1
|
Jorge AS, Recchia K, Glória MH, de Souza AF, Pessôa LVDF, Fantinato Neto P, Martins DDS, de Andrade AFC, Martins SMMK, Bressan FF, Pieri NCG. Porcine Germ Cells Phenotype during Embryonic and Adult Development. Animals (Basel) 2023; 13:2520. [PMID: 37570330 PMCID: PMC10417053 DOI: 10.3390/ani13152520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Primordial germ cells (PGCs) are the precursors of gametes. Due to their importance for the formation and reproduction of an organism, understanding the mechanisms and pathways of PGCs and the differences between males and females is essential. However, there is little research in domestic animals, e.g., swine, regarding the epigenetic and pluripotency profiles of PGCs during development. This study analyzed the expression of epigenetic and various pluripotent and germline markers associated with the development and differentiation of PGCs in porcine (pPGCs), aiming to understand the different gene expression profiles between the genders. The analysis of gonads at different gestational periods (from 24 to 35 days post fertilization (dpf) and in adults) was evaluated by immunofluorescence and RT-qPCR and showed phenotypic differences between the gonads of male and female embryos. In addition, the pPGCs were positive for OCT4 and VASA; some cells were H3k27me3 positive in male embryos and adult testes. In adults, the cells of the testes were positive for germline markers, as confirmed by gene expression analysis. The results may contribute to understanding the pPGC pathways during reproductive development, while also contributing to the knowledge needed to generate mature gametes in vitro.
Collapse
Affiliation(s)
- Amanda Soares Jorge
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil
| | - Kaiana Recchia
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of Sao Paulo, São Paulo 01001-010, SP, Brazil
| | - Mayra Hirakawa Glória
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil
| | - Aline Fernanda de Souza
- Department Biomedical Science, Ontario Veterinary College (OVC), University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Laís Vicari de Figueirêdo Pessôa
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil
| | - Paulo Fantinato Neto
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil
| | - Daniele Dos Santos Martins
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil
| | - André Furugen Cesar de Andrade
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil
| | | | - Fabiana Fernandes Bressan
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of Sao Paulo, São Paulo 01001-010, SP, Brazil
| | - Naira Caroline Godoy Pieri
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil
| |
Collapse
|
2
|
Reifarth L, Körber H, Packeiser EM, Goericke-Pesch S. Detection of spermatogonial stem cells in testicular tissue of dogs with chronic asymptomatic orchitis. Front Vet Sci 2023; 10:1205064. [PMID: 37396999 PMCID: PMC10311113 DOI: 10.3389/fvets.2023.1205064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/25/2023] [Indexed: 07/04/2023] Open
Abstract
Chronic asymptomatic idiopathic orchitis (CAO) is an important but neglected cause of acquired infertility due to non-obstructive azoospermia (NOA) in male dogs. The similarity of the pathophysiology in infertile dogs and men supports the dog's suitability as a possible animal model for studying human diseases causing disruption of spermatogenesis and evaluating the role of spermatogonial stem cells (SSCs) as a new therapeutic approach to restore or recover fertility in cases of CAO. To investigate the survival of resilient stem cells, the expression of the protein gene product (PGP9.5), deleted in azoospermia like (DAZL), foxo transcription factor 1 (FOXO1) and tyrosine-kinase receptor (C-Kit) were evaluated in healthy and CAO-affected canine testes. Our data confirmed the presence of all investigated germ cell markers at mRNA and protein levels. In addition, we postulate a specific expression pattern of FOXO1 and C-Kit in undifferentiated and differentiating spermatogonia, respectively, whereas DAZL and PGP9.5 expressions were confirmed in the entire spermatogonial population. Furthermore, this is the first study revealing a significant reduction of PGP9.5, DAZL, and FOXO1 in CAO at protein and/or gene expression level indicating a severe disruption of spermatogenesis. This means that chronic asymptomatic inflammatory changes in CAO testis are accompanied by a significant loss of SSCs. Notwithstanding, our data confirm the survival of putative stem cells with the potential of self-renewal and differentiation and lay the groundwork for further research into stem cell-based therapeutic options to reinitialize spermatogenesis in canine CAO-affected patients.
Collapse
Affiliation(s)
| | | | | | - Sandra Goericke-Pesch
- Reproductive Unit – Clinic for Small Animals, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
3
|
Effect of Epidermal Growth Factor on the Colony-formation Ability of Porcine Spermatogonial Germ Cells. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0372-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
de Souza AF, Pieri NCG, Martins DDS. Step by Step about Germ Cells Development in Canine. Animals (Basel) 2021; 11:ani11030598. [PMID: 33668687 PMCID: PMC7996183 DOI: 10.3390/ani11030598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary The progression of germ cells is a remarkable event that allows biological discovery in the differ-entiation process during in vivo and in vitro development. This is crucial for understanding one toward making oogenesis and spermatogenesis. Companion animals, such as canine, could offer new animal models for experimental and clinical testing for translation to human models. In this review, we describe the latest and more relevant findings on germ cell development. In addition, we showed the methods available for obtaining germ cells in vitro and the characterization of pri-mordial germ cells and spermatogonial stem cells. However, it is necessary to further conduct basic research in canine to clarify the beginning of germ cell development. Abstract Primordial germ cells (PGCs) have been described as precursors of gametes and provide a connection within generations, passing on the genome to the next generation. Failures in the formation of gametes/germ cells can compromise the maintenance and conservation of species. Most of the studies with PGCs have been carried out in mice, but this species is not always the best study model when transposing this knowledge to humans. Domestic animals, such as canines (canine), have become a valuable translational research model for stem cells and therapy. Furthermore, the study of canine germ cells opens new avenues for veterinary reproduction. In this review, the objective is to provide a comprehensive overview of the current knowledge on canine germ cells. The aspects of canine development and germ cells have been discussed since the origin, specifications, and development of spermatogonial canine were first discussed. Additionally, we discussed and explored some in vitro aspects of canine reproduction with germ cells, such as embryonic germ cells and spermatogonial stem cells.
Collapse
|
5
|
Stage-Dependent Expression of Protein Gene Product 9.5 in Donkey Testes. Animals (Basel) 2020; 10:ani10112169. [PMID: 33233850 PMCID: PMC7699888 DOI: 10.3390/ani10112169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/02/2020] [Accepted: 11/17/2020] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Spermatogenesis and steroidogenesis are key functions of the testes. Molecular markers that identify each stage of germ cells and Leydig cells can identify and isolate specific germ or Leydig cells. Protein gene product (PGP)9.5 is observed in neuroendocrine cells and tumors; it is also used for the immunohistochemical detection of spermatogonial stem cells (SSCs) in various species of animals. It was found that the immunolabeling of PGP9.5 in testicular tissue was not observed in the seminiferous tubules in the pre-pubertal stage. However, in the post-pubertal stage, spermatogonia were immunolabeled with PGP9.5. Interestingly, some Leydig cells were immunolabeled with PGP9.5 in both pre- and post-pubertal stages. This study reflects that the PGP9.5 antibody can be used as a tool to identify and isolate spermatogonia from seminiferous tubules in the post-pubertal stage of donkey testes. Abstract Molecular markers can be used to identify and isolate specific developmental stages of germ cells and Leydig cells. Protein gene product (PGP)9.5 expression in spermatogonia and Leydig cells has been reported in several species. The stages of spermatogonia and Leydig cells expressing PGP9.5 vary depending on the species and reproductive stages. Thus, the objectives of this study were (1) to identify the localization of PGP9.5 in donkey testicular cells, and (2) to compare the expression patterns of PGP9.5 in donkey testicular cells between pre- and post-pubertal stages. Testes samples were collected following the routine field castration of six donkeys. Western blotting was performed to verify the cross-reactivity of the rabbit anti-human PGP9.5 antibody to donkey testes. Immunofluorescence was performed to investigate the expression pattern of PGP9.5 in testicular tissues at different reproductive stages. In Western blotting, the protein band of the PGP9.5 antibody appeared at approximately 27 kDa, whereas the band was not observed in the negative control treated with normal mouse IgG. In the pre-pubertal stage, the expression of deleted in azoospermia-like (DAZL) was found in some spermatogonia in pre-pubertal testicular tissues. However, the immunolabeling of PGP9.5 in testicular tissue was not observed in the seminiferous tubules. In stages 1 and 2, spermatogonia were immunolabeled with either PGP9.5 or DAZL. In contrast, PGP9.5 and DAZL were co-immunolabeled in some of the spermatogonia in stages 3 to 8. Interestingly, some Leydig cells were immunolabeled with PGP9.5 in both pre- and post-pubertal stages. In conclusion, the PGP9.5 antibody can be used as a tool to identify and isolate spermatogonia from seminiferous tubules.
Collapse
|
6
|
Pieri NCG, Mançanares ACF, de Souza AF, Fernandes H, Diaza AMG, Bressan FF, Roballo KCS, Casals JB, Binelli M, Ambrósio CE, Dos Santos Martins D. Xenotransplantation of canine spermatogonial stem cells (cSSCs) regulated by FSH promotes spermatogenesis in infertile mice. Stem Cell Res Ther 2019; 10:135. [PMID: 31109365 PMCID: PMC6528206 DOI: 10.1186/s13287-019-1250-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/27/2019] [Accepted: 04/30/2019] [Indexed: 01/15/2023] Open
Abstract
Background Xenotransplantation of spermatogonial stem cells (SSCs) has become a popular topic in various research fields because manipulating these cells can provide insights into the mechanisms associated with germ cell lines and the entire spermatogenesis process; moreover, these cells can be used in several biotechnology applications. To achieve successful xenotransplantation, the in vitro microenvironment in which SSCs are cultured should be an ideal microenvironment for self-renewal and similar to the in vivo testicular microenvironment. The age of the donor, the correct spermatogenesis cycle, and the quality of the donor tissue are also important. Although cell culture-related factors, such as the in vitro supplementation of hormonal factors, are known to promote successful xenotransplantation in mice, little is known about the influence of these factors on SSCs in vitro or in vivo in other mammalian species, such as dogs (Canis lupus familiaris). In this context, the goals of this study were to test the effect of follicle-stimulating hormone (FSH) on canine spermatogonial stem cell (cSSC) cultures since this hormone is related to the glial cell-derived neurotrophic factor (GDNF) signaling pathway, which is responsible for the self-renewal and maintenance of these cells in vivo, and to investigate the microenvironment of the SSC culture after FSH supplementation. Additionally, in vivo analyses of transplanted FSH-supplemented cSSCs in the testes of infertile mice were performed to assess the capacity of cSSCs to develop, maintain, and restore spermatogenesis. Methods SSCs from canine prepubertal testes (aged 3 months) were cultured in vitro in the presence of FSH (10 IU L−1). GFRA1 transcript expression was detected to confirm the spermatogonia population in culture and the effect of FSH on these cells. The protein and transcript levels of late germ cell markers (GFRA1, DAZL, STRA8, PLZF, and CD49f) and a pluripotency marker (OCT4) were detected at 72 and 120 h to confirm the cSSC phenotype. In vivo experiments were performed by transplanting GFP+ cSSCs into infertile mice, and a 10-week follow-up was performed. Histological and immunofluorescence analyses were performed to confirm the repopulation capacity after cSSC xenotransplantation in the testis. Results Supplementation with FSH in cell culture increased the number of cSSCs positive for GFRA1. The cSSCs were also positive for the pluripotency and early germline marker OCT4 and the late germline markers PLZF, DAZL, C-kit, and GFRA-1. The in vivo experiments showed that the cSSCs xenotransplanted into infertile mouse testes were able to repopulate germline cells in the seminiferous tubules of mice. Conclusions In conclusion, our results showed for the first time that the treatment of cSSC cultures with FSH can promote in vitro self-renewal, increase the population of germline cells, and possibly influence the success of spermatogenesis in infertile mice in vivo.
Collapse
Affiliation(s)
- Naira Caroline Godoy Pieri
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, Sao Paulo, SP, Brazil. .,Department of Reproduction, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, Sao Paulo, SP, Brazil.
| | | | - Aline Fernanda de Souza
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, SP, Brazil
| | - Hugo Fernandes
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, SP, Brazil
| | - Angela Maria Gonella Diaza
- North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Marianna, FL, USA
| | - Fabiana Fernandes Bressan
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, Sao Paulo, SP, Brazil.,Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, SP, Brazil
| | - Kelly Cristine Santos Roballo
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, SP, Brazil.,School of Pharmacy at University of Wyoming, 1000 E. University Avenue, Laramie, 82071, USA
| | - Juliana Barbosa Casals
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, Sao Paulo, SP, Brazil
| | - Mario Binelli
- Department of Animal Sciences, University of Florida, L.E. "Red" Larson Building, Bldg. 499, Room 122 C, Gainesville, FL, 32611-0910, USA
| | - Carlos Eduardo Ambrósio
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, Sao Paulo, SP, Brazil.,Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, SP, Brazil
| | - Daniele Dos Santos Martins
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, Sao Paulo, SP, Brazil.,Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, SP, Brazil
| |
Collapse
|
7
|
Zhao Y, Yang Z, Wang Y, Luo Y, Da F, Tao W, Zhou L, Wang D, Wei J. Both Gfrα1a and Gfrα1b Are Involved in the Self-renewal and Maintenance of Spermatogonial Stem Cells in Medaka. Stem Cells Dev 2018; 27:1658-1670. [PMID: 30319069 DOI: 10.1089/scd.2018.0177] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Glial cell-derived neurotrophic factor family receptor alpha-1 (GFRα1) plays a crucial role in the self-renewal and maintenance of spermatogonial stem cells (SSCs) from mammals. However, to date, our knowledge about its role in fish SSCs is limited. In the present study, the medaka (Oryzias latipes) gfrα1 duplicate genes, Olgfrα1a and Olgfrα1b, were cloned and characterized. Furthermore, their expression profile and biological activity were investigated. OlGfrα1a and OlGfrα1b predict 524 and 466 amino acid residues, respectively. Both are orthologous to mammalian Gfrα1 by sequence analyses and appear high in spermatogonia by in situ hybridization assay. The knockdown of OlGfrα1a and/or OlGfrα1b via Vivo-Morpholino oligos significantly inhibited the self-renewal and maintenance of SSCs, as evidenced by the decreased proliferation activity of SG3 cells (a spermatogonial stem cell line derived from adult medaka testis) as well as spermatogonia in the testicular organ culture and by the decreased survival rate and expression levels of pluripotency-related genes (klf4, lin28b, bcl6b, and etv5) in SG3 cells. Additionally, our study indicates that OlGfrα1a might function by binding either Gdnfa or Gdnfb (the two medaka Gdnf homologs), whereas OlGfrα1b function by binding Gdnfa not Gdnfb. Taken together, our study indicates that both OlGfrα1a and OlGfrα1b are involved in the self-renewal and maintenance of SSCs by binding Gdnfa and/or Gdnfb, respectively. These findings suggest that the GDNF/GFRα1 signaling pathway might be conserved from mammals to fish species.
Collapse
Affiliation(s)
- Yang Zhao
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University , Chongqing, China
| | - Zhuo Yang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University , Chongqing, China
| | - Yuan Wang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University , Chongqing, China
| | - Yubing Luo
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University , Chongqing, China
| | - Fan Da
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University , Chongqing, China
| | - Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University , Chongqing, China
| | - Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University , Chongqing, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University , Chongqing, China
| | - Jing Wei
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University , Chongqing, China
| |
Collapse
|
8
|
de Souza AF, Pieri NCG, Roballo KCS, Bressan FF, Casals JB, Ambrósio CE, Perecin F, Martins DS. Dynamics of male canine germ cell development. PLoS One 2018; 13:e0193026. [PMID: 29489867 PMCID: PMC5831030 DOI: 10.1371/journal.pone.0193026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 02/02/2018] [Indexed: 12/18/2022] Open
Abstract
Primordial germ cells (PGCs) are precursors of gametes that can generate new individuals throughout life in both males and females. Additionally, PGCs have been shown to differentiate into embryonic germ cells (EGCs) after in vitro culture. Most studies investigating germinative cells have been performed in rodents and humans but not dogs (Canis lupus familiaris). Here, we elucidated the dynamics of the expression of pluripotent (POU5F1 and NANOG), germline (DDX4, DAZL and DPPA3), and epigenetic (5mC, 5hmC, H3K27me3 and H3K9me2) markers that are important for the development of male canine germ cells during the early (22-30 days post-fertilization (dpf)), middle (35-40 dpf) and late (45-50 dpf) gestational periods. We performed sex genotype characterization, immunofluorescence, immunohistochemistry, and quantitative reverse transcriptase polymerase chain reaction (RT-qPCR) analyses. Furthermore, in a preliminary study, we evaluated the capacity of canine embryo PGCs (30 dpf) to differentiate into EGCs. To confirm the canine EGCs phenotype, we performed alkaline phosphatase detection, immunohistochemistry, electron and transmission scanning microscopy and RT-qPCR analyses. The PGCs were positive for POU5F1 and H3K27me3 during all assessed developmental periods, including all periods between the gonadal tissue stage and foetal testes development. The number of NANOG, DDX4, DAZL, DPPA3 and 5mC-positive cells increased along with the developing cords from 35-50 dpf. Moreover, our results demonstrate the feasibility of inducing canine PGCs into putative EGCs that present pluripotent markers, such as POU5F1 and the NANOG gene, and exhibit reduced expression of germinative genes and increased expression of H3K27me3. This study provides new insight into male germ cell development mechanisms in dogs.
Collapse
Affiliation(s)
- Aline F. de Souza
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Naira C. Godoy Pieri
- Department of Reproduction, Faculty of Veterinary Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Kelly C. S. Roballo
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Fabiana F. Bressan
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Juliana B. Casals
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Carlos E. Ambrósio
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Felipe Perecin
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Daniele S. Martins
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| |
Collapse
|
9
|
Lee WY, Park HJ, Lee R, Lee JH, Jhun H, Hur TY, Song H. Analysis of putative biomarkers of undifferentiated spermatogonia in dog testis. Anim Reprod Sci 2017; 185:174-180. [DOI: 10.1016/j.anireprosci.2017.08.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 08/03/2017] [Accepted: 08/18/2017] [Indexed: 11/28/2022]
|
10
|
Lee WY, Lee R, Park HJ, Do JT, Park C, Kim JH, Jhun H, Lee JH, Hur T, Song H. Characterization of male germ cell markers in canine testis. Anim Reprod Sci 2017; 182:1-8. [DOI: 10.1016/j.anireprosci.2017.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 01/06/2017] [Accepted: 01/07/2017] [Indexed: 12/27/2022]
|
11
|
Pieri N, Souza AF, Mançanares A, Roballo K, Casals JB, Ambrosio CE, Martins DS. Immunolocalization of proteins in the spermatogenesis process of canine. Reprod Domest Anim 2016; 52 Suppl 2:170-176. [PMID: 27774720 DOI: 10.1111/rda.12848] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Spermatogenesis is a process in which differentiated cells are produced and the adult stem cell population-known as spermatogonial stem cells (SSCs)-is continuously replenished. However, the molecular mechanisms underlying these processes are not fully understood in the canine species. We addressed this in this study by analysing the expression of specific markers in spermatogonia of seminiferous tubules of canine testes. SSCs at different stages of reproductive development (prepubertal and adult) were examined by immunohistochemistry and flow cytometry. Glial cell-derived neurotrophic factor family receptor alpha-1 (GFRA1), deleted in azoospermia-like (DAZL) and promyelocytic leukaemia zinc finger (PLZF) were expressed in SSCs, while stimulated by retinoic acid gene 8 (STRA8) was detected only in undifferentiated spermatogonia in prepubertal testis and differentiated spermatogonia and spermatocytes in adult canine. Octamer-binding transcription factor 4 (OCT4) showed an expression pattern, and the levels did not differ between the groups examined. However, C-kit expression varied as a function of reproductive developmental stage. Our results demonstrate that these proteins play critical roles in the self-renewal and differentiation of SSCs and can serve as markers to identify canine spermatogonia at specific stages of development.
Collapse
Affiliation(s)
- Ncg Pieri
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - A F Souza
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Acf Mançanares
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Kcs Roballo
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - J B Casals
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - C E Ambrosio
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil.,Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - D S Martins
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil.,Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| |
Collapse
|
12
|
|
13
|
Lee KH, Lee WY, Do JT, Park CK, Kim NH, Kim JH, Chung HJ, Kim DW, Song H. In Vitro Ectopic Behavior of Porcine Spermatogonial Germ Cells and Testicular Somatic Cells. Cell Reprogram 2016; 18:246-55. [DOI: 10.1089/cell.2015.0070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Kyung Hoon Lee
- Department of Stem Cell and Regenerative Biology, College of Animal Bioscience & Technology, Konkuk University, Seoul, Korea
| | - Won Young Lee
- Department of Food Bioscience, College of Biomedical & Health Science, Konkuk University, Chung-ju, Korea
| | - Jung Tae Do
- Department of Stem Cell and Regenerative Biology, College of Animal Bioscience & Technology, Konkuk University, Seoul, Korea
| | - Chan Kyu Park
- Department of Stem Cell and Regenerative Biology, College of Animal Bioscience & Technology, Konkuk University, Seoul, Korea
| | - Nam Hyung Kim
- Department of Animal Science, College of Agriculture, Chungbuk National University, Choung-ju, Korea
| | - Jin Hoi Kim
- Department of Stem Cell and Regenerative Biology, College of Animal Bioscience & Technology, Konkuk University, Seoul, Korea
| | - Hak Jae Chung
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju, Korea
| | - Dong Woon Kim
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju, Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biology, College of Animal Bioscience & Technology, Konkuk University, Seoul, Korea
| |
Collapse
|
14
|
Mizukami S, Murakami T, Tanaka T, Machida N, Nomura K, Yoshida T, Shibutani M. Spermatogonial Nature of the Germ Cell Component of Canine Testicular Mixed Germ Cell-Sex Cord Stromal Tumours. J Comp Pathol 2016; 155:5-14. [PMID: 27241073 DOI: 10.1016/j.jcpa.2016.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 03/31/2016] [Accepted: 04/10/2016] [Indexed: 10/21/2022]
Abstract
The present study has characterized the germ cell component of canine testicular mixed germ cell-sex cord stromal tumours (MGSCTs) by examining the histological nature and histochemical and immunohistochemical features using gonocytic and spermatogonial cellular markers, c-Kit, placental alkaline phosphatase (PLAP), protein gene product 9.5 (PGP9.5), Sal-like protein 4 (SALL4), and the periodic acid-Schiff (PAS) reaction. Histologically, all 45 examples of MGSCTs were classified as spermatocytic seminomas (SSs) and Sertoli cell tumours in combination. The germ cell component of all MGSCTs was negative by PAS staining. Immunohistochemically, PLAP immunoreactivity was lacking in the germ cell component of all MGSCTs, which is not consistent with a gonocytic origin. The germ cell component was positive for PGP9.5 and SALL4 in all MGSCTs and positive for c-Kit in 53% of MGSCTs, which is consistent with the phenotype of spermatogonia. Furthermore, the germ cell component in 71% of MGSCTs had moderate immunoreactivity for SALL4, which is suggestive of a spermatogonial phenotype. Conversely, 29% of cases had a minor population of germ cells showing strong SALL4 immunoreactivity, suggesting a phenotype similar to prespermatogonia. The results suggest that the germ cell component of canine MGSCTs is morphologically classified as SS, with the majority of cases showing the spermatogonial phenotype and some cases containing a small population of prespermatogonia.
Collapse
Affiliation(s)
- S Mizukami
- Laboratory of Veterinary Pathology, Japan; Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - T Murakami
- Laboratory of Veterinary Toxicology, Japan
| | - T Tanaka
- Laboratory of Veterinary Pathology, Japan; Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - N Machida
- Laboratory of Veterinary Clinical Oncology, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - K Nomura
- Veterinary Diagnostic Laboratory, Marupi Lifetech Co. Ltd., Osaka, Japan
| | - T Yoshida
- Laboratory of Veterinary Pathology, Japan
| | | |
Collapse
|
15
|
Vitrified canine testicular cells allow the formation of spermatogonial stem cells and seminiferous tubules following their xenotransplantation into nude mice. Sci Rep 2016; 6:21919. [PMID: 26907750 PMCID: PMC4764824 DOI: 10.1038/srep21919] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/02/2016] [Indexed: 12/17/2022] Open
Abstract
Belgian Malinois (BM), one of the excellent military dog breeds in South Korea, is usually castrated before sexual maturation. Therefore, the transfer of their genetic features to the next generation is difficult. To overcome this, testicular cells from 4-month-old BMs were frozen. Testicular cells were thawed after 3 months and cultured in StemPro-34 medium. Spermatogonial stem cell (SSC) characteristics were determined by the transplantation of the cultured germ cell-derived colonies (GDCs) into empty testes, containing only several endogenous SSCs and Sertoli cells, of immunodeficient mice, 4 weeks after busulfan treatment. Following the implantation, the transplanted cells localized in the basement membrane of the seminiferous tubules, and ultimately colonized the recipient testes. Xenotransplantation of GDCs together with testicular somatic cells conjugated with extracellular matrix (ECM), led to the formation of de novo seminiferous tubules. These seminiferous tubules were mostly composed of Sertoli cells. Some germ cells were localized in the basement membrane of seminiferous tubules. This study revealed that BM-derived SSCs, obtained from the castrated testes, might be a valuable tool for the transfer of BM genetic features to the next generation.
Collapse
|
16
|
Wang X, Chen T, Zhang Y, Li B, Xu Q, Song C. Isolation and Culture of Pig Spermatogonial Stem Cells and Their in Vitro Differentiation into Neuron-Like Cells and Adipocytes. Int J Mol Sci 2015; 16:26333-46. [PMID: 26556335 PMCID: PMC4661817 DOI: 10.3390/ijms161125958] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 10/21/2015] [Accepted: 10/23/2015] [Indexed: 12/14/2022] Open
Abstract
Spermatogonial stem cells (SSCs) renew themselves throughout the life of an organism and also differentiate into sperm in the adult. They are multipopent and therefore, can be induced to differentiate into many cells types in vitro. SSCs from pigs, considered an ideal animal model, are used in studies of male infertility, regenerative medicine, and preparation of transgenic animals. Here, we report on a culture system for porcine SSCs and the differentiation of these cells into neuron-like cells and adipocytes. SSCs and Sertoli cells were isolated from neonatal piglet testis by differential adhesion and SSCs were cultured on a feeder layer of Sertoli cells. Third-generation SSCs were induced to differentiate into neuron-like cells by addition of retinoic acid, β-mercaptoethanol, and 3-isobutyl-1-methylxanthine (IBMX) to the induction media and into adipocytes by the addition of hexadecadrol, insulin, and IBMX to the induction media. The differentiated cells were characterized by biochemical staining, qRT-PCR, and immunocytochemistry. The cells were positive for SSC markers, including alkaline phosphatase and SSC-specific genes, consistent with the cells being undifferentiated. The isolated SSCs survived on the Sertoli cells for 15 generations. Karyotyping confirmed that the chromosomal number of the SSCs were normal for pig (2n = 38, n = 19). Pig SSCs were successfully induced into neuron-like cells eight days after induction and into adipocytes 22 days after induction as determined by biochemical and immunocytochemical staining. qPCR results also support this conclusion. The nervous tissue markers genes, Nestin and β-tubulin, were expressed in the neuron-like cells and the adipocyte marker genes, PPARγ and C/EBPα, were expressed in the adipocytes.
Collapse
Affiliation(s)
- Xiaoyan Wang
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China.
| | - Tingfeng Chen
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China.
| | - Yani Zhang
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China.
| | - Bichun Li
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China.
| | - Qi Xu
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China.
| | - Chengyi Song
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
17
|
Aponte PM. Spermatogonial stem cells: Current biotechnological advances in reproduction and regenerative medicine. World J Stem Cells 2015; 7:669-680. [PMID: 26029339 PMCID: PMC4444608 DOI: 10.4252/wjsc.v7.i4.669] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/13/2015] [Accepted: 04/14/2015] [Indexed: 02/06/2023] Open
Abstract
Spermatogonial stem cells (SSCs) are the germ stem cells of the seminiferous epithelium in the testis. Through the process of spermatogenesis, they produce sperm while concomitantly keeping their cellular pool constant through self-renewal. SSC biology offers important applications for animal reproduction and overcoming human disease through regenerative therapies. To this end, several techniques involving SSCs have been developed and will be covered in this article. SSCs convey genetic information to the next generation, a property that can be exploited for gene targeting. Additionally, SSCs can be induced to become embryonic stem cell-like pluripotent cells in vitro. Updates on SSC transplantation techniques with related applications, such as fertility restoration and preservation of endangered species, are also covered on this article. SSC suspensions can be transplanted to the testis of an animal and this has given the basis for SSC functional assays. This procedure has proven technically demanding in large animals and men. In parallel, testis tissue xenografting, another transplantation technique, was developed and resulted in sperm production in testis explants grafted into ectopical locations in foreign species. Since SSC culture holds a pivotal role in SSC biotechnologies, current advances are overviewed. Finally, spermatogenesis in vitro, already demonstrated in mice, offers great promises to cope with reproductive issues in the farm animal industry and human clinical applications.
Collapse
|