvesi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary.,Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, Hungary
| | - Marianna Pócsi
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Sándor Halmi
- Faculty of Medicine, Institute of Internal Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Griger
- Faculty of Medicine, Institute of Internal Medicine, University of Debrecen, Debrecen, Hungary
| | - Satya P Kunapuli
- Department of Physiology and Sol Sherry Thrombosis Center, Temple University School of Medicine, Philadelphia, PA, United States
| | - János Kappelmayer
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Kálmán Laki Doctoral School of Biomedical and Clinical Sciences, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Béla Nagy
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Kálmán Laki Doctoral School of Biomedical and Clinical Sciences, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
13
|
Liu B, Wang B, Zhang X, Lock R, Nash T, Vunjak-Novakovic G. Cell type-specific microRNA therapies for myocardial infarction. Sci Transl Med 2021; 13:eabd0914. [PMID: 33568517 PMCID: PMC8848299 DOI: 10.1126/scitranslmed.abd0914] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 01/19/2021] [Indexed: 12/13/2022]
Abstract
Current interventions fail to recover injured myocardium after infarction and prompt the need for development of cardioprotective strategies. Of increasing interest is the therapeutic use of microRNAs to control gene expression through specific targeting of mRNAs. In this Review, we discuss current microRNA-based therapeutic strategies, describing the outcomes and limitations of key microRNAs with a focus on target cell types and molecular pathways. Last, we offer a perspective on the outlook of microRNA therapies for myocardial infarction, highlighting the outstanding challenges and emerging strategies.
Collapse
Affiliation(s)
- Bohao Liu
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Bryan Wang
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Xiaokan Zhang
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Roberta Lock
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Trevor Nash
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Gordana Vunjak-Novakovic
- Department of Medicine, Columbia University, New York, NY 10032, USA.
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| |
Collapse
|
14
|
Zhang MW, Shen YJ, Shi J, Yu JG. MiR-223-3p in Cardiovascular Diseases: A Biomarker and Potential Therapeutic Target. Front Cardiovasc Med 2021; 7:610561. [PMID: 33553260 PMCID: PMC7854547 DOI: 10.3389/fcvm.2020.610561] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/23/2020] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular diseases, involving vasculopathy, cardiac dysfunction, or circulatory disturbance, have become the major cause of death globally and brought heavy social burdens. The complexity and diversity of the pathogenic factors add difficulties to diagnosis and treatment, as well as lead to poor prognosis of these diseases. MicroRNAs are short non-coding RNAs to modulate gene expression through directly binding to the 3′-untranslated regions of mRNAs of target genes and thereby to downregulate the protein levels post-transcriptionally. The multiple regulatory effects of microRNAs have been investigated extensively in cardiovascular diseases. MiR-223-3p, expressed in multiple cells such as macrophages, platelets, hepatocytes, and cardiomyocytes to modulate their cellular activities through targeting a variety of genes, is involved in the pathological progression of many cardiovascular diseases. It participates in regulation of several crucial signaling pathways such as phosphatidylinositol 3-kinase/protein kinase B, insulin-like growth factor 1, nuclear factor kappa B, mitogen-activated protein kinase, NOD-like receptor family pyrin domain containing 3 inflammasome, and ribosomal protein S6 kinase B1/hypoxia inducible factor 1 α pathways to affect cell proliferation, migration, apoptosis, hypertrophy, and polarization, as well as electrophysiology, resulting in dysfunction of cardiovascular system. Here, in this review, we will discuss the role of miR-223-3p in cardiovascular diseases, involving its verified targets, influenced signaling pathways, and regulation of cell function. In addition, the potential of miR-223-3p as therapeutic target and biomarker for diagnosis and prediction of cardiovascular diseases will be further discussed, providing clues for clinicians.
Collapse
Affiliation(s)
- Meng-Wan Zhang
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yun-Jie Shen
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Shi
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jian-Guang Yu
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
15
|
Gou L, Xue C, Tang X, Fang Z. Inhibition of Exo-miR-19a-3p derived from cardiomyocytes promotes angiogenesis and improves heart function in mice with myocardial infarction via targeting HIF-1α. Aging (Albany NY) 2020; 12:23609-23618. [PMID: 33352533 PMCID: PMC7762502 DOI: 10.18632/aging.103563] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/05/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Myocardial infarction (MI), a common presentation for cardiovascular disease, is caused by reduction of blood flow and oxygen supply and is one of the main causes of death worldwide. MicroRNAs participate in multiple physiological and pathological processed and play crucial role in myocardial infarction. RESULTS qRT-PCR analysis showed that expression level of miR-19a-3p was increased in serum of patient with MI. In vitro study indicated that the miR-19a-3p level was upregulated in response to H2O2 treatment and transferred by exosome, and then, uptake occurred in endothelial cells. Furthermore, western blot and immunostaining showed that treatment of exosome enriched miR-19a-3p suppressed the proliferation of endothelial cells and induced cell death, which was inhibited by AMO-19 transfection. Administration of antagomiR-19a-3p promoted angiogenesis and improved heart function of MI mice. Moreover, miR-19a-3p overexpression downregulated the protein level of HIF-1α and transfection of si-HIF-1α reversed the promotion of endothelial cells proliferation caused by AMO-19 transfection. In addition, antagomiR-19a-3p treatment accelerated angiogenesis and infection of AAV5-shHIF-1α inhibited that effect in MI mice. CONCLUSIONS In conclusion, our finding indicated that miR-19a-3p inhibited endothelial cells proliferation and angiogenesis via targeting HIF-1α and attenuated heart function of mice after MI, and suggested a new mechanism of cell-to-cell communication between cardiomyocytes and endothelial cells.
Collapse
Affiliation(s)
- Lianping Gou
- Department of Cardiovascular Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, China
| | - Cheng Xue
- Department of Cardiovascular Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, China
| | - Xiaoyan Tang
- Department of General Practitioner, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, China
| | - Zhiyuan Fang
- Department of Medicine, Shanxi Provincial People’s Hospital, Xi'an, Shanxi Province, China
| |
Collapse
|
16
|
Zhang Z, Qiao G, Sun Z, Chen X, Liu J, Lu W, Zou G. Expression of miR-223-3p in a rat model of myocardial infarction and the effects of miR-223-3p on cardiomyocytes. ALL LIFE 2020. [DOI: 10.1080/26895293.2020.1796827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Zhidong Zhang
- Department of Vascular Surgery, Fuwai Central China Cardiovascular Hospital (The Cardiovascular Center of Henan Provincial People’s Hospital), Zhengzhou, People’s Republic of China
| | - Gang Qiao
- Department of Vascular Surgery, Fuwai Central China Cardiovascular Hospital (The Cardiovascular Center of Henan Provincial People’s Hospital), Zhengzhou, People’s Republic of China
| | - Zhigang Sun
- Department of Vascular Surgery, Fuwai Central China Cardiovascular Hospital (The Cardiovascular Center of Henan Provincial People’s Hospital), Zhengzhou, People’s Republic of China
| | - Xiaosan Chen
- Department of Vascular Surgery, Fuwai Central China Cardiovascular Hospital (The Cardiovascular Center of Henan Provincial People’s Hospital), Zhengzhou, People’s Republic of China
| | - Jianyang Liu
- Department of Vascular Surgery, Fuwai Central China Cardiovascular Hospital (The Cardiovascular Center of Henan Provincial People’s Hospital), Zhengzhou, People’s Republic of China
| | - Wei Lu
- Department of Vascular Surgery, Fuwai Central China Cardiovascular Hospital (The Cardiovascular Center of Henan Provincial People’s Hospital), Zhengzhou, People’s Republic of China
| | - Gangqiang Zou
- Department of Vascular Surgery, Fuwai Central China Cardiovascular Hospital (The Cardiovascular Center of Henan Provincial People’s Hospital), Zhengzhou, People’s Republic of China
| |
Collapse
|
17
|
Role of endothelial microvesicles released by p-cresol on endothelial dysfunction. Sci Rep 2020; 10:10657. [PMID: 32606426 PMCID: PMC7326964 DOI: 10.1038/s41598-020-67574-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022] Open
Abstract
Protein bound uremic toxins, such as p-cresol, cannot be effectively removed by conventional dialysis techniques and are accumulated in plasma, thus contributing to progression of both chronic kidney disease (CKD) and cardiovascular disease (CVD). Pathological effects of uremic toxins include activation of inflammatory response, endothelial dysfunction and release of endothelial microvesicles. To date, the role of p-cresol in endothelial microvesicles formation has not been analyzed. The aim of the present study was evaluate the effects of endothelial microvesicles released by p-cresol (PcEMV) on endothelial dysfunction. An in vitro model of endothelial damage mediated by p-cresol was proposed to evaluate the functional effect of PcEMV on the endothelial repair process carried out by endothelial cells and microRNA (miRNA) that could be involved in this process. We observed that p-cresol induced a greater release of microvesicles in endothelial cells. These microvesicles altered regenerative capacity of endothelial cells, decreasing their capacity for cell migration and their potential to form vascular structures in vitro. Moreover, we observed increased cellular senescence and a deregulation of miRNA-146b-5p and miRNA-223-3p expression in endothelial cells treated with endothelial microvesicles released by p-cresol. In summary our data show that microvesicles generated in endothelial cells treated with p-cresol (PcEMV) interfere with the endothelial repair process by decreasing the migratory capacity, the ability to form new vessels and increasing the senescence of mature endothelial cells. These alterations could be mediated by the upregulation of miRNA-146b-5p and miRNA-223-3p.
Collapse
|
18
|
Deng B, Hu Y, Sheng X, Zeng H, Huo Y. miR-223-3p reduces high glucose and high fat-induced endothelial cell injury in diabetic mice by regulating NLRP3 expression. Exp Ther Med 2020; 20:1514-1520. [PMID: 32765674 PMCID: PMC7388564 DOI: 10.3892/etm.2020.8864] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/18/2019] [Indexed: 12/16/2022] Open
Abstract
Expression levels of miR-223-3p and NLRP3 in high glucose and high fat (HGHF)-induced diabetic mice, and the mechanism on the injury of mouse cardiac microvascular endothelial cells (MCMECs) were investigated. Four-week C57BL/6J laboratory mice were selected and randomized into a control group and a model group (n=10 each). Mice in the model group were fed with HGHF diet to establish a mouse model of diabetes. Further MCMECs were purchased to construct carriers through transient transfection, and were separated into a normal group (cultured in the normal environment), a model group (not transfected), a blank carrier group (transfected with miR-NC), a miR-223-3p-mimics group, and a miR-223-3p-inhibitor group. RT-qPCR was used to detect the expression levels of miR-223-3p and NLRP3, and western blot analysis to detect the expression levels of NLRP3, apoptosis-related proteins Bax and caspase-3, and anti-apoptotic protein Bcl-2. Flow cytometry was used to observe apoptosis and TargetScan to predict the target relationship between miR-223-3p and NLRP3. Dual-luciferase reporter gene assay was used to detect the relationship between miR-223-3p and NLRP3. Compared with those in the control group, the mice in the model group had significantly lower expression of miR-223-3p. However, significantly higher mRNA and protein expression levels of NLRP3 were observed (P<0.05). After modeling, miR-223-3p overexpression downregulated the expression levels of NLRP3 mRNA, Bax and NLRP3 protein, as well as inhibited endothelial cell apoptosis (P<0.05), while the inhibition of miR-223-3p expression upregulated the expression levels and promoted apoptosis. In conclusion, miR-223-3p expression is low, however, NLRP3 is highly expressed in the heart tissue of HGHF-induced diabetic mice. miR-223-3p reduces the injury of MCMECs and inhibits endothelial cell apoptosis in mice by regulating the expression of NLRP3.
Collapse
Affiliation(s)
- Bo Deng
- Department of Endocrinology, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| | - Ying Hu
- Department of Endocrinology, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| | - Xia Sheng
- Department of Endocrinology, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| | - Huijun Zeng
- Department of Pharmacy, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| | - Yanan Huo
- Department of Endocrinology, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
19
|
MiR-195 enhances cardiomyogenic differentiation of the proepicardium/septum transversum by Smurf1 and Foxp1 modulation. Sci Rep 2020; 10:9334. [PMID: 32518241 PMCID: PMC7283354 DOI: 10.1038/s41598-020-66325-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 05/12/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular development is a complex developmental process in which multiple cell lineages are involved, namely the deployment of first and second heart fields. Beside the contribution of these cardiogenic fields, extracardiac inputs to the developing heart are provided by the migrating cardiac neural crest cells and the proepicardial derived cells. The proepicardium (PE) is a transitory cauliflower-like structure located between the cardiac and hepatic primordia. The PE is constituted by an internal mesenchymal component surrounded by an external epithelial lining. With development, cells derived from the proepicardium migrate to the neighboring embryonic heart and progressive cover the most external surface, leading to the formation of the embryonic epicardium. Experimental evidence in chicken have nicely demonstrated that epicardial derived cells can distinctly contribute to fibroblasts, endothelial and smooth muscle cells. Surprisingly, isolation of the developing PE anlage and ex vivo culturing spontaneously lead to differentiation into beating cardiomyocytes, a process that is enhanced by Bmp but halted by Fgf administration. In this study we provide a comprehensive characterization of the developmental expression profile of multiple microRNAs during epicardial development in chicken. Subsequently, we identified that miR-125, miR-146, miR-195 and miR-223 selectively enhance cardiomyogenesis both in the PE/ST explants as well as in the embryonic epicardium, a Smurf1- and Foxp1-driven process. In addition we identified three novel long non-coding RNAs with enhanced expression in the PE/ST, that are complementary regulated by Bmp and Fgf administration and well as by microRNAs that selectively promote cardiomyogenesis, supporting a pivotal role of these long non coding RNAs in microRNA-mediated cardiomyogenesis of the PE/ST cells.
Collapse
|
20
|
Galli de Amorim M, Branco G, Valieris R, Tarcitano E, Tojal da Silva I, Ferreira de Araújo L, Noronha Nunes D, Dias-Neto E. The impact of HER2 overexpression on the miRNA and circRNA transcriptomes in two breast cell lines and their vesicles. Pharmacogenomics 2020; 20:493-502. [PMID: 31124410 DOI: 10.2217/pgs-2018-0182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
HER2 upregulation is related with poor outcome in many tumor types. Whereas anti-HER2 treatment is the standard approach as adjuvant therapy in HER2-overexpressing breast cancer, the frequent relapses reinforce the need for alternative treatments. Here we used next-generation sequencing (NGS) to evaluate miRNAs and circRNAs in the cell-lines HB4a and C5.2, where the latter is a HER2-overexpressing clone of the former, and also from two different populations of their secreted extracellular vesicles. Whereas circRNA-levels were stable, we found at least 16 miRNAs apparently modulated by HER2-expression. The miR223-3p, miR-421 and miR-21-5p were validated in an independent cohort of 431 breast cancer patients from The Cancer Genome Atlas (TCGA). The consistent modulation of these molecules and their possible involvement in the HER2-axis makes them promising new targets to overcome HER2-activation.
Collapse
Affiliation(s)
- Maria Galli de Amorim
- Laboratory of Medical Genomics, AC Camargo Cancer Center, São Paulo, SP, Brazil.,Curso de Pós-graduação em Oncologia, Fundação Antônio Prudente, São Paulo, SP, Brazil
| | - Gabriela Branco
- Laboratory of Medical Genomics, AC Camargo Cancer Center, São Paulo, SP, Brazil.,Curso de Pós-graduação em Oncologia, Fundação Antônio Prudente, São Paulo, SP, Brazil
| | - Renan Valieris
- Laboratory of Computational Biology, AC Camargo Cancer Center, São Paulo, SP, Brazil
| | - Emilio Tarcitano
- Laboratory of Medical Genomics, AC Camargo Cancer Center, São Paulo, SP, Brazil.,Curso de Pós-graduação em Oncologia, Fundação Antônio Prudente, São Paulo, SP, Brazil
| | - Israel Tojal da Silva
- Laboratory of Computational Biology, AC Camargo Cancer Center, São Paulo, SP, Brazil
| | | | - Diana Noronha Nunes
- Laboratory of Medical Genomics, AC Camargo Cancer Center, São Paulo, SP, Brazil
| | - Emmanuel Dias-Neto
- Laboratory of Medical Genomics, AC Camargo Cancer Center, São Paulo, SP, Brazil.,Laboratório de Neurociências Alzira Denise Hertzog Silva (LIM27), Instituto de Psiquiatria, Faculdade de Medicina da Universidade de São Paulo (USP), São Paulo, SP, Brazil
| |
Collapse
|
21
|
Peters MM, Sampaio-Pinto V, da Costa Martins PA. Non-coding RNAs in endothelial cell signalling and hypoxia during cardiac regeneration. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118515. [DOI: 10.1016/j.bbamcr.2019.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/19/2019] [Accepted: 07/18/2019] [Indexed: 01/08/2023]
|
22
|
MicroRNA-148a/b-3p regulates angiogenesis by targeting neuropilin-1 in endothelial cells. Exp Mol Med 2019; 51:1-11. [PMID: 31723119 PMCID: PMC6853980 DOI: 10.1038/s12276-019-0344-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/20/2019] [Accepted: 09/26/2019] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRs) are crucial regulators of vascular endothelial cell (EC) functions, including migration, proliferation, and survival. However, the role of most miRs in ECs remains unknown. Using RNA sequencing analysis, we found that miR-148a/b-3p expression was significantly downregulated during the differentiation of umbilical cord blood mononuclear cells into outgrowing ECs and that decreased miR-148a/b-3p levels were closely related to EC behavior. Overexpression of miR-148a/b-3p in ECs significantly reduced migration, filamentous actin remodeling, and angiogenic sprouting. Intriguingly, the effects of decreased miR-148a/b-3p levels were augmented by treatment with vascular endothelial growth factor (VEGF). Importantly, we found that miR-148a/b-3p directly regulated neuropilin-1 (NRP1) expression by binding to its 3′-untranslated region. In addition, because NRP1 is the coreceptor for VEGF receptor 2 (VEGFR2), overexpression of miR-148a/b-3p inhibited VEGF-induced activation of VEGFR2 and inhibited its downstream pathways, as indicated by changes to phosphorylated focal adhesion kinase (FAK), extracellular signal-regulated kinase (ERK), and p38 mitogen-activated protein kinase. Collectively, our results demonstrate that miR-148a/b-3p is a direct transcriptional regulator of NRP1 that mediates antiangiogenic pathways. These data suggest that miR-148a/b-3p is a therapeutic candidate for overcoming EC dysfunction and angiogenic disorders, including ischemia, retinopathy, and tumor vascularization. A small regulatory RNA molecule helps prevent the development of new blood vessels, a finding that could have implications for the treatment of vascular disease and cancer. Young-Guen Kwon from Yonsei University in Seoul, South Korea, and colleagues cataloged all the microRNAs expressed during the differentiation of umbilical cord blood stem cells into precursors of the cells that line the inside of blood vessels. One microRNA in particular stood out for its association with cellular differentiation. The authors showed that this microRNA, called miR-148a/b-3p, directly binds part of the gene transcript encoding neuropilin-1, thereby blocking the production of this receptor for growth factors involved in new blood vessel formation. Modulating the activity of miR-148a/b-3p could have therapeutic value for disorders marked by aberrant blood vessel growth.
Collapse
|
23
|
An HJ, Park M, Kim J, Han YH. miR‑5191 functions as a tumor suppressor by targeting RPS6KB1 in colorectal cancer. Int J Oncol 2019. [PMID: 31485593 DOI: 10.3892/ijo.2019.4865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 08/08/2019] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) are a class of small non‑coding RNAs that play pivotal roles in cancer physiology as important epigenetic regulators of gene expression. Several miRNAs have been previously discovered that regulate the proliferation of the colorectal cancer (CRC) cell line HCT116. In the present study, one of these miRNAs, miR‑5191, was characterized as a tumor suppressor in CRC cells. Transfection with miR‑5191 led to a significant decrease in cell proliferation, invasiveness, tumor sphere‑forming ability and tumor organoid growth, as determined via trypan blue, Transwell, sphere culture and organoid culture assays, respectively. Flow cytometric analyses revealed that miR‑5191 induced the cell cycle arrest and apoptosis of CRC cells. Additionally, the expression of miR‑5191 was downregulated in CRC tumor tissues compared with in normal tissues, as measured by reverse transcription‑quantitative PCR analysis. Ribosomal protein S6 kinase β1 (RPS6KB1) was identified as a direct target of miR‑5191. Ectopic expression of RPS6KB1 suppressed the function of miR‑5191. Intratumoral injection of miR‑5191 mimic suppressed tumor growth in HCT116 xenografts. These findings suggested a novel tumor‑suppressive function for miR‑5191 in CRC, and its potential applicability for the development of anticancer miRNA therapeutics.
Collapse
Affiliation(s)
- Hyun-Ju An
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139‑706, Republic of Korea
| | - Misun Park
- Department of Radiological & Clinical Research, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul 139‑706, Republic of Korea
| | - Joon Kim
- Laboratory of Biochemistry, School of Life Sciences and Biotechnology, Korea University, Seoul 136‑701, Republic of Korea
| | - Young-Hoon Han
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139‑706, Republic of Korea
| |
Collapse
|
24
|
Qian L, Pan S, Shi L, Zhou Y, Sun L, Wan Z, Ding Y, Qian J. Downregulation of microRNA-218 is cardioprotective against cardiac fibrosis and cardiac function impairment in myocardial infarction by binding to MITF. Aging (Albany NY) 2019; 11:5368-5388. [PMID: 31408435 PMCID: PMC6710048 DOI: 10.18632/aging.102112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/16/2019] [Indexed: 04/14/2023]
Abstract
OBJECTIVE This study is intended to figure out the function of microRNA-218 (miR-218) together with microphthalmia-associated transcription factor (MITF) on the cardiac fibrosis and cardiac function impairment in rat models of myocardial infarction (MI). RESULTS The rats with MI exhibited cardiac function impairment, cardiac fibrosis, oxidative stress, cardiomyocyte apoptosis, as well as inflammatory injury. Additionally, upregulated miR-218 and downregulated MITF were detected in cardiac tissues of MI rats. MI rats injected with miR-218 inhibitors or overexpressed MITF exhibited elevated MITF expression, improved cardiac function, and diminished pathological damages, infarct size, cardiomyocyte apoptosis, cardiac fibrosis, oxidative stress as well as inflammatory injury in cardiac tissues. Furthermore, downregulated miR-218 and MITF aggravated the conditions than downregulation of miR-218 alone in MI rats. METHODS MI models were performed in rats, and then the rats were injected with miR-218 inhibitors and/or MITF overexpression plasmid to elucidate the role of miR-218 and/or MITF on the cardiac function, pathological damage, cardiac fibrosis, angiogenesis, oxidative stress and inflammatory injury of cardiac tissues in MI rats by performing a series of assays. CONCLUSION Collectively, we found that the suppression of miR-218 alleviates cardiac fibrosis and cardiac function impairment, and stimulates angiogenesis in MI rats through inhibiting MITF.
Collapse
Affiliation(s)
- Linfeng Qian
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Zhejiang University, Hangzhou 310003, PR. China
| | - Shaobo Pan
- Operating Room, First Affiliated Hospital of Zhejiang University, Hangzhou 310003, PR. China
| | - Liping Shi
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Zhejiang University, Hangzhou 310003, PR. China
| | - Yongyi Zhou
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Zhejiang University, Hangzhou 310003, PR. China
| | - Lai Sun
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Zhejiang University, Hangzhou 310003, PR. China
| | - Zhedong Wan
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Zhejiang University, Hangzhou 310003, PR. China
| | - Yufang Ding
- Operating Room, First Affiliated Hospital of Zhejiang University, Hangzhou 310003, PR. China
| | - Jia Qian
- Operating Room, First Affiliated Hospital of Zhejiang University, Hangzhou 310003, PR. China
| |
Collapse
|
25
|
Du K, Zhao C, Wang L, Wang Y, Zhang KZ, Shen XY, Sun HX, Gao W, Lu X. MiR-191 inhibit angiogenesis after acute ischemic stroke targeting VEZF1. Aging (Albany NY) 2019; 11:2762-2786. [PMID: 31064890 PMCID: PMC6535071 DOI: 10.18632/aging.101948] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/29/2019] [Indexed: 04/13/2023]
Abstract
Acute ischemic stroke (AIS) is a major public health problem in China. Impaired angiogenesis plays crucial roles in the development of ischemic cerebral injury. Recent studies have identified that microRNAs (miRNAs) are important regulators of angiogenesis, but little is known the exact effects of angiogenesis-associated miRNAs in AIS. In the present study, we detected the expression levels of angiogenesis-associated miRNAs in AIS patients, middle cerebral artery occlusion (MCAO) rats, and oxygen-glucose deprivation/reoxygenation (OGD/R) human umbilical vein endothelial cells (HUVECs). MiR-191 was increased in the plasma of AIS patients, OGD/R HUVECs, and the plasma and brain of MCAO rats. Over-expression of miR-191 promoted apoptosis, but reduced the proliferation, migration, tube-forming and spheroid sprouting activity in HUVECs OGD/R model. Mechanically, vascular endothelial zinc finger 1 (VEZF1) was identified as the direct target of miR-191, and could be regulated by miR-191 at post-translational level. In vivo studies applying miR-191 antagomir demonstrated that inhibition of miR-191 reduced infarction volume in MCAO rats. In conclusion, our data reveal a novel role of miR-191 in promoting ischemic brain injury through inhibiting angiogenesis via targeting VEZF1. Therefore, miR-191 may serve as a biomarker or a therapeutic target for AIS.
Collapse
Affiliation(s)
- Kang Du
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
- Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
- Equal contribution
| | - Can Zhao
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
- Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
- Equal contribution
| | - Li Wang
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
- Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
| | - Yue Wang
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
- Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
| | - Kang-Zhen Zhang
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
- Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
| | - Xi-Yu Shen
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
- Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
| | - Hui-Xian Sun
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
- Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
| | - Wei Gao
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
- Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
| | - Xiang Lu
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
- Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
| |
Collapse
|
26
|
Cavallari C, Dellepiane S, Fonsato V, Medica D, Marengo M, Migliori M, Quercia AD, Pitino A, Formica M, Panichi V, Maffei S, Biancone L, Gatti E, Tetta C, Camussi G, Cantaluppi V. Online Hemodiafiltration Inhibits Inflammation-Related Endothelial Dysfunction and Vascular Calcification of Uremic Patients Modulating miR-223 Expression in Plasma Extracellular Vesicles. THE JOURNAL OF IMMUNOLOGY 2019; 202:2372-2383. [PMID: 30833349 DOI: 10.4049/jimmunol.1800747] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 01/31/2019] [Indexed: 02/06/2023]
Abstract
Decreased inflammation and cardiovascular mortality are evident in patients with end-stage chronic kidney disease treated by online hemodiafiltration. Extracellular vesicles (EV) are mediators of cell-to-cell communication and contain different RNA types. This study investigated whether mixed online hemodiafiltration (mOL-HDF) beneficial effects associate with changes in the RNA content of plasma EV in chronic kidney disease patients. Thirty bicarbonate hemodialysis (BHD) patients were randomized 1:1 to continue BHD or switch to mOL-HDF. Concentration, size, and microRNA content of plasma EV were evaluated for 9 mo; we then studied EV effects on inflammation, angiogenesis, and apoptosis of endothelial cells (HUVEC) and on osteoblast mineralization of vascular smooth muscle cells (VSMC). mOL-HDF treatment reduced different inflammatory markers, including circulating CRP, IL-6, and NGAL. All hemodialysis patients showed higher plasma levels of endothelial-derived EV than healthy subjects, with no significant differences between BHD and mOL-HDF. However, BHD-derived EV had an increased expression of the proatherogenic miR-223 with respect to healthy subjects or mOL-HDF. Compared with EV from healthy subjects, those from hemodialysis patients reduced angiogenesis and increased HUVEC apoptosis and VSMC calcification; however, all these detrimental effects were reduced with mOL-HDF with respect to BHD. Cell transfection with miR-223 mimic or antagomiR proved the role of this microRNA in EV-induced HUVEC and VSMC dysfunction. The switch from BHD to mOL-HDF significantly reduced systemic inflammation and miR-223 expression in plasma EV, thus improving HUVEC angiogenesis and reducing VSMC calcification.
Collapse
Affiliation(s)
| | - Sergio Dellepiane
- Nephrology, Dialysis and Kidney Transplantation Unit, Department of Medical Sciences, University of Turin, Turin 10126, Italy
| | | | - Davide Medica
- Nephrology, Dialysis and Kidney Transplantation Unit, Department of Medical Sciences, University of Turin, Turin 10126, Italy
| | - Marita Marengo
- Nephrology and Dialysis Unit, Local Health Service CN1, Cuneo 12100, Italy
| | | | - Alessandro D Quercia
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale, Novara 28100, Italy.,Center for Translational Research on Autoimmune and Allergic Diseases, University of Eastern Piedmont, Novara 28100, Italy
| | | | - Marco Formica
- Nephrology and Dialysis Unit, Local Health Service CN1, Cuneo 12100, Italy
| | - Vincenzo Panichi
- Nephrology and Dialysis Unit, Versilia Hospital, Camaiore, Lucca 55049, Italy
| | - Stefano Maffei
- Nephrology, Dialysis and Kidney Transplantation Unit, Department of Medical Sciences, University of Turin, Turin 10126, Italy
| | - Luigi Biancone
- Nephrology, Dialysis and Kidney Transplantation Unit, Department of Medical Sciences, University of Turin, Turin 10126, Italy
| | - Emanuele Gatti
- Department for Health Sciences and Biomedicine, Danube University, 3500 Krems, Austria; and
| | | | - Giovanni Camussi
- Nephrology, Dialysis and Kidney Transplantation Unit, Department of Medical Sciences, University of Turin, Turin 10126, Italy
| | - Vincenzo Cantaluppi
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale, Novara 28100, Italy; .,Center for Translational Research on Autoimmune and Allergic Diseases, University of Eastern Piedmont, Novara 28100, Italy
| |
Collapse
|
27
|
Shi S, Jin Y, Song H, Chen X. MicroRNA-34a attenuates VEGF-mediated retinal angiogenesis via targeting Notch1. Biochem Cell Biol 2018; 97:423-430. [PMID: 30571142 DOI: 10.1139/bcb-2018-0304] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Pathological angiogenesis in the retina is one of the main ocular diseases closely associated with vision loss. This work investigated the roles of microRNA-34a (miR-34a) and its potential target Notch1, in retinal angiogenesis. For this we used oxygen-induced retinopathy (OIR) rats and human retinal microvascular endothelial cells (HRMECs) stimulated with vascular endothelial growth factor (VEGF). We performed hematoxylin-eosin staining, Western blot for VEGF, and immunofluorescence staining for CD31 to verify the establishment of our OIR model. We observed down-regulation of miR-34a, and up-regulation of Notch1 and Hey1 in retinas from OIR rats. We found similar results with the VEGF-stimulated HRMECs. By performing MTT assay, cell scratch assay, tube formation assay, and by detecting the expression of matrix-metalloproteinase-2 (MMP-2), MMP-9, tissue inhibitors of metalloproteinases-1 (TIMP-1), and TIMP-2, we found that transfection of miR-34a ameliorated VEGF-mediated angiogenesis of HRMECs. We further observed that siRNA-induced gene silencing of Notch1 prevented VEGF-induced angiogenesis via regulating cell proliferation, cell migration, and tube formation of HRMECs. Additionally, activation of Notch1 by transfection of Notch1 plasmid attenuated the inhibitory effects of miR-34a on tube formation, in the present of VEGF. Results from our dual-luciferase reporter gene assay suggested that miR-34a targets Notch1. In summary, our data demonstrate that miR-34a attenuates retinal angiogenesis via targeting Notch1.
Collapse
Affiliation(s)
- Shaoyang Shi
- a Department of Ophthalmology, 202 Hospital of Chinese PLA, Shenyang 110003, People's Republic of China
| | - Yong Jin
- b Department of Medical Affairs, 202 Hospital of Chinese PLA, Shenyang 110003, People's Republic of China
| | - Haishan Song
- a Department of Ophthalmology, 202 Hospital of Chinese PLA, Shenyang 110003, People's Republic of China
| | - Xiaolong Chen
- c Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| |
Collapse
|
28
|
Rodosthenous RS, Kloog I, Colicino E, Zhong J, Herrera LA, Vokonas P, Schwartz J, Baccarelli AA, Prada D. Extracellular vesicle-enriched microRNAs interact in the association between long-term particulate matter and blood pressure in elderly men. ENVIRONMENTAL RESEARCH 2018; 167:640-649. [PMID: 30216846 PMCID: PMC6173640 DOI: 10.1016/j.envres.2018.09.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/31/2018] [Accepted: 09/04/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Several studies have shown that exposure to particulate matter (PM) may lead to increased systemic blood pressure, but the underlying biological mechanisms remain unknown. Emerging evidence shows that extracellular vesicle-enriched miRNAs (evmiRNAs) are associated with PM exposure and cardiovascular risk. In this study, we investigated the role of evmiRNAs in the association between PM and blood pressure, as well as their epigenetic regulation by DNA methylation. METHODS Participants (n = 22, men) were randomly selected from the Veterans Affairs Normative Aging Study (NAS). Long-term (1-year and 6-month average) PM2.5 exposure was estimated at 1 × 1-km resolution using spatio-temporal prediction models and BC was estimated using validated time varying land use regression models. We analyzed 31 evmiRNAs detected in ≥ 90% of all individuals and for statistical analysis, we used mixed effects models with random intercept adjusted for age, body mass index, smoking, C-reactive protein, platelets, and white blood cells. RESULTS We found that per each 2-standard deviations increase in 6-month PM2.5 ambient levels, there was an increase in 0.19 mm Hg (95% Confidence Interval [95%CI]: 0.11, 0.28 mmHg; p < 0.001) in systolic blood pressure (SBP). Per each 2-standard deviations increase in 1-year PM2.5 levels, there was an increase in 0.11 mm Hg (95% Confidence Interval [95% CI]: 0.03, 0.19 mmHg; p = 0.012) in SBP in older male individuals. We also found that both miR-199a/b (β = 6.13 mmHg; 95% CI: 0.87, 11.39; pinteraction = 0.07) and miR-223-3p (β = 30.17 mmHg; 95% CI: 11.96, 48.39 mmHg; pinteraction = 0.01) modified the association between 1-year PM2.5 and SBP. When exploring DNA methylation as a potential mechanism that could epigenetically regulate expression of evmiRNAs, we found that PM2.5 ambient levels were negatively associated with DNA methylation levels at CpG (cg23972892) near the enhancer region of miR-199a/b (β = -13.11; 95% CI: -17.70, -8.52; pBonferroni< 0.01), but not miR-223-3p. CONCLUSIONS Our findings suggest that expression of evmiRNAs may be regulated by DNA methylation in response to long-term PM2.5 ambient levels and modify the magnitude of association between PM2.5 and systolic blood pressure in older individuals.
Collapse
Affiliation(s)
- Rodosthenis S Rodosthenous
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, 665 Huntington Ave, Boston, MA 02115, United States; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, United States.
| | - Itai Kloog
- Department of Geography and Environmental Development, Ben-Gurion University of the Negev, 663 Beer Sheva, Israel.
| | - Elena Colicino
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, 665 Huntington Ave, Boston, MA 02115, United States; Icahn School of Medicine, Mount Sinai Hospital, 1 Gustave L. Levy Place, New York, NY 10029-5674, United States.
| | - Jia Zhong
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, 665 Huntington Ave, Boston, MA 02115, United States.
| | - Luis A Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología - Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico.
| | - Pantel Vokonas
- Veterans Affairs Boston Healthcare System, 150 South Huntington Ave, Boston, MA 02130, United States; Department of Epidemiology, Boston University School of Public Health, 715 Albany Street, Boston, MA 02118, United States; Department of Medicine, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, United States.
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, 665 Huntington Ave, Boston, MA 02115, United States.
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, United States.
| | - Diddier Prada
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, 665 Huntington Ave, Boston, MA 02115, United States; Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología - Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico.
| |
Collapse
|
29
|
Peng Y, He X, Chen H, Duan H, Shao B, Yang F, Li H, Yang P, Zeng Y, Zheng J, Li Y, Hu J, Lin L, Teng L. Inhibition of microRNA-299-5p sensitizes glioblastoma cells to temozolomide via the MAPK/ERK signaling pathway. Biosci Rep 2018; 38:BSR20181051. [PMID: 30061180 PMCID: PMC6131327 DOI: 10.1042/bsr20181051] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/23/2018] [Accepted: 07/27/2018] [Indexed: 01/10/2023] Open
Abstract
Glioblastomas (GBMs) are a lethal class of brain cancer, with a median survival <15 months in spite of therapeutic advances. The poor prognosis of GBM is largely attributed to acquired chemotherapy resistance, and new strategies are urgently needed to target resistant glioma cells. Here we report a role for miR-299-5p in GBM. The level of miR-299-5p expression was detected in glioma specimens and cell lines by qRT-PCR. Luciferase reporter assays and Western blots were performed to verify GOLPH3 as a direct target of miR-299-5p. In vitro cell proliferation, invasion, cell cycle distribution, and apoptosis were assessed to determine whether or not miR-299-5p knockdown sensitized GBM cells to temozolomide (TMZ). We demonstrated that miR-299-5p levels were up-regulated in the GBM groups compared with the normal control group. The highest expression of miR-129-5p occurred in the highest GBM stage. miR-299-5p knockdown significantly inhibited the MAPK/extracellular signal-regulated kinase (ERK) signaling pathway. We also showed that miR-299-5p knockdown enhanced sensitivity of GBM cells to TMZ both in vitro and in vivo by inhibiting cell proliferation and invasion and promoting apoptosis. In addition, we demonstrated that GOLPH3 is a novel functional target of miR-299-5p GOLPH3 regulates the MAPK/ERK axis under miR-299-5p regulation. In conclusion, we identified a link between miR-299-5p expression and the GOLPH3/MAPK/ERK axis, thus illustrating a novel role for miR-299-5p in GBM.
Collapse
Affiliation(s)
- Yujiang Peng
- Department of Neurosurgery, The First People's Hospital of Wenling, Zhejiang Province 317500, China
| | - Xijun He
- Department of Neurosurgery, The First People's Hospital of Wenling, Zhejiang Province 317500, China
| | - Huihui Chen
- Department of Neurosurgery, The First People's Hospital of Wenling, Zhejiang Province 317500, China
| | - Hongyu Duan
- Department of Neurosurgery, The First People's Hospital of Wenling, Zhejiang Province 317500, China
| | - Bo Shao
- Department of Neurosurgery, The First People's Hospital of Wenling, Zhejiang Province 317500, China
| | - Fan Yang
- Department of Neurosurgery, The First People's Hospital of Wenling, Zhejiang Province 317500, China
| | - Huiyong Li
- Department of Neurosurgery, The First People's Hospital of Wenling, Zhejiang Province 317500, China
| | - Pengxiang Yang
- Department of Neurosurgery, The First People's Hospital of Wenling, Zhejiang Province 317500, China
| | - Yu Zeng
- Department of Neurosurgery, The First People's Hospital of Wenling, Zhejiang Province 317500, China
| | - Jinrong Zheng
- Department of Neurosurgery, Taizhou Cancer Hospital, Zhejiang Province 317500, China
| | - Yongsheng Li
- Department of Neurosurgery, The Hospital of Integrated Traditional Chinese and Western Medicine of Taizhou, Zhejiang Province 317523, China
| | - Jiachang Hu
- Department of Neurosurgery, The Dongfang Hospital of Wenling, Zhejiang Province 317525, China
| | - Liguo Lin
- Department of Neurosurgery, Taizhou Orthopedics Hospital, Zhejiang Province 317500, China
| | - Lingfang Teng
- Department of Neurosurgery, The First People's Hospital of Wenling, Zhejiang Province 317500, China
| |
Collapse
|
30
|
Tang Q, Li MY, Su YF, Fu J, Zou ZY, Wang Y, Li SN. Absence of miR-223-3p ameliorates hypoxia-induced injury through repressing cardiomyocyte apoptosis and oxidative stress by targeting KLF15. Eur J Pharmacol 2018; 841:67-74. [PMID: 30336138 DOI: 10.1016/j.ejphar.2018.10.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/10/2018] [Accepted: 10/10/2018] [Indexed: 01/23/2023]
Abstract
Apoptosis of cardiomyocytes and oxidant stress are considered essential processes in the progression of cardiovascular diseases. A hypoxic stress which causes apoptosis of cardiomyocytes is the main problem in ischemic heart disease. The aim of the present study was to explore the functional role and potential mechanisms of miR-223-3p in hypoxia-induced cardiomyocyte apoptosis and oxidative stress. Here, we observed a increment of miR-223-3p level accompanied by the decrease of Krüppel-like zinc-finger transcription factor 15 (KLF15) expression in response to hypoxia. Additionally, absence of miR-223-3p manifestly dampened hypoxia-induced cardiomyocyte injury in H9c2 cells, including improving cell viability, attenuating the LDH leakage and preventing cardiomyocyte apoptosis accompanied by an increase in the expression of Bcl-2 and a decrease in the expression of Bax and C-caspase 3 in the setting of hypoxia. Moreover, depletion of miR-223-3p evidently retarded oxidant stress by inhibiting reactive oxygen species generation and lipid peroxidation, as well as enhancing antioxidant enzyme activity in H9c2 cells following exposure to hypoxia. More importantly, KLF15 was a direct and functional target of miR-223-3p. Further data validated that miR-223-3p negatively regulated the expression of KLF15. Mechanistically, deletion of KLF15 partly abrogated the suppressive effects of miR-223-3p deletion on hypoxia-induced cardiomyocyte apoptosis and oxidative stress. Taken all data together, our findings established that our study defines a novel mechanism by which miR-223-3p protects against cardiomyocyte apoptosis and oxidative stress by targeting KLF15, suggesting that the miR-223-3p/KLF15 may be a potential therapeutic target for ischemic heart conditions.
Collapse
Affiliation(s)
- Qing Tang
- Department of Emergency, Xi'an Children's Hospital, Xi'an 710003, Shaanxi, PR China
| | - Ming-Yue Li
- Department of Emergency, Xi'an Children's Hospital, Xi'an 710003, Shaanxi, PR China
| | - Yu-Fei Su
- Department of Emergency, Xi'an Children's Hospital, Xi'an 710003, Shaanxi, PR China
| | - Jia Fu
- Department of Infection, Xi'an Children's Hospital, Xi'an 710003, Shaanxi, PR China
| | - Zong-Yi Zou
- Department of Emergency, Xi'an Children's Hospital, Xi'an 710003, Shaanxi, PR China
| | - Yi Wang
- Department of Critical Care Medicine, Xi'an Children's Hospital, Xi'an 710003, Shaanxi, PR China
| | - Shao-Ning Li
- Department of Emergency, Xi'an Children's Hospital, Xi'an 710003, Shaanxi, PR China.
| |
Collapse
|
31
|
Hao S, Jiang L, Fu C, Wu X, Liu Z, Song J, Lu H, Wu X, Li S. 2-Methoxyestradiol attenuates chronic-intermittent-hypoxia-induced pulmonary hypertension through regulating microRNA-223. J Cell Physiol 2018; 234:6324-6335. [PMID: 30246291 DOI: 10.1002/jcp.27363] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/17/2018] [Indexed: 12/12/2022]
Abstract
Pulmonary hypertension (PH) is prevalent in patients with obstructive sleep apnea (OSA) syndrome, and coexistence of PH and OSA indicates a worse prognosis and higher mortality. Chronic intermittent hypoxia (CIH) is the key pathogenesis of OSA. Also, microRNA-223 (miR-223) plays a role in the regulation of CIH-induced PH process. However, the detailed mechanism of CIH inducing PH is still unclear. This study aimed to investigate the pathological process of CIH associated PH and explore the potential therapeutic methods. In this study, adult Sprague-Dawley rats were exposed to CIH or normoxic (N) conditions with 2-methoxyestradiol (2-Me) or vehicle treatment for 6 weeks. The results showed that 2-Me treatment reduced the progression of pulmonary angiogenesis in CIH rats, and alleviated proliferation, cellular migration, and reactive oxygen species formation was induced by CIH in pulmonary artery smooth muscle cells (PASMCs). CIH decreased the expression of miR-223, whereas 2-Me reversed the downregulation of miR-223 both in vivo and in vitro. Furthermore, the antiangiogenic effect of 2-Me observed in PASMCs was abrogated by miR-223 inhibitor, while enhanced by miR-223 mimic. These findings suggested that miR-223 played an important role in the process of CIH inducing PH, and 2-Me might reverse CIH-induced PH via upregulating miR-223.
Collapse
Affiliation(s)
- Shengyu Hao
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Clinical Centre for Sleep Breathing Disorder and Snoring, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liyan Jiang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cuiping Fu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Clinical Centre for Sleep Breathing Disorder and Snoring, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xu Wu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zilong Liu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jieqiong Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huan Lu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Clinical Centre for Sleep Breathing Disorder and Snoring, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaodan Wu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Clinical Centre for Sleep Breathing Disorder and Snoring, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shanqun Li
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Clinical Centre for Sleep Breathing Disorder and Snoring, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
32
|
Hourigan ST, Solly EL, Nankivell VA, Ridiandries A, Weimann BM, Henriquez R, Tepper ER, Zhang JQJ, Tsatralis T, Clayton ZE, Vanags LZ, Robertson S, Nicholls SJ, Ng MKC, Bursill CA, Tan JTM. The regulation of miRNAs by reconstituted high-density lipoproteins in diabetes-impaired angiogenesis. Sci Rep 2018; 8:13596. [PMID: 30206364 PMCID: PMC6133943 DOI: 10.1038/s41598-018-32016-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 08/28/2018] [Indexed: 01/08/2023] Open
Abstract
Diabetic vascular complications are associated with impaired ischaemia-driven angiogenesis. We recently found that reconstituted high-density lipoproteins (rHDL) rescue diabetes-impaired angiogenesis. microRNAs (miRNAs) regulate angiogenesis and are transported within HDL to sites of injury/repair. The role of miRNAs in the rescue of diabetes-impaired angiogenesis by rHDL is unknown. Using a miRNA array, we found that rHDL inhibits hsa-miR-181c-5p expression in vitro and using a hsa-miR-181c-5p mimic and antimiR identify a novel anti-angiogenic role for miR-181c-5p. miRNA expression was tracked over time post-hindlimb ischaemic induction in diabetic mice. Early post-ischaemia when angiogenesis is important, rHDL suppressed hindlimb mmu-miR-181c-5p. mmu-miR-181c-5p was not detected in the plasma or within HDL, suggesting rHDL specifically targets mmu-miR-181c-5p at the ischaemic site. Three known angiogenic miRNAs (mmu-miR-223-3p, mmu-miR-27b-3p, mmu-miR-92a-3p) were elevated in the HDL fraction of diabetic rHDL-infused mice early post-ischaemia. This was accompanied by a decrease in plasma levels. Only mmu-miR-223-3p levels were elevated in the hindlimb 3 days post-ischaemia, indicating that rHDL regulates mmu-miR-223-3p in a time-dependent and site-specific manner. The early regulation of miRNAs, particularly miR-181c-5p, may underpin the rescue of diabetes-impaired angiogenesis by rHDL and has implications for the treatment of diabetes-related vascular complications.
Collapse
Affiliation(s)
- Samuel T Hourigan
- The Heart Research Institute, Sydney, Australia.,The University of Sydney, Sydney Medical School, Sydney, Australia
| | - Emma L Solly
- Heart Health Theme, South Australian Health & Medical Research Institute, Adelaide, Australia
| | - Victoria A Nankivell
- Heart Health Theme, South Australian Health & Medical Research Institute, Adelaide, Australia
| | - Anisyah Ridiandries
- The Heart Research Institute, Sydney, Australia.,The University of Sydney, Sydney Medical School, Sydney, Australia
| | - Benjamin M Weimann
- Heart Health Theme, South Australian Health & Medical Research Institute, Adelaide, Australia.,Adelaide Medical School, Faculty of Health & Medical Sciences, The University of Adelaide, Adelaide, Australia
| | | | - Edward R Tepper
- The Heart Research Institute, Sydney, Australia.,The University of Sydney, Sydney Medical School, Sydney, Australia
| | - Jennifer Q J Zhang
- The Heart Research Institute, Sydney, Australia.,The University of Sydney, Sydney Medical School, Sydney, Australia
| | | | - Zoe E Clayton
- The Heart Research Institute, Sydney, Australia.,The University of Sydney, Sydney Medical School, Sydney, Australia
| | - Laura Z Vanags
- The Heart Research Institute, Sydney, Australia.,The University of Sydney, Sydney Medical School, Sydney, Australia
| | - Stacy Robertson
- The Heart Research Institute, Sydney, Australia.,The University of Sydney, Sydney Medical School, Sydney, Australia
| | - Stephen J Nicholls
- Heart Health Theme, South Australian Health & Medical Research Institute, Adelaide, Australia.,Adelaide Medical School, Faculty of Health & Medical Sciences, The University of Adelaide, Adelaide, Australia
| | - Martin K C Ng
- The Heart Research Institute, Sydney, Australia.,The University of Sydney, Sydney Medical School, Sydney, Australia.,Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Christina A Bursill
- The Heart Research Institute, Sydney, Australia.,The University of Sydney, Sydney Medical School, Sydney, Australia.,Heart Health Theme, South Australian Health & Medical Research Institute, Adelaide, Australia.,Adelaide Medical School, Faculty of Health & Medical Sciences, The University of Adelaide, Adelaide, Australia
| | - Joanne T M Tan
- The Heart Research Institute, Sydney, Australia. .,The University of Sydney, Sydney Medical School, Sydney, Australia. .,Heart Health Theme, South Australian Health & Medical Research Institute, Adelaide, Australia. .,Adelaide Medical School, Faculty of Health & Medical Sciences, The University of Adelaide, Adelaide, Australia.
| |
Collapse
|
33
|
Liu Y, Tang N, Cao K, Wang S, Tang S, Su H, Zhou J. Negative-Pressure Wound Therapy Promotes Wound Healing by Enhancing Angiogenesis Through Suppression of NLRX1 via miR-195 Upregulation. INT J LOW EXTR WOUND 2018; 17:144-150. [PMID: 30141361 DOI: 10.1177/1534734618794856] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Negative-pressure wound therapy (NPWT) is one of the most advanced therapeutic methods in the treatment of various hard-to-heal acute and refractory chronic wounds. Recent emerging evidence points to a role of the microRNA-mediated regulation of angiogenesis in ischemic tissues, and a series of microRNAs associated with angiogenesis have been successively identified. In this study, we found that miR-195 expression was significantly upregulated and the microvessel density (MVD) was increased in granulation tissue collected 7 days after NPWT compared with those in the pre-NPWT tissue. Moreover, the expression of NLRX1, the potential target gene of miR-195, was down-regulated in post-NPWT compared with that in pre-NPWT tissue. Significant negative correlations were detected between miR-195 and NLRX1 expression levels ( r = -.856, P < .001) and between NLRX1 expression and MVD ( r = -.618, P < .05), whereas miR-195 expression was positively correlated with MVD in the granulation tissue ( r = .630, P < .05). In summary, NPWT may suppress NLRX1 expression through the upregulation of miR-195 expression, thus efficaciously promoting angiogenesis in the granulation tissue to enhance wound healing.
Collapse
Affiliation(s)
- Yu Liu
- 1 Central South University Third Xiangya Hospital, Changsha, Hunan Province, China
- 2 Inner Mongolia Medical University, Hohhot, Inner Mongolia China
| | - Ningning Tang
- 1 Central South University Third Xiangya Hospital, Changsha, Hunan Province, China
- 3 Xiangya Changde Hospital, Changde, Hunan Province, China
| | - Ke Cao
- 1 Central South University Third Xiangya Hospital, Changsha, Hunan Province, China
| | - Shaohua Wang
- 1 Central South University Third Xiangya Hospital, Changsha, Hunan Province, China
| | - Sijie Tang
- 4 The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Honghui Su
- 1 Central South University Third Xiangya Hospital, Changsha, Hunan Province, China
| | - Jianda Zhou
- 1 Central South University Third Xiangya Hospital, Changsha, Hunan Province, China
| |
Collapse
|
34
|
Cao Y, Li Z, Ma L, Ni C, Li L, Yang N, Shi C, Guo X. Isoflurane‑induced postoperative cognitive dysfunction is mediated by hypoxia‑inducible factor‑1α‑dependent neuroinflammation in aged rats. Mol Med Rep 2018; 17:7730-7736. [PMID: 29620198 PMCID: PMC5983961 DOI: 10.3892/mmr.2018.8850] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 03/02/2018] [Indexed: 12/28/2022] Open
Abstract
Elderly patients are at high risk of developing postoperative cognitive dysfunction (POCD) after prolonged exposure to inhaled anesthetics. However, the pathogenesis of POCD remains unknown. Hypoxia-inducible factor-1α (HIF-1α) is activated by inhaled anesthetics. The aim of the present study was to determine the role of HIF-1α in isoflurane-induced neuroinflammation and the resulting cognitive impairment. Following a 4-h exposure to 1.5% isoflurane in 20-month-old rats, increased expression of HIF-1α protein, activation of nuclear factor (NF)-κB signaling and increased expression of TNF-1α were observed in the hippocampus of isoflurane-exposed rats compared with the control group. Pharmacological inhibition of HIF-1α activation by 5-[1-(phenylmethyl)-1H-indazol-3-yl]-2-furanmethanol (YC-1) markedly suppressed the enhanced expression of HIF-1α, disrupted NF-κB signaling pathway activity and inhibited the isoflurane-induced increase of TNF-1α expression. YC-1 pretreatment also significantly attenuated isoflurane-induced cognitive deficits according to the results of the Morris water maze task. These results suggest that hippocampal HIF-1α appears to be involved in an upstream mechanism of isoflurane-induced cognitive impairment. Further research is warranted to fully clarify the pathogenesis and investigate HIF-1α as a potential therapeutic target for POCD.
Collapse
Affiliation(s)
- Yiyun Cao
- Department of Anesthesiology, The Sixth People's Hospital East Campus, Shanghai University of Medicine and Health Sciences, Shanghai 200233, P.R. China
| | - Zhengqian Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Lijun Ma
- Department of Medical Imaging, North Minzu University, Yinchuan, Ningxia 750021, P.R. China
| | - Cheng Ni
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Lunxu Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Ning Yang
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Chengmei Shi
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Xiangyang Guo
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| |
Collapse
|
35
|
Ruan G, Ren H, Zhang C, Zhu X, Xu C, Wang L. Cardioprotective Effects of QiShenYiQi Dripping Pills on Transverse Aortic Constriction-Induced Heart Failure in Mice. Front Physiol 2018; 9:324. [PMID: 29666587 PMCID: PMC5891926 DOI: 10.3389/fphys.2018.00324] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/15/2018] [Indexed: 12/18/2022] Open
Abstract
QiShenYiQi dripping pills (QSYQ), a traditional Chinese medicine, are commonly used to treat coronary heart disease, and QSYQ was recently approved as a complementary treatment for ischemic heart failure in China. However, only few studies reported on whether QSYQ exerts a protective effect on heart failure induced by pressure overload. In this study, we explored the role of QSYQ in a mouse model of heart failure induced by transverse aortic constriction (TAC). Twenty-eight C57BL/6J mice were divided into four groups: Sham + NS group, Sham + QSYQ group, TAC + NS group, and TAC + QSYQ group. QSYQ dissolved in normal saline (NS) was administered intragastrically (3.5 mg/100 g/day) in the Sham + QSYQ and TAC + QSYQ groups. In the Sham + NS and TAC + NS groups, NS was provided every day intragastrically. Eight weeks after TAC, echocardiography, and cardiac catheterization were performed to evaluate the cardiac function, and immunofluorescent staining with anti-actinin2 antibody was performed to determine the structure of the myocardial fibers. Moreover, TUNEL staining and Masson trichrome staining were employed to assess the effects of QSYQ on cardiac apoptosis and cardiac fibrosis. Western blots and real-time polymerase chain reaction (PCR) were used to measure the expression levels of vascular endothelial growth factor (VEGF) in the heart, and immunohistochemical staining with anti-CD31 antibody was performed to explore the role of QSYQ in cardiac angiogenesis. Results showed that TAC-induced cardiac dysfunction and disrupted structure of myocardial fibers significantly improved after QSYQ treatment. Moreover, QSYQ treatment also significantly improved cardiac apoptosis and cardiac fibrosis in TAC-induced heart failure, which was accompanied by an increase in VEGF expression levels and maintenance of microvessel density in the heart. In conclusion, QSYQ exerts a protective effect on TAC-induced heart failure, which could be attributed to enhanced cardiac angiogenesis, which is closely related to QSYQ. Thus, QSYQ may be a promising traditional Chinese medicine for the treatment of heart failure induced by pressure overload such as hypertension.
Collapse
Affiliation(s)
- Guoran Ruan
- Department of Cardiology, The Puren Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Haojin Ren
- Department of Cardiology, The Puren Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Chi Zhang
- Department of Cardiology, The Puren Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaogang Zhu
- Department of Cardiology, The Puren Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Chao Xu
- Department of Cardiology, The Puren Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Liyue Wang
- Department of Cardiology, The Puren Hospital, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
36
|
Liu X, Deng Y, Xu Y, Jin W, Li H. MicroRNA-223 protects neonatal rat cardiomyocytes and H9c2 cells from hypoxia-induced apoptosis and excessive autophagy via the Akt/mTOR pathway by targeting PARP-1. J Mol Cell Cardiol 2018; 118:133-146. [PMID: 29608885 DOI: 10.1016/j.yjmcc.2018.03.018] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 03/17/2018] [Accepted: 03/27/2018] [Indexed: 01/15/2023]
Abstract
Myocardial infarction (MI), characterized by interruption of blood and oxygen to myocardium, is a common yet fatal cardiovascular event that causes progressive damage to myocardial tissue and eventually leads to heart failure. Previous studies have shown increased expression of microRNA-223 (miR-223) in infarcted myocardial tissues of humans and in rat models of MI. However, the role of miR-223 in cell survival during MI has not been elucidated. Thus, we aimed to investigate whether miR-223 participates in the regulation of cardiac ischemia-induced injury and to elucidate the underlying mechanisms of this process. qRT-PCR revealed that miR-223 expression levels are significantly upregulated in the myocardial tissues of rats with post-MI heart failure and in hypoxia-treated neonatal rat cardiomyocytes (NRCMs) and H9c2 cells, which indicates that miR-223 may be associated with chronic ischemia. We also transfected NRCMs and H9c2 cells with miR-223 mimics or inhibitors in vitro, and the results revealed that increasing miR-223 expression protected cells from hypoxia-induced apoptosis and excessive autophagy, whereas decreasing miR-223 expression had contrasting effects. Further exploration of the mechanism showed that poly(ADP-ribose) polymerase 1 (PARP-1) is a target gene of miR-223 and that silencing PARP-1 prevented hypoxia-induced cell injury; additionally, silencing PARP-1 blocked the aggravated impact of miR-223 inhibitors. Thus, PARP-1 mediates the protective effects of miR-223 in hypoxia-treated cardiomyocytes. We also investigated the involvement of the Akt/mTOR pathway in the above phenomena. We found that miR-223 overexpression and PARP-1 silencing positively regulated the Akt/mTOR pathway and that treating cells with NVP-BEZ235 (BEZ235), a novel dual Akt/mTOR inhibitor, could reverse the inhibitory effects of both the miR-223 mimics and PARP-1 siRNA on hypoxia-induced apoptosis and autophagy. Taken together, our findings showed that miR-223 protects NRCMs and H9c2 cells from hypoxia-induced apoptosis and excessive autophagy via the Akt/mTOR pathway by targeting PARP-1; thus, miR-223 may be a potential target in the treatment of MI in the future.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yunfei Deng
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yifeng Xu
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Jin
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Hongli Li
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
37
|
Ma S, Bai Z, Wang W, Wu H. Retracted
: Effects of microrna‐93 on mouse cardiac microvascular endothelial cells injury and inflammatory response by mediating SPP1 through the NF‐ΚB pathway. J Cell Biochem 2017; 120:2847-2858. [DOI: 10.1002/jcb.26567] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/01/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Su‐Xia Ma
- Second Department of Cardiovascular Medicine The First People’s Hospital of Shangqiu City Shangqiu China
| | - Zhi‐Feng Bai
- Second Department of Cardiovascular Medicine The First People’s Hospital of Shangqiu City Shangqiu China
| | - Wei Wang
- Department of Cardiovascular Medicine Fuwai Cardiovascular Hospital Beijing China
| | - Hui‐Ying Wu
- Department of General Medicine Henan Provincial People’s Hospital Zhengzhou China
| |
Collapse
|
38
|
Hyperphosphorylation of RPS6KB1, rather than overexpression, predicts worse prognosis in non-small cell lung cancer patients. PLoS One 2017; 12:e0182891. [PMID: 28792981 PMCID: PMC5549961 DOI: 10.1371/journal.pone.0182891] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/26/2017] [Indexed: 02/05/2023] Open
Abstract
RPS6KB1 is the kinase of ribosomal protein S6 which is 70 kDa and is required for protein translation. Although the abnormal activation of RPS6KB1 has been found in types of diseases, its role and clinical significance in non-small cell lung cancer (NSCLC) has not been fully investigated. In this study, we identified that RPS6KB1 was over-phosphorylated (p-RPS6KB1) in NSCLC and it was an independent unfavorable prognostic marker for NSCLC patients. In spite of the frequent expression of total RPS6KB1 and p-RPS6KB1 in NSCLC specimens by immunohistochemical staining (IHC), only p-RPS6KB1 was associated with the clinicopathologic characteristics of NSCLC subjects. Kaplan-Meier survival analysis revealed that the increased expression of p-RPS6KB1 indicated a poorer 5-year overall survival (OS) for NSCLC patients, while the difference between the positive or negative RPS6KB1 group was not significant. Univariate and multivariate Cox regression analysis was then used to confirm the independent prognostic value of p-RPS6KB1. To illustrate the underlying mechanism of RPS6KB1 phosphorylation in NSCLC, LY2584702 was employed to inhibit the RPS6KB1 phosphorylation specifically both in lung adenocarcinoma cell line A549 and squamous cell carcinoma cell line SK-MES-1. As expected, RPS6KB1 dephosphorylation remarkably suppressed cells proliferation in CCK-8 test, and promoted more cells arresting in G0-G1 phase by cell cycle analysis. Moreover, apoptotic A549 cells with RPS6KB1 dephosphorylation increased dramatically, with an elevating trend in SK-MES-1, indicating a potential involvement of RPS6KB1 phosphorylation in inducing apoptosis. In conclusion, our data suggest that RPS6KB1 is over-activated as p-RPS6KB1 in NSCLC, rather than just the total protein overexpressing. The phosphorylation level of RPS6KB1 might be used as a novel prognostic marker for NSCLC patients.
Collapse
|
39
|
Li J, Tan M, Xiang Q, Zhou Z, Yan H. Thrombin-activated platelet-derived exosomes regulate endothelial cell expression of ICAM-1 via microRNA-223 during the thrombosis-inflammation response. Thromb Res 2017; 154:96-105. [PMID: 28460288 DOI: 10.1016/j.thromres.2017.04.016] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/09/2017] [Accepted: 04/16/2017] [Indexed: 12/19/2022]
Abstract
Platelet activation and endothelial damage play essential roles in atherosclerosis. The pathophysiology of this process is mediated by chemokines and exosomes, two critical players in cell communication. Thrombin-activated platelet-derived exosomes have protective effects on atherosclerosis and endothelial inflammation. To confirm these findings, we isolated exosomes using differential ultracentrifugation and transmission electron microscopy. The exosomes were identified using NanoSight-tracking analysis. Immunofluorescence staining and western blotting were performed to assess exosome uptake and intercellular adhesion molecule-1 (ICAM-1) expression in human umbilical vein endothelial cells (HUVECs). We found that the levels of miR-223, miR-339 and miR-21 were elevated in thrombin-activated platelet exosomes. This finding was verified in our atherosclerosis mouse model. We also found that miR-223 transfection in HUVECs inhibited ICAM-1 expression under TNF-α stimulation. Furthermore, the miR-223 inhibitor blocked the downregulating effects of exosomes on ICAM-1 expression. We examined the key proteins of two classical signaling pathways, MAPK and NF-κB, and found that miR-223 inhibited the phosphorylation of p38, JNK and ERK and blocked the nuclear translocation of NF-κB p65. Our results suggest that thrombin-activated platelet-derived exosomes inhibit ICAM-1 expression during inflammation. MiR-223 may mediate this process via regulation of the NF-κB and MAPK pathways.
Collapse
Affiliation(s)
- Jiannan Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming Tan
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qinqin Xiang
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhou Zhou
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Hongbing Yan
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
40
|
Juni RP, Abreu RC, da Costa Martins PA. Regulation of microvascularization in heart failure - an endothelial cell, non-coding RNAs and exosome liaison. Noncoding RNA Res 2017; 2:45-55. [PMID: 30159420 PMCID: PMC6096416 DOI: 10.1016/j.ncrna.2017.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 01/26/2017] [Indexed: 12/22/2022] Open
Abstract
Heart failure is a complex syndrome involving various pathophysiological processes. An increasing body of evidence shows that the myocardial microvasculature is essential for the homeostasis state and that a decompensated heart is associated with microvascular dysfunction as a result of impaired endothelial angiogenic capacity. The intercellular communication between endothelial cells and cardiomyocytes through various signaling molecules, such as vascular endothelial growth factor, nitric oxide, and non-coding RNAs is an important determinant of cardiac microvascular function. Non-coding RNAs are transported from endothelial cells to cardiomyocytes, and vice versa, regulating microvascular properties and angiogenic processes in the heart. Small-exocytosed vesicles, called exosomes, which are secreted by both cell types, can mediate this intercellular communication. The purpose of this review is to highlight the contribution of the microvasculature to proper heart function maintenance by focusing on the interaction between cardiac endothelial cells and myocytes with a specific emphasis on non-coding RNAs (ncRNAs) in this form of cell-to-cell communication. Finally, the potential of ncRNAs as targets for angiogenesis therapy will also be discussed.
Collapse
Affiliation(s)
- Rio P. Juni
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Ricardo C. Abreu
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Paula A. da Costa Martins
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
41
|
Chen Y, Song Y, Huang J, Qu M, Zhang Y, Geng J, Zhang Z, Liu J, Yang GY. Increased Circulating Exosomal miRNA-223 Is Associated with Acute Ischemic Stroke. Front Neurol 2017; 8:57. [PMID: 28289400 PMCID: PMC5326773 DOI: 10.3389/fneur.2017.00057] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 02/09/2017] [Indexed: 12/22/2022] Open
Abstract
Recent studies have demonstrated that exosomal microRNAs (miRNAs) are novel biomarkers and therapeutic targets for various diseases including vascular disease. However, specific exosomal miRNAs expression in stroke patients has not been reported yet. Here, we explored whether circulating exosomal miRNAs can serve as potential biomarkers for the diagnosis of acute ischemic stroke and discussed the potential for clinical application. Blood samples were collected from acute ischemic stroke patients within the first 72 h (n = 50). Circulating exosomes were exacted by Exoquick exosome isolation kit and characterized by transmission electron microscopy. Western blot was performed to assess the expression of exosomal protein makers. Exosomal miRNA-223 (miR-223) was detected by RT-PCR assay. The relationship between the expression levels of miR-223 and National Institutes of Health Stroke Scale (NIHSS) scores, brain infarct volume, and neurological outcomes were analyzed. Circulating exosomes were isolated and the size of vesicles ranged between 30 and 100 nm. The identification of exosomes was further confirmed by the detection of specific exosomal protein markers CD9, CD63, and Tsg101. Exosomal miR-223 in acute ischemic stroke patients was significantly upregulated compared to control group (p < 0.001). Exosomal miR-223 level was positively correlated with NIHSS scores (r = 0.31, p = 0.03). Exosomal miR-223 expression in stroke patients with poor outcomes was higher than those with good outcomes (p < 0.05). Increased exosomal miR-223 was associated with acute ischemic stroke occurrence, stroke severity, and short-term outcomes. Future studies with large sample are needed to assess the clinical application of exosomal miR-223 as a novel biomarker for ischemic stroke diagnosis.
Collapse
Affiliation(s)
- Yajing Chen
- Department of Neurology, Ruijin Hospital and Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaying Song
- Department of Neurology, Ruijin Hospital and Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Jun Huang
- Neuroscience and Neuroengineering Center, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meijie Qu
- Department of Neurology, Ruijin Hospital and Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Yu Zhang
- Department of Neurology, Ruijin Hospital and Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Jieli Geng
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Zhijun Zhang
- Neuroscience and Neuroengineering Center, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University , Shanghai , China
| | - Jianrong Liu
- Department of Neurology, Ruijin Hospital and Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Guo-Yuan Yang
- Department of Neurology, Ruijin Hospital and Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Neuroscience and Neuroengineering Center, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
42
|
Du P, Dai F, Chang Y, Wei C, Yan J, Li J, Liu X. Role of miR-199b-5p in regulating angiogenesis in mouse myocardial microvascular endothelial cells through HSF1/VEGF pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 47:142-148. [PMID: 27689811 DOI: 10.1016/j.etap.2016.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/09/2016] [Accepted: 09/13/2016] [Indexed: 06/06/2023]
Abstract
Our study explored effects of miR-199b-5p on angiogenesis in mouse myocardial microvascular endothelial cells (MMVECs) and the involved working mechanisms. We applied explant culture to incubate C57/BL6 mouse MMVECs. Lipofection was used to transfect miR-199b-5p mimic, miR-199b-5p inhibitor and miR-199b-5p scramble respectively. MMVECs were divided into miR-199b-5p up-regulation, miR-199b-5p down-regulation and control groups based on above sequence. Expressions of miR-199b-5p, heat shock factor protein 1 (HSF1) mRNA were assessed by real-time quantitative polymerase chain reaction (RT-QPCR). Expressions of HSF1 and vascular endothelial growth factor (VEGF) were assessed by Western Blotting. Cell proliferation was assessed by CCK8. Tubule formation assay was conducted to assess formation of blood vessels. Results showed that miR-199b-5p up/down-regulation groups exhibited no obvious differences in the expressions of HSF1 mRNA compared to control group. However, miR-199b-5p up-regulation group recorded lower expressions of HSF1 and VEGF in the level of protein, and reduced cell proliferation and tubule formation. Whereas, miR-199b-5p down-regulation group presented the contrary results. The experiment indicated that miR-199b-5p can regulate proliferation and angiogenesis in mouse MMVECs through the pathway of HSF1/VEGF.
Collapse
Affiliation(s)
- Peizhao Du
- Department of Cardiovascular Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Fangjie Dai
- Department of Cardiovascular Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yaowei Chang
- Department of Cardiovascular Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Chunyan Wei
- Department of Cardiovascular Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Jing Yan
- Department of Cardiovascular Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Jiming Li
- Department of Cardiovascular Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| | - Xuebo Liu
- Department of Cardiovascular Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| |
Collapse
|
43
|
Luo W, Liang X, Huang S, Cao X. Molecular cloning, expression analysis and miRNA prediction of vascular endothelial growth factor A (VEGFAa and VEGFAb) in pond loach Misgurnus anguillicaudatus, an air-breathing fish. Comp Biochem Physiol B Biochem Mol Biol 2016; 202:39-47. [PMID: 27513203 DOI: 10.1016/j.cbpb.2016.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/21/2016] [Accepted: 07/30/2016] [Indexed: 01/07/2023]
Abstract
Vascular endothelial growth factor A (VEGFA) is the most studied and the best characterized member of the VEGF family and is a key regulator of angiogenesis via its ability to affect the proliferation, migration, and differentiation of endothelial cells. In this study, the full-length cDNAs encoding VEGFAa and VEGFAb from pond loach, Misgurnus anguillicaudatus, were isolated. The VEGFAa is constituted by an open reading frame (ORF) of 570bp encoding for a peptide of 189 amino acid residues, a 639bp 5'-untranslated region (UTR) and a 2383bp 3' UTR. The VEGFAb is constituted by an ORF of 687bp encoding for a peptide of 228 amino acid residues, a 560bp 5' UTR and a 1268bp 3' UTR. Phylogenetic analysis indicated that the VEGFAa and VEGFAb of pond loach were conserved in vertebrates. Expression levels of VEGFAa and VEGFAb were detected by RT-qPCR at different development stages of pond loach and in different tissues of 6-month-old, 12-month-old and 24-month-old pond loach. Moreover, eight predicted miRNAs (miR-200, miR-29, miR-218, miR-338, miR-103, miR-15, miR-17 and miR-223) targeting VEGFAa and VEGFAb were validated by an intestinal air-breathing inhibition experiment. This study will be of value for further studies into the function of VEGFA and its corresponding miRNAs, which will shed a light on the vascularization and accessory air-breathing process in pond loach.
Collapse
Affiliation(s)
- Weiwei Luo
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 437000, Hubei, People's Republic of China
| | - Xiao Liang
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 437000, Hubei, People's Republic of China
| | - Songqian Huang
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 437000, Hubei, People's Republic of China
| | - Xiaojuan Cao
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 437000, Hubei, People's Republic of China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Hubei, People's Republic of China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei, People's Republic of China.
| |
Collapse
|
44
|
Dong X, Sui C, Huang K, Wang L, Hu D, Xiong T, Wang R, Zhang H. MicroRNA-223-3p suppresses leukemia inhibitory factor expression and pinopodes formation during embryo implantation in mice. Am J Transl Res 2016; 8:1155-1163. [PMID: 27158401 PMCID: PMC4846958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/07/2016] [Indexed: 06/05/2023]
Abstract
MicroRNA (miRNA) regulates gene expression in a post-transcriptional manner, which hybridizes the target mRNAs with complementary sequence and subsequently leads to translation repression or mRNA degradation. Online sequence alignment showed that there is a putative binding site of miR-223-3p on the 3'UTR of LIF, which is considered to be an important marker of endometrial receptivity. Thus, we hypothesized that miR-223-3p may affect embryo implantation by suppressing LIF expression. In this study, we found that miR-223-3p and LIF protein was inversely expressed in the endometrium of mice during implantation window. Then we proved that miR-223-3p directly binds to LIF 3'UTR with luciferase reporter assay and supresses the expression of LIF. To investigate whether miR-233-3p affects embryo implantation, miR-223-3p agonist was injected into the uteri of pregnant mice. The results demonstrated the suppressing effect of miR-223-3p on embryo implantation. Furthermore, over-expression of miR-223-3p was found to compromise pinopodes formation in the endometrium of mice. Taken all together, our findings revealed that miR-223-3p suppresses pinopodes formation and LIF protein expression, which may lead to diminished embryo implantation.
Collapse
Affiliation(s)
- Xiyuan Dong
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology Jiefang Avenue 1095#, Wuhan 430030, People's Republic of China
| | - Cong Sui
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology Jiefang Avenue 1095#, Wuhan 430030, People's Republic of China
| | - Kai Huang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology Jiefang Avenue 1095#, Wuhan 430030, People's Republic of China
| | - Lan Wang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology Jiefang Avenue 1095#, Wuhan 430030, People's Republic of China
| | - Dan Hu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology Jiefang Avenue 1095#, Wuhan 430030, People's Republic of China
| | - Ting Xiong
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology Jiefang Avenue 1095#, Wuhan 430030, People's Republic of China
| | - Rui Wang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology Jiefang Avenue 1095#, Wuhan 430030, People's Republic of China
| | - Hanwang Zhang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology Jiefang Avenue 1095#, Wuhan 430030, People's Republic of China
| |
Collapse
|
45
|
Qi-Shen-Yi-Qi Dripping Pills Promote Angiogenesis of Ischemic Cardiac Microvascular Endothelial Cells by Regulating MicroRNA-223-3p Expression. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:5057328. [PMID: 27057198 PMCID: PMC4761670 DOI: 10.1155/2016/5057328] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/10/2015] [Accepted: 12/01/2015] [Indexed: 01/20/2023]
Abstract
Traditional Chinese medicine (TCM) research shows that Qi-Shen-Yi-Qi Dripping Pills (QSYQ) can promote ischemic cardiac angiogenesis. Studies have shown that microRNAs (miRNAs) are the key component of gene regulation networks, which play a vital role in angiogenesis and cardiovascular disease. Mechanisms involving miRNA by which TCM promotes ischemic cardiac angiogenesis have not been reported. We found that microRNA-223-3p (mir-223-3p) was the core miRNA of angiogenesis of rats ischemic cardiac microvascular endothelial cells (CMECs) and inhibited angiogenesis by affecting RPS6KB1/HIF-1α signal pathway in previous study. Based on the results, we observed biological characteristics and optimal dosage for QSYQ intervening in rats ischemic CMECs angiogenesis and concluded that QSYQ low-dose group had the strongest ability to promote angiogenesis of ischemic myocardium. Using miRNA chip and real-time PCR techniques in this study, we identified mir-223-3p as the pivotal miRNA in QSYQ that regulated angiogenesis of ischemic CMECs. From real-time PCR and western blot analysis, research showed that gene and protein expression of factors located RPS6KB1/HIF-1α signaling pathway, including HIF-1α, VEGF, MAPK, PI3K, and AKT, were significantly upregulated by QSYQ to regulate angiogenesis of ischemic CMECs. This study showed that QSYQ promote ischemic cardiac angiogenesis by downregulating mir-223-3p expression in rats ischemic CMECs.
Collapse
|
46
|
Bruneau S, Wedel J, Fakhouri F, Nakayama H, Boneschansker L, Irimia D, Daly KP, Briscoe DM. Translational implications of endothelial cell dysfunction in association with chronic allograft rejection. Pediatr Nephrol 2016; 31:41-51. [PMID: 25903640 PMCID: PMC4619184 DOI: 10.1007/s00467-015-3094-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/03/2015] [Accepted: 03/12/2015] [Indexed: 12/20/2022]
Abstract
Advances in therapeutics have dramatically improved short-term graft survival, but the incidence of chronic rejection has not changed in the past 20 years. New insights into mechanism are sorely needed at this time and it is hoped that the development of predictive biomarkers will pave the way for the emergence of preventative therapeutics. In this review, we discuss a paradigm suggesting that sequential changes within graft endothelial cells (EC) lead to an intragraft microenvironment that favors the development of chronic rejection. Key initial events include EC injury, activation and uncontrolled leukocyte-induced angiogenesis. We propose that all of these early changes in the microvasculature lead to abnormal blood flow patterns, local tissue hypoxia, and an associated overexpression of HIF-1α-inducible genes, including vascular endothelial growth factor. We also discuss how cell intrinsic regulators of mTOR-mediated signaling within EC are of critical importance in microvascular stability and may thus have a role in the inhibition of chronic rejection. Finally, we discuss recent findings indicating that miRNAs may regulate EC stability, and we review their potential as novel non-invasive biomarkers of allograft rejection. Overall, this review provides insights into molecular events, genes, and signals that promote chronic rejection and their potential as biomarkers that serve to support the future development of interruption therapeutics.
Collapse
Affiliation(s)
- Sarah Bruneau
- Transplant Research Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- INSERM UMR S-1064, Institut de Transplantation Urologie-Nephrologie (ITUN), Centre Hospitalier Universitaire (CHU) de Nantes, University of Nantes, Nantes, France
| | - Johannes Wedel
- Transplant Research Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Fadi Fakhouri
- INSERM UMR S-1064, Institut de Transplantation Urologie-Nephrologie (ITUN), Centre Hospitalier Universitaire (CHU) de Nantes, University of Nantes, Nantes, France
| | - Hironao Nakayama
- Transplant Research Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Leo Boneschansker
- Transplant Research Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Surgery, BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA, USA
| | - Daniel Irimia
- Department of Surgery, BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA, USA
| | - Kevin P Daly
- Transplant Research Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - David M Briscoe
- Transplant Research Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA.
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
47
|
Berenstein R, Nogai A, Waechter M, Blau O, Kuehnel A, Schmidt-Hieber M, Kunitz A, Pezzutto A, Dörken B, Blau IW. Multiple myeloma cells modify VEGF/IL-6 levels and osteogenic potential of bone marrow stromal cells via Notch/miR-223. Mol Carcinog 2015; 55:1927-1939. [PMID: 27023728 DOI: 10.1002/mc.22440] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 09/21/2015] [Accepted: 11/10/2015] [Indexed: 01/31/2023]
Abstract
Bone marrow mesenchymal stromal cells (BMMSCs) represent a crucial component of multiple myeloma (MM) microenvironment supporting its progression and proliferation. Recently, microRNAs have become an important point of interest for research on micro-environmental interactions in MM with some evidence of tumor supportive roles in MM. In this study, we examined the role of miR-223 for MM support in BMMSCs of 56 patients with MM (MM-BMMSCs). miR-223 expression in MM-BMMSCs was reduced by the presence of MM cells in vitro in a cell-contact dependent manner compared to mono-cultured MM-BMMSCs. Co-cultivation of MM cells and MM-BMMSCs induced activation of notch amongst others via jagged-2/notch-2 leading to increased expression of Hes1, Hey2, or Hes5 in both cell types. Cultivation of MM-BMMSCs with increasing levels of recombinant jagged-2 reduced miR-223 and increased Hes1 levels in a concentration-dependent manner. Transient reduction of miR-223 levels increased VEGF and IL-6 expression and secretion by MM-BMMSCs. In addition, reduction of miR-223 degraded the osteogenic differentiation potential of MM-BMMSCs. Inhibition of notch signaling induced apoptosis in both MM cells and MM-BMMSCs. Furthermore, it increased miR-223 levels and reduced expression of VEGF and IL-6 by both cell types. These data provide first evidence that miR-223 participates in different MM supporting pathways in MM-BMMSCs inlcuding regulation of cytokine secretion and expression as well as osteogenic differentiation of MM-BMMSCs. More insights on the role of miR-223 in MM-BMMSCs and in cellular interactions between MM cells and MM-BMMSCs could provide starting points for a more efficient anti-myeloma treatment by targeting of notch signaling. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rimma Berenstein
- Department of Hematology, Oncology and Tumourimmunology, Charité Universitätsmedizin, Berlin, Germany
| | - Axel Nogai
- Department of Hematology, Oncology and Tumourimmunology, Charité Universitätsmedizin, Berlin, Germany
| | - Marlies Waechter
- Department of Hematology, Oncology and Tumourimmunology, Charité Universitätsmedizin, Berlin, Germany
| | - Olga Blau
- Department of Hematology, Oncology and Tumourimmunology, Charité Universitätsmedizin, Berlin, Germany
| | - Aline Kuehnel
- Department of Hematology, Oncology and Tumourimmunology, Charité Universitätsmedizin, Berlin, Germany
| | - Martin Schmidt-Hieber
- Department of Hematology, Oncology and Tumourimmunology, Helios Clinic Berlin-Buch, Berlin, Germany
| | - Annegret Kunitz
- Department of Hematology, Oncology and Tumourimmunology, Charité Universitätsmedizin, Berlin, Germany
| | - Antonio Pezzutto
- Department of Hematology, Oncology and Tumourimmunology, Charité Universitätsmedizin, Berlin, Germany
| | - Bernd Dörken
- Department of Hematology, Oncology and Tumourimmunology, Charité Universitätsmedizin, Berlin, Germany
| | - Igor Wolfgang Blau
- Department of Hematology, Oncology and Tumourimmunology, Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|