1
|
Sheida A, Farshadi M, Mirzaei A, Najjar Khalilabad S, Zarepour F, Taghavi SP, Hosseini Khabr MS, Ravaei F, Rafiei S, Mosadeghi K, Yazdani MS, Fakhraie A, Ghattan A, Zamani Fard MM, Shahyan M, Rafiei M, Rahimian N, Talaei Zavareh SA, Mirzaei H. Potential of Natural Products in the Treatment of Glioma: Focus on Molecular Mechanisms. Cell Biochem Biophys 2024; 82:3157-3208. [PMID: 39150676 DOI: 10.1007/s12013-024-01447-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
Despite the waning of traditional treatments for glioma due to possible long-term issues, the healing possibilities of substances derived from nature have been reignited in the scientific community. These natural substances, commonly found in fruits and vegetables, are considered potential alternatives to pharmaceuticals, as they have been shown in prior research to impact pathways surrounding cancer progression, metastases, invasion, and resistance. This review will explore the supposed molecular mechanisms of different natural components, such as berberine, curcumin, coffee, resveratrol, epigallocatechin-3-gallate, quercetin, tanshinone, silymarin, coumarin, and lycopene, concerning glioma treatment. While the benefits of a balanced diet containing these compounds are widely recognized, there is considerable scope for investigating the efficacy of these natural products in treating glioma.
Collapse
Affiliation(s)
- Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Amirhossein Mirzaei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shakiba Najjar Khalilabad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Zarepour
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Sadat Hosseini Khabr
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Ravaei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sara Rafiei
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Kimia Mosadeghi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Sepehr Yazdani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Fakhraie
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Ghattan
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Masoud Zamani Fard
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Shahyan
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Moein Rafiei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | | | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
2
|
Qiao P, Du H, Guo X, Yu M, Zhang C, Shi Y. Serum exosomal miR-200c is a potential diagnostic biomarker for breast cancer. Biomarkers 2024; 29:419-426. [PMID: 39317236 DOI: 10.1080/1354750x.2024.2406520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Breast cancer (BC) is one of the most common malignancies in women. Exosomes are widely found in body fluids and carry microRNAs (miRNAs) that reflect the biological properties of the parental cells. Our study aimed to investigate the differential expression of miR-200c in BC serum exosomes and its diagnostic value. METHODOLOGY miRNA profiles in culture supernatant exosomes of normal mammary epithelial cells MCF-10A and BC cells (MCF-7, MDA-MB-231, MCF-7 Taxol) were examined by miRNA deep sequencing to screen for significantly differentially expressed miRNAs; Transmission electron microscopy (TEM), Nanoparticle tracking analysis (NTA), and Western blot were used to identify exosomes; qPCR was used to detect the expression level of miR-200c in cellular exosomes and serum exosomes; The efficacy of individual and combined tests of each indicator to diagnose BC was evaluated using receiver operating characteristic (ROC) curves. RESULTS We identified typical exosome features by TEM, NTA and Western blot, indicating successful exosome extraction. Then our miRNA sequencing results and qRT-PCR experiments showed that miR-200c was significantly down-regulated in BC cell exosomes. In addition, we divided the clinical serum samples into two cohorts according to region, and in independent cohort I, the serum exosomal miR-200c levels of BC patients were significantly lower than those of healthy controls. In cohort II, serum exosomal miR-200c expression was significantly lower in the BC group than in the control and benign breast disease (BBD) groups, whereas miR-200c expression in the BBD group was not statistically different from that in the control group. ROC analyses in both independent cohorts confirmed that serum exosomal miR-200c could differentiate between patients with and without BC disease and could be used as an early diagnostic marker for BC disease. CONCLUSION Serum exosome miR-200c can be used as a potential biomarker for the diagnosis of BC, and combined with conventional serum diagnostic markers AFP, CA125 and CA153 can help to improve diagnostic efficiency.
Collapse
Affiliation(s)
- Ping Qiao
- Department of Laboratory Medicine, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Hua Du
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
- Department of Pathology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xin Guo
- Clinical Laboratory Center, Inner Mongolia International Mongolian Hospital, Hohhot, China
| | - Mingxuan Yu
- Department of Laboratory Medicine, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Caihong Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yingxu Shi
- Department of Laboratory Medicine, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
3
|
Záveský L, Jandáková E, Weinberger V, Minář L, Kohoutová M, Faridová AT, Slanař O. The Overexpressed MicroRNAs miRs-182, 155, 493, 454, and U6 snRNA and Underexpressed let-7c, miR-328, and miR-451a as Potential Biomarkers in Invasive Breast Cancer and Their Clinicopathological Significance. Oncology 2024; 103:112-127. [PMID: 39134012 PMCID: PMC11793102 DOI: 10.1159/000540863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/01/2024] [Indexed: 09/13/2024]
Abstract
INTRODUCTION Breast cancer comprises the leading cause of cancer-related death in women. MicroRNAs (miRNAs) have emerged as important factors with concern to carcinogenesis and have potential for use as biomarkers. METHODS This study provides a comprehensive evaluation of the microRNA expression in invasive breast carcinoma of no special type tissues compared with benign tissues via large-scale screening and the candidate-specific validation of 15 miRNAs and U6 snRNA applying qPCR and the examination of clinicopathological data. RESULTS Of the six downregulated miRNAs, let-7c was identified as the most promising miRNA biomarker and its lower expression was linked with Ki-67 positivity, luminal B versus luminal A samples, multifocality, lymph node metastasis, and inferior PFS. Of the 9 upregulated sncRNAs, the data on U6 snRNA, miR-493 and miR-454 highlighted their potential oncogenic functions. An elevated U6 snRNA expression was associated with the tumor grade, Ki-67 positivity, luminal B versus A samples, lymph node metastasis, and worsened PFS (and OS) outcomes. An elevated miR-454 expression was detected in higher grades, Ki-67 positive and luminal B versus A samples. Higher miR-493 levels were noted for the tumor stage (and grade) and worse patient outcomes (PFS, OS). The data also suggested that miR-451a and miR-328 may have tumor suppressor roles, and miR-182 and miR-200c pro-oncogenic functions, while the remaining sncRNAs did not evince any significant associations. CONCLUSION We showed particular microRNAs and U6 snRNA as differentially expressed between tumors and benign tissues and associated with clinicopathological parameters, thus potentially corresponding with important roles in breast carcinogenesis. Their importance should be further investigated and evaluated in follow-up studies to reveal their potential in clinical practice. INTRODUCTION Breast cancer comprises the leading cause of cancer-related death in women. MicroRNAs (miRNAs) have emerged as important factors with concern to carcinogenesis and have potential for use as biomarkers. METHODS This study provides a comprehensive evaluation of the microRNA expression in invasive breast carcinoma of no special type tissues compared with benign tissues via large-scale screening and the candidate-specific validation of 15 miRNAs and U6 snRNA applying qPCR and the examination of clinicopathological data. RESULTS Of the six downregulated miRNAs, let-7c was identified as the most promising miRNA biomarker and its lower expression was linked with Ki-67 positivity, luminal B versus luminal A samples, multifocality, lymph node metastasis, and inferior PFS. Of the 9 upregulated sncRNAs, the data on U6 snRNA, miR-493 and miR-454 highlighted their potential oncogenic functions. An elevated U6 snRNA expression was associated with the tumor grade, Ki-67 positivity, luminal B versus A samples, lymph node metastasis, and worsened PFS (and OS) outcomes. An elevated miR-454 expression was detected in higher grades, Ki-67 positive and luminal B versus A samples. Higher miR-493 levels were noted for the tumor stage (and grade) and worse patient outcomes (PFS, OS). The data also suggested that miR-451a and miR-328 may have tumor suppressor roles, and miR-182 and miR-200c pro-oncogenic functions, while the remaining sncRNAs did not evince any significant associations. CONCLUSION We showed particular microRNAs and U6 snRNA as differentially expressed between tumors and benign tissues and associated with clinicopathological parameters, thus potentially corresponding with important roles in breast carcinogenesis. Their importance should be further investigated and evaluated in follow-up studies to reveal their potential in clinical practice.
Collapse
Affiliation(s)
- Luděk Záveský
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, and General University Hospital in Prague, Prague, Czech Republic
- Institute of Pharmacology, First Faculty of Medicine, Charles University, and General University Hospital in Prague, Prague, Czech Republic
| | - Eva Jandáková
- Department of Pathology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Vít Weinberger
- Department of Obstetrics and Gynecology, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Luboš Minář
- Department of Obstetrics and Gynecology, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Milada Kohoutová
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, and General University Hospital in Prague, Prague, Czech Republic
| | - Adéla Tefr Faridová
- After-surgery Gynecological Department, Institute for the Care of Mother and Child, Prague, Czech Republic
| | - Ondřej Slanař
- Institute of Pharmacology, First Faculty of Medicine, Charles University, and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
4
|
Thi Chung Duong T, Nguyen THN, Thi Ngoc Nguyen T, Huynh LH, Ngo HP, Thi Nguyen H. Diagnostic and prognostic value of miR-200 family in breast cancer: A meta-analysis and systematic review. Cancer Epidemiol 2022; 77:102097. [PMID: 35030348 DOI: 10.1016/j.canep.2022.102097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Breast cancer (BC) is the most common cancer for women all over the world. Great interests have been paid to discover accurate and noninvasive methods for breast cancer diagnosis and prognosis. Although the diagnostic and prognostic value of microRNA-200 (miRNA- 200, miR-200) family has been revealed in many studies, the results were inconsistent. Thus, this meta-analysis aims to assess the overall value of miRNA-200 family in breast cancer diagnosis and prognosis. METHOD Relevant studies were searched from the following databases: PubMed, PMC, EMBASE, and ScienceDirect using key words: ("miRNA-200 family" or "miR-141" or "miR-200a" or "miR-200b" or "miR-200c" or "miR-429") and ("HER2" or "Luminal A" or "Luminal B" or "TNBC") and ("breast cancers" or "breast carcinoma" or "breast malignancy" or "breast tumor"). The sensitivity, specificity, AUC were then calculated to estimate the diagnostic accuracy of the miR-200 family. As for the prognostic value of the miR-200 family, the pooled hazard ratio (HR) was assessed. Heterogeneity among individual studies was also examined by subgroup analyses. RESULT A total of 24 articles were included in the meta-analysis. The diagnostic value of miR-200s in BC was presented by the pooled sensitivity was 0.86 (95% CI: 0.83-0.88); the pooled specificity was 0.82 (95% CI: 0.72-0.89); the pooled AUC was 0.931 (95% CI: 0.919-0.942). Besides, expression of miR-200s in metastatic breast cancer has sensitivity, specificity and AUC of 0.70 (95%CI: 0.56-0.81), 0.72 (95%CI: 0.61-0.81), and 0.814 (95%CI: 0.741-0.903), respectively. The meta-analysis then revealed that high expression of miR-200 family corresponded to poor OS (HR: 1.63, 95% CI: 1.03-2.52), poor DFS (HR: 1.55, 95% CI: 0.95-2.56) in BC patients while downregulation of miRNA-200s corresponded to poor OS (HR= 0.84, 95%CI: 0.46-1.63) in TNBC patients and poor OS (HR=0.49; 95%CI: 0.27-0.88) in luminal BC patient. CONCLUSION The MiR-200 family has high diagnostic accuracy and can be used as an important biomarker to prognosticate breast cancer.
Collapse
Affiliation(s)
- Thuy Thi Chung Duong
- Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City, Vietnam; Vietnam National University, Ho Chi Minh City, Vietnam
| | | | - Thanh Thi Ngoc Nguyen
- Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City, Vietnam; Vietnam National University, Ho Chi Minh City, Vietnam
| | - Luan Huu Huynh
- Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City, Vietnam; Vietnam National University, Ho Chi Minh City, Vietnam
| | - Hoang Phan Ngo
- Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City, Vietnam; Vietnam National University, Ho Chi Minh City, Vietnam
| | - Hue Thi Nguyen
- Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City, Vietnam; Vietnam National University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
5
|
Non-Coding RNAs in the Crosstalk between Breast Cancer Cells and Tumor-Associated Macrophages. Noncoding RNA 2022; 8:ncrna8010016. [PMID: 35202089 PMCID: PMC8874851 DOI: 10.3390/ncrna8010016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/19/2022] [Accepted: 02/01/2022] [Indexed: 11/17/2022] Open
Abstract
Non-coding RNAs (ncRNAs) play a pivotal role in regulating the tumor microenvironment (TME) by controlling gene expression at multiple levels. In tumors, ncRNAs can mediate the crosstalk between cancer cells and other cells in the TME, such as immune cells, stromal cells, and endothelial cells, influencing tumor development and progression. Tumor-associated macrophages (TAMs) are among the most abundant inflammatory cells infiltrating solid cancers that promote tumorigenesis, and their infiltration correlates with a poor prognosis in many tumors. Cancer cells produce different ncRNAs that orchestrate TAM recruitment and polarization toward a tumor-promoting phenotype. Tumor-reprogrammed macrophages shape the TME by promoting angiogenesis and tissue remodeling, and suppressing the anti-tumor activity of adaptive immune cells. TAMs can also produce ncRNA molecules that boost cancer cell proliferation and direct their phenotype and metabolic changes facilitating cancer progression and metastasis. This review will focus on the crosstalk between cancer cells and TAMs mediated by microRNAs and long non-coding RNAs during breast cancer (BC) initiation and progression.
Collapse
|
6
|
Interplay between p53 and non-coding RNAs in the regulation of EMT in breast cancer. Cell Death Dis 2021; 12:17. [PMID: 33414456 PMCID: PMC7791039 DOI: 10.1038/s41419-020-03327-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
The epithelial-mesenchymal transition (EMT) plays a pivotal role in the differentiation of vertebrates and is critically important in tumorigenesis. Using this evolutionarily conserved mechanism, cancer cells become drug-resistant and acquire the ability to escape the cytotoxic effect of anti-cancer drugs. In addition, these cells gain invasive features and increased mobility thereby promoting metastases. In this respect, the process of EMT is critical for dissemination of solid tumors including breast cancer. It has been shown that miRNAs are instrumental for the regulation of EMT, where they play both positive and negative roles often as a part of a feed-back loop. Recent studies have highlighted a novel association of p53 and EMT where the mutation status of p53 is critically important for the outcome of this process. Interestingly, p53 has been shown to mediate its effects via the miRNA-dependent mechanism that targets master-regulators of EMT, such as Zeb1/2, Snail, Slug, and Twist1. This regulation often involves interactions of miRNAs with lncRNAs. In this review, we present a detailed overview of miRNA/lncRNA-dependent mechanisms that control interplay between p53 and master-regulators of EMT and their importance for breast cancer.
Collapse
|
7
|
Zellinger B, Bodenhofer U, Engländer IA, Kronberger C, Strasser P, Grambozov B, Fastner G, Stana M, Reitsamer R, Sotlar K, Sedlmayer F, Zehentmayr F. Hsa-miR-375/RASD1 Signaling May Predict Local Control in Early Breast Cancer. Genes (Basel) 2020; 11:genes11121404. [PMID: 33255991 PMCID: PMC7759924 DOI: 10.3390/genes11121404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/15/2020] [Accepted: 11/24/2020] [Indexed: 12/19/2022] Open
Abstract
Background: In order to characterize the various subtypes of breast cancer more precisely and improve patients selection for breast conserving therapy (BCT), molecular profiling has gained importance over the past two decades. MicroRNAs, which are small non-coding RNAs, can potentially regulate numerous downstream target molecules and thereby interfere in carcinogenesis and treatment response via multiple pathways. The aim of the current two-phase study was to investigate whether hsa-miR-375-signaling through RASD1 could predict local control (LC) in early breast cancer. Results: The patient and treatment characteristics of 81 individuals were similarly distributed between relapse (n = 27) and control groups (n = 54). In the pilot phase, the primary tumors of 28 patients were analyzed with microarray technology. Of the more than 70,000 genes on the chip, 104 potential hsa-miR-375 target molecules were found to have a lower expression level in relapse patients compared to controls (p-value < 0.2). For RASD1, a hsa-miR-375 binding site was predicted by an in silico search in five mRNA-miRNA databases and mechanistically proven in previous pre-clinical studies. Its expression levels were markedly lower in relapse patients than in controls (p-value of 0.058). In a second phase, this finding could be validated in an independent set of 53 patients using ddPCR. Patients with enhanced levels of hsa-miR-375 compared to RASD1 had a higher probability of local relapse than those with the inverse expression pattern of the two markers (log-rank test, p-value = 0.069). Conclusion: This two-phase study demonstrates that hsa-miR-375/RASD1 signaling is able to predict local control in early breast cancer patients, which—to our knowledge—is the first clinical report on a miR combined with one of its downstream target proteins predicting LC in breast cancer.
Collapse
Affiliation(s)
- Barbara Zellinger
- radART—Institute for Research and Development on Advanced Radiation Technologies, Paracelsus Medical University, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (B.Z.); (I.A.E.); (F.S.)
- Department of Pathology, Paracelsus Medical University, SALK, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (C.K.); (K.S.)
| | - Ulrich Bodenhofer
- School of Informatics, Communications and Media, University of Applied Sciences Upper Austria, Softwarepark 11, 4232 Hagenberg, Austria;
- Institute for Machine Learning, Campus Science Park 3, Johannes Kepler University, Altenbergerstrasse 69, 4040 Linz, Austria
| | - Immanuela A. Engländer
- radART—Institute for Research and Development on Advanced Radiation Technologies, Paracelsus Medical University, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (B.Z.); (I.A.E.); (F.S.)
- Department of Radiation Oncology, Paracelsus Medical University, SALK, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (B.G.); (G.F.); (M.S.)
| | - Cornelia Kronberger
- Department of Pathology, Paracelsus Medical University, SALK, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (C.K.); (K.S.)
| | - Peter Strasser
- Department of Laboratory Medicine, Paracelsus Medical University, SALK, Müllner Hauptstrasse 48, 5020 Salzburg, Austria;
| | - Brane Grambozov
- Department of Radiation Oncology, Paracelsus Medical University, SALK, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (B.G.); (G.F.); (M.S.)
| | - Gerd Fastner
- Department of Radiation Oncology, Paracelsus Medical University, SALK, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (B.G.); (G.F.); (M.S.)
| | - Markus Stana
- Department of Radiation Oncology, Paracelsus Medical University, SALK, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (B.G.); (G.F.); (M.S.)
| | - Roland Reitsamer
- Department of Gynecology and Obstetrics, Paracelsus Medical University, SALK, Müllner Hauptstrasse 48, 5020 Salzburg, Austria;
| | - Karl Sotlar
- Department of Pathology, Paracelsus Medical University, SALK, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (C.K.); (K.S.)
| | - Felix Sedlmayer
- radART—Institute for Research and Development on Advanced Radiation Technologies, Paracelsus Medical University, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (B.Z.); (I.A.E.); (F.S.)
- Department of Radiation Oncology, Paracelsus Medical University, SALK, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (B.G.); (G.F.); (M.S.)
| | - Franz Zehentmayr
- radART—Institute for Research and Development on Advanced Radiation Technologies, Paracelsus Medical University, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (B.Z.); (I.A.E.); (F.S.)
- Department of Radiation Oncology, Paracelsus Medical University, SALK, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (B.G.); (G.F.); (M.S.)
- Correspondence: ; Tel.: +43-57255-58915
| |
Collapse
|
8
|
Fahim SA, Abdullah MS, Espinoza-Sánchez NA, Hassan H, Ibrahim AM, Ahmed SH, Shakir G, Badawy MA, Zakhary NI, Greve B, El-Shinawi M, Götte M, Ibrahim SA. Inflammatory Breast Carcinoma: Elevated microRNA miR-181b-5p and Reduced miR-200b-3p, miR-200c-3p, and miR-203a-3p Expression as Potential Biomarkers with Diagnostic Value. Biomolecules 2020; 10:E1059. [PMID: 32708601 PMCID: PMC7407124 DOI: 10.3390/biom10071059] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022] Open
Abstract
Inflammatory breast cancer (IBC) is a rare yet aggressive breast cancer variant, associated with a poor prognosis. The major challenge for IBC is misdiagnosis due to the lack of molecular biomarkers. We profiled dysregulated expression of microRNAs (miRNAs) in primary samples of IBC and non-IBC tumors using human breast cancer miRNA PCR array. We discovered that 28 miRNAs were dysregulated (10 were upregulated, while 18 were underexpressed) in IBC vs. non-IBC tumors. We identified 128 hub genes, which are putative targets of the differentially expressed miRNAs and modulate important cancer biological processes. Furthermore, our qPCR analysis independently verified a significantly upregulated expression of miR-181b-5p, whereas a significant downregulation of miR-200b-3p, miR-200c-3p, and miR-203a-3p was detected in IBC tumors. Receiver operating characteristic (ROC) curves implied that the four miRNAs individually had a diagnostic accuracy in discriminating patients with IBC from non-IBC and that miR-203a-3p had the highest diagnostic value with an AUC of 0.821. Interestingly, a combination of miR-181b-5p, miR-200b-3p, and miR-200c-3p robustly improved the diagnostic accuracy, with an area under the curve (AUC) of 0.897. Intriguingly, qPCR revealed that the expression of zinc finger E box-binding homeobox 2 (ZEB2) mRNA, the putative target of miR-200b-3p, miR-200c-3p, and miR-203a-3p, was upregulated in IBC tumors. Overall, this study identified a set of miRNAs serving as potential biomarkers with diagnostic relevance for IBC.
Collapse
Affiliation(s)
- Sarah Atef Fahim
- Biochemistry Program, Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Mahmoud Salah Abdullah
- Biotechnology/Biomolecular Chemistry Program, Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (M.S.A.); (S.H.A.); (G.S.)
| | | | - Hebatallah Hassan
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt; (H.H.); (A.M.I.)
| | - Ayman M. Ibrahim
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt; (H.H.); (A.M.I.)
| | - Sarah Hamdy Ahmed
- Biotechnology/Biomolecular Chemistry Program, Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (M.S.A.); (S.H.A.); (G.S.)
| | - George Shakir
- Biotechnology/Biomolecular Chemistry Program, Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (M.S.A.); (S.H.A.); (G.S.)
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, 80539 Munich, Germany
| | - Mohamed A. Badawy
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Nadia I. Zakhary
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt;
| | - Burkhard Greve
- Department of Radiotherapy–Radiooncology, University Hospital Münster, 48149 Münster, Germany;
| | - Mohamed El-Shinawi
- Department of General Surgery, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt;
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, 48149 Münster, Germany;
| | - Sherif Abdelaziz Ibrahim
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt; (H.H.); (A.M.I.)
| |
Collapse
|
9
|
Zografos E, Zagouri F, Kalapanida D, Zakopoulou R, Kyriazoglou A, Apostolidou K, Gazouli M, Dimopoulos MA. Prognostic role of microRNAs in breast cancer: A systematic review. Oncotarget 2019; 10:7156-7178. [PMID: 31903173 PMCID: PMC6935258 DOI: 10.18632/oncotarget.27327] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/26/2019] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) have been found to play an important role in breast cancer, functioning either as potential oncogenes or tumor suppressor genes, but their role in the prognosis of patients remains unclear. The aim of the present review study is to highlight recent preclinical and clinical studies performed on both circulating and tissue-specific miRNAs and their potential role as prognostic markers in breast cancer. We systematically searched the PubMed database to explore the prognostic value of miRNAs in breast cancer. After performing the literature search and review, 117 eligible studies were identified. We found that 110 aberrantly expressed miRNAs have been associated with prognosis in breast cancer. In conclusion, the collective data presented in this review indicate that miRNAs could serve as novel prognostic tools in breast cancer, while the clinical application of these findings has yet to be verified.
Collapse
Affiliation(s)
- Eleni Zografos
- Department of Basic Medical Sciences, Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Flora Zagouri
- Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Despoina Kalapanida
- Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Roubini Zakopoulou
- Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios Kyriazoglou
- Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Kleoniki Apostolidou
- Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Meletios-Athanasios Dimopoulos
- Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
10
|
Abolghasemi M, Tehrani SS, Yousefi T, Karimian A, Mahmoodpoor A, Ghamari A, Jadidi-Niaragh F, Yousefi M, Kafil HS, Bastami M, Edalati M, Eyvazi S, Naghizadeh M, Targhazeh N, Yousefi B, Safa A, Majidinia M, Rameshknia V. MicroRNAs in breast cancer: Roles, functions, and mechanism of actions. J Cell Physiol 2019; 235:5008-5029. [PMID: 31724738 DOI: 10.1002/jcp.29396] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 09/30/2019] [Indexed: 12/13/2022]
Abstract
Breast cancer is one of the most lethal malignancies in women in the world. Various factors are involved in the development and promotion of the malignancy; most of them involve changes in the expression of certain genes, such as microRNAs (miRNAs). MiRNAs can regulate signaling pathways negatively or positively, thereby affecting tumorigenesis and various aspects of cancer progression, particularly breast cancer. Besides, accumulating data demonstrated that miRNAs are a novel tool for prognosis and diagnosis of breast cancer patients. Herein, we will review the roles of these RNA molecules in several important signaling pathways, such as transforming growth factor, Wnt, Notch, nuclear factor-κ B, phosphoinositide-3-kinase/Akt, and extracellular-signal-regulated kinase/mitogen activated protein kinase signaling pathways in breast cancer.
Collapse
Affiliation(s)
- Maryam Abolghasemi
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Iran.,Student Research Committee, Babol University of medical sciences, Babol, Iran
| | - Sadra Samavarchi Tehrani
- Departmant of Clinical Biochemistry, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Tooba Yousefi
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Iran.,Student Research Committee, Babol University of medical sciences, Babol, Iran
| | - Ansar Karimian
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Iran.,Student Research Committee, Babol University of medical sciences, Babol, Iran
| | - Ata Mahmoodpoor
- Anesthesiology Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aliakbar Ghamari
- Anesthesiology Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mehdi Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Bastami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Edalati
- Department of Laboratory Sciences, Paramedical Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Eyvazi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Naghizadeh
- Departmant of Clinical Biochemistry, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloufar Targhazeh
- Student Research Committee, Babol University Of Medical Sciences, Babol, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Safa
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Vahid Rameshknia
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Medicine, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
11
|
Yuan L, Bing Z, Yan P, Li R, Wang C, Sun X, Yang J, Shi X, Zhang Y, Yang K. Integrative data mining and meta-analysis to investigate the prognostic role of microRNA-200 family in various human malignant neoplasms: A consideration on heterogeneity. Gene 2019; 716:144025. [DOI: 10.1016/j.gene.2019.144025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/15/2022]
|
12
|
Nicolini A, Ferrari P, Duffy MJ. Prognostic and predictive biomarkers in breast cancer: Past, present and future. Semin Cancer Biol 2018; 52:56-73. [DOI: 10.1016/j.semcancer.2017.08.010] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/14/2017] [Accepted: 08/24/2017] [Indexed: 12/19/2022]
|
13
|
Kim C, Go EJ, Kim A. Recurrence prediction using microRNA expression in hormone receptor positive breast cancer during tamoxifen treatment. Biomarkers 2018; 23:804-811. [PMID: 30010434 DOI: 10.1080/1354750x.2018.1499131] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE To identify miRNAs associated with distant recurrence during tamoxifen treatment and build a recurrence prediction model. MATERIALS AND METHODS We measured the expression of five miRNAs (miR-134, miR-125b-5P, miRNA-30a, miR-10a-5p and miR-222). A total of 176 tumour tissues from 176 patients who had hormone receptor positive breast cancer with tamoxifen treatment were used to measure miRNA expression using quantitative real-time PCR (qRT-PCR). RESULTS The five miRNAs were all up-regulated in distant recurrence cases within 5 years after surgery and during tamoxifen treatment. Kaplan-Meier survival analyses based on expression cut-offs determined by receiver characteristics curves (ROC) showed that high expression of miR-134, miR-125b-5P, miRNA-30a, miR-10a-5p and miR-222 were significantly (log-rank p-value =0.006, p-value <0.0001, p-value <0.0001, p-value <0.0001 and p-value <0.0001, respectively) associated with short relapse-free time. Our results were used to build a combined 3 miRNAs expression model. It could be used to categorize high-risk subset of patients with short relapse-free survival (AUC =0.891, p-value <0.0001). CONCLUSIONS Distant recurrence during tamoxifen treatment of hormone positive breast cancer might be affected by tamoxifen resistance related miRNAs. Such distant recurrence can be predicted using miRNA measurement.
Collapse
Affiliation(s)
- Chungyeul Kim
- a Department of Pathology , College of Medicine, Korea University , Seoul , Korea
| | - Eun Jin Go
- a Department of Pathology , College of Medicine, Korea University , Seoul , Korea
| | - Aeree Kim
- a Department of Pathology , College of Medicine, Korea University , Seoul , Korea
| |
Collapse
|
14
|
Yin Y, Song WW, Wang Y, Zhao W, Wu J, Xu W. MicroRNA-200 families and prognostic value in various carcinomas: A systematic review and meta-analysis. Aging Med (Milton) 2018; 1:39-45. [PMID: 31942478 PMCID: PMC6880694 DOI: 10.1002/agm2.12005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 12/14/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Recently, some studies have showed that miR-200 families act as novel biomarkers for the prediction of cancer outcomes. AIMS This meta-analysis was designed to investigate the associations between miR-200 families and the prognosis of patients with various cancers. MATERIALS & METHODS Eligible published databases including PubMed, Embase and Chinese National Knowledge Infrastructure (CNKI) databases were searched for articles until October 18, 2016. We performed a meta-analysis by calculating pooled hazard ratios (HR) and 95% confidence intervals (CI). Data were extracted from studies comparing overall survival (OS), progression-free survival (PFS) or recurrence-free survival (RFS). RESULTS For OS, the pooled HR was 1.54 (95% CI: 1.01-2.33), showing that high miR-200 family was clearly related to poor survival in various carcinomas, but no significantly association was found in PFS or RFS. Subgroup analysis indicated that upregulated miR-200 family was linked to poor OS in Asians (HR = 2.19, 95% CI: 1.27-3.78) but not in Caucasians (HR = 0.94, 95% CI: 0.46-1.91). Similarly, high miR-200 expression could not clearly predict the relationship with PFS and RFS. For cancer type, high miR-200 also predicted poor OS among lung cancer patients (HR = 3.09, 95% CI: 1.75-5.46). Besides, only elevated miR-200c of the miR-200 family indicated a significantly poor OS (HR = 2.25, 95% CI: 1.39-3.64). DISCUSSION Aberrant expression of miRNAs played a crucial role in the area of human carcinomas. Many studies have indicated that miRNAs are considered promising tumor biomarkers for prognosis and potential targets for clinical treatment. We have testified that high levels of miR-200 family expression (predominantly miR-200c) are significantly associated with poor survival and prognostic outcomes of patients with cancers, especially in lung cancer. However, no statistically significant results were calculated for miR-200a/b and miR-429, and this might result from a relatively small number of articles about them. In other tumor models except lung cancer, our results indicated that high miR-200 family was not obviously associated with OS (Gastric or Colorectal cancer; Ovarian cancer; Others). In addition, some other records showed the opposite results, for they exhibited that upregulated miR-200 family level was linked to longer survival. For ethnic group, our stratified analyses showed that the Asian population predicted poor OS. While the Caucasian population did not exhibit an significant association with OS. This discrepancy might result from different hereditary backgrounds and environment exposure. Although these results have indicated that miR-200 families were promising biomarkers to predict prognosis for patients with cancers, there were several limitations in this analysis that would impact its quality. Generally, further studies should be warranted to clarify this question and to provide a new novel idea for routine clinical application. CONCLUSION Our findings suggest that miR-200 family might be a potentially useful biomarker for predicting cancer prognosis, especially for lung cancer in Asians.
Collapse
Affiliation(s)
- Yuan Yin
- Nanjing Medical UniversityJiangning District, NanjingChina
| | - Wei Wei Song
- Department of GeriatricsThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Yu Wang
- Department of GeriatricsThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Weihong Zhao
- Department of GeriatricsThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Jianqing Wu
- Department of GeriatricsThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Wei Xu
- Department of GeriatricsThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
15
|
Jin T, Suk Kim H, Ki Choi S, Hye Hwang E, Woo J, Suk Ryu H, Kim K, Moon A, Kyung Moon W. microRNA-200c/141 upregulates SerpinB2 to promote breast cancer cell metastasis and reduce patient survival. Oncotarget 2018; 8:32769-32782. [PMID: 28427146 PMCID: PMC5464826 DOI: 10.18632/oncotarget.15680] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 02/12/2017] [Indexed: 11/25/2022] Open
Abstract
The microRNA-200 (miR-200) family is associated with tumor metastasis and poor patient prognosis. We found that miR-200c/141 cluster overexpression upregulated SerpinB2 in the MDA-MB-231 triple-negative (TN) breast cancer cell line. We observed transcription factor (c-Jun, c-Fos, and FosB) upregulation, nuclear localization of c-Jun, and increased SerpinB2 promoter-directed chloramphenicol acetyltransferase activity in miR-200c/141 cluster-overexpressing cells relative to controls. Additionally, miR-124a and miR-26b, which directly target SepinB2, were downregulated compared to controls. In mouse xenograft models, miR-200c/141 cluster overexpression promoted lymph node and lung metastasis, and siRNA-mediated SerpinB2 knockdown decreased lung metastasis, suggesting that SerpinB2 mediates miR-200c/141-induced lung metastasis. We also explored the clinical significance of SerpinB2 protein status through analysis of primary breast tumor samples and The Cancer Genome Atlas (TCGA) data. High SerpinB2 levels were associated with reduced survival and increased lymph node metastasis in breast cancer patients. SerpinB2 was overexpressed in the TN breast cancer subtype as compared to the luminal subtype. The present study demonstrates that SerpinB2 promotes miR-200c/141 cluster overexpression-induced breast cancer cell metastasis, and SerpinB2 overexpression correlates with increased metastatic potential and unfavorable outcomes in breast cancer patients. SerpinB2 may be a useful biomarker for assessing metastasis risk in breast cancer patients.
Collapse
Affiliation(s)
- Tiefeng Jin
- Department of Radiology, Seoul National University Hospital, Jongno-gu, Seoul 03080, Korea.,Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji 133002, China
| | - Hoe Suk Kim
- Department of Radiology, Seoul National University Hospital, Jongno-gu, Seoul 03080, Korea
| | - Sul Ki Choi
- Department of Radiology, Seoul National University Hospital, Jongno-gu, Seoul 03080, Korea.,Department of Biomedical Science, Seoul National University College of Medicine, Seoul National University, Jongno-gu, Seoul 03080, Korea
| | - Eun Hye Hwang
- Department of Radiology, Seoul National University Hospital, Jongno-gu, Seoul 03080, Korea
| | - Jisu Woo
- Department of Radiology, Seoul National University Hospital, Jongno-gu, Seoul 03080, Korea
| | - Han Suk Ryu
- Department of Pathology, Seoul National University Hospital, Jongno-gu, Seoul 03080, Korea
| | - Kwangsoo Kim
- Division of Clinical Bioinformatics, Biomedical Research Institute, Seoul National University Hospital, Jongno-gu, Seoul 03080, Korea
| | - Aree Moon
- Duksung Innovative Drug Center College of Pharmacy, Duksung Women's University, Dobong-gu, Seoul 01369, Korea
| | - Woo Kyung Moon
- Department of Radiology, Seoul National University Hospital, Jongno-gu, Seoul 03080, Korea.,Department of Biomedical Science, Seoul National University College of Medicine, Seoul National University, Jongno-gu, Seoul 03080, Korea
| |
Collapse
|
16
|
Tu SH, Lin YC, Huang CC, Yang PS, Chang HW, Chang CH, Wu CH, Chen LC, Ho YS. Protein phosphatase Mg2+/Mn2+ dependent 1F promotes smoking-induced breast cancer by inactivating phosphorylated-p53-induced signals. Oncotarget 2018; 7:77516-77531. [PMID: 27769050 PMCID: PMC5363601 DOI: 10.18632/oncotarget.12717] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/04/2016] [Indexed: 12/24/2022] Open
Abstract
We previously demonstrated that the activation of α9-nicotinic acetylcholine receptor (α9-nAchR) signaling by smoking promotes breast cancer formation. To investigate the downstream signaling molecules involved in α9-nAChR-induced breast tumorigenesis, we used real-time polymerase chain reactions and Western blotting to assess expression of protein phosphatase Mg2+/Mn2+ dependent 1F (PPM1F), a Ser/Thr protein phosphatase, in human breast cancer samples (n=167). Additionally, stable PPM1F-knockdown and -overexpressing cell lines were established to evaluate the function of PPM1F. The phosphatase activity of PPM1F in nicotine-treated cells was assessed through Western blotting, confocal microscopy, and fluorescence resonance energy transfer. Higher levels of PPM1F were detected in the breast cancer tissues of heavy smokers (n=7, 12.8-fold) greater than of non-smokers (n= 28, 6.3-fold) (**p=0.01). In vitro, nicotine induced PPM1F expression, whereas α9-nAChR knockdown reduced the protein expression of PPM1F. A series of biochemical experiments using nicotine-treated cells suggested that the dephosphorylation of p53 (Ser-20) and BAX (Ser-184) by PPM1F is a critical posttranslational modification, as observed in breast cancer patients who were heavy smokers. These observations indicate that PPM1F may be a mediator downstream of α9-nAChR that activates smoking-induced carcinogenic signals. Thus, PPM1F expression could be used for prognostic diagnosis or inhibited for cancer prevention and therapy.
Collapse
Affiliation(s)
- Shih-Hsin Tu
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Breast Medical Center, Taipei Medical University Hospital, Taipei, Taiwan.,Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - Yin-Ching Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chi-Cheng Huang
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan.,Breast Center, Cathay General Hospital, Taipei, Taiwan
| | - Po-Sheng Yang
- Department of Surgery, Mackay Memorial Hospital, Taipei, Taiwan.,Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Hui-Wen Chang
- Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chien-Hsi Chang
- Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chih-Hsiung Wu
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Surgery, En Chu Kong Hospital, New Taipei City, Taiwan
| | - Li-Ching Chen
- Breast Medical Center, Taipei Medical University Hospital, Taipei, Taiwan.,Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yuan-Soon Ho
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei, Taiwan.,Comprehensive Cancer Center of Taipei Medical University, Taipei, Taiwan.,School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
17
|
Pasculli B, Barbano R, Parrella P. Epigenetics of breast cancer: Biology and clinical implication in the era of precision medicine. Semin Cancer Biol 2018; 51:22-35. [PMID: 29339244 DOI: 10.1016/j.semcancer.2018.01.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 12/15/2017] [Accepted: 01/11/2018] [Indexed: 02/09/2023]
Abstract
In the last years, mortality from breast cancer has declined in western countries as a consequence of a more widespread screening resulting in earlier detection, as well as an improved molecular classification and advances in adjuvant treatment. Nevertheless, approximately one third of breast cancer patients will develop distant metastases and eventually die for the disease. There is now a compelling body of evidence suggesting that epigenetic modifications comprising DNA methylation and chromatin remodeling play a pivotal role since the early stages of breast cancerogenesis. In addition, recently, increasing emphasis is being placed on the property of ncRNAs to finely control gene expression at multiple levels by interacting with a wide array of molecules such that they might be designated as epigenetic modifiers. In this review, we summarize the current knowledge about the involvement of epigenetic modifications in breast cancer, and provide an overview of the significant association of epigenetic traits with the breast cancer clinicopathological features, emphasizing the potentiality of epigenetic marks to become biomarkers in the context of precision medicine.
Collapse
Affiliation(s)
- Barbara Pasculli
- Laboratory of Oncology, IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo, FG, Italy.
| | - Raffaela Barbano
- Laboratory of Oncology, IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo, FG, Italy.
| | - Paola Parrella
- Laboratory of Oncology, IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo, FG, Italy.
| |
Collapse
|
18
|
The roles of ncRNAs in the diagnosis, prognosis and clinicopathological features of breast cancer: a systematic review and meta-analysis. Oncotarget 2017; 8:81215-81225. [PMID: 29113381 PMCID: PMC5655276 DOI: 10.18632/oncotarget.20149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 04/12/2017] [Indexed: 01/08/2023] Open
Abstract
Background A number of studies have shown that noncoding RNAs (ncRNAs) are abnormally expressed in breast cancers. However, the roles of ncRNAs remain unclear in breast cancer. Here, we aim to investigate the potential diagnostic and prognostic roles of ncRNAs in breast cancer. Methods Comprehensive literature search in Medline and Web of Science and a meta-analysis were performed to identify the association between ncRNAs and diagnosis, prognosis, and clinicopathological features of breast cancer. Results A total of 103 eligible studies, involving16, 828 independent participants, were included in the meta-analysis. In total, there were 98 individual and 11 grouped ncRNAs. 51 studies were eligible for survival analysis, 27 studies were eligible for diagnostic analysis, and 46 studies were eligible for clinicopathological features analysis. The abnormal expression of ncRNAs is associated with OS, RFS and PFS in breast cancer patients. For the diagnosis value of ncRNAs, the pooled OR and 95% CI for sensitivity, specificity, DOR and AUC on all ncRNAs were 0.83 [95% CI: 0.82- 0.84], 0.80 [95% CI: 0.79- 0.82], 24.77 [95% CI: 17.44- 35.16] and 0.9037, respectively. The analysis showed that downregulation of ncRNAs in breast cancer was associated with decreased risk of LNM, increased tumor size and PR expression, whereas, upregulation of ncRNAs was associated with increased HER2 expression. Conclusions High expression of ncRNAs was associated with poor OS, RFS, and PFS, while low expression of ncRNAs was related to favorable OS and RFS. Meanwhile, ncRNAs have potential diagnostic value for breast cancer.
Collapse
|
19
|
Milioli HH, Tishchenko I, Riveros C, Berretta R, Moscato P. Basal-like breast cancer: molecular profiles, clinical features and survival outcomes. BMC Med Genomics 2017; 10:19. [PMID: 28351365 PMCID: PMC5370447 DOI: 10.1186/s12920-017-0250-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 03/03/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Basal-like constitutes an important molecular subtype of breast cancer characterised by an aggressive behaviour and a limited therapy response. The outcome of patients within this subtype is, however, divergent. Some individuals show an increased risk of dying in the first five years, and others a long-term survival of over ten years after the diagnosis. In this study, we aim at identifying markers associated with basal-like patients' survival and characterising subgroups with distinct disease outcome. METHODS We explored the genomic and transcriptomic profiles of 351 basal-like samples from the METABRIC and ROCK data sets. Two selection methods, labelled Differential and Survival filters, were employed to determine genes/probes that are differentially expressed in tumour and control samples, and are associated with overall survival. These probes were further used to define molecular subgroups, which vary at the microRNA level and in DNA copy number. RESULTS We identified the expression signature of 80 probes that distinguishes between two basal-like subgroups with distinct clinical features and survival outcomes. Genes included in this list have been mainly linked to cancer immune response, epithelial-mesenchymal transition and cell cycle. In particular, high levels of CXCR6, HCST, C3AR1 and FPR3 were found in Basal I; whereas HJURP, RRP12 and DNMT3B appeared over-expressed in Basal II. These genes exhibited the highest betweenness centrality and node degree values and play a key role in the basal-like breast cancer differentiation. Further molecular analysis revealed 17 miRNAs correlated to the subgroups, including hsa-miR-342-5p, -150, -155, -200c and -17. Additionally, increased percentages of gains/amplifications were detected on chromosomes 1q, 3q, 8q, 10p and 17q, and losses/deletions on 4q, 5q, 8p and X, associated with reduced survival. CONCLUSIONS The proposed signature supports the existence of at least two subgroups of basal-like breast cancers with distinct disease outcome. The identification of patients at a low risk may impact the clinical decisions-making by reducing the prescription of high-dose chemotherapy and, consequently, avoiding adverse effects. The recognition of other aggressive features within this subtype may be also critical for improving individual care and for delineating more effective therapies for patients at high risk.
Collapse
Affiliation(s)
- Heloisa H. Milioli
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, Hunter Medical Research Institute, Lot 1, Kookaburra Circuit, New Lambton Heights, 2305 Australia
- School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, 2308 Australia
| | - Inna Tishchenko
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, Hunter Medical Research Institute, Lot 1, Kookaburra Circuit, New Lambton Heights, 2305 Australia
- School of Electrical Engineering and Computer Science, The University of Newcastle, University Drive, Callaghan, 2308 Australia
| | - Carlos Riveros
- CReDITSS Unit, Hunter Medical Research Institute, Lot 1, Kookaburra Circuit, New Lambton Heights, 2305 Australia
| | - Regina Berretta
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, Hunter Medical Research Institute, Lot 1, Kookaburra Circuit, New Lambton Heights, 2305 Australia
- School of Electrical Engineering and Computer Science, The University of Newcastle, University Drive, Callaghan, 2308 Australia
| | - Pablo Moscato
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, Hunter Medical Research Institute, Lot 1, Kookaburra Circuit, New Lambton Heights, 2305 Australia
- School of Electrical Engineering and Computer Science, The University of Newcastle, University Drive, Callaghan, 2308 Australia
| |
Collapse
|
20
|
MicroRNAs miR-7 and miR-340 predict response to neoadjuvant chemotherapy in breast cancer. Breast Cancer Res Treat 2017; 162:511-521. [PMID: 28181130 DOI: 10.1007/s10549-017-4132-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/28/2017] [Indexed: 01/01/2023]
Abstract
PURPOSE miRNAs have been linked to chemosensitivity of breast cancer cells in vitro. In patients, however, there is no clinically validated method for predicting chemotherapy response. The aim of this study was to assess whether (I) a specific pattern of miRNA expression in pretherapeutic biopsies can predict response to neoadjuvant chemotherapy, and (II) differential miRNA expression in residual tumor after completion of chemotherapy allows further prognostic stratification of non-responding patients. METHODS Sixty-four patients with newly diagnosed large (≥3 cm) or locally advanced primary breast cancers who underwent neoadjuvant anthracycline/taxane-based chemotherapy were included. Relative expression of 10 miRNAs likely to be associated with chemotherapy response (miR-7,-21,-29a,-29b,-34a,-125b,-155,-200c,-340,-451) was determined by quantitative RT-PCR from pretherapeutic biopsies (n = 64) and residual invasive tumor after chemotherapy (n = 42). Pathologic complete response (pCR) defined by absence of invasive tumor served as reference standard. In addition, miRNA expression was compared with disease-free and overall survival. RESULTS Nine (14%) of 64 patients achieved pCR. High expression of miR-7 and low expression of miR-340 in pretherapeutic biopsies predicted pCR with a negative predictive value of 96 and 97%, respectively (specificity 54 and 57%). The combined profile of miR-7high/miR-340low demonstrated improved specificity of 86% while maintaining a high negative predictive value (96%) to identify non-responders. Pretherapeutic expression of miR-200c and miR-155 showed prognostic information, and low expression was associated with increased overall survival (115 vs. 90 months, p ≤ 0.03). After chemotherapy, the overall survival of patients with residual invasive tumor was better for those demonstrating low miR-7 or high miR-125b (p = 0.01). CONCLUSIONS Intratumoral expression of miR-7 and miR-340 prior to neoadjuvant chemotherapy could be used to predict pCR and a profile of miR-7low or miR-340high identified patients unlikely to achieve pCR who might benefit from alternative treatment options including earlier surgery. Our study identifies miRNAs as promising predictive biomarkers, which could aid in optimization of breast cancer management and treatment stratification.
Collapse
|
21
|
Targeting miRNAs by polyphenols: Novel therapeutic strategy for cancer. Semin Cancer Biol 2017; 46:146-157. [PMID: 28185862 DOI: 10.1016/j.semcancer.2017.02.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/01/2017] [Accepted: 02/03/2017] [Indexed: 12/18/2022]
Abstract
In the recent years, polyphenols have gained significant attention in scientific community owing to their potential anticancer effects against a wide range of human malignancies. Epidemiological, clinical and preclinical studies have supported that daily intake of polyphenol-rich dietary fruits have a strong co-relationship in the prevention of different types of cancer. In addition to direct antioxidant mechanisms, they also regulate several therapeutically important oncogenic signaling and transcription factors. However, after the discovery of microRNA (miRNA), numerous studies have identified that polyphenols, including epigallocatechin-3-gallate, genistein, resveratrol and curcumin exert their anticancer effects by regulating different miRNAs which are implicated in all the stages of cancer. MiRNAs are short, non-coding endogenous RNA, which silence the gene functions by targeting messenger RNA (mRNA) through degradation or translation repression. However, cancer associated miRNAs has emerged only in recent years to support its applications in cancer therapy. Preclinical experiments have suggested that deregulation of single miRNA is sufficient for neoplastic transformation of cells. Indeed, the widespread deregulation of several miRNA profiles of tumor and healthy tissue samples revealed the involvement of many types of miRNA in the development of numerous cancers. Hence, targeting the miRNAs using polyphenols will be a novel and promising strategy in anticancer chemotherapy. Herein, we have critically reviewed the potential applications of polyphenols on various human miRNAs, especially which are involved in oncogenic and tumor suppressor pathways.
Collapse
|
22
|
Bhardwaj M, Sen S, Chosdol K, Sharma A, Pushker N, Kashyap S, Bakhshi S, Bajaj MS. miRNA-200c and miRNA-141 as potential prognostic biomarkers and regulators of epithelial-mesenchymal transition in eyelid sebaceous gland carcinoma. Br J Ophthalmol 2017; 101:536-542. [PMID: 28119291 DOI: 10.1136/bjophthalmol-2016-309460] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/29/2016] [Accepted: 01/02/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND MicroRNA (miRNA)-200c and miRNA-141 are tumour suppressors, which regulate epithelial-mesenchymal transition (EMT), leading to tumour invasion and metastasis in various malignancies. miRNA-200c and miRNA-141 maintain the epithelial phenotype by post-transcriptionally inhibiting the E-cadherin repressors, zinc finger E-box binding homeobox (ZEB)1 and ZEB2. The present study was performed to determine the prognostic significance of miRNA-200c and miRNA-141, and their association with EMT markers ZEB1, ZEB2 and E-cadherin in eyelid sebaceous gland carcinoma (SGC). METHODS Expression levels of miRNA-200c and miRNA-141 were determined in 42 eyelid SGC cases by quantitative real-time PCR (qPCR). Their association with ZEB1, ZEB2 and E-cadherin was determined by qPCR and immunohistochemistry. Kaplan-Meier plots and Spearman's rank correlation tests were applied to analyse the data. Patients were followed up for 7-44 months. RESULTS Low expression levels of miRNA-200c and miRNA-141 were seen in 36/42 (86%) and 28/42 (67%) cases, respectively. Low miRNA-200c correlated significantly with large tumour size (p=0.03) and poor differentiation (p=0.03). Low miRNA-141 correlated significantly with large tumour size (p=0.02) and lymph node metastasis (p=0.04). Survival analysis revealed that patients with low miRNA-200c (p<0.05) and miRNA-141 expression (p=0.07) had shorter disease-free survival. There was a significant association of both miRNA-200c and miRNA-141 with E-cadherin and ZEB2 expression. CONCLUSIONS Low levels of miRNA-200c and miRNA-141 in patients with eyelid SGC facilitates tumour progression by promoting EMT and miRNA-200c has emerged as a novel potential predictor of survival.
Collapse
Affiliation(s)
- Mansi Bhardwaj
- Department of Ocular Pathology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Seema Sen
- Department of Ocular Pathology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Kunzang Chosdol
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Anjana Sharma
- Department of Ocular Microbiology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Neelam Pushker
- Department of Ophthalmology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Seema Kashyap
- Department of Ocular Pathology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Sameer Bakhshi
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Mandeep S Bajaj
- Department of Ophthalmology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
23
|
Damiano V, Brisotto G, Borgna S, di Gennaro A, Armellin M, Perin T, Guardascione M, Maestro R, Santarosa M. Epigenetic silencing of miR-200c in breast cancer is associated with aggressiveness and is modulated by ZEB1. Genes Chromosomes Cancer 2016; 56:147-158. [PMID: 27717206 DOI: 10.1002/gcc.22422] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 09/19/2016] [Accepted: 09/19/2016] [Indexed: 02/06/2023] Open
Abstract
Loss of expression of miR-200 family members has been implicated in cellular plasticity, a phenomenon that accounts for epithelial-to-mesenchymal transition (EMT) and stem-like features of many carcinomas and is considered a major cause of tumor aggressiveness and drug resistance. Nevertheless, the mechanisms of miR-200 downregulation in breast cancer are still largely unknown. Here we show that miR-200c expression inversely correlates with miR-200c/miR-141 locus methylation in triple-negative breast tumors (TNBC). Importantly, low levels of miR-200c expression and high levels of miR-200c/miR-141 locus methylation associated with lymph node metastasis. Moreover, miR-200c/miR-141 locus methylation was significantly related to high expression of ZEB1 in two independent TNBC series. Silencing of ZEB1 in vitro reduced miR-200c/miR-141 DNA methylation and, concurrently, decreased histone H3K9 trimethylation. This chromatin modifications were paralleled by an increase in the expression of both miR-200c and E-cadherin. Similar effects were achieved by treatment with a demethylating agent. Our data suggest that gene methylation is an important element in the regulation of the miR-200c/ZEB1 axis and that chromatin remodeling of the miR-200c/miR-141 locus is affected by ZEB1 and, thus, contributes to ZEB1-induced cellular plasticity. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Valentina Damiano
- Functional Onco-Genomics and Genetics, CRO Aviano National Cancer Institute, via F. Gallini 2, Aviano, PN, 33081, Italy
| | - Giulia Brisotto
- Functional Onco-Genomics and Genetics, CRO Aviano National Cancer Institute, via F. Gallini 2, Aviano, PN, 33081, Italy
| | - Silvia Borgna
- Functional Onco-Genomics and Genetics, CRO Aviano National Cancer Institute, via F. Gallini 2, Aviano, PN, 33081, Italy
| | - Alessandra di Gennaro
- Functional Onco-Genomics and Genetics, CRO Aviano National Cancer Institute, via F. Gallini 2, Aviano, PN, 33081, Italy
| | - Michela Armellin
- Functional Onco-Genomics and Genetics, CRO Aviano National Cancer Institute, via F. Gallini 2, Aviano, PN, 33081, Italy
| | - Tiziana Perin
- Pathology, CRO Aviano National Cancer Institute, via F. Gallini 2, Aviano, PN, 33081, Italy
| | - Michela Guardascione
- Functional Onco-Genomics and Genetics, CRO Aviano National Cancer Institute, via F. Gallini 2, Aviano, PN, 33081, Italy.,Medical Oncology Department, Gastrointestinal Unit, CRO Aviano National Cancer Institute, via F. Gallini 2, Aviano, PN, 33081, Italy
| | - Roberta Maestro
- Functional Onco-Genomics and Genetics, CRO Aviano National Cancer Institute, via F. Gallini 2, Aviano, PN, 33081, Italy
| | - Manuela Santarosa
- Functional Onco-Genomics and Genetics, CRO Aviano National Cancer Institute, via F. Gallini 2, Aviano, PN, 33081, Italy
| |
Collapse
|
24
|
Kaban K, Salva E, Akbuga J. In Vitro Dose Studies on Chitosan Nanoplexes for microRNA Delivery in Breast Cancer Cells. Nucleic Acid Ther 2016; 27:45-55. [PMID: 27763825 DOI: 10.1089/nat.2016.0633] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Changes in microRNA (miRNA) expression levels that play important roles in regulation lead to many pathological events such as cancer. The miR-200 family is an important target in cancer therapy. The aim of this study is to equilibrate endogenous levels between cancer and noncancerous cells to prevent serious side effects of miR-200c- and miR-141-like metastatic colonization. For the first time, the characterization of miR-200c and miR-141 cluster containing chitosan nanoplexes was shown, and the optimization of miRNA expression levels by conducting dose studies in breast cancer cell lines was made. The mean diameter of chitosan/miR-141 and chitosan/miR-200c nanoplexes ranged from 296 to 355 nm and from 294 to 380 nm depending on the N/P ratio, respectively. The surface charge of nanoplexes was positive with zeta potential of +12 to +26 mV. While naked miRNA was degraded after 0 min in a 10% serum-containing medium, chitosan/miRNA nanoplexes were protected for 72 h. During the in vitro cellular uptake study, nanoplexes were observed to be accumulating in the cytoplasm or nucleus. After using different doses for miR-200c, the determined doses are 750, 100, and 750 ng in the MCF-7, MDA-MB-231, and MDA-MB-435 cell lines, respectively. Doses were determined as 100 ng for MDA-MB-231 and 150 ng for MDA-MB-435 to reach endogenous miR-141 levels of MCF-10A. Our results suggest that chitosan nanoplexes for miR-200c and miR-141 are an efficient delivery system in terms of formulation and transfection. As a conclusion, dose studies are important to provide effective treatment with miRNAs.
Collapse
Affiliation(s)
- Kubra Kaban
- 1 Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Marmara University , Istanbul, Turkey
| | - Emine Salva
- 2 Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Inonu University , Malatya, Turkey
| | - Julide Akbuga
- 1 Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Marmara University , Istanbul, Turkey
| |
Collapse
|
25
|
Amorim M, Salta S, Henrique R, Jerónimo C. Decoding the usefulness of non-coding RNAs as breast cancer markers. J Transl Med 2016; 14:265. [PMID: 27629831 PMCID: PMC5024523 DOI: 10.1186/s12967-016-1025-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/31/2016] [Indexed: 12/19/2022] Open
Abstract
Although important advances in the management of breast cancer (BC) have been recently accomplished, it still constitutes the leading cause of cancer death in women worldwide. BC is a heterogeneous and complex disease, making clinical prediction of outcome a very challenging task. In recent years, gene expression profiling emerged as a tool to assist in clinical decision, enabling the identification of genetic signatures that better predict prognosis and response to therapy. Nevertheless, translation to routine practice has been limited by economical and technical reasons and, thus, novel biomarkers, especially those requiring non-invasive or minimally invasive collection procedures, while retaining high sensitivity and specificity might represent a significant development in this field. An increasing amount of evidence demonstrates that non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), are aberrantly expressed in several cancers, including BC. miRNAs are of particular interest as new, easily accessible, cost-effective and non-invasive tools for precise management of BC patients because they circulate in bodily fluids (e.g., serum and plasma) in a very stable manner, enabling BC assessment and monitoring through liquid biopsies. This review focus on how ncRNAs have the potential to answer present clinical needs in the personalized management of patients with BC and comprehensively describes the state of the art on the role of ncRNAs in the diagnosis, prognosis and prediction of response to therapy in BC.
Collapse
Affiliation(s)
- Maria Amorim
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPOPorto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Porto, Portugal
| | - Sofia Salta
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPOPorto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPOPorto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPOPorto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal. .,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Porto, Portugal.
| |
Collapse
|
26
|
Choi SK, Kim HS, Jin T, Hwang EH, Jung M, Moon WK. Overexpression of the miR-141/200c cluster promotes the migratory and invasive ability of triple-negative breast cancer cells through the activation of the FAK and PI3K/AKT signaling pathways by secreting VEGF-A. BMC Cancer 2016; 16:570. [PMID: 27484639 PMCID: PMC4969651 DOI: 10.1186/s12885-016-2620-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 07/26/2016] [Indexed: 01/26/2023] Open
Abstract
Background The role of microRNA-200 (miR-200) family members in the migration and invasion of breast cancer is controversial. This study investigated the mechanisms by which the miR-200 family members modulated the migratory and invasive abilities of an aggressive triple-negative breast cancer (TNBC) cell line, MDA-MB-231. Methods The miR-200 family (miR-200b/200a/429 and miR-141/200c clusters) and green fluorescence protein (GFP) were transduced into MDA-MB-231 cells using a lentiviral system. Stable cells highly expressing the miR-200 family and GFP were isolated by puromycin selection and fluorescence-activated cell sorting. Gene expression was evaluated using real-time polymerase chain reaction (PCR) and reverse transcriptase-PCR (RT-PCR). The migratory and invasive abilities were assessed using trans-well and wound-healing assays. The secreted cytokines and growth factors in cultured media were quantified using a Bio-Plex200 multiplex array system. Western blot assays and immunofluorescence staining were conducted to investigate miR-200 family-regulated signaling pathways. The entire dataset obtained in this study was statistically evaluated using a one-way ANOVA followed by a t-test. Results The stable overexpression of the miR-200b/200a/429 or miR-141/200c cluster suppressed cell growth and significantly increased migration and invasion of MDA-MB-231 cells. miR-141/200c overexpression was more effective in decreasing cell growth and promoting migration and invasion of MDA-MB-231 cells than was miR-200b/200a/429 overexpression. In addition, the overexpression of the miR-200b/200a/429 or miR-141/200c cluster led to an increase in the phosphorylation of focal adhesion kinase (FAK) and protein kinase B (AKT). Chemical inhibitors of FAK and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT suppressed the migration and invasion of MDA-MB-231 cells that was enhanced by the overexpression of the miR-200b/200a/429 or miR-141/200c cluster. Compared to the miR-200b/200a/429 cluster-transduced MDA-MB-231 cells, the miR-141/200c cluster-transduced MDA-MB-231 cells exhibited a significant increase in vascular endothelial growth factor (VEGF)-A secretion and integrin-alphaV (integrin-αV) expression. Treatment with an anti-VEGF-A-neutralizing antibody inhibited the increase in migration and invasion in both the miR-200b/200a/429- and miR-141/200c-transduced MDA-MB-231 cells but significantly reduced the phosphorylation of FAK and AKT in only the miR-141/200c cluster-transduced MDA-MB-231 cells. Conclusions Taken together, our data demonstrate a mechanism in which the miR-141/200c cluster, through FAK- and PI3K/AKT-mediated signaling by means of increased VEGF-A secretion, promotes the migratory and invasive abilities of MDA-MB-231 cells. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2620-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sul Ki Choi
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, Korea.,Department of Biomedical Science, College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, 110-799, Korea
| | - Hoe Suk Kim
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, Korea
| | - Tiefeng Jin
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, Korea
| | - Eun Hye Hwang
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, Korea
| | - Minji Jung
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, Korea
| | - Woo Kyung Moon
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, Korea. .,Department of Biomedical Science, College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, 110-799, Korea.
| |
Collapse
|
27
|
Sevinc ED, Cecener G, Ak S, Tunca B, Egeli U, Gokgoz S, Tolunay S, Tasdelen I. Expression and clinical significance of miRNAs that may be associated with the FHIT gene in breast cancer. Gene 2016; 590:278-84. [PMID: 27236032 DOI: 10.1016/j.gene.2016.05.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/15/2016] [Accepted: 05/23/2016] [Indexed: 12/27/2022]
Abstract
The dysregulation of miRNA expression has frequently been observed in breast cancer. Therefore, we investigated the expression profile of miRNAs that may be associated with expression of the FHIT gene in breast cancer and assessed their clinicopathological significance. The expression levels of miR-143, miR-663a, miR-668, miR-922 and FHIT were analyzed in normal and malignant breast tissues from 65 patients with breast cancer. We studied the correlation between the expression of miR-143, miR-663a, miR-668, miR-922 and FHIT and the clinicopathological features presented by the patients. The expression levels of the miRNAs and FHIT were downregulated in breast cancer tissue. The expression levels of miR-143, miR-663a and miR-668 were significantly reduced in FHIT downregulated tumors. miR-668 expression was also significantly altered relative to FHIT down- and up- regulated tumor tissues. Reduced miR-663a expression was statistically associated with high-grade ER/PR (+) status, benign reactive hyperplasia, lymph-node metastasis, in-situ component >25% and Ki 67>15% compared with non-tumor tissues. Additionally, reduced miR-668 expression was significantly different between tumors with and without lymph-node metastasis. miR-668 may play an important role in breast cancer development and progression by regulating the expression of FHIT. Furthermore, miR-668 and miR-663a may be potential prognostic biomarkers for breast cancer.
Collapse
Affiliation(s)
| | - Gulsah Cecener
- Department of Medical Biology, Faculty of Medicine, University of Uludag, Bursa, Turkey.
| | - Secil Ak
- Department of Medical Biology, Faculty of Medicine, University of Uludag, Bursa, Turkey
| | - Berrin Tunca
- Department of Medical Biology, Faculty of Medicine, University of Uludag, Bursa, Turkey
| | - Unal Egeli
- Department of Medical Biology, Faculty of Medicine, University of Uludag, Bursa, Turkey
| | - Sehsuvar Gokgoz
- Department of General Surgery, Faculty of Medicine, University of Uludag, Bursa, Turkey
| | - Sahsine Tolunay
- Department of Pathology, Faculty of Medicine, University of Uludag, Bursa, Turkey
| | - Ismet Tasdelen
- Department of General Surgery, Faculty of Medicine, University of Uludag, Bursa, Turkey
| |
Collapse
|
28
|
Zhang JY, Wang YM, Song LEB, Chen C, Wang YC, Song NH. Prognostic significance of microRNA-200c in various types of cancer: An updated meta-analysis of 34 studies. Mol Clin Oncol 2016; 4:933-941. [PMID: 27284426 PMCID: PMC4887763 DOI: 10.3892/mco.2016.842] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/18/2016] [Indexed: 12/20/2022] Open
Abstract
Previous studies have indicated that miR-200c is a promising cancer biomarker. However, different studies have presented conflicting results. Therefore, the aim of the present study was to perform a meta-analysis of miR-200c based on 34 relevant studies. The Materials and methods sections of papers were carefully identified using the databases PubMed, Web of Science and Embase for publications up to December 4, 2015. Pooled hazard ratios (HRs) and 95% confidence intervals (95% CIs) were systematically calculated to investigate the association between the expression of miR-200c and cancer prognosis. The results demonstrated that elevated expression levels of miR-200c indicated significantly worse overall survival rates (HR=1.37, 95% CI: 1.01, 1.85), and a high level of miR-200c was considered an indicator of an unfavorable prognosis in patients from Europe and America (HR=1.85, 95% CI: 1.27, 2.69). Furthermore, overexpression of miR-200c was significantly associated with progression of the disease in the subgroups of tissue and blood samples (HR=0.68 and 2.45, respectively), and inferior overall survival rates for the blood subgroup were revealed (HR=2.21, 95% CI: 1.04, 4.72). In addition, miR-200c was of prognostic value in several disease subgroups. Taken together, high expression levels of miR-200c are of significant prognostic value in various human malignancies.
Collapse
Affiliation(s)
- Jia-Yi Zhang
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, P.R. China
| | - Ya-Min Wang
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, P.R. China
| | - LE-Bin Song
- The First Clinical Medical College of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Chen Chen
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, P.R. China
| | - Yi-Chun Wang
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, P.R. China
| | - Ning-Hong Song
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, P.R. China
| |
Collapse
|
29
|
Do Canto LM, Marian C, Willey S, Sidawy M, Da Cunha PA, Rone JD, Li X, Gusev Y, Haddad BR. MicroRNA analysis of breast ductal fluid in breast cancer patients. Int J Oncol 2016; 48:2071-8. [PMID: 26984519 PMCID: PMC4809650 DOI: 10.3892/ijo.2016.3435] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/20/2016] [Indexed: 12/23/2022] Open
Abstract
Recent studies suggest that microRNAs show promise as excellent biomarkers for breast cancer; however there is still a high degree of variability between studies making the findings difficult to interpret. In addition to blood, ductal lavage (DL) and nipple aspirate fluids represent an excellent opportunity for biomarker detection because they can be obtained in a less invasive manner than biopsies and circumvent the limitations of evaluating blood biomarkers with regards to tissue of origin specificity. In this study, we have investigated for the first time, through a real-time PCR array, the expression of 742 miRNAs in the ductal lavage fluid collected from 22 women with unilateral breast tumors. We identified 17 differentially expressed miRNAs between tumor and paired normal samples from patients with ductal breast carcinoma. Most of these miRNAs have various roles in breast cancer tumorigenesis, invasion and metastasis, therapeutic response, or are associated with several clinical and pathological characteristics of breast tumors. Moreover, some miRNAs were also detected in other biological fluids of breast cancer patients such as serum (miR-23b, -133b, -181a, 338-3p, -625), plasma (miR-200a), and breast milk (miR-181a). A systems biology analysis of these differentially expressed miRNAs points out possible pathways and cellular processes previously described as having an important role in breast cancer such as Wnt, ErbB, MAPK, TGF-β, mTOR, PI3K-Akt, p53 signaling pathways. We also observed a difference in the miRNA expression with respect to the histological type of the tumors. In conclusion, our findings suggest that miRNA analysis of breast ductal fluid is feasible and potentially very useful for the detection of breast cancer.
Collapse
Affiliation(s)
- Luisa Matos Do Canto
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, DC, USA
| | - Catalin Marian
- Biochemistry Department, 'Victor Babes' University of Medicine and Pharmacy, Timisoara, Romania
| | - Shawna Willey
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, DC, USA
| | - Mary Sidawy
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, DC, USA
| | - Patricia A Da Cunha
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, DC, USA
| | - Janice D Rone
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, DC, USA
| | - Xin Li
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, DC, USA
| | - Yuriy Gusev
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, DC, USA
| | - Bassem R Haddad
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, DC, USA
| |
Collapse
|
30
|
Voutsadakis IA. Epithelial-Mesenchymal Transition (EMT) and Regulation of EMT Factors by Steroid Nuclear Receptors in Breast Cancer: A Review and in Silico Investigation. J Clin Med 2016; 5:E11. [PMID: 26797644 PMCID: PMC4730136 DOI: 10.3390/jcm5010011] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 12/23/2015] [Accepted: 12/30/2015] [Indexed: 12/20/2022] Open
Abstract
Steroid Nuclear Receptors (SNRs) are transcription factors of the nuclear receptor super-family. Estrogen Receptor (ERα) is the best-studied and has a seminal role in the clinic both as a prognostic marker but also as a predictor of response to anti-estrogenic therapies. Progesterone Receptor (PR) is also used in the clinic but with a more debatable prognostic role and the role of the four other SNRs, ERβ, Androgen Receptor (AR), Glucocorticoid Receptor (GR) and Mineralocorticoid Receptor (MR), is starting only to be appreciated. ERα, but also to a certain degree the other SNRs, have been reported to be involved in virtually every cancer-enabling process, both promoting and impeding carcinogenesis. Epithelial-Mesenchymal Transition (EMT) and the reverse Mesenchymal Epithelial Transition (MET) are such carcinogenesis-enabling processes with important roles in invasion and metastasis initiation but also establishment of tumor in the metastatic site. EMT is governed by several signal transduction pathways culminating in core transcription factors of the process, such as Snail, Slug, ZEB1 and ZEB2, and Twist, among others. This paper will discuss direct regulation of these core transcription factors by SNRs in breast cancer. Interrogation of publicly available databases for binding sites of SNRs on promoters of core EMT factors will also be included in an attempt to fill gaps where other experimental data are not available.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Division of Medical Oncology, Department of Internal Medicine, Sault Area Hospital, Sault Ste Marie, ON P6B 0A8, Canada.
- Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, QC P3E 2C6, Canada.
| |
Collapse
|
31
|
Zuberi M, Mir R, Das J, Ahmad I, Javid J, Yadav P, Masroor M, Ahmad S, Ray PC, Saxena A. Expression of serum miR-200a, miR-200b, and miR-200c as candidate biomarkers in epithelial ovarian cancer and their association with clinicopathological features. Clin Transl Oncol 2015; 17:779-787. [PMID: 26063644 DOI: 10.1007/s12094-015-1303-1] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 05/13/2015] [Indexed: 12/26/2022]
Abstract
BACKGROUND MicroRNAs (miRs) have been implicated in the etiology of various human cancers. The aim of this study was to investigate the association of the expression of three members--miR 200a, miR 200b, and miR 200c belonging to the miR-200 family with clinicopathological characteristics and their impact on the progression of epithelial ovarian cancer (EOC). MATERIALS AND METHODS Total RNA from serum was isolated by Trizol method, polyadenylated, and reverse transcribed into cDNA. Expression levels of miR-200a, miR-200b, and miR-200c were detected by using miRNA qRT-PCR. We measured miR expression in 70 serum samples of EOC patients with matched controls using U6 snRNA as a reference. Levels of miR expression was compared with distinct clinicopathological features. RESULTS Expression of miR-200a was found to be greater than six-fold (p = 0.01), miR-200b and miR-200c greater than three-fold (p = 0.01) in comparison with matched normal controls. Association of miRNA expression with clinicopathological factors and progression was statistically evaluated. The expression levels of miR-200a and miR-200c were found to be significantly associated with disease progression (p = 0.04 and p < 0.001, respectively). miR-200a overexpression was found be associated with tumor histology and stage. Patients with lymph node metastasis showed significant elevation of miR-200c (p = 0.006). The AUC in ROC curve also indicated that serum levels of miR-200a and miR-200c might be worthwhile as a diagnostic tool in the near future. CONCLUSION Our findings suggest that miR-200a, miR-200b, and miR-200c overexpressions are associated with the aggressive tumor progression and be recognized as reliable markers to predict the prognosis and survival in EOC patients.
Collapse
MESH Headings
- Adenocarcinoma, Clear Cell/blood
- Adenocarcinoma, Clear Cell/genetics
- Adenocarcinoma, Clear Cell/pathology
- Adenocarcinoma, Mucinous/blood
- Adenocarcinoma, Mucinous/genetics
- Adenocarcinoma, Mucinous/pathology
- Adenocarcinoma, Papillary/blood
- Adenocarcinoma, Papillary/genetics
- Adenocarcinoma, Papillary/pathology
- Adult
- Area Under Curve
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Carcinoma, Endometrioid/blood
- Carcinoma, Endometrioid/genetics
- Carcinoma, Endometrioid/pathology
- Carcinoma, Ovarian Epithelial
- Case-Control Studies
- Disease Progression
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Lymph Nodes/pathology
- Lymphatic Metastasis
- MicroRNAs/blood
- MicroRNAs/genetics
- Middle Aged
- Neoplasm Staging
- Neoplasms, Cystic, Mucinous, and Serous/blood
- Neoplasms, Cystic, Mucinous, and Serous/genetics
- Neoplasms, Cystic, Mucinous, and Serous/pathology
- Neoplasms, Glandular and Epithelial/blood
- Neoplasms, Glandular and Epithelial/genetics
- Neoplasms, Glandular and Epithelial/pathology
- Ovarian Neoplasms/blood
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/pathology
- Prognosis
- ROC Curve
- Reverse Transcriptase Polymerase Chain Reaction
- Sensitivity and Specificity
- Tumor Burden
- Up-Regulation
Collapse
Affiliation(s)
- M Zuberi
- Department of Biochemistry, Maulana Azad Medical College, New Delhi, 110002, India
| | - R Mir
- Prince Fahd Bin Sultan Research Chair, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - J Das
- Department of Biochemistry, Maulana Azad Medical College, New Delhi, 110002, India
| | - I Ahmad
- Department of Biochemistry, Maulana Azad Medical College, New Delhi, 110002, India
| | - J Javid
- Department of Biochemistry, Maulana Azad Medical College, New Delhi, 110002, India
| | - P Yadav
- Department of Biochemistry, Maulana Azad Medical College, New Delhi, 110002, India
| | - M Masroor
- Department of Biochemistry, Maulana Azad Medical College, New Delhi, 110002, India
| | - S Ahmad
- Department of Biochemistry, Maulana Azad Medical College, New Delhi, 110002, India
| | - P C Ray
- Department of Biochemistry, Maulana Azad Medical College, New Delhi, 110002, India
| | - A Saxena
- Department of Biochemistry, Maulana Azad Medical College, New Delhi, 110002, India.
| |
Collapse
|
32
|
Telonis AG, Loher P, Jing Y, Londin E, Rigoutsos I. Beyond the one-locus-one-miRNA paradigm: microRNA isoforms enable deeper insights into breast cancer heterogeneity. Nucleic Acids Res 2015; 43:9158-75. [PMID: 26400174 PMCID: PMC4627084 DOI: 10.1093/nar/gkv922] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 09/04/2015] [Indexed: 12/21/2022] Open
Abstract
Here we describe our study of miRNA isoforms (isomiRs) in breast cancer (BRCA) and normal breast data sets from the Cancer Genome Atlas (TCGA) repository. We report that the full isomiR profiles, from both known and novel human-specific miRNA loci, are particularly rich in information and can distinguish tumor from normal tissue much better than the archetype miRNAs. IsomiR expression is also dependent on the patient's race, exemplified by miR-183-5p, several isomiRs of which are upregulated in triple negative BRCA in white but not black women. Additionally, we find that an isomiR's 5′ endpoint and length, but not the genomic origin, are key determinants of the regulation of its expression. Overexpression of distinct miR-183-5p isomiRs in MDA-MB-231 cells followed by microarray analysis revealed that each isomiR has a distinct impact on the cellular transcriptome. Parallel integrative analysis of mRNA expression from BRCA data sets of the TCGA repository demonstrated that isomiRs can distinguish between the luminal A and luminal B subtypes and explain in more depth the molecular differences between them than the archetype molecules. In conclusion, our findings provide evidence that post-transcriptional studies of BRCA will benefit from transcending the one-locus-one-miRNA paradigm and taking into account all isoforms from each miRNA locus as well as the patient's race.
Collapse
Affiliation(s)
- Aristeidis G Telonis
- Computational Medicine Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Phillipe Loher
- Computational Medicine Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Yi Jing
- Computational Medicine Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Eric Londin
- Computational Medicine Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Isidore Rigoutsos
- Computational Medicine Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
33
|
Li H, Zhu L, Xu L, Qin K, Liu C, Yu Y, Su D, Wu K, Sheng Y. Long noncoding RNA linc00617 exhibits oncogenic activity in breast cancer. Mol Carcinog 2015. [PMID: 26207516 DOI: 10.1002/mc.22338] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Protein-coding genes account for only 2% of the human genome, whereas the vast majority of transcripts are noncoding RNAs including long noncoding RNAs. LncRNAs are involved in the regulation of a diverse array of biological processes, including cancer progression. An evolutionarily conserved lncRNA TUNA, was found to be required for pluripotency of mouse embryonic stem cells. In this study, we found the human ortholog of TUNA, linc00617, was upregulated in breast cancer samples. Linc00617 promoted motility and invasion of breast cancer cells and induced epithelial-mesenchymal-transition (EMT), which was accompanied by generation of stem cell properties. Moreover, knockdown of linc00617 repressed lung metastasis in vivo. We demonstrated that linc00617 upregulated the expression of stemness factor Sox2 in breast cancer cells, which was shown to promote the oncogenic activity of breast cancer cells by stimulating epithelial-to-mesenchymal transition and enhancing the tumor-initiating capacity. Thus, our data indicate that linc00617 functions as an important regulator of EMT and promotes breast cancer progression and metastasis via activating the transcription of Sox2. Together, it suggests that linc00617 may be a potential therapeutic target for aggressive breast cancer. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hengyu Li
- Department of Breast and Thyroid Surgery, General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Li Zhu
- Department of Breast and Thyroid Surgery, General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Lu Xu
- Department of Breast and Thyroid Surgery, General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Keyu Qin
- Department of Breast and Thyroid Surgery, General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Chaoqian Liu
- Department of Breast and Thyroid Surgery, General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yue Yu
- Department of Breast and Thyroid Surgery, General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Dongwei Su
- Department of Breast and Thyroid Surgery, General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Kainan Wu
- Department of Breast and Thyroid Surgery, General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yuan Sheng
- Department of Breast and Thyroid Surgery, General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
34
|
Decreased expression of MicroRNA-200 family in human breast cancer is associated with lymph node metastasis. Clin Transl Oncol 2015. [PMID: 26201425 DOI: 10.1007/s12094-015-1364-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES MicroRNA-200 family (miR-200f) has been consistently reported to be deregulated and modulate the metastatic process in multiple cancers. In the present study, we detected the expression of miR-200f in breast cancer (BC) tissue and explored its relationships with clinicopathological characteristics, especially with lymph node metastasis. METHODS Expression levels of miR-200a, miR-200b, miR-200c, miR-141, and miR-429 in 99 pairs of BC tissues and adjacent normal tissues were measured by real-time quantitative PCR. The correlation between miR-200f level and multiple clinicopathological factors was then examined by Mann-Whitney test, ANOVA, and operating characteristic (ROC) analysis. RESULTS All members of the miR-200f were down-regulated in BC tissue compared with that in normal adjacent tissue; miR-200a, miR-200b, and miR-200c were highly decreased (p < 0.05), while the differences of miR-141 and miR-429 between patients and the control group were not statistically significant. Furthermore, all five members were found to be distinctly decreased with the incidence of lymph node metastasis (p < 0.05); When the patients were divided into three groups according to the number of lymph node metastasis (0; 1-3; ≥4), a gradual decrease of miR-200f expression was observed with the increasing number of lymph node metastasis; ROC revealed that miR-200b can differentiate patients with lymph node metastasis from those without lymph node metastasis. CONCLUSION These observations imply that the down-regulation of miR-200f in human BC is associated with an invasive phenotype, and miR-200b may be useful to estimate the likelihood of the presence of pathologically positive lymph nodes.
Collapse
|
35
|
Wu J, Fang Z, Xu J, Zhu W, Li Y, Yu Y. Prognostic Value and Clinicopathology Significance of MicroRNA-200c Expression in Cancer: A Meta-Analysis. PLoS One 2015; 10:e0128642. [PMID: 26035744 PMCID: PMC4452703 DOI: 10.1371/journal.pone.0128642] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 04/29/2015] [Indexed: 01/14/2023] Open
Abstract
MiR-200c has been shown to be related to cancer formation and progression. However, the prognostic and clinicopathologic significance of miR-200c expression in cancer remain inconclusive. We carried out this systematic review and meta-analysis to investigate the prognostic value of miR-200c expression in cancer. Pooled hazard ratios (HRs) of miR-200c for overall survival (OS) and progression-free survival (PFS) were calculated to measure the effective value of miR-200c expression on prognosis. The association between miR-200c expression and clinical significance was measured by odds ratios (ORs). Twenty-three studies were included in our meta-analysis. We found that miR-200c was not significantly correlated with OS (HR = 1.41, 95%Cl: 0.95-2.10; P = 0.09) and PFS (HR = 1.12, 95%Cl: 0.68-1.84; P = 0.67) in cancer. In our subgroup analysis, higher expression of miR-200c was significantly associated with poor OS in blood (HR = 2.10, 95%CI: 1.52-2.90, P<0.00001). Moreover, in clinicopathology analysis, miR-200c expression in blood was significantly associated with TNM stage, lymph node metastasis and distant metastasis. MiR-200c may have the potential to become a new blood biomarker to monitor cancer prognosis and progression.
Collapse
Affiliation(s)
- Jianchun Wu
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhihong Fang
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Xu
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weikang Zhu
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Li
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- * E-mail: (YL); (YY)
| | - Yongchun Yu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- * E-mail: (YL); (YY)
| |
Collapse
|
36
|
Ge YZ, Xu LW, Xu Z, Wu R, Xin H, Zhu M, Lu TZ, Geng LG, Liu H, Zhou CC, Yu P, Zhao YC, Hu ZK, Zhao Y, Zhou LH, Wu JP, Li WC, Zhu JG, Jia RP. Expression Profiles and Clinical Significance of MicroRNAs in Papillary Renal Cell Carcinoma: A STROBE-Compliant Observational Study. Medicine (Baltimore) 2015; 94:e767. [PMID: 25906110 PMCID: PMC4602701 DOI: 10.1097/md.0000000000000767] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/15/2015] [Accepted: 03/21/2015] [Indexed: 11/26/2022] Open
Abstract
Papillary renal cell carcinoma (pRCC) is the second most prevalent subtype of kidney cancers. In the current study, we analyzed the global microRNA (miRNA) expression profiles in pRCC, with the aim to evaluate the relationship of miRNA expression with the progression and prognosis of pRCC.A total of 163 treatment-naïve primary pRCC patients were identified from the Cancer Genome Atlas dataset and included in this retrospective observational study. The miRNA expression profiles were graded by tumor-node-metastasis information, and compared between histologic subtypes. Furthermore, the training-validation approach was applied to identify miRNAs of prognostic values, with the aid of Kaplan-Meier survival, and univariate and multivariate Cox regression analyses. Finally, the online DAVID (Database for Annotation, Visualization, and Integrated Discover) program was applied for the pathway enrichment analysis with the target genes of prognosis-associated miRNAs, which were predicted by 3 computational algorithms (PicTar, TargetScan, and Miranda).In the progression-related miRNA profiles, 26 miRNAs were selected for pathologic stage, 28 for pathologic T, 16 for lymph node status, 3 for metastasis status, and 32 for histologic types, respectively. In the training stage, the expression levels of 12 miRNAs (mir-134, mir-379, mir-127, mir-452, mir-199a, mir-200c, mir-141, mir-3074, mir-1468, mir-181c, mir-1180, and mir-34a) were significantly associated with patient survival, whereas mir-200c, mir-127, mir-34a, and mir-181c were identified by multivariate Cox regression analyses as potential independent prognostic factors in pRCC. Subsequently, mir-200c, mir-127, and mir-34a were confirmed to be significantly correlated with patient survival in the validation stage. Finally, target gene prediction analysis identified a total of 113 target genes for mir-200c, 37 for mir-127, and 180 for mir-34a, which further generated 15 molecular pathways.Our results identified the specific miRNAs associated with the progression and aggressiveness of pRCC, and 3 miRNAs (mir-200c, mir-127, and mir-34a) as promising prognostic factors of pRCC.
Collapse
Affiliation(s)
- Yu-Zheng Ge
- From the Department of Urology (YZG, LWX, ZX, RW, HX, TL, CCZ, ZKH, LHZ, JPW, WCL, JGZ, RPJ), Nanjing First Hospital, Nanjing Medical University, Nanjing; Department of Epidemiology and Biostatistics and Ministry of Education (MOE) Key Lab for Modern Toxicology (MZ, LGG), School of Public Health, Nanjing Medical University, Nanjing; Department of Urology (HL), The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou; Department of Urology (PY), The First Hospital of Nanchang, Nanchang University, Nanchang; Department of Pathology (YCZ, ZKH), Nanjing First Hospital, Nanjing Medical University, Nanjing; and Department of Urology (YZ), Xuzhou Third People's Hospital, Jiangsu University, Xuzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Dong Y, Si JW, Li WT, Liang L, Zhao J, Zhou M, Li D, Li T. miR-200a/miR-141 and miR-205 upregulation might be associated with hormone receptor status and prognosis in endometrial carcinomas. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:2864-2875. [PMID: 26045795 PMCID: PMC4440104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 02/21/2015] [Indexed: 06/04/2023]
Abstract
The aim of this study was to compare the clinicopathological significance of miR-200a/miR-141 and miR-205 expression in endometrioid carcinomas (ECs) versus nonendometrioid carcinomas (NECs) and to assess their correlation with hormone receptor status. miR-200a/miR-141 and miR-205 expression in 154 endometrial cancers was determined by qRT-PCR. The status of estrogen and progesterone receptor (ER/PR) was assessed using immunohistochemistry. miR-200a/miR-141 and miR-205 increased significantly in ECs and in NECs. The expression level of miR-200a was significantly higher in NECs than in ECs (P=0.025). Furthermore, there was a trend that NECs with worse clinicopathological variables had a higher miR-200a expression, while an inverse trend existed in ECs. miR-205 upregulation occurred frequently in NECs without lymph node metastases (P=0.030), whereas such association was not present in ECs. Interestingly, In ECs, miR-200a/miR-141 upregulation occurred frequently in the hormone receptor positive subgroups than the negative subgroups (P<0.05). Similarly, the expression level of miR-205 was higher in the hormone receptor positive subgroups and the association between miR-205 and PR reached statistical significance (P=0.024). In contrast, in NECs, a negative correlation was found between miR-200a/miR-141 and ER or PR status. Meanwhile, in ECs, miR-200a upregulation correlated with prolonged survival in the ER positive subgroup (P=0.046), whereas an inverse trend existed in the ER negative subgroup. Our findings suggest that miR-200a/miR-141 and miR-205 increased significantly in ECs and in NECs. However, they might behave differently in ECs versus NECs. miR-200a/miR-141 and miR-205 might be associated with hormone receptor status in endometrial cancer and may possess prognostic impacts.
Collapse
Affiliation(s)
- Ying Dong
- Department of Pathology, Peking University First HospitalBeijing, China
- Department of Pathology, Xinjiang Medical University, Cancer HospitalUrumqi, Xinjiang Uygur Autonomous Region, China
| | - Jing-Wen Si
- Department of Pathology, Peking University First HospitalBeijing, China
| | - Wen-Ting Li
- Department of Pathology, Xinjiang Medical University, Cancer HospitalUrumqi, Xinjiang Uygur Autonomous Region, China
| | - Li Liang
- Department of Pathology, Peking University First HospitalBeijing, China
| | - Jian Zhao
- Department of Gynecology and Obstetrics, Peking University First HospitalBeijing, China
| | - Mei Zhou
- Department of Pathology, Xinjiang Medical University, Cancer HospitalUrumqi, Xinjiang Uygur Autonomous Region, China
| | - Dong Li
- Department of Pathology, Peking University First HospitalBeijing, China
| | - Ting Li
- Department of Pathology, Peking University First HospitalBeijing, China
| |
Collapse
|
38
|
Wang G, Dai F, Yu K, Jia Z, Zhang A, Huang Q, Kang C, Jiang H, Pu P. Resveratrol inhibits glioma cell growth via targeting oncogenic microRNAs and multiple signaling pathways. Int J Oncol 2015; 46:1739-47. [PMID: 25646654 DOI: 10.3892/ijo.2015.2863] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 12/29/2014] [Indexed: 11/06/2022] Open
Abstract
Resveratrol (Res), a natural polyphenolic compound, has anticancer activity in a variety of cancers. In the present study, the antitumor effect and underlying molecular mechanism of Res on rat C6 glioma growth was studied. The results demonstrated that Res inhibited glioma cell proliferation, arrested cell cycle in S phase and induced apoptosis in vitro. Res also suppressed intracranial C6 tumor growth in vivo and prolonged survival in a fraction of the rats bearing intracranial gliomas. Res significantly downregulated the specific miRs, including miR-21, miR-30a-5p and miR-19, which have been identified as oncomiRs in our previous studies, and altered the expression of their targeting and crucial genes for glioma formation and progression such as p53, PTEN, EGFR, STAT3, COX-2, NF-κB and PI3K/AKT/mTOR pathway. Therefore, the anti-glioma effect of Res, at least in part, is through the regulation of oncogenic miRNAs. The effect of Res on non-coding RNAs should be studied further. Res is a potential multi-targeting drug for the treatment of gliomas.
Collapse
Affiliation(s)
- Guangxiu Wang
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, P.R. China
| | - Fang Dai
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Kai Yu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Zhifan Jia
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, P.R. China
| | - Anling Zhang
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, P.R. China
| | - Qiang Huang
- Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, P.R. China
| | - Chunsheng Kang
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, P.R. China
| | - Hao Jiang
- Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Peiyu Pu
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, P.R. China
| |
Collapse
|