1
|
Pavloudi C, Shlafstein MD, De La Flor YT, Smith EM, Peñuela AC, Papke E, Oliver L, Slattery K, Lissner G, Coelho LC, Oline DK, Videau P, Strangman WK, Ushijima B, Saw JH. Janthinobacterium aestuarii sp. nov., a novel violacein-producing bacterium isolated from the Tidal Basin in Washington, D.C., USA. Int J Syst Evol Microbiol 2025; 75:006768. [PMID: 40313181 PMCID: PMC12048719 DOI: 10.1099/ijsem.0.006768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 04/14/2025] [Indexed: 05/03/2025] Open
Abstract
Strain TB1-E2-13T was isolated from water collected from the Tidal Basin in Washington, D.C., USA, due to the bright purple colour of its colonies, and was taxonomically evaluated with a polyphasic approach. Comparison of a partial 16S rRNA gene sequence found that strain TB1-E2-13T was most similar to species in the Janthinobacterium genus. For more precise taxonomic inference, a phylogenomic analysis was conducted and indicated that strain TB1-E2-13T was most closely related to Janthinobacterium lividum, 'Janthinobacterium kumbetense', Janthinobacterium rivuli and Janthinobacterium violaceinigrum. Analyses of genomic indices found that pairwise comparisons between strain TB1-E2-13T and other members of the Janthinobacterium genus returned values below the threshold of species novelty. Based on a polyphasic characterization and identifying differences in genomic and taxonomic data, strain TB1-E2-13T represents a novel species, for which the name Janthinobacterium aestuarii sp. nov. is proposed. The type strain is TB1-E2-13T (=ATCC TSD-339T=JCM 36076T).
Collapse
Affiliation(s)
- Christina Pavloudi
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | | | - Yesmarie T. De La Flor
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Emma M. Smith
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Ana C. Peñuela
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Erin Papke
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Lausanne Oliver
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - Kaitlynn Slattery
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - Guinevere Lissner
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - Lívia C. Coelho
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA
| | - David K. Oline
- Department of Biology, Southern Oregon University, Ashland, OR, USA
| | - Patrick Videau
- Environmental Science, Policy, and Sustainability, Southern Oregon University, Ashland, OR, USA
| | - Wendy K. Strangman
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Blake Ushijima
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Jimmy H. Saw
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| |
Collapse
|
2
|
Thomas EM, Smith EM, Papke E, Shlafstein MD, Grant-Beurmann S, Coelho LC, Trott AC, Häse CC, Oline DK, Videau P, Saw JH, Strangman WK, Ushijima B. Pseudoalteromonas ardens sp. nov., Pseudoalteromonas obscura sp. nov. and Pseudoalteromonas umbrosa sp. nov. isolated from the coral Montipora capitata on a reef in Kāne'ohe Bay, O'ahu, Hawai'i. Int J Syst Evol Microbiol 2025; 75. [PMID: 39999150 DOI: 10.1099/ijsem.0.006681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025] Open
Abstract
Strains P94T, B95T and R96T were isolated from apparently healthy fragments of the coral Montipora capitata, which were resistant to Vibrio coralliilyticus infection, from the reef surrounding Moku o Lo'e in Kāne'ohe Bay, O'ahu, Hawai'i, USA, and were taxonomically evaluated using a polyphasic approach. Phylogenetic and phylogenomic analyses placed strains P94T, B95T and R96T within the Pseudoalteromonas genus and most closely related to Pseudoalteromonas luteoviolacea and Pseudoalteromonas rubra. Following genome sequencing of strains P94T, B95T and R96T, the average nt identity and in silico DNA-DNA hybridization comparisons with closely related strains resulted in values that fell below species-level cutoffs. Based on a polyphasic characterization and differences in genomic and taxonomic data, strains P94T, B95T and R96T represent novel species, for which the names Pseudoalteromonas ardens sp. nov., Pseudoalteromonas obscura sp. nov. and Pseudoalteromonas umbrosa sp. nov. are proposed. The type strains are R96T (=DSM 114998T=LMG 32870T), P94T (=DSM 114996T=LMG 32871T) and B95T (=DSM 114997T=LMG 32872T), respectively.
Collapse
Affiliation(s)
- Emily M Thomas
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Emma M Smith
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Erin Papke
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | | | - Silvia Grant-Beurmann
- Institute for Genome Sciences, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Present address: Department of Obstetrics and Gynecology, School of Medicine, Duke University, Durham, North Carolina, USA
| | - Lívia C Coelho
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | | | - Claudia C Häse
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - David K Oline
- Department of Biology, Southern Oregon University, Ashland, Oregon, USA
| | - Patrick Videau
- Department of Environmental Science, Policy, and Sustainability, Southern Oregon University, Ashland, Oregon, USA
| | - Jimmy H Saw
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - Wendy K Strangman
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Blake Ushijima
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| |
Collapse
|
3
|
Chauhan A, Mathkor DM, Joshi H, Chauhan R, Sharma U, Sharma V, Kumar M, Saini RV, Saini AK, Tuli HS, Kaur D, Haque S. Mechanistic Insight of Pharmacological Aspects of Violacein: Recent Trends and Advancements. J Biochem Mol Toxicol 2025; 39:e70114. [PMID: 39865920 DOI: 10.1002/jbt.70114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/21/2024] [Accepted: 12/21/2024] [Indexed: 01/28/2025]
Abstract
Since its discovery in the bacterium Chromobacterium violaceum, violacein-a striking purple pigment-has garnered significant interest due to its promising applications in the food and pharmaceutical industries. Violacein exhibits a range of pharmacological properties, including anti-inflammatory, anticancer, antibacterial, and antiparasitic effects, yet its complete molecular mechanisms are still being elucidated. Its mechanisms of action likely involve complex interactions with cellular receptors, signaling pathways, and specific molecular targets. Given violacein's unique properties and bioactive intermediates, future research holds substantial potential to advance its clinical and industrial applications. Upcoming studies will focus on deepening our understanding of violacein's molecular interactions, conducting clinical trials, and refining drug delivery systems to maximize its therapeutic value. Additionally, obtaining regulatory approval, conducting rigorous safety assessments, and developing efficient biosynthetic methods remain essential steps for violacein's successful integration into food biotechnology and medical applications.
Collapse
Affiliation(s)
- Abhishek Chauhan
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida, India
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Ritu Chauhan
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, India
| | - Ujjawal Sharma
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Vikas Sharma
- Department of Biotechnology, Ambala College of Engineering and Applied Research, Ambala Cantt, Haryana, India
| | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar University Sadopur, Ambala, India
| | - Reena V Saini
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, India
| | - Adesh K Saini
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, India
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, India
| | - Damandeep Kaur
- University Center for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
- Centre for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
- Universidad Espiritu Santo, Samborondon, Ecuador
| |
Collapse
|
4
|
Ishimoto CK, Lima Junior RD, Scaramussa SADL, Fill TP, Oliveira VM, Bicas JL. Improving the medium composition for the production of the natural blue-violet pigment violacein by a new Janthinobacterium sp. isolate. Lett Appl Microbiol 2024; 77:ovae091. [PMID: 39317672 DOI: 10.1093/lambio/ovae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/01/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024]
Abstract
The interest in natural compounds has increased primarily due to their beneficial health and environmental aspects. However, natural sources of some compounds, such as bluish pigments, are limited, requiring the development of efficient processes to meet commercial demands. This study isolated a blue-violet bacterium from spoiled cooked rice and identified it as a potential new species of Janthinobacterium through 16S rDNA analysis. Ultra-high performance liquid chromatography-tandem mass spectrometry analyses confirmed that the blue-violet pigment violacein was responsible for the bluish color. In laboratory conditions, different carbon and nitrogen sources were evaluated in submerged culture media to enhance pigment production. Glycerol did not result in significant pigment production by this strain, as expected from previous reports. Instead, a culture medium composed of yeast extract and fructose yielded higher pigment production, reaching about 113.68 ± 16.68 mg l-1 after 120 h. This result provides crucial insights for future studies aiming for sustainable and commercially viable violacein production. Based on a bioeconomy concept, this approach has the potential to supply natural and economic bluish pigments for various industrial sectors, including pharmaceutical, cosmetic, and food.
Collapse
Affiliation(s)
- Caroline Kie Ishimoto
- Department of Food Science and Nutrition, Universidade Estadual de Campinas, 13083-862, Campinas, SP, Brazil
| | | | | | - Taicia Pacheco Fill
- Department of Organic Chemistry, Universidade Estadual de Campinas, 13083-970, Campinas, SP, Brazil
| | - Valéria Maia Oliveira
- Multidisciplinary Center for Chemical, Biological and Agricultural Research, Universidade Estadual de Campinas, 13148-218, Paulinia, SP, Brazil
| | - Juliano Lemos Bicas
- Department of Food Science and Nutrition, Universidade Estadual de Campinas, 13083-862, Campinas, SP, Brazil
| |
Collapse
|
5
|
Gonzales M, Jacquet P, Gaucher F, Chabrière É, Plener L, Daudé D. AHL-Based Quorum Sensing Regulates the Biosynthesis of a Variety of Bioactive Molecules in Bacteria. JOURNAL OF NATURAL PRODUCTS 2024; 87:1268-1284. [PMID: 38390739 DOI: 10.1021/acs.jnatprod.3c00672] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Bacteria are social microorganisms that use communication systems known as quorum sensing (QS) to regulate diverse cellular behaviors including the production of various secreted molecules. Bacterial secondary metabolites are widely studied for their bioactivities including antibiotic, antifungal, antiparasitic, and cytotoxic compounds. Besides playing a crucial role in natural bacterial niches and intermicrobial competition by targeting neighboring organisms and conferring survival advantages to the producer, these bioactive molecules may be of prime interest to develop new antimicrobials or anticancer therapies. This review focuses on bioactive compounds produced under acyl homoserine lactone-based QS regulation by Gram-negative bacteria that are pathogenic to humans and animals, including the Burkholderia, Serratia, Pseudomonas, Chromobacterium, and Pseudoalteromonas genera. The synthesis, regulation, chemical nature, biocidal effects, and potential applications of these identified toxic molecules are presented and discussed in light of their role in microbial interactions.
Collapse
Affiliation(s)
- Mélanie Gonzales
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille 13288, France
- Gene&GreenTK, Marseille 13005, France
| | | | | | - Éric Chabrière
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille 13288, France
| | | | | |
Collapse
|
6
|
Salim AA, Butler MS, Blaskovich MAT, Henderson IR, Capon RJ. Natural products as anthelmintics: safeguarding animal health. Nat Prod Rep 2023; 40:1754-1808. [PMID: 37555325 DOI: 10.1039/d3np00019b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Covering literature to December 2022This review provides a comprehensive account of all natural products (500 compounds, including 17 semi-synthetic derivatives) described in the primary literature up to December 2022, reported to be capable of inhibiting the egg hatching, motility, larval development and/or the survival of helminths (i.e., nematodes, flukes and tapeworms). These parasitic worms infect and compromise the health and welfare, productivity and lives of commercial livestock (i.e., sheep, cattle, horses, pigs, poultry and fish), companion animals (i.e., dogs and cats) and other high value, endangered and/or exotic animals. Attention is given to chemical structures, as well as source organisms and anthelmintic properties, including the nature of bioassay target species, in vivo animal hosts, and measures of potency.
Collapse
Affiliation(s)
- Angela A Salim
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia, 4072.
| | - Mark S Butler
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia, 4072.
| | - Mark A T Blaskovich
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia, 4072.
| | - Ian R Henderson
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia, 4072.
| | - Robert J Capon
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia, 4072.
| |
Collapse
|
7
|
Hanke W, Alenfelder J, Liu J, Gutbrod P, Kehraus S, Crüsemann M, Dörmann P, Kostenis E, Scholz M, König GM. The Bacterial G q Signal Transduction Inhibitor FR900359 Impairs Soil-Associated Nematodes. J Chem Ecol 2023; 49:549-569. [PMID: 37453001 PMCID: PMC10725363 DOI: 10.1007/s10886-023-01442-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
The cyclic depsipeptide FR900359 (FR) is derived from the soil bacterium Chromobacterium vaccinii and known to bind Gq proteins of mammals and insects, thereby abolishing the signal transduction of their Gq protein-coupled receptors, a process that leads to severe physiological consequences. Due to their highly conserved structure, Gq family of proteins are a superior ecological target for FR producing organisms, resulting in a defense towards a broad range of harmful organisms. Here, we focus on the question whether bacteria like C. vaccinii are important factors in soil in that their secondary metabolites impair, e.g., plant harming organisms like nematodes. We prove that the Gq inhibitor FR is produced under soil-like conditions. Furthermore, FR inhibits heterologously expressed Gαq proteins of the nematodes Caenorhabditis elegans and Heterodera schachtii in the micromolar range. Additionally, in vivo experiments with C. elegans and the plant parasitic cyst nematode H. schachtii demonstrated that FR reduces locomotion of C. elegans and H. schachtii. Finally, egg-laying of C. elegans and hatching of juvenile stage 2 of H. schachtii from its cysts is inhibited by FR, suggesting that FR might reduce nematode dispersion and proliferation. This study supports the idea that C. vaccinii and its excreted metabolome in the soil might contribute to an ecological equilibrium, maintaining and establishing the successful growth of plants.
Collapse
Affiliation(s)
- Wiebke Hanke
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115, Bonn, Germany
| | - Judith Alenfelder
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115, Bonn, Germany
| | - Jun Liu
- Neural Information Flow, Max Planck Institute for Neurobiology of Behavior - CAESAR, Ludwig-Erhard-Allee 2, D-53175, Bonn, Germany
| | - Philipp Gutbrod
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Karlrobert-Kreiten-Straße 13, D-53115, Bonn, Germany
- Bonn International Graduate School - Land and Food, University of Bonn, Katzenburgweg 9, D-53115, Bonn, Germany
| | - Stefan Kehraus
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115, Bonn, Germany
| | - Max Crüsemann
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115, Bonn, Germany
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Karlrobert-Kreiten-Straße 13, D-53115, Bonn, Germany
| | - Evi Kostenis
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115, Bonn, Germany
| | - Monika Scholz
- Neural Information Flow, Max Planck Institute for Neurobiology of Behavior - CAESAR, Ludwig-Erhard-Allee 2, D-53175, Bonn, Germany
| | - Gabriele M König
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115, Bonn, Germany.
| |
Collapse
|
8
|
Johnson ET, Bowman MJ, Gomes RP, Carneiro LC, Dunlap CA. Identification of 2,4-diacetylphloroglucinol production in the genus Chromobacterium. Sci Rep 2023; 13:14292. [PMID: 37653049 PMCID: PMC10471698 DOI: 10.1038/s41598-023-41277-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023] Open
Abstract
The compound 2,4-diacetylphloroglucinol (DAPG) is a broad-spectrum antibiotic that is primarily produced by Pseudomonas spp. DAPG plays an important role in the biocontrol disease suppressing activity of Pseudomonas spp. In the current study, we report the discovery of the DAPG biosynthetic cluster in strains of Chromobacterium vaccinii isolated from Brazilian aquatic environments and the distribution of the biosynthetic cluster in the Chromobacterium genus. Phylogenetic analysis of the phlD protein suggests the biosynthetic cluster probably entered the genus of Chromobacterium after a horizontal gene transfer event with a member of the Pseudomonas fluorescens group. We were able to detect trace amounts of DAPG in wild type cultures and confirm the function of the cluster with heterologous expression in Escherichia coli. In addition, we identified and verified the presence of other secondary metabolites in these strains. We also confirmed the ability of C. vaccinii strains to produce bioactive pigment violacein and bioactive cyclic depsipeptide FR900359. Both compounds have been reported to have antimicrobial and insecticidal activities. These compounds suggest strains of C. vaccinii should be further explored for their potential as biocontrol agents.
Collapse
Affiliation(s)
- Eric T Johnson
- United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Crop Bioprotection Research Unit, 1815 North University St, Peoria, IL, 61604, USA
| | - Michael J Bowman
- United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Bioenergy Research Unit, 1815 North University St, Peoria, IL, 61604, USA
| | - Raylane Pereira Gomes
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Lilian Carla Carneiro
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Christopher A Dunlap
- United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Crop Bioprotection Research Unit, 1815 North University St, Peoria, IL, 61604, USA.
| |
Collapse
|
9
|
Evidente A. Microbial and Plant Derived Low Risk Pesticides Having Nematocidal Activity. Toxins (Basel) 2022; 14:toxins14120849. [PMID: 36548747 PMCID: PMC9787815 DOI: 10.3390/toxins14120849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Microorganisms, virus, weeds, parasitic plants, insects, and nematodes are among the enemies that induce severe economic losses to agrarian production. Farmers have been forced to combat these enemies using different methods, including mechanical and agronomic strategies, since the beginning of agriculture. The development of agriculture, due to an increased request for food production, which is a consequence to the rapid and noteworthy growth of the world's population, requires the use of more efficient methods to strongly elevate the yield production. Thus, in the last five-to-six decades, a massive and extensive use of chemicals has occurred in agriculture, resulting in heavy negative consequences, such as the increase in environmental pollution and risks for human and animal health. These problems increased with the repetition of treatments, which is due to resistance that natural enemies developed against this massive use of pesticides. There are new control strategies under investigation to develop products, namely biopesticides, with high efficacy and selectivity but based on natural products which are not toxic, and which are biodegradable in a short time. This review is focused on the microbial and plant metabolites with nematocidal activity with potential applications in suitable formulations in greenhouses and fields.
Collapse
Affiliation(s)
- Antonio Evidente
- Department of Chemical Science, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia 4, 80126 Naples, Italy;
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70125 Bari, Italy
| |
Collapse
|
10
|
Lyakhovchenko NS, Travkin VM, Senchenkov VY, Solyanikova IP. Bacterial Violacein: Properties, Biosynthesis and Application Prospects. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822060072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
11
|
Yoon KH, Indong RA, Lee JI. Making "Sense" of Ecology from a Genetic Perspective: Caenorhabditis elegans, Microbes and Behavior. Metabolites 2022; 12:1084. [PMID: 36355167 PMCID: PMC9697003 DOI: 10.3390/metabo12111084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 12/31/2023] Open
Abstract
Our knowledge of animal and behavior in the natural ecology is based on over a century's worth of valuable field studies. In this post-genome era, however, we recognize that genes are the underpinning of ecological interactions between two organisms. Understanding how genes contribute to animal ecology, which is essentially the intersection of two genomes, is a tremendous challenge. The bacterivorous nematode Caenorhabditis elegans, one of the most well-known genetic animal model experimental systems, experiences a complex microbial world in its natural habitat, providing us with a window into the interplay of genes and molecules that result in an animal-microbial ecology. In this review, we will discuss C. elegans natural ecology, how the worm uses its sensory system to detect the microbes and metabolites that it encounters, and then discuss some of the fascinating ecological dances, including behaviors, that have evolved between the nematode and the microbes in its environment.
Collapse
Affiliation(s)
- Kyoung-hye Yoon
- Department of Physiology, Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju 26426, Korea
| | - Rocel Amor Indong
- Division of Biological Science and Technology, College of Science and Technology, Yonsei University, Wonju 26493, Korea
| | - Jin I. Lee
- Division of Biological Science and Technology, College of Science and Technology, Yonsei University, Wonju 26493, Korea
| |
Collapse
|
12
|
Isolation and Properties of the Bacterial Strain Janthinobacterium sp. SLB01. Microorganisms 2022; 10:microorganisms10051071. [PMID: 35630513 PMCID: PMC9147652 DOI: 10.3390/microorganisms10051071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 02/05/2023] Open
Abstract
Bacteria of the genus Janthinobacterium are widespread in soils and freshwater ecosystems and belong to the phylum Proteobacteria. The Janthinobacterium sp. SLB01 strain was isolated from diseased freshwater Lubomirskia baicalensis (Pallas, 1776) sponge, and the draft genome was published previously. However, the properties of the SLB01 strain are not known. The aim of the study is to describe some properties of the Janthinobacterium sp. SLB01 strain, isolated from L. baicalensis sponge. The identification of the SLB01 strain was established as Gram-negative, motile, rod-shaped, and psychrotolerant, with growth at 3 and 22 °C. We found that the SLB01 strain has proteolytic, lipolytic, and saccharolytic activity and can use citrates and reduce nitrates. The bacteria Janthinobacterium sp. SLB01 strain can grow, form biofilms, and produce the violet pigment violacein. We identified the pigments violacein and deoxyviolacein by chromatography and mass spectrometry. These metabolites may be of interest to biotechnology in the future. The studied characteristics of the Janthinobacterium sp. SLB01 strain are an important addition to previous studies of the genome of this strain. This study will help us to understand the relationship between the microbial communities of Lake Baikal and sponges.
Collapse
|
13
|
Valenzuela B, Benavides A, Gutierrez D, Blamey L, Monsalves MT, Modak B, Blamey JM. Violacein from an Antarctic Iodobacter sp. 7MAnt and its function as immunomodulator of the defence mechanism of innate immunity in fish cells. JOURNAL OF FISH DISEASES 2022; 45:485-489. [PMID: 34850980 DOI: 10.1111/jfd.13559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Beatriz Valenzuela
- Laboratory of Natural Products Chemistry, Centre of Aquatic Biotechnology, Department of Environmental Sciences, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Almendra Benavides
- Laboratory of Natural Products Chemistry, Centre of Aquatic Biotechnology, Department of Environmental Sciences, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Daniela Gutierrez
- Laboratory of Natural Products Chemistry, Centre of Aquatic Biotechnology, Department of Environmental Sciences, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | | | | | - Brenda Modak
- Laboratory of Natural Products Chemistry, Centre of Aquatic Biotechnology, Department of Environmental Sciences, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Jenny M Blamey
- Fundación Biociencia, Santiago, Chile
- Biology Department, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| |
Collapse
|
14
|
Ahmed A, Ahmad A, Li R, AL-Ansi W, Fatima M, Mushtaq BS, Basharat S, Li Y, Bai Z. Recent Advances in Synthetic, Industrial and Biological Applications of Violacein and Its Heterologous Production. J Microbiol Biotechnol 2021; 31:1465-1480. [PMID: 34584039 PMCID: PMC9705886 DOI: 10.4014/jmb.2107.07045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/15/2021] [Accepted: 09/26/2021] [Indexed: 12/15/2022]
Abstract
Violacein, a purple pigment first isolated from a gram-negative coccobacillus Chromobacterium violaceum, has gained extensive research interest in recent years due to its huge potential in the pharmaceutic area and industry. In this review, we summarize the latest research advances concerning this pigment, which include (1) fundamental studies of its biosynthetic pathway, (2) production of violacein by native producers, apart from C. violaceum, (3) metabolic engineering for improved production in heterologous hosts such as Escherichia coli, Citrobacter freundii, Corynebacterium glutamicum, and Yarrowia lipolytica, (4) biological/pharmaceutical and industrial properties, (5) and applications in synthetic biology. Due to the intrinsic properties of violacein and the intermediates during its biosynthesis, the prospective research has huge potential to move this pigment into real clinical and industrial applications.
Collapse
Affiliation(s)
- Aqsa Ahmed
- School of Biotechnology, Jiangnan University, Wuxi 214122, P.R. China,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, P.R. China
| | - Abdullah Ahmad
- Department of Industrial Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Science and Technology, Islamabad 44000, Pakistan
| | - Renhan Li
- School of Biotechnology, Jiangnan University, Wuxi 214122, P.R. China,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, P.R. China
| | - Waleed AL-Ansi
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China,Department of Food Science and Technology, Faculty of Agriculture, Sana’a University, Sana’a, 725, Yemen
| | - Momal Fatima
- Department of Industrial Biotechnology, National Institute of Biotechnology and Genetic Engineering (NIBGE), Faisalabad 38000, Pakistan
| | - Bilal Sajid Mushtaq
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
| | - Samra Basharat
- School of Biotechnology, Jiangnan University, Wuxi 214122, P.R. China
| | - Ye Li
- School of Biotechnology, Jiangnan University, Wuxi 214122, P.R. China,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, P.R. China,Corresponding authors Y. Li E-mail:
| | - Zhonghu Bai
- School of Biotechnology, Jiangnan University, Wuxi 214122, P.R. China,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, P.R. China,
Z. Bai Phone: +86510-85197983 Fax: +86510-85197983 E-mail:
| |
Collapse
|
15
|
Díaz-Núñez JL, Pérez-López M, Espinosa N, Campos-Hernández N, García-Contreras R, Díaz-Guerrero M, Cortes-López H, Vázquez-Sánchez M, Quezada H, Martínez-Vázquez M, Soto-Hernández RM, Burgos-Hernández M, González-Pedrajo B, Castillo-Juárez I. Anti-Virulence Properties of Plant Species: Correlation between In Vitro Activity and Efficacy in a Murine Model of Bacterial Infection. Microorganisms 2021; 9:2424. [PMID: 34946027 PMCID: PMC8706108 DOI: 10.3390/microorganisms9122424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022] Open
Abstract
Several plant extracts exhibit anti-virulence properties due to the interruption of bacterial quorum sensing (QS). However, studies on their effects at the preclinical level are scarce. Here, we used a murine model of abscess/necrosis induced by Pseudomonas aeruginosa to evaluate the anti-pathogenic efficacy of 24 plant extracts at a sub-inhibitory concentration. We analyzed their ability to inhibit QS-regulated virulence factors such as swarming, pyocyanin production, and secretion of the ExoU toxin via the type III secretion system (T3SS). Five of the seven extracts with the best anti-pathogenic activity reduced ExoU secretion, and the extracts of Diphysa americana and Hibiscus sabdariffa were identified as the most active. Therefore, the abscess/necrosis model allows identification of plant extracts that have the capacity to reduce pathogenicity of P. aeruginosa. Furthermore, we evaluated the activity of the plant extracts on Chromobacterium violaceum. T3SS (ΔescU) and QS (ΔcviI) mutant strains were assessed in both the abscess/necrosis and sepsis models. Only the ΔescU strain had lower pathogenicity in the animal models, although no activity of plant extracts was observed. These results demonstrate differences between the anti-virulence activity recorded in vitro and pathogenicity in vivo and between the roles of QS and T3S systems as virulence determinants.
Collapse
Affiliation(s)
- José Luis Díaz-Núñez
- Laboratorio de Fitoquímica, Posgrado de Botánica, Colegio de Postgraduados, Texcoco 56230, Mexico; (J.L.D.-N.); (M.P.-L.); (N.C.-H.); (H.C.-L.); (M.V.-S.); (R.M.S.-H.); (M.B.-H.)
| | - Macrina Pérez-López
- Laboratorio de Fitoquímica, Posgrado de Botánica, Colegio de Postgraduados, Texcoco 56230, Mexico; (J.L.D.-N.); (M.P.-L.); (N.C.-H.); (H.C.-L.); (M.V.-S.); (R.M.S.-H.); (M.B.-H.)
| | - Norma Espinosa
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (N.E.); (M.D.-G.)
| | - Nayelli Campos-Hernández
- Laboratorio de Fitoquímica, Posgrado de Botánica, Colegio de Postgraduados, Texcoco 56230, Mexico; (J.L.D.-N.); (M.P.-L.); (N.C.-H.); (H.C.-L.); (M.V.-S.); (R.M.S.-H.); (M.B.-H.)
| | - Rodolfo García-Contreras
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Miguel Díaz-Guerrero
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (N.E.); (M.D.-G.)
| | - Humberto Cortes-López
- Laboratorio de Fitoquímica, Posgrado de Botánica, Colegio de Postgraduados, Texcoco 56230, Mexico; (J.L.D.-N.); (M.P.-L.); (N.C.-H.); (H.C.-L.); (M.V.-S.); (R.M.S.-H.); (M.B.-H.)
| | - Monserrat Vázquez-Sánchez
- Laboratorio de Fitoquímica, Posgrado de Botánica, Colegio de Postgraduados, Texcoco 56230, Mexico; (J.L.D.-N.); (M.P.-L.); (N.C.-H.); (H.C.-L.); (M.V.-S.); (R.M.S.-H.); (M.B.-H.)
| | - Héctor Quezada
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Ciudad de México 06720, Mexico;
| | - Mariano Martínez-Vázquez
- Departamento de Productos Naturales, Instituto de Química, Universidad Nacional Autόnoma de México, Ciudad de México 04510, Mexico;
| | - Ramón Marcos Soto-Hernández
- Laboratorio de Fitoquímica, Posgrado de Botánica, Colegio de Postgraduados, Texcoco 56230, Mexico; (J.L.D.-N.); (M.P.-L.); (N.C.-H.); (H.C.-L.); (M.V.-S.); (R.M.S.-H.); (M.B.-H.)
| | - Mireya Burgos-Hernández
- Laboratorio de Fitoquímica, Posgrado de Botánica, Colegio de Postgraduados, Texcoco 56230, Mexico; (J.L.D.-N.); (M.P.-L.); (N.C.-H.); (H.C.-L.); (M.V.-S.); (R.M.S.-H.); (M.B.-H.)
| | - Bertha González-Pedrajo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (N.E.); (M.D.-G.)
| | - Israel Castillo-Juárez
- Laboratorio de Fitoquímica, Posgrado de Botánica, Colegio de Postgraduados, Texcoco 56230, Mexico; (J.L.D.-N.); (M.P.-L.); (N.C.-H.); (H.C.-L.); (M.V.-S.); (R.M.S.-H.); (M.B.-H.)
| |
Collapse
|
16
|
Durán N, Nakazato G, Durán M, Berti IR, Castro GR, Stanisic D, Brocchi M, Fávaro WJ, Ferreira-Halder CV, Justo GZ, Tasic L. Multi-target drug with potential applications: violacein in the spotlight. World J Microbiol Biotechnol 2021; 37:151. [PMID: 34398340 DOI: 10.1007/s11274-021-03120-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/02/2021] [Indexed: 11/28/2022]
Abstract
The aim of the current review is to address updated research on a natural pigment called violacein, with emphasis on its production, biological activity and applications. New information about violacein's action mechanisms as antitumor agent and about its synergistic action in drug delivery systems has brought new alternatives for anticancer therapy. Thus, violacein is introduced as reliable drug capable of overcoming at least three cancer hallmarks, namely: proliferative signaling, cell death resistance and metastasis. In addition, antimicrobial effects on several microorganisms affecting humans and other animals turn violacein into an attractive drug to combat resistant pathogens. Emphasis is given to effects of violacein combined with different agents, such as antibiotics, anticancer agents and nanoparticles. Although violacein is well-known for many decades, it remains an attractive compound. Thus, research groups have been making continuous effort to help improving its production in recent years, which can surely enable its pharmaceutical and chemical application as multi-task compound, even in the cosmetics and food industries.
Collapse
Affiliation(s)
- Nelson Durán
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil. .,Nanomedicine Research Unit (Nanomed), Center for Natural and Human Sciences (CCNH), Universidade Federal do ABC (UFABC), Santo André, SP, Brazil.
| | - Gerson Nakazato
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Biology Sciences Center, Universidade Estadual de Londrina (UEL), Londrina, PR, Brazil
| | - Marcela Durán
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil.,Nanomedicine Research Unit (Nanomed), Center for Natural and Human Sciences (CCNH), Universidade Federal do ABC (UFABC), Santo André, SP, Brazil
| | - Ignasio R Berti
- Nanobiomaterials Laboratory, Department of Chemistry, School of Sciences, Institute of Applied Biotechnology CINDEFI (UNLPCONICET, CCT La Plata),, Universidad Nacional de La Plata, La Plata, Argentina
| | - Guillermo R Castro
- Nanobiomaterials Laboratory, Department of Chemistry, School of Sciences, Institute of Applied Biotechnology CINDEFI (UNLPCONICET, CCT La Plata),, Universidad Nacional de La Plata, La Plata, Argentina
| | - Danijela Stanisic
- Biological Chemistry Laboratory, Institute of Chemistry, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Marcelo Brocchi
- Laboratory of Tropical Diseases, Department of Genetic, Evolution and Bioagents , Biology Institute, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Wagner J Fávaro
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Carmen V Ferreira-Halder
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Giselle Z Justo
- Departamento de Ciências Farmacêuticas (Campus Diadema) e Departamento de Bioquímica (Campus São Paulo), Universidade Federal de São Paulo (UNIFESP), 3 de Maio, 100, São Paulo, SP, 04044-020, Brazil.
| | - Ljubica Tasic
- Biological Chemistry Laboratory, Institute of Chemistry, Universidade Estadual de Campinas, Campinas, SP, Brazil
| |
Collapse
|
17
|
Mion S, Carriot N, Lopez J, Plener L, Ortalo-Magné A, Chabrière E, Culioli G, Daudé D. Disrupting quorum sensing alters social interactions in Chromobacterium violaceum. NPJ Biofilms Microbiomes 2021; 7:40. [PMID: 33888726 PMCID: PMC8062528 DOI: 10.1038/s41522-021-00211-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/25/2021] [Indexed: 12/18/2022] Open
Abstract
Quorum sensing (QS) is a communication system used by bacteria to coordinate a wide panel of biological functions in a cell density-dependent manner. The Gram-negative Chromobacterium violaceum has previously been shown to use an acyl-homoserine lactone (AHL)-based QS to regulate various behaviors, including the production of proteases, hydrogen cyanide, or antimicrobial compounds such as violacein. By using combined metabolomic and proteomic approaches, we demonstrated that QS modulates the production of antimicrobial and toxic compounds in C. violaceum ATCC 12472. We provided the first evidence of anisomycin antibiotic production by this strain as well as evidence of its regulation by QS and identified new AHLs produced by C. violaceum ATCC 12472. Furthermore, we demonstrated that targeting AHLs with lactonase leads to major QS disruption yielding significant molecular and phenotypic changes. These modifications resulted in drastic changes in social interactions between C. violaceum and a Gram-positive bacterium (Bacillus cereus), a yeast (Saccharomyces cerevisiae), immune cells (murine macrophages), and an animal model (planarian Schmidtea mediterranea). These results underscored that AHL-based QS plays a key role in the capacity of C. violaceum to interact with micro- and macroorganisms and that quorum quenching can affect microbial population dynamics beyond AHL-producing bacteria and Gram-negative bacteria.
Collapse
Affiliation(s)
- Sonia Mion
- Aix Marseille University, Institut de Recherche pour le Développement, Assistance Publique - Hôpitaux de Marseille, Microbes Evolution Phylogeny and Infections, Institut Hospitalo-Universitaire-Méditerranée Infection, Marseille, France
| | | | | | | | | | - Eric Chabrière
- Aix Marseille University, Institut de Recherche pour le Développement, Assistance Publique - Hôpitaux de Marseille, Microbes Evolution Phylogeny and Infections, Institut Hospitalo-Universitaire-Méditerranée Infection, Marseille, France.
| | - Gérald Culioli
- Université de Toulon, MAPIEM, Toulon, France. .,Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale, UMR CNRS-IRD, Avignon Université, Aix-Marseille Université, Avignon, France.
| | | |
Collapse
|
18
|
Chatragadda R, Dufossé L. Ecological and Biotechnological Aspects of Pigmented Microbes: A Way Forward in Development of Food and Pharmaceutical Grade Pigments. Microorganisms 2021; 9:637. [PMID: 33803896 PMCID: PMC8003166 DOI: 10.3390/microorganisms9030637] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/04/2021] [Accepted: 03/15/2021] [Indexed: 12/17/2022] Open
Abstract
Microbial pigments play multiple roles in the ecosystem construction, survival, and fitness of all kinds of organisms. Considerably, microbial (bacteria, fungi, yeast, and microalgae) pigments offer a wide array of food, drug, colorants, dyes, and imaging applications. In contrast to the natural pigments from microbes, synthetic colorants are widely used due to high production, high intensity, and low cost. Nevertheless, natural pigments are gaining more demand over synthetic pigments as synthetic pigments have demonstrated side effects on human health. Therefore, research on microbial pigments needs to be extended, explored, and exploited to find potential industrial applications. In this review, the evolutionary aspects, the spatial significance of important pigments, biomedical applications, research gaps, and future perspectives are detailed briefly. The pathogenic nature of some pigmented bacteria is also detailed for awareness and safe handling. In addition, pigments from macro-organisms are also discussed in some sections for comparison with microbes.
Collapse
Affiliation(s)
- Ramesh Chatragadda
- Biological Oceanography Division (BOD), Council of Scientific and Industrial Research-National Institute of Oceanography (CSIR-NIO), Dona Paula 403004, Goa, India
| | - Laurent Dufossé
- Chemistry and Biotechnology of Natural Products (CHEMBIOPRO Lab), Ecole Supérieure d’Ingénieurs Réunion Océan Indien (ESIROI), Département Agroalimentaire, Université de La Réunion, F-97744 Saint-Denis, France
| |
Collapse
|
19
|
Park H, Park S, Yang YH, Choi KY. Microbial synthesis of violacein pigment and its potential applications. Crit Rev Biotechnol 2021; 41:879-901. [PMID: 33730942 DOI: 10.1080/07388551.2021.1892579] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Violacein is a pigment synthesized by Gram-negative bacteria such as Chromobacterium violaceum. It has garnered significant interest owing to its unique physiological and biological activities along with its synergistic effects with various antibiotics. In addition to C. violaceum, several microorganisms, including: Duganella sp., Pseudoalteromonas sp., Iodobacter sp., and Massilia sp., are known to produce violacein. Along with the identification of violacein-producing strains, the genetic regulation, quorum sensing mechanism, and sequence of the vio-operon involved in the biosynthesis of violacein have been elucidated. From an engineering perspective, the heterologous production of violacein using the genetically engineered Escherichia coli or Citrobacter freundii host has also been attempted. Genetic engineering of host cells involves the heterologous expression of genes involved in the vio operon and the optimization of metabolic pathways and gene regulation. Further, the crystallography of VioD and VioE was revealed, and mass production by enzyme engineering has been accelerated. In this review, we highlight the biologically assisted end-use applications of violacein (such as functional fabric development, nanoparticles, functional polymer composites, and sunscreen ingredients) and violacein activation mechanisms, production strains, and the results of mass production with engineered methods. The prospects for violacein research and engineering applications have also been discussed.
Collapse
Affiliation(s)
- HyunA Park
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon, South Korea
| | - SeoA Park
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon, South Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Kwon-Young Choi
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon, South Korea.,Department of Environmental and Safety Engineering, College of Engineering, Ajou University, Suwon, South Korea
| |
Collapse
|
20
|
Nawaz A, Chaudhary R, Shah Z, Dufossé L, Fouillaud M, Mukhtar H, ul Haq I. An Overview on Industrial and Medical Applications of Bio-Pigments Synthesized by Marine Bacteria. Microorganisms 2020; 9:microorganisms9010011. [PMID: 33375136 PMCID: PMC7822155 DOI: 10.3390/microorganisms9010011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/20/2022] Open
Abstract
Marine bacterial species contribute to a significant part of the oceanic population, which substantially produces biologically effectual moieties having various medical and industrial applications. The use of marine-derived bacterial pigments displays a snowballing effect in recent times, being natural, environmentally safe, and health beneficial compounds. Although isolating marine bacteria is a strenuous task, these are still a compelling subject for researchers, due to their promising avenues for numerous applications. Marine-derived bacterial pigments serve as valuable products in the food, pharmaceutical, textile, and cosmetic industries due to their beneficial attributes, including anticancer, antimicrobial, antioxidant, and cytotoxic activities. Biodegradability and higher environmental compatibility further strengthen the use of marine bio-pigments over artificially acquired colored molecules. Besides that, hazardous effects associated with the consumption of synthetic colors further substantiated the use of marine dyes as color additives in industries as well. This review sheds light on marine bacterial sources of pigmented compounds along with their industrial applicability and therapeutic insights based on the data available in the literature. It also encompasses the need for introducing bacterial bio-pigments in global pigment industry, highlighting their future potential, aiming to contribute to the worldwide economy.
Collapse
Affiliation(s)
- Ali Nawaz
- Institute of Industrial Biotechnology, GC University Lahore, Lahore 54000, Pakistan; (A.N.); (R.C.); (Z.S.); (H.M.); (I.u.H.)
| | - Rida Chaudhary
- Institute of Industrial Biotechnology, GC University Lahore, Lahore 54000, Pakistan; (A.N.); (R.C.); (Z.S.); (H.M.); (I.u.H.)
| | - Zinnia Shah
- Institute of Industrial Biotechnology, GC University Lahore, Lahore 54000, Pakistan; (A.N.); (R.C.); (Z.S.); (H.M.); (I.u.H.)
| | - Laurent Dufossé
- CHEMBIOPRO Lab, ESIROI Agroalimentaire, University of Réunion Island, 97400 Saint-Denis, France;
- Correspondence: ; Tel.: +33-668-731-906
| | - Mireille Fouillaud
- CHEMBIOPRO Lab, ESIROI Agroalimentaire, University of Réunion Island, 97400 Saint-Denis, France;
| | - Hamid Mukhtar
- Institute of Industrial Biotechnology, GC University Lahore, Lahore 54000, Pakistan; (A.N.); (R.C.); (Z.S.); (H.M.); (I.u.H.)
| | - Ikram ul Haq
- Institute of Industrial Biotechnology, GC University Lahore, Lahore 54000, Pakistan; (A.N.); (R.C.); (Z.S.); (H.M.); (I.u.H.)
| |
Collapse
|
21
|
Salikin NH, Nappi J, Majzoub ME, Egan S. Combating Parasitic Nematode Infections, Newly Discovered Antinematode Compounds from Marine Epiphytic Bacteria. Microorganisms 2020; 8:E1963. [PMID: 33322253 PMCID: PMC7764037 DOI: 10.3390/microorganisms8121963] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
Parasitic nematode infections cause debilitating diseases and impede economic productivity. Antinematode chemotherapies are fundamental to modern medicine and are also important for industries including agriculture, aquaculture and animal health. However, the lack of suitable treatments for some diseases and the rise of nematode resistance to many available therapies necessitates the discovery and development of new drugs. Here, marine epiphytic bacteria represent a promising repository of newly discovered antinematode compounds. Epiphytic bacteria are ubiquitous on marine surfaces where they are under constant pressure of grazing by bacterivorous predators (e.g., protozoans and nematodes). Studies have shown that these bacteria have developed defense strategies to prevent grazers by producing toxic bioactive compounds. Although several active metabolites against nematodes have been identified from marine bacteria, drug discovery from marine microorganisms remains underexplored. In this review, we aim to provide further insight into the need and potential for marine epiphytic bacteria to become a new source of antinematode drugs. We discuss current and emerging strategies, including culture-independent high throughput screening and the utilization of Caenorhabditis elegans as a model target organism, which will be required to advance antinematode drug discovery and development from marine microbial sources.
Collapse
Affiliation(s)
- Nor Hawani Salikin
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, UNSW, Sydney, NSW 2052, Australia; (N.H.S.); (J.N.); (M.E.M.)
- School of Industrial Technology, Universiti Sains Malaysia, USM, 11800 Penang, Malaysia
| | - Jadranka Nappi
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, UNSW, Sydney, NSW 2052, Australia; (N.H.S.); (J.N.); (M.E.M.)
| | - Marwan E. Majzoub
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, UNSW, Sydney, NSW 2052, Australia; (N.H.S.); (J.N.); (M.E.M.)
| | - Suhelen Egan
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, UNSW, Sydney, NSW 2052, Australia; (N.H.S.); (J.N.); (M.E.M.)
| |
Collapse
|
22
|
Masson AS, Ho Bich H, Simonin M, Nguyen Thi H, Czernic P, Moulin L, Bellafiore S. Deep modifications of the microbiome of rice roots infected by the parasitic nematode Meloidogyne graminicola in highly infested fields in Vietnam. FEMS Microbiol Ecol 2020; 96:5846042. [PMID: 32453398 DOI: 10.1093/femsec/fiaa099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/25/2020] [Indexed: 01/05/2023] Open
Abstract
Meloidogyne graminicola, also known as the rice root-knot nematode, is one of the most damaging plant-parasitic nematode, especially on rice. This obligate soilborne parasite induces the formation of galls that disturb the root morphology and physiology. Its impact on the root microbiome is still not well described. Here, we conducted a survey in Northern Vietnam where we collected infected (with galls) and non-infected root tips from the same plants in three naturally infested fields. Using a metabarcoding approach, we discovered that M. graminicola infection caused modifications of the root bacterial community composition and network structure. Interestingly, we observed in infected roots a higher diversity and species richness (+24% observed ESVs) as well as a denser and more complex co-occurrence network (+44% nodes and +136% links). We identified enriched taxa that include several hubs, which could serve as potential indicators or biocontrol agents of the nematode infection. Moreover, the community of infected roots is more specific suggesting changes in the functional capabilities to survive in the gall environment. We thus describe the signature of the gall microbiome (the 'gallobiome') with shifting abundances and enrichments that lead to a strong restructuration of the root microbiome.
Collapse
Affiliation(s)
| | - Hai Ho Bich
- Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Marie Simonin
- IRD, Cirad, Univ Montpellier, IPME, Montpellier, France.,IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Hue Nguyen Thi
- Laboratoire Mixte International RICE2, Agriculture Genetics Institute (AGI), Hanoi, Vietnam
| | | | - Lionel Moulin
- IRD, Cirad, Univ Montpellier, IPME, Montpellier, France
| | | |
Collapse
|
23
|
Yoon KH, Lee TY, Moon JH, Choi SY, Choi YJ, Mitchell RJ, Il Lee J. Consumption of Oleic Acid During Matriphagy in Free-Living Nematodes Alleviates the Toxic Effects of the Bacterial Metabolite Violacein. Sci Rep 2020; 10:8087. [PMID: 32415196 PMCID: PMC7229185 DOI: 10.1038/s41598-020-64953-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/27/2020] [Indexed: 01/14/2023] Open
Abstract
Maternal behaviors benefit the survival of young, contributing directly to the mother’s reproductive fitness. An extreme form of this is seen in matriphagy, when a mother performs the ultimate sacrifice and offers her body as a meal for her young. Whether matriphagy offers only a single energy-rich meal or another possible benefit to the young is unknown. Here, we characterized the toxicity of a bacterial secondary metabolite, namely, violacein, in Caenorhabditis elegans and found it is not only toxic towards adults, but also arrests growth and development of C. elegans larvae. To counteract this, C. elegans resorted to matriphagy, with the mothers holding their eggs within their bodies and hatching the young larvae internally, which eventually led to the mothers’ death. This violacein-induced matriphagy alleviated some of the toxic effects of violacein, allowing a portion of the internally-hatched young to bypass developmental arrest. Using genetic and pharmacological experiments, we found the consumption of oleate, a monounsaturated fatty acid produced by the mother, during matriphagy is partially responsible. As such, our study provides experimental evidence of why such a drastic and peculiar maternal behavior may have arisen in nematode natural habitats.
Collapse
Affiliation(s)
- Kyoung-Hye Yoon
- Division of Biological Science and Technology, College of Science and Technology, Yonsei University, Mirae Campus, Gangwon-do, South Korea.,Department of Physiology, Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Gangwon-do, South Korea
| | - Tong Young Lee
- Division of Biological Science and Technology, College of Science and Technology, Yonsei University, Mirae Campus, Gangwon-do, South Korea
| | - Je-Hyun Moon
- Division of Biological Science and Technology, College of Science and Technology, Yonsei University, Mirae Campus, Gangwon-do, South Korea
| | - Seong Yeol Choi
- School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan, South Korea
| | - Yun Ji Choi
- Division of Biological Science and Technology, College of Science and Technology, Yonsei University, Mirae Campus, Gangwon-do, South Korea
| | - Robert J Mitchell
- School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan, South Korea.
| | - Jin Il Lee
- Division of Biological Science and Technology, College of Science and Technology, Yonsei University, Mirae Campus, Gangwon-do, South Korea.
| |
Collapse
|
24
|
Choi SY, Lim S, Cho G, Kwon J, Mun W, Im H, Mitchell RJ. Chromobacterium violaceum delivers violacein, a hydrophobic antibiotic, to other microbes in membrane vesicles. Environ Microbiol 2020; 22:705-713. [PMID: 31814287 DOI: 10.1111/1462-2920.14888] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 12/01/2022]
Abstract
This study describes Chromobacterium violaceum's use of extracellular membrane vesicles (MVs) to both solubilize and transport violacein to other microorganisms. Violacein is a hydrophobic bisindole with known antibiotic activities against other microorganisms. Characterization of the MVs found they carried more violacein than protein (1.37 ± 0.19-fold), suggesting they may act as a reservoir for this compound. However, MVs are not produced in response to violacein - a ΔvioA isogenic mutant, which is incapable of making violacein, actually produced significantly more MVs (3.2-fold) than the wild-type strain. Although violacein is insoluble in water (Log Poctanol:water = 3.34), 79.5% remained in the aqueous phase when it was present within the C. violaceum MVs, an increase in solubility of 1740-fold. Moreover, tests with a strain of Staphylococcus aureus showed MV-associated violacein is bactericidal, with 3.1 mg/l killing 90% of S. aureus in 6 h. Tests with the ΔvioA MVs found no loss in the S. aureus viability, even when its MVs were added at much higher concentrations, demonstrating violacein is the active component within the wild-type MVs. In conclusion, our study clearly demonstrates C. violaceum produces MVs and uses them as vehicles to solubilize violacein and transport this hydrophobic antibiotic to other microbes.
Collapse
Affiliation(s)
- Seong Yeol Choi
- Applied and Environmental Microbiology Lab, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Sungbin Lim
- Applied and Environmental Microbiology Lab, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Gayoung Cho
- Applied and Environmental Microbiology Lab, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Jisoo Kwon
- Applied and Environmental Microbiology Lab, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Wonsik Mun
- Applied and Environmental Microbiology Lab, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Hansol Im
- Applied and Environmental Microbiology Lab, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Robert J Mitchell
- Applied and Environmental Microbiology Lab, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| |
Collapse
|
25
|
Nappi J, Soldi E, Egan S. Diversity and Distribution of Bacteria Producing Known Secondary Metabolites. MICROBIAL ECOLOGY 2019; 78:885-894. [PMID: 31016338 DOI: 10.1007/s00248-019-01380-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
There is an increasing interest in the utilisation of marine bioactive compounds as novel biopharmaceuticals and agrichemicals; however, little is known about the environmental distribution for many of these molecules. Here, we aimed to elucidate the environmental distribution and to detect the biosynthetic gene clusters in environmental samples of four bioactive compounds, namely violacein, tropodithietic acid (TDA), tambjamine and the antibacterial protein AlpP. Our database analyses revealed high bacterial diversity for AlpP and violacein producers, while TDA-producing bacteria were mostly associated with marine surfaces and all belonged to the roseobacter group. In contrast, the tambjamine cluster was only found in the genomes of two Pseudoalteromonas species and in one terrestrial species belonging to the Cupriavidus genus. Using a PCR-based screen of different marine samples, we detected TDA and violacein genes associated with the microbiome of Ulva and Protohyale niger and tambjamine genes associated with Nodilittorina unifasciata; however, alpP was not detected. These results highlight the variable distribution of the genes encoding these four bioactive compounds, including their detection from the surface of multiple marine eukaryotic hosts. Determining the natural distribution of these gene clusters will help to understand the ecological importance of these metabolites and the bacteria that produce them.
Collapse
Affiliation(s)
- Jadranka Nappi
- Centre for Marine Bio-Innovation and School of Biological, Earth and Environmental Sciences, The University of New South Wales Sydney, Sydney, NSW, Australia
| | - Erika Soldi
- Centre for Marine Bio-Innovation and School of Biological, Earth and Environmental Sciences, The University of New South Wales Sydney, Sydney, NSW, Australia
| | - Suhelen Egan
- Centre for Marine Bio-Innovation and School of Biological, Earth and Environmental Sciences, The University of New South Wales Sydney, Sydney, NSW, Australia.
| |
Collapse
|
26
|
Ballestriero F, Daim M, Penesyan A, Nappi J, Schleheck D, Bazzicalupo P, Di Schiavi E, Egan S. Correction: Antinematode Activity of Violacein and the Role of the Insulin/IGF-1 Pathway in Controlling Violacein Sensitivity in Caenorhabditis elegans. PLoS One 2018; 13:e0210026. [PMID: 30586436 PMCID: PMC6306203 DOI: 10.1371/journal.pone.0210026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
27
|
Bilsland E, Tavella TA, Krogh R, Stokes JE, Roberts A, Ajioka J, Spring DR, Andricopulo AD, Costa FTM, Oliver SG. Antiplasmodial and trypanocidal activity of violacein and deoxyviolacein produced from synthetic operons. BMC Biotechnol 2018; 18:22. [PMID: 29642881 PMCID: PMC5896143 DOI: 10.1186/s12896-018-0428-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 03/15/2018] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Violacein is a deep violet compound that is produced by a number of bacterial species. It is synthesized from tryptophan by a pathway that involves the sequential action of 5 different enzymes (encoded by genes vioA to vioE). Violacein has antibacterial, antiparasitic, and antiviral activities, and also has the potential of inducing apoptosis in certain cancer cells. RESULTS Here, we describe the construction of a series of plasmids harboring the complete or partial violacein biosynthesis operon and their use to enable production of violacein and deoxyviolacein in E.coli. We performed in vitro assays to determine the biological activity of these compounds against Plasmodium, Trypanosoma, and mammalian cells. We found that, while deoxyviolacein has a lower activity against parasites than violacein, its toxicity to mammalian cells is insignificant compared to that of violacein. CONCLUSIONS We constructed E. coli strains capable of producing biologically active violacein and related compounds, and propose that deoxyviolacein might be a useful starting compound for the development of antiparasite drugs.
Collapse
Affiliation(s)
- Elizabeth Bilsland
- 0000000121885934grid.5335.0Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, Cambridge, UK ,0000 0001 0723 2494grid.411087.bDepartment of Structural and Functional Biology, Institute of Biology, UNICAMP, Campinas, SP Brazil ,0000 0001 0723 2494grid.411087.bLaboratory of Tropical Diseases – Prof. Dr. Luiz Jacintho da Silva - Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, SP Brazil
| | - Tatyana A. Tavella
- 0000 0001 0723 2494grid.411087.bLaboratory of Tropical Diseases – Prof. Dr. Luiz Jacintho da Silva - Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, SP Brazil
| | - Renata Krogh
- 0000 0004 1937 0722grid.11899.38Laboratory of Medicinal and Computational Chemistry, University of São Paulo, São Carlos, SP Brazil
| | - Jamie E. Stokes
- 0000000121885934grid.5335.0Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Annabelle Roberts
- 0000000121885934grid.5335.0Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - James Ajioka
- 0000000121885934grid.5335.0Department of Pathology, University of Cambridge, Cambridge, UK
| | - David R. Spring
- 0000000121885934grid.5335.0Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Adriano D. Andricopulo
- 0000 0004 1937 0722grid.11899.38Laboratory of Medicinal and Computational Chemistry, University of São Paulo, São Carlos, SP Brazil
| | - Fabio T. M. Costa
- 0000 0001 0723 2494grid.411087.bLaboratory of Tropical Diseases – Prof. Dr. Luiz Jacintho da Silva - Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, SP Brazil
| | - Stephen G. Oliver
- 0000000121885934grid.5335.0Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
28
|
Cyanide Production by Chromobacterium piscinae Shields It from Bdellovibrio bacteriovorus HD100 Predation. mBio 2017; 8:mBio.01370-17. [PMID: 29259082 PMCID: PMC5736907 DOI: 10.1128/mbio.01370-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Predation of Chromobacterium piscinae by Bdellovibrio bacteriovorus HD100 was inhibited in dilute nutrient broth (DNB) but not in HEPES. Experiments showed that the effector responsible was present in the medium, as cell-free supernatants retained the ability to inhibit predation, and that the effector was not toxic to B. bacteriovorus. Violacein, a bisindole secondary metabolite produced by C. piscinae, was not responsible. Further characterization of C. piscinae found that this species produces sufficient concentrations of cyanide (202 µM) when grown in DNB to inhibit the predatory activity of B. bacteriovorus, but that in HEPES, the cyanide concentrations were negligible (19 µM). The antagonistic role of cyanide was further confirmed, as the addition of hydroxocobalamin, which chelates cyanide, allowed predation to proceed. The activity of cyanide against B. bacteriovorus was found to be twofold, depending on the life cycle stage of this predator. For the attack-phase predatory cells, cyanide caused the cells to lose motility and tumble, while for intraperiplasmic predators, development and lysis of the prey cell were halted. These findings suggest that cyanogenesis in nature may be employed by the bacterial strains that produce this compound to prevent and reduce their predation by B. bacteriovorus. Bacterial predators actively attack, kill, and enter the periplasm of susceptible Gram-negative bacteria, where they consume the prey cell components. To date, the activity of B. bacteriovorus HD100 has been demonstrated against more than 100 human pathogens. As such, this strain and others are being considered as potential alternatives or supplements to conventional antibiotics. However, the production of secondary metabolites by prey bacteria is known to mitigate, and even abolish, predation by bacterivorous nematodes and protists. With the exception of indole, which was shown to inhibit predation, the effects of bacterial secondary metabolites on B. bacteriovorus and its activities have not been considered. Consequently, we undertook this study to better understand the mechanisms that bacterial strains employ to inhibit predation by B. bacteriovorus HD100. We report here that cyanogenic bacterial strains can inhibit predation and show that cyanide affects both attack-phase predators and those within prey, i.e., in the bdelloplast.
Collapse
|
29
|
Barnett R, Raszkowski D, Winckler T, Stallforth P. Versatile synthesis of the signaling peptide glorin. Beilstein J Org Chem 2017; 13:247-250. [PMID: 28326133 PMCID: PMC5331329 DOI: 10.3762/bjoc.13.27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/27/2017] [Indexed: 11/23/2022] Open
Abstract
We present a versatile synthesis of the eukaryotic signaling peptide glorin as well as glorinamide, a synthetic analog. The ability of these compounds to activate glorin-induced genes in the social amoeba Polysphondylium pallidum was evaluated by quantitative reverse transcription PCR, whereby both compounds showed bioactivity comparable to a glorin standard. This synthetic route will be useful in conducting detailed structure-activity relationship studies as well as in the design of chemical probes to dissect glorin-mediated signaling pathways.
Collapse
Affiliation(s)
- Robert Barnett
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute - HKI, Junior Research Group Chemistry of Microbial Communication, Beutenbergstr. 11, D-07745 Jena, Germany
| | - Daniel Raszkowski
- Faculty of Biology and Pharmacy, Institute of Pharmacy, Department of Pharmaceutical Biology, University of Jena, Semmelweisstrasse 10, D-07743 Jena, Germany
| | - Thomas Winckler
- Faculty of Biology and Pharmacy, Institute of Pharmacy, Department of Pharmaceutical Biology, University of Jena, Semmelweisstrasse 10, D-07743 Jena, Germany
| | - Pierre Stallforth
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute - HKI, Junior Research Group Chemistry of Microbial Communication, Beutenbergstr. 11, D-07745 Jena, Germany
| |
Collapse
|
30
|
Ballestriero F, Nappi J, Zampi G, Bazzicalupo P, Di Schiavi E, Egan S. Caenorhabditis elegans employs innate and learned aversion in response to bacterial toxic metabolites tambjamine and violacein. Sci Rep 2016; 6:29284. [PMID: 27384057 PMCID: PMC4935850 DOI: 10.1038/srep29284] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 06/14/2016] [Indexed: 12/19/2022] Open
Abstract
Bacteriovorus eukaryotes such as nematodes are one of the major natural predators of bacteria. In their defense bacteria have evolved a number of strategies to avoid predation, including the production of deterrent or toxic metabolites, however little is known regarding the response of predators towards such bacterial defenses. Here we use the nematode C. elegans as a model to study a predators’ behavioral response towards two toxic bacterial metabolites, tambjamine YP1 and violacein. We found that C. elegans displays an innate avoidance behavior towards tambjamine YP1, however requires previous exposure to violacein before learning to avoid this metabolite. The learned avoidance of violacein is specific, reversible, is mediated via the nematode olfactory apparatus (aversive olfactory learning) and is reduced in the absence of the neurotransmitter serotonin. These multiple strategies to evade bacterial toxic metabolites represent a valuable behavioral adaptation allowing bacteriovorus predators to distinguish between good and bad food sources, thus contributing to the understanding of microbial predator-prey interactions.
Collapse
Affiliation(s)
- Francesco Ballestriero
- School of Biological, Earth and Environmental Science and Centre for Marine Bio-Innovation, University of New South Wales, Australia
| | - Jadranka Nappi
- School of Biological, Earth and Environmental Science and Centre for Marine Bio-Innovation, University of New South Wales, Australia
| | - Giuseppina Zampi
- Institute of Biosciences and BioResources, National Research Council, Naples, Italy
| | - Paolo Bazzicalupo
- Institute of Biosciences and BioResources, National Research Council, Naples, Italy.,Institute of Genetics and Biophysics, National Research Council, Naples, Italy
| | - Elia Di Schiavi
- Institute of Biosciences and BioResources, National Research Council, Naples, Italy.,Institute of Genetics and Biophysics, National Research Council, Naples, Italy
| | - Suhelen Egan
- School of Biological, Earth and Environmental Science and Centre for Marine Bio-Innovation, University of New South Wales, Australia
| |
Collapse
|
31
|
Durán N, Justo GZ, Durán M, Brocchi M, Cordi L, Tasic L, Castro GR, Nakazato G. Advances in Chromobacterium violaceum and properties of violacein-Its main secondary metabolite: A review. Biotechnol Adv 2016; 34:1030-1045. [PMID: 27288924 DOI: 10.1016/j.biotechadv.2016.06.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 06/02/2016] [Accepted: 06/07/2016] [Indexed: 12/22/2022]
Abstract
Chromobacterium violaceum is important in the production of violacein, like other bacteria, such as Alteromonas, Janthinobacterium, Pseudoalteromonas, Duganella, Collimonas and Escherichia. Violacein is a versatile pigment, where it exhibits several biological activities, and every year, it shows increasing commercially interesting uses, especially for industrial applications in cosmetics, medicines and fabrics. This review on violacein focuses mainly on the last five years of research regarding this target compound and describes production and importance of quorum sensing in C. violaceum, mechanistic aspects of its biosynthesis, monitoring processes, genetic perspectives, pathogenic effects, antiparasitic and antimicrobial activities, immunomodulatory potential and uses, antitumor potential and industrial applications.
Collapse
Affiliation(s)
- Nelson Durán
- Institute of Chemistry, Biological Chemistry Laboratory, University of Campinas, CP 6154, CEP 13083-970 Campinas, SP, Brazil; NanoBioss, Institute of Chemistry, University of Campinas, Campinas, SP, Brazil; LNNano (CNPEM) Campinas, SP, Brazil.
| | - Giselle Z Justo
- Department of Cell Biology and Department of Biochemistry, Federal University of São Paulo (UNIFESP-Diadema), SP, Brazil
| | - Marcela Durán
- NanoBioss, Institute of Chemistry, University of Campinas, Campinas, SP, Brazil; Institute of Biology, Urogenital, Carcinogenesis and Immunotherapy Laboratory, University of Campinas, SP, Brazil
| | - Marcelo Brocchi
- Institute of Biology, Department Genetics, Evolution and Bioagents, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Livia Cordi
- NanoBioss, Institute of Chemistry, University of Campinas, Campinas, SP, Brazil; Institute of Biology, Department Genetics, Evolution and Bioagents, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Ljubica Tasic
- Institute of Chemistry, Biological Chemistry Laboratory, University of Campinas, CP 6154, CEP 13083-970 Campinas, SP, Brazil; NanoBioss, Institute of Chemistry, University of Campinas, Campinas, SP, Brazil
| | - Guillermo R Castro
- Nanobiomaterials Laboratory, Applied Biotechnology Institute (CINDEFI, UNLP-CONICET CCT La Plata) - School of Sciences, Universidad Nacional de La Plata, La Plata, Argentina
| | - Gerson Nakazato
- Department of Microbiology, Biology Sciences Center, Londrina State University (UEL), Londrina, Brazil
| |
Collapse
|
32
|
Agate L, Beam D, Bucci C, Dukashin Y, Jo’Beh R, O’Brien K, Jude BA. The Search for Violacein-Producing Microbes to Combat Batrachochytrium dendrobatidis: A Collaborative Research Project between Secondary School and College Research Students. JOURNAL OF MICROBIOLOGY & BIOLOGY EDUCATION 2016; 17:70-3. [PMID: 27047594 PMCID: PMC4798820 DOI: 10.1128/jmbe.v17i1.1002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In this citizen science-aided, college laboratory-based microbiology research project, secondary school students collaborate with college research students on an investigation centered around bacterial species in the local watershed. This study specifically investigated the prevalence of violacein-producing bacterial isolates, as violacein has been demonstrated as a potential bioremediation treatment for outbreaks of the worldwide invasive chytrid, Batrachochytrium dendrobatidis (Bd). The impact of this invasion has been linked to widespread amphibian decline, and tracking of the spread of Bd is currently ongoing. Secondary school students participated in this research project by sterilely collecting water samples from a local watershed, documenting the samples, and completing the initial sample plating in a BSL1 environment. In the second phase of this project, trained college students working in courses and as research assistants in the academic year and summer term in a BSL2 laboratory facility were able to use physiological, biochemical, and molecular techniques to further identify individual isolates as well as characterize their properties. Collaboration between these learning spaces provides an increased interest in the community for environmentally relevant research projects and allows for an expansion of the research team to increase study robustness. Journal of Microbiology & Biology Education.
Collapse
Affiliation(s)
- Larra Agate
- Linden Avenue Middle School, Red Hook, NY 12571
| | | | - Collen Bucci
- F.D. Roosevelt High School, Staatsburg, NY 12580
| | - Yegor Dukashin
- Biology Program, Bard College, Annandale on Hudson, NY 12504
| | | | - Kelsey O’Brien
- Biology Program, Bard College, Annandale on Hudson, NY 12504
| | - Brooke A. Jude
- Biology Program, Bard College, Annandale on Hudson, NY 12504
| |
Collapse
|
33
|
Masuelli L, Pantanella F, La Regina G, Benvenuto M, Fantini M, Mattera R, Di Stefano E, Mattei M, Silvestri R, Schippa S, Manzari V, Modesti A, Bei R. Violacein, an indole-derived purple-colored natural pigment produced by Janthinobacterium lividum, inhibits the growth of head and neck carcinoma cell lines both in vitro and in vivo. Tumour Biol 2015; 37:3705-17. [PMID: 26462840 DOI: 10.1007/s13277-015-4207-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/05/2015] [Indexed: 10/23/2022] Open
Abstract
Violacein (VIO; 3-[1,2-dihydro-5-(5-hydroxy-1H-indol-3-yl)-2-oxo-3H-pyrrol-3-ylidene]-1,3-dihydro-2H-indol-2-one), an indole-derived purple-colored pigment, produced by a limited number of Gram-negative bacteria species, including Chromobacterium violaceum and Janthinobacterium lividum, has been demonstrated to have anti-cancer activity, as it interferes with survival transduction signaling pathways in different cancer models. Head and neck carcinoma (HNC) represents the sixth most common and one of the most fatal cancers worldwide. We determined whether VIO was able to inhibit head and neck cancer cell growth both in vitro and in vivo. We provide evidence that VIO treatment of human and mouse head and neck cancer cell lines inhibits cell growth and induces autophagy and apoptosis. In fact, VIO treatment increased PARP-1 cleavage, the Bax/Bcl-2 ratio, the inhibition of ERK1 and ERK2 phosphorylation, and the expression of light chain 3-II (LC3-II). Moreover, VIO was able to induce p53 degradation, cytoplasmic nuclear factor kappa B (NF-κB) accumulation, and reactive oxygen species (ROS) production. VIO induced a significant increase in ROS production. VIO administration was safe in BALB/c mice and reduced the growth of transplanted salivary gland cancer cells (SALTO) in vivo and prolonged median survival. Taken together, our results indicate that the treatment of head and neck cancer cells with VIO can be useful in inhibiting in vivo and in vitro cancer cell growth. VIO may represent a suitable tool for the local treatment of HNC in combination with standard therapies.
Collapse
Affiliation(s)
- Laura Masuelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.
| | - Fabrizio Pantanella
- Department of Public Health and Infectious Diseases-Microbiology Section, Sapienza University of Rome, Rome, Italy
| | - Giuseppe La Regina
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome, Rome, Italy
| | - Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Massimo Fantini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Rosanna Mattera
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Enrica Di Stefano
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Romano Silvestri
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome, Rome, Italy
| | - Serena Schippa
- Department of Public Health and Infectious Diseases-Microbiology Section, Sapienza University of Rome, Rome, Italy
| | - Vittorio Manzari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Andrea Modesti
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|