1
|
Thasleem H, Nadeem MA, Ashraf H, Ishaque G, Saadi M, Ahmed M, Kakakhel MZJ, Awan AR, Saleh A, Sohail AH. Normothermic machine perfusion in liver transplantation: a bibliometric analysis of the top 100 most cited articles. Ann Med Surg (Lond) 2025; 87:2812-2828. [PMID: 40337427 PMCID: PMC12055158 DOI: 10.1097/ms9.0000000000003222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/18/2025] [Indexed: 05/09/2025] Open
Abstract
Background Normothermic machine perfusion (NMP) has increased substantially in the recent decade, being a vital tool in further organ preservation and reducing ischemia-reperfusion injury. The purpose of this study was to objectively conduct a bibliometric analysis of the top 100 cited articles to understand the evolution of NMP in liver transplantation. Methods Scopus was selected as our primary database. We explored the database to extract relevant articles, which were then ranked numerically by the number of citations. A list of the top 100 articles was created in descending order, and each article was further analyzed to identify trends and characteristics. A list of the top 10 review articles was also prepared. Results The top 100 studies were cited a total of 6136 times from 2013 and 2023, with the most cited articles published in 2018. The total number of citations per article ranged from 7 to 787, with a median of 397 citations. The articles originated from 13 different countries, with the United Kingdom having the most articles (n = 26), followed by the Netherlands (n = 17) and the United States (n = 17). Liver Transplantation (n = 21), Transplantation (n = 10), American Journal of Transplantation (n = 10), and Annals of Surgery (n = 6) contributed to nearly half of the articles. Conclusion Research on NMP is rapidly growing and encompasses a variety of countries and institutions. Our analysis provides insight into the evolution of normothermic machine perfusion in liver transplantation, with the hope that this article may serve as a reference to aid healthcare professionals in efficiently assessing consensus, trends, and needs within the field.
Collapse
Affiliation(s)
| | | | | | - Ghazal Ishaque
- Shaheed Mohtarma Benazir Bhutto Medical College, Karachi, Pakistan
| | - Mahinn Saadi
- Dow University of Health Sciences, Karachi, Pakistan
| | - Mansoor Ahmed
- Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | | | | | - Aalaa Saleh
- Faculty of Medicine, Lebanese University, Beirut, Lebanon
| | - Amir H Sohail
- Department of Surgery, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
2
|
Dandin O, Yildirim S, Karacayli D, Yilmaz C, Ormeci M, Ozsipahi AC, Vural V, Dogan NU, Tanriover G, Aslan M, Canpolat M. Assessment of Amniotic Fluid as a Preservation Solution in Pig Livers Undergoing Machine Perfusion. J Surg Res 2025; 309:39-61. [PMID: 40203486 DOI: 10.1016/j.jss.2025.02.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 02/07/2025] [Accepted: 02/20/2025] [Indexed: 04/11/2025]
Abstract
INTRODUCTION Ischemia-reperfusion injury in organ transplantation highlights the need for advanced preservation techniques. This study evaluates the effectiveness of amniotic fluid (AF) compared to static cold storage and histidine-tryptophan-ketoglutarate (HTK) solution in preserving pig livers subjected to hypothermic oxygenated machine perfusion (HOMP) and ex vivo normothermic reperfusion. MATERIALS AND METHODS Fifteen pig livers underwent warm ischemia for 1 h, followed by preservation under three conditions: cold storage (group 1, n = 3), HOMP with HTK (group 2, n = 3), and HOMP with AF (group 3, n = 3). Perfusion lasted 4 h, followed by 2 h of ex vivo reperfusion. Assessments included hepatic bile production, sphingomyelin levels, reactive oxygen/nitrogen species, antioxidant capacity, tissue oxygen saturation, flow dynamics, blood gas analyses, biochemical markers, and histopathological and immunohistochemical evaluations. RESULTS AF-HOMP showed superior blood flow, lower vascular resistance, higher oxygen saturation, and better organ protection than HTK. Blood gas measurements demonstrated stable physiological levels after reperfusion. AF-HOMP improved bile production, sphingomyelin levels, glycogen preservation, and reduced parenchymal necrosis, hepatocyte vacuolization, and sinusoidal obstruction. Immunohistochemical analysis indicated protective effects on bile duct function, apoptosis, endothelial activation, and cell proliferation. CONCLUSIONS AF-HOMP outperformed HTK in preserving liver tissue during warm ischemia, HOMP, and reperfusion. AF is a promising, cost-effective, and accessible alternative for liver preservation, potentially expanding donor pools and improving transplantation outcomes. Further research is warranted to explore its broader applications.
Collapse
Affiliation(s)
- Ozgur Dandin
- Faculty of Medicine, Departments of General Surgery, Akdeniz University, Antalya, Turkey.
| | - Sendegul Yildirim
- Faculty of Medicine, Departments of Histology and Embryology, Akdeniz University, Antalya, Turkey
| | - Deniz Karacayli
- Faculty of Medicine, Departments of Biophysics, Akdeniz University, Antalya, Turkey
| | - Cagatay Yilmaz
- Faculty of Medicine, Departments of Medical Biochemistry, Akdeniz University, Antalya, Turkey
| | - Mustafa Ormeci
- Faculty of Medicine, Departments of General Surgery, Akdeniz University, Antalya, Turkey
| | - Arif Can Ozsipahi
- Faculty of Medicine, Departments of Obstetrics And Gynaecology, Akdeniz University, Antalya, Turkey
| | - Veli Vural
- Faculty of Medicine, Departments of General Surgery, Akdeniz University, Antalya, Turkey
| | - Nasuh Utku Dogan
- Faculty of Medicine, Departments of Obstetrics And Gynaecology, Akdeniz University, Antalya, Turkey
| | - Gamze Tanriover
- Faculty of Medicine, Departments of Histology and Embryology, Akdeniz University, Antalya, Turkey
| | - Mutay Aslan
- Faculty of Medicine, Departments of Medical Biochemistry, Akdeniz University, Antalya, Turkey
| | - Murat Canpolat
- Faculty of Medicine, Departments of Biophysics, Akdeniz University, Antalya, Turkey
| |
Collapse
|
3
|
van Leeuwen OB, Lantinga VA, Lascaris B, Thorne AM, Bodewes SB, Nijsten MW, de Meijer VE, Porte RJ. 'Back-to-base' combined hypothermic and normothermic machine perfusion of human donor livers. Nat Protoc 2025:10.1038/s41596-024-01130-8. [PMID: 40011689 DOI: 10.1038/s41596-024-01130-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/05/2024] [Indexed: 02/28/2025]
Abstract
The shortage of suitable donor organs has resulted in the use of suboptimal, high-risk, extended-criteria donor (ECD) livers, which are at an increased risk of failure after transplantation. Compared with traditional static cold storage, dynamic preservation by ex situ machine perfusion reduces the risks associated with the transplantation of ECD organs. Ex situ machine perfusion strategies differ in timing (that is, speed of procurement and transport), perfusion duration and perfusion temperature. For 'back-to-base' protocols, the donor liver is statically cold stored during transportation to the recipient hospital (the 'base') and then perfused, instead of transporting the liver using a portable perfusion system. While dual hypothermic (8-12 °C) oxygenated machine perfusion (DHOPE) allows safe prolongation of preservation duration and reduces ischemia-reperfusion injury-related complications, including post-transplant cholangiopathy, normothermic machine perfusion (NMP) at 35-37 °C facilitates ex situ viability testing of both liver parenchyma and bile ducts. Here, we describe a clinical protocol for 'back-to-base' combined DHOPE and NMP, linked by a period of controlled oxygenated rewarming (COR), which we call the DHOPE-COR-NMP protocol. This protocol enables restoration of mitochondrial function after static ischemic preservation and minimizes both ischemia-reperfusion and temperature-shift-induced injury during the start of NMP. The NMP phase allows viability assessment before final donor liver acceptance for transplantation. Sequential DHOPE and COR-NMP may reduce the risks associated with transplantation of ECD livers and facilitate enhanced utilization, thereby helping to alleviate the organ shortage.
Collapse
Affiliation(s)
- Otto B van Leeuwen
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Veerle A Lantinga
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bianca Lascaris
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Adam M Thorne
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Silke B Bodewes
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Maarten W Nijsten
- Department of Anesthesiology and Critical Care, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Vincent E de Meijer
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Robert J Porte
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
- Department of Surgery, Division of HPB and Transplant Surgery, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
4
|
Vogt F, Wagner T, Katou S, Kneifel F, Vogel T, Morgül H, Houben P, Wahl P, Pascher A, Radunz S. Hyperspectral imaging of human liver allografts for prediction of initial graft function. Langenbecks Arch Surg 2024; 409:306. [PMID: 39400566 PMCID: PMC11473603 DOI: 10.1007/s00423-024-03497-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
PURPOSE Ischemia reperfusion injury represents a significant yet difficult to assess risk factor for short- and long-term graft impairment in human liver transplantation (LT). As a non-invasive, non-ionizing tool, hyperspectral imaging (HSI) is capable of correlating optical properties with organ microperfusion. Hence, we here performed a study of human liver allografts assessed by HSI for microperfusion and prediction of initial graft function. METHODS Images of liver parenchyma of 37 human liver allografts were acquired at bench preparation, during normothermic machine perfusion (NMP), if applicable, and after reperfusion in the recipient. A specialized HSI acquisition software computed oxygen saturation (StO2), tissue hemoglobin indices (THI), near infrared perfusion indices (NIR), and tissue water indices (TWI). HSI parameters were analyzed for differences with regard to preservation technique, reperfusion sequence and presence of early allograft dysfunction (EAD). RESULTS Organ preservation was performed by means of NMP (n = 31) or static cold storage (SCS; n = 6). Patients' demographics, donor characteristics, presence of EAD (NMP 36.7% vs. SCS 50%, p = 0.6582), and HSI parameters were comparable between both groups of preservation method. In organs developing EAD, NIR at 1, 2, and 4 h NMP and after reperfusion in the recipient was significantly lower (1 h NMP: 18.6 [8.6-27.6] vs. 28.3 [22.5-39.4], p = 0.0468; 2 h NMP: 19.4 [8.7-30.4] vs. 37.1 [27.5-44.6], p = 0.0011; 4 h NMP: 26.0 [6.8-37.1] vs. 40.3 [32.3-49.9], p = 0.0080; reperfusion: 13.0 [11.5-34.3] vs. 30.6 [19.3-44.0], p = 0.0212). CONCLUSION HSI assessment of human liver allografts is feasible during organ preservation and in the recipient. NIR during NMP and after reperfusion might predict the onset of EAD. Larger trials are warranted for assessment of this novel technique in human LT.
Collapse
Affiliation(s)
- Franziska Vogt
- Department of General, Visceral and Transplant Surgery, University Hospital Münster, Münster, Germany
| | - Tristan Wagner
- Department of General, Visceral and Transplant Surgery, University Hospital Münster, Münster, Germany
| | - Shadi Katou
- Department of General, Visceral and Transplant Surgery, University Hospital Münster, Münster, Germany
| | - Felicia Kneifel
- Department of General, Visceral and Transplant Surgery, University Hospital Münster, Münster, Germany
| | - Thomas Vogel
- Department of General, Visceral and Transplant Surgery, University Hospital Münster, Münster, Germany
| | - Haluk Morgül
- Department of General, Visceral and Transplant Surgery, University Hospital Münster, Münster, Germany
| | - Philipp Houben
- Department of General, Visceral and Transplant Surgery, University Hospital Münster, Münster, Germany
| | - Philip Wahl
- Diaspective Vision GmbH, Strandstraße 15, 18233, Am Salzhaff, Germany
| | - Andreas Pascher
- Department of General, Visceral and Transplant Surgery, University Hospital Münster, Münster, Germany
| | - Sonia Radunz
- Department of General, Visceral and Transplant Surgery, University Hospital Münster, Münster, Germany.
- Department of General, Visceral and Transplant Surgery, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany.
| |
Collapse
|
5
|
Vogel T, Szardenings C, Becker F, Jordan S, Katou S, Morgul H, Flammang I, Houben P, Kneifel F, Pascher A. Viability assessment and transplantation of extended criteria donor liver grafts using normothermic machine perfusion. Surgery 2024; 176:934-941. [PMID: 38902125 DOI: 10.1016/j.surg.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/26/2024] [Accepted: 05/15/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND The scarcity of available liver grafts necessitates the use of organs from extended criteria donors, a practice associated with an increased risk of graft failure. A notable percentage of deceased donor liver allografts are rejected due to subjective criteria. Normothermic machine perfusion holds promise for introducing objective parameters into this decision-making process. The aim of this study was to compare the outcomes of standard criteria and extended criteria donor allografts after liver transplantation, following viability assessment, using normothermic machine perfusion. METHODS Liver allografts preserved by normothermic machine perfusion before liver transplantation at the University Hospital of Münster were retrospectively analyzed. Organs were stratified according to the Eurotransplant Donor Risk Index. In total, 101 liver grafts were included in this study and divided into 2 groups: (1) standard criteria donors with a Donor Risk Index <1.8 (DRI-low) and (2) extended criteria donors with a Donor Risk Index ≥1.8 (DRI-high). RESULTS An increased risk profile of donor livers, as assessed by the Eurotransplant Donor Risk Index, did not correlate with patient or graft survival. High-risk liver grafts were effectively transplanted into recipients with different risk levels after viability assessment by normothermic machine perfusion. However, the recipients' model for end-stage liver disease scores showed a significant association with both overall patient and graft survival. CONCLUSION The use of normothermic machine perfusion for viability assessment allows safe transplantation of high-risk donor livers and effectively addresses the disparity between donor liver availability and transplantation demand.
Collapse
Affiliation(s)
- Thomas Vogel
- Department of General, Visceral, and Transplant Surgery, University Hospital Münster, Germany
| | - Carsten Szardenings
- Institute of Biostatistics and Clinical Research, University Münster, Germany
| | - Felix Becker
- Department of General, Visceral, and Transplant Surgery, University Hospital Münster, Germany
| | - Stephanie Jordan
- Department of General, Visceral, and Transplant Surgery, University Hospital Münster, Germany
| | - Shadi Katou
- Department of General, Visceral, and Transplant Surgery, University Hospital Münster, Germany
| | - Haluk Morgul
- Department of General, Visceral, and Transplant Surgery, University Hospital Münster, Germany
| | - Isabelle Flammang
- Department of General, Visceral, and Transplant Surgery, University Hospital Münster, Germany
| | - Philipp Houben
- Department of General, Visceral, and Transplant Surgery, University Hospital Münster, Germany
| | - Felicia Kneifel
- Department of General, Visceral, and Transplant Surgery, University Hospital Münster, Germany.
| | - Andreas Pascher
- Department of General, Visceral, and Transplant Surgery, University Hospital Münster, Germany
| |
Collapse
|
6
|
Groen PC, van Leeuwen OB, de Jonge J, Porte RJ. Viability assessment of the liver during ex-situ machine perfusion prior to transplantation. Curr Opin Organ Transplant 2024; 29:239-247. [PMID: 38764406 PMCID: PMC11224566 DOI: 10.1097/mot.0000000000001152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
PURPOSE OF REVIEW In an attempt to reduce waiting list mortality in liver transplantation, less-than-ideal quality donor livers from extended criteria donors are increasingly accepted. Predicting the outcome of these organs remains a challenge. Machine perfusion provides the unique possibility to assess donor liver viability pretransplantation and predict postreperfusion organ function. RECENT FINDINGS Assessing liver viability during hypothermic machine perfusion remains challenging, as the liver is not metabolically active. Nevertheless, the levels of flavin mononucleotide, transaminases, lactate dehydrogenase, glucose and pH in the perfusate have proven to be predictors of liver viability. During normothermic machine perfusion, the liver is metabolically active and in addition to the perfusate levels of pH, transaminases, glucose and lactate, the production of bile is a crucial criterion for hepatocyte viability. Cholangiocyte viability can be determined by analyzing bile composition. The differences between perfusate and bile levels of pH, bicarbonate and glucose are good predictors of freedom from ischemic cholangiopathy. SUMMARY Although consensus is lacking regarding precise cut-off values during machine perfusion, there is general consensus on the importance of evaluating both hepatocyte and cholangiocyte compartments. The challenge is to reach consensus for increased organ utilization, while at the same time pushing the boundaries by expanding the possibilities for viability testing.
Collapse
Affiliation(s)
- Puck C Groen
- Department of Surgery, Division of Hepato-Pancreato- Biliary and Transplant Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | | | | | | |
Collapse
|
7
|
Wehrle CJ, Miller C, Hashimoto K, Schlegel A. Standardization is needed in reporting risk and outcomes of machine perfusion in liver transplantation. Hepatobiliary Surg Nutr 2024; 13:709-714. [PMID: 39175732 PMCID: PMC11336534 DOI: 10.21037/hbsn-24-301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/03/2024] [Indexed: 08/24/2024]
Affiliation(s)
- Chase J. Wehrle
- Transplantation Center, Department of Surgery, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Charles Miller
- Transplantation Center, Department of Surgery, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Koji Hashimoto
- Transplantation Center, Department of Surgery, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Andrea Schlegel
- Transplantation Center, Department of Surgery, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
8
|
van Furth LA, Huijink TM, van Leeuwen LL, Maassen H, Lantinga VA, Ogurlu B, Hamelink TL, Pool MBF, Schutter R, Veldhuis SZJ, Ottens PJ, Moers C, Berger SP, Leuvenink HGD, Posma RA, Venema LH. The association between hemoglobin levels and renal function parameters during normothermic machine perfusion: A retrospective cohort study using porcine kidneys. Artif Organs 2024; 48:862-875. [PMID: 38546373 DOI: 10.1111/aor.14750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Ex vivo normothermic machine perfusion (NMP) is a promising tool for assessing an isolated kidney prior to transplantation. However, there is no consensus on the perfusate's optimal oxygen-carrying capacity to support renal function. To investigate the association of hemoglobin levels with renal function parameters, a retrospective analysis of isolated, normothermically, perfused porcine kidneys was performed. METHODS Between 2015 and 2021, a total of 228 kidneys underwent 4 h of NMP with perfusates that varied in hemoglobin levels. A generalized linear model was used to determine the association of hemoglobin levels with time-weighted means of renal function markers, such as fractional sodium excretion (FENa) and creatinine clearance (CrCl). Stratified by baseline hemoglobin level (<4.5, 4.5-6, or >6 mmol/L), these markers were modeled over time using a generalized linear mixed-effects model. All models were adjusted for potential confounders. RESULTS Until a hemoglobin level of around 5 mmol/L was reached, increasing hemoglobin levels were associated with superior FENa and CrCl. Thereafter, this association plateaued. When hemoglobin levels were categorized, hemoglobin <4.5 mmol/L was associated with worse renal function. Hemoglobin levels were neither significantly associated with proteinuria during NMP nor with ATP levels at the end of NMP. Hemoglobin levels >6 mmol/L showed no additional benefits in renal function. CONCLUSION In conclusion, we found an association between baseline hemoglobin levels and superior renal function parameters, but not injury, during NMP of porcine kidneys. Furthermore, we show that performing a retrospective cohort study of preclinical data is feasible and able to answer additional questions, reducing the potential use of laboratory animals.
Collapse
Affiliation(s)
- L Annick van Furth
- Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Tobias M Huijink
- Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - L Leonie van Leeuwen
- Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands
- Recanati/Miller Transplantation Institute, Mt. Sinai, New York City, New York, USA
| | - Hanno Maassen
- Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Veerle A Lantinga
- Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Baran Ogurlu
- Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Tim L Hamelink
- Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Merel B F Pool
- Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Rianne Schutter
- Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Susanne Z J Veldhuis
- Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Petra J Ottens
- Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Cyril Moers
- Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Stefan P Berger
- Department of Nephrology, University Medical Center Groningen, Groningen, The Netherlands
| | - Henri G D Leuvenink
- Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Rene A Posma
- Department of Critical Care, University Medical Center Groningen, Groningen, The Netherlands
| | - Leonie H Venema
- Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
9
|
Wehrle CJ, Jiao C, Sun K, Zhang M, Fairchild RL, Miller C, Hashimoto K, Schlegel A. Machine perfusion in liver transplantation: recent advances and coming challenges. Curr Opin Organ Transplant 2024; 29:228-238. [PMID: 38726745 DOI: 10.1097/mot.0000000000001150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
PURPOSE OF REVIEW Machine perfusion has been adopted into clinical practice in Europe since the mid-2010s and, more recently, in the United States (US) following approval of normothermic machine perfusion (NMP). We aim to review recent advances, provide discussion of potential future directions, and summarize challenges currently facing the field. RECENT FINDINGS Both NMP and hypothermic-oxygenated perfusion (HOPE) improve overall outcomes after liver transplantation versus traditional static cold storage (SCS) and offer improved logistical flexibility. HOPE offers additional protection to the biliary system stemming from its' protection of mitochondria and lessening of ischemia-reperfusion injury. Normothermic regional perfusion (NRP) is touted to offer similar protective effects on the biliary system, though this has not been studied prospectively.The most critical question remaining is the optimal use cases for each of the three techniques (NMP, HOPE, and NRP), particularly as HOPE and NRP become more available in the US. There are additional questions regarding the most effective criteria for viability assessment and the true economic impact of these techniques. Finally, with each technique purported to allow well tolerated use of riskier grafts, there is an urgent need to define terminology for graft risk, as baseline population differences make comparison of current data challenging. SUMMARY Machine perfusion is now widely available in all western countries and has become an essential tool in liver transplantation. Identification of the ideal technique for each graft, optimization of viability assessment, cost-effectiveness analyses, and proper definition of graft risk are the next steps to maximizing the utility of these powerful tools.
Collapse
Affiliation(s)
| | - Chunbao Jiao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| | - Keyue Sun
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| | - Mingyi Zhang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| | - Robert L Fairchild
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| | | | - Koji Hashimoto
- Transplantation Center, Cleveland Clinic
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| | - Andrea Schlegel
- Transplantation Center, Cleveland Clinic
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| |
Collapse
|
10
|
Mahboub P, Aburawi M, Ozgur OS, Pendexter C, Cronin S, Lin FM, Jain R, Karabacak MN, Karimian N, Tessier SN, Markmann JF, Yeh H, Uygun K. Gradual rewarming with a hemoglobin-based oxygen carrier improves viability of donation after circulatory death in rat livers. FRONTIERS IN TRANSPLANTATION 2024; 3:1353124. [PMID: 38993754 PMCID: PMC11235298 DOI: 10.3389/frtra.2024.1353124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 06/10/2024] [Indexed: 07/13/2024]
Abstract
Background Donation after circulatory death (DCD) grafts are vital for increasing available donor organs. Gradual rewarming during machine perfusion has proven effective in mitigating reperfusion injury and enhancing graft quality. Limited data exist on artificial oxygen carriers as an effective solution to meet the increasing metabolic demand with temperature changes. The aim of the present study was to assess the efficacy and safety of utilizing a hemoglobin-based oxygen carrier (HBOC) during the gradual rewarming of DCD rat livers. Methods Liver grafts were procured after 30 min of warm ischemia. The effect of 90 min of oxygenated rewarming perfusion from ice cold temperatures (4 °C) to 37 °C with HBOC after cold storage was evaluated and the results were compared with cold storage alone. Reperfusion at 37 °C was performed to assess the post-preservation recovery. Results Gradual rewarming with HBOC significantly enhanced recovery, demonstrated by markedly lower lactate levels and reduced vascular resistance compared to cold-stored liver grafts. Increased bile production in the HBOC group was noted, indicating improved liver function and bile synthesis capacity. Histological examination showed reduced cellular damage and better tissue preservation in the HBOC-treated livers compared to those subjected to cold storage alone. Conclusion This study suggests the safety of using HBOC during rewarming perfusion of rat livers as no harmful effect was detected. Furthermore, the viability assessment indicated improvement in graft function.
Collapse
Affiliation(s)
- Paria Mahboub
- Department of Surgery, University Medical Center Groningen, Groningen, Netherlands
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Research, Shriners Hospitals for Children, Boston, MA, United States
| | - Mohamed Aburawi
- Department of Research, Shriners Hospitals for Children, Boston, MA, United States
- Transplant Center, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - O Sila Ozgur
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Research, Shriners Hospitals for Children, Boston, MA, United States
| | - Casie Pendexter
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Research, Shriners Hospitals for Children, Boston, MA, United States
| | - Stephanie Cronin
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Research, Shriners Hospitals for Children, Boston, MA, United States
| | - Florence Min Lin
- Department of Research, Shriners Hospitals for Children, Boston, MA, United States
| | - Rohil Jain
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Research, Shriners Hospitals for Children, Boston, MA, United States
| | - Murat N Karabacak
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Research, Shriners Hospitals for Children, Boston, MA, United States
| | - Negin Karimian
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Research, Shriners Hospitals for Children, Boston, MA, United States
| | - Shannon N Tessier
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Research, Shriners Hospitals for Children, Boston, MA, United States
| | - James F Markmann
- Transplant Center, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Heidi Yeh
- Transplant Center, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Korkut Uygun
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Research, Shriners Hospitals for Children, Boston, MA, United States
| |
Collapse
|
11
|
Watson CJ, Gaurav R, Swift L, Fear C, Allison ME, Upponi SS, Brais R, Butler AJ. Bile Chemistry During Ex Situ Normothermic Liver Perfusion Does Not Always Predict Cholangiopathy. Transplantation 2024; 108:1383-1393. [PMID: 38409681 PMCID: PMC11115455 DOI: 10.1097/tp.0000000000004944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND Bile chemistry during normothermic ex situ liver perfusion (NESLiP) has been suggested to be an indicator of cholangiopathy. The normal range of biochemical variables in bile of livers undergoing NESLiP has not been defined, nor have published biliary viability criteria been assessed against instances of posttransplant nonanastomotic bile strictures (NASs). METHODS The bile and perfusate chemistry of 200 livers undergoing NESLiP between February 1, 2018, and October 30, 2023, was compared. In addition, 11 livers that underwent NESLiP and later developed NAS were selected and their bile chemistry was also examined. RESULTS In livers that did not develop cholangiopathy, concentrations of sodium, potassium, and chloride were slightly higher in bile than in perfusate, whereas the concentration of calcium was slightly lower. Bile was alkali and had a lower glucose concentration than perfusate. Cholangiocyte glucose reabsorption was shown to saturate at high perfusate concentrations and was more impaired in livers donated after circulatory death than in livers donated after brain death. Published criteria failed to identify all livers that went on to develop NASs. CONCLUSIONS A significant false-negative rate exists with current biliary viability criteria, probably reflecting the patchy and incomplete nature of the development of NASs in the biliary tree. The data presented here provide a benchmark for future assessment of bile duct chemistry during NESLiP.
Collapse
Affiliation(s)
- Christopher J.E. Watson
- Department of Surgery, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
- The National Institute of Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom
- The National Institute for Health Research Blood and Transplant Research Unit at the University of Cambridge in collaboration with Newcastle University and in partnership with National Health Service (NHS) Blood and Transplant, Cambridge, United Kingdom
- The Roy Calne Transplant Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Rohit Gaurav
- The Roy Calne Transplant Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Lisa Swift
- The Roy Calne Transplant Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Corrina Fear
- The Roy Calne Transplant Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Michael E.D. Allison
- The Roy Calne Transplant Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- Department of Medicine, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Sara S. Upponi
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Rebecca Brais
- Department of Medicine, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Andrew J. Butler
- Department of Surgery, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
- The National Institute of Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom
- The National Institute for Health Research Blood and Transplant Research Unit at the University of Cambridge in collaboration with Newcastle University and in partnership with National Health Service (NHS) Blood and Transplant, Cambridge, United Kingdom
- The Roy Calne Transplant Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| |
Collapse
|
12
|
Li J, Lu H, Zhang J, Li Y, Zhao Q. Comprehensive Approach to Assessment of Liver Viability During Normothermic Machine Perfusion. J Clin Transl Hepatol 2023; 11:466-479. [PMID: 36643041 PMCID: PMC9817053 DOI: 10.14218/jcth.2022.00130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/14/2022] [Accepted: 08/10/2022] [Indexed: 01/18/2023] Open
Abstract
Liver transplantation is the most effective treatment of advanced liver disease, and the use of extended criteria donor organs has broadened the source of available livers. Although normothermic machine perfusion (NMP) has become a useful tool in liver transplantation, there are no consistent criteria that can be used to evaluate the viability of livers during NMP. This review summarizes the criteria, indicators, and methods used to evaluate liver viability during NMP. The shape, appearance, and hemodynamics of the liver can be analyzed at a macroscopic level, while markers of liver injury, indicators of liver and bile duct function, and other relevant indicators can be evaluated by biochemical analysis. The liver can also be assessed by tissue biopsy at the microscopic level. Novel methods for assessment of liver viability are introduced. The limitations of evaluating liver viability during NMP are discussed and suggestions for future clinical practice are provided.
Collapse
Affiliation(s)
| | | | | | | | - Qiang Zhao
- Correspondence to: Qiang Zhao, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China. ORCID: https://orcid.org/0000-0002-6369-1393. Tel: +86-15989196835, E-mail:
| |
Collapse
|
13
|
Banker A, Bhatt N, Rao PS, Agrawal P, Shah M, Nayak M, Mohanka R. A Review of Machine Perfusion Strategies in Liver Transplantation. J Clin Exp Hepatol 2023; 13:335-349. [PMID: 36950485 PMCID: PMC10025749 DOI: 10.1016/j.jceh.2022.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 02/17/2023] Open
Abstract
The acceptance of liver transplantation as the standard of care for end-stage liver diseases has led to a critical shortage of donor allografts. To expand the donor organ pool, many countries have liberalized the donor criteria including extended criteria donors and donation after circulatory death. These marginal livers are at a higher risk of injury when they are preserved using the standard static cold storage (SCS) preservation techniques. In recent years, research has focused on optimizing organ preservation techniques to protect these marginal livers. Machine perfusion (MP) of the expanded donor liver has witnessed considerable advancements in the last decade. Research has showed MP strategies to confer significant advantages over the SCS techniques, such as longer preservation times, viability assessment and the potential to recondition high risk allografts prior to implantation. In this review article, we address the topic of MP in liver allograft preservation, with emphasis on current trends in clinical application. We discuss the relevant clinical trials related to the techniques of hypothermic MP, normothermic MP, hypothermic oxygenated MP, and controlled oxygenated rewarming. We also discuss the potential applications of ex vivo therapeutics which may be relevant in the future to further optimize the allograft prior to transplantation.
Collapse
Key Words
- ALP, Alkaline phosphatase
- ALT, Alanine transaminase
- ASO, Antisense oligonucleotides
- AST, Aspartate transaminase
- CIT, Cold ischemia times
- COPE, Consortium for Organ Preservation in Europe
- COR, Controlled oxygenated rewarming
- DBD, Donation after brain death
- DCD, Donation after circulatory death
- DHOPE, dual hypothermic oxygenated machine perfusion
- EAD, Early allograft dysfunction
- ECD, Extended criteria donors
- ETC, Electron transport chain
- GGT, Gamma glutamyl transferase
- HCV, Hepatitis C virus
- HMP, Hypothermic machine perfusion
- HOPE, Hypothermic oxygenated machine perfusion
- ICU, Intensive care unit
- IGL, Institute George Lopez-1
- INR, International normalized ratio
- IRI, ischemia reperfusion injury
- LDH, Lactate dehydrogenase
- MELD, Model for end-stage liver disease
- MP, Machine perfusion
- NAS, Non-anastomotic biliary strictures
- NMP, Normothermic machine perfusion
- NO, Nitric oxide
- PNF, Primary nonfunction
- ROS, Reactive oxygen species
- RT-PCR, Reverse transcription polymerase chain reaction
- SNMP, Sub-normothermic machine perfusion
- UW, University of Wisconsin
- WIT, Warm ischemia times
- hypothermic machine perfusion
- hypothermic oxygenated machine perfusion
- machine perfusion
- normothermic machine perfusion
- static cold storage
Collapse
Affiliation(s)
- Amay Banker
- Department of Liver Transplant and HPB Surgery, Sir HN Reliance Foundation Hospital, Mumbai, India
| | - Neha Bhatt
- Department of Liver Transplant and HPB Surgery, Sir HN Reliance Foundation Hospital, Mumbai, India
| | - Prashantha S. Rao
- Department of Liver Transplant and HPB Surgery, Sir HN Reliance Foundation Hospital, Mumbai, India
| | - Pravin Agrawal
- Department of Liver Transplant and HPB Surgery, Sir HN Reliance Foundation Hospital, Mumbai, India
| | - Mitul Shah
- Department of Liver Transplant and HPB Surgery, Sir HN Reliance Foundation Hospital, Mumbai, India
| | - Madhavi Nayak
- Department of Liver Transplant and HPB Surgery, Sir HN Reliance Foundation Hospital, Mumbai, India
| | - Ravi Mohanka
- Department of Liver Transplant and HPB Surgery, Sir HN Reliance Foundation Hospital, Mumbai, India
| |
Collapse
|
14
|
Schuler MJ, Becker D, Mueller M, Bautista Borrego L, Mancina L, Huwyler F, Binz J, Hagedorn C, Schär B, Gygax E, Weisskopf M, Sousa Da Silva RX, Antunes Crisóstomo JM, Dutkowski P, Rudolf von Rohr P, Clavien PA, Tibbitt MW, Eshmuminov D, Hefti M. Observations and findings during the development of a subnormothermic/normothermic long-term ex vivo liver perfusion machine. Artif Organs 2023; 47:317-329. [PMID: 36106378 DOI: 10.1111/aor.14403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Ex situliver machine perfusion at subnormothermic/normothermic temperature isincreasingly applied in the field of transplantation to store and evaluateorgans on the machine prior transplantation. Currently, various perfusionconcepts are in clinical and preclinical applications. Over the last 6 years ina multidisciplinary team, a novel blood based perfusion technology wasdeveloped to keep a liver alive and metabolically active outside of the bodyfor at least one week. METHODS Within thismanuscript, we present and compare three scenarios (Group 1, 2 and 3) we werefacing during our research and development (R&D) process, mainly linked tothe measurement of free hemoglobin and lactate in the blood based perfusate. Apartfrom their proven value in liver viability assessment (ex situ), these twoparameters are also helpful in R&D of a long-term liver perfusion machine and moreover supportive in the biomedical engineering process. RESULTS Group 1 ("good" liver on the perfusion machine) represents the best liver clearance capacity for lactate and free hemoglobin wehave observed. In contrast to Group 2 ("poor" liver on the perfusion machine), that has shown the worst clearance capacity for free hemoglobin. Astonishingly,also for Group 2, lactate is cleared till the first day of perfusion andafterwards, rising lactate values are detected due to the poor quality of theliver. These two perfusate parametersclearly highlight the impact of the organ quality/viability on the perfusion process. Whereas Group 3 is a perfusion utilizing a blood loop only (without a liver). CONCLUSION Knowing the feasible ranges (upper- and lower bound) and the courseover time of free hemoglobin and lactate is helpful to evaluate the quality ofthe organ perfusion itself and the maturity of the developed perfusion device. Freehemoglobin in the perfusate is linked to the rate of hemolysis that indicates how optimizing (gentle blood handling, minimizing hemolysis) the perfusion machine actually is. Generally, a reduced lactate clearancecapacity can be an indication for technical problems linked to the blood supplyof the liver and therefore helps to monitor the perfusion experiments.Moreover, the possibility is given to compare, evaluate and optimize developed liverperfusion systems based on the given ranges for these two parameters. Otherresearch groups can compare/quantify their perfusate (blood) parameters withthe ones in this manuscript. The presented data, findings and recommendations willfinally support other researchers in developing their own perfusion machine ormodifying commercially availableperfusion devices according to their needs.
Collapse
Affiliation(s)
- Martin J Schuler
- Wyss Zurich - ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Dustin Becker
- Wyss Zurich - ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Matteo Mueller
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | - Lucia Bautista Borrego
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | - Leandro Mancina
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | - Florian Huwyler
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Jonas Binz
- Wyss Zurich - ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Catherine Hagedorn
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | - Beatrice Schär
- Entwicklung biomedizinische Anwendungen, Securecell AG, Urdorf, Switzerland
| | - Erich Gygax
- Forschung und Entwicklung, Fumedica AG, Muri, Switzerland
| | - Miriam Weisskopf
- Center of Surgical Research, University Hospital Zürich, University of Zürich, Zurich, Switzerland
| | - Richard Xavier Sousa Da Silva
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | | | - Philipp Dutkowski
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | - Philipp Rudolf von Rohr
- Transport Processes and Reactions Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Pierre-Alain Clavien
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | - Mark W Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Dilmurodjon Eshmuminov
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | - Max Hefti
- Wyss Zurich - ETH Zurich/University of Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Watson CJ, Gaurav R, Fear C, Swift L, Selves L, Ceresa CD, Upponi SS, Brais R, Allison M, Macdonald-Wallis C, Taylor R, Butler AJ. Predicting Early Allograft Function After Normothermic Machine Perfusion. Transplantation 2022; 106:2391-2398. [PMID: 36044364 PMCID: PMC9698137 DOI: 10.1097/tp.0000000000004263] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 04/14/2022] [Accepted: 04/25/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Normothermic ex situ liver perfusion is increasingly used to assess donor livers, but there remains a paucity of evidence regarding criteria upon which to base a viability assessment or criteria predicting early allograft function. METHODS Perfusate variables from livers undergoing normothermic ex situ liver perfusion were analyzed to see which best predicted the Model for Early Allograft Function score. RESULTS One hundred fifty-four of 203 perfused livers were transplanted following our previously defined criteria. These comprised 84/123 donation after circulatory death livers and 70/80 donation after brain death livers. Multivariable analysis suggested that 2-h alanine transaminase, 2-h lactate, 11 to 29 mmol supplementary bicarbonate in the first 4 h, and peak bile pH were associated with early allograft function as defined by the Model for Early Allograft Function score. Nonanastomotic biliary strictures occurred in 11% of transplants, predominantly affected first- and second-order ducts, despite selection based on bile glucose and pH. CONCLUSIONS This work confirms the importance of perfusate alanine transaminase and lactate at 2-h, as well as the amount of supplementary bicarbonate required to keep the perfusate pH > 7.2, in the assessment of livers undergoing perfusion. It cautions against the use of lactate as a sole indicator of viability and also suggests a role for cholangiocyte function markers in predicting early allograft function.
Collapse
Affiliation(s)
- Christopher J.E. Watson
- Department of Surgery, University of Cambridge, Level E9, Addenbrooke’s Hospital, Cambridge, United Kingdom
- The National Institute of Health Research, Cambridge Biomedical Research Centre (BRC 1215 20014), Cambridge, United Kingdom
- The National Institute for Health Research Blood and Transplant Research Unit, University of Cambridge in collaboration with Newcastle University and in partnership with National Health Service Blood and Transplant, Cambridge, United Kingdom
- The Roy Calne Transplant Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Rohit Gaurav
- The Roy Calne Transplant Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Corrina Fear
- The Roy Calne Transplant Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Lisa Swift
- The Roy Calne Transplant Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Linda Selves
- Department of Surgery, University of Cambridge, Level E9, Addenbrooke’s Hospital, Cambridge, United Kingdom
- The Roy Calne Transplant Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Carlo D.L. Ceresa
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Sara S. Upponi
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Rebecca Brais
- Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Michael Allison
- The Roy Calne Transplant Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- Department of Medicine, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Corrie Macdonald-Wallis
- Statistics and Clinical Research, National Health Service Blood and Transplant, Bristol, United Kingdom
| | - Rhiannon Taylor
- Statistics and Clinical Research, National Health Service Blood and Transplant, Bristol, United Kingdom
| | - Andrew J. Butler
- Department of Surgery, University of Cambridge, Level E9, Addenbrooke’s Hospital, Cambridge, United Kingdom
- The National Institute of Health Research, Cambridge Biomedical Research Centre (BRC 1215 20014), Cambridge, United Kingdom
- The National Institute for Health Research Blood and Transplant Research Unit, University of Cambridge in collaboration with Newcastle University and in partnership with National Health Service Blood and Transplant, Cambridge, United Kingdom
- The Roy Calne Transplant Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| |
Collapse
|
16
|
Hyperspectral Imaging for Viability Assessment of Human Liver Allografts During Normothermic Machine Perfusion. Transplant Direct 2022; 8:e1420. [PMID: 36406899 PMCID: PMC9671746 DOI: 10.1097/txd.0000000000001420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 01/24/2023] Open
Abstract
UNLABELLED Normothermic machine perfusion (NMP) is nowadays frequently utilized in liver transplantation. Despite commonly accepted viability assessment criteria, such as perfusate lactate and perfusate pH, there is a lack of predictive organ evaluation strategies to ensure graft viability. Hyperspectral imaging (HSI)-as an optical imaging modality increasingly applied in the biomedical field-might provide additional useful data regarding allograft viability and performance of liver grafts during NMP. METHODS Twenty-five deceased donor liver allografts were included in the study. During NMP, graft viability was assessed conventionally and by means of HSI. Images of liver parenchyma were acquired at 1, 2, and 4 h of NMP, and subsequently analyzed using a specialized HSI acquisition software to compute oxygen saturation, tissue hemoglobin index, near-infrared perfusion index, and tissue water index. To analyze the association between HSI parameters and perfusate lactate as well as perfusate pH, we performed simple linear regression analysis. RESULTS Perfusate lactate at 1, 2, and 4 h NMP was 1.5 [0.3-8.1], 0.9 [0.3-2.8], and 0.9 [0.1-2.2] mmol/L. Perfusate pH at 1, 2, and 4 h NMP was 7.329 [7.013-7.510], 7.318 [7.081-7.472], and 7.265 [6.967-7.462], respectively. Oxygen saturation predicted perfusate lactate at 1 and 2 h NMP (R2 = 0.1577, P = 0.0493; R2 = 0.1831, P = 0.0329; respectively). Tissue hemoglobin index predicted perfusate lactate at 1, 2, and 4 h NMP (R2 = 0.1916, P = 0.0286; R2 = 0.2900, P = 0.0055; R2 = 0.2453, P = 0.0139; respectively). CONCLUSIONS HSI may serve as a noninvasive tool for viability assessment during NMP. Further evaluation and validation of HSI parameters are warranted in larger sample sizes.
Collapse
|
17
|
Abraham N, Ludwig EK, Schaaf CR, Veerasammy B, Stewart AS, McKinney C, Freund J, Brassil J, Samy KP, Gao Q, Kahan R, Niedzwiecki D, Cardona DM, Garman KS, Barbas AS, Sudan DL, Gonzalez LM. Orthotopic Transplantation of the Full-length Porcine Intestine After Normothermic Machine Perfusion. Transplant Direct 2022; 8:e1390. [PMID: 36299444 PMCID: PMC9592306 DOI: 10.1097/txd.0000000000001390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/16/2022] [Indexed: 11/30/2022] Open
Abstract
Successful intestinal transplantation is currently hindered by graft injury that occurs during procurement and storage, which contributes to postoperative sepsis and allograft rejection. Improved graft preservation may expand transplantable graft numbers and enhance posttransplant outcomes. Superior transplant outcomes have recently been demonstrated in clinical trials using machine perfusion to preserve the liver. We hypothesized that machine perfusion preservation of intestinal allografts could be achieved and allow for transplantation in a porcine model. Methods Using a translational porcine model, we developed a device for intestinal perfusion. Intestinal samples were collected at the time of organ procurement, and after 6 h of machine perfusion for gross and histologic evaluation, hourly chemistry panels were performed on the perfusate and were used for protocol optimization. Following transplantation, porcine recipient physical activity, systemic blood parameters, and vital signs were monitored for 2 d before sacrifice. Results In initial protocol development (generation 1, n = 8 grafts), multiple metabolic, electrolyte, and acid-base derangements were measured. These factors coincided with graft and mesenteric edema and luminal hemorrhage and were addressed with the addition of dialysis. In the subsequent protocol (generation 2, n = 9 grafts), differential jejunum and ileum perfusion were observed resulting in gross evidence of ileal ischemia. Modifications in vasodilating medications enhanced ileal perfusion (generation 3, n = 4 grafts). We report successful transplantation of 2 porcine intestinal allografts after machine perfusion with postoperative clinical and gross evidence of normal gut function. Conclusions This study reports development and optimization of machine perfusion preservation of small intestine and successful transplantation of intestinal allografts in a porcine model.
Collapse
Affiliation(s)
- Nader Abraham
- Duke Ex-Vivo Organ Lab (DEVOL), Division of Abdominal Transplantation, Department of Surgery, Duke University School of Medicine, Duke University, Durham, NC
| | - Elsa K. Ludwig
- Intestinal Regenerative Medicine Lab, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - Cecilia R. Schaaf
- Intestinal Regenerative Medicine Lab, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - Brittany Veerasammy
- Intestinal Regenerative Medicine Lab, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - Amy S. Stewart
- Intestinal Regenerative Medicine Lab, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - Caroline McKinney
- Intestinal Regenerative Medicine Lab, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - John Freund
- Intestinal Regenerative Medicine Lab, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | | | - Kannan P. Samy
- Duke Ex-Vivo Organ Lab (DEVOL), Division of Abdominal Transplantation, Department of Surgery, Duke University School of Medicine, Duke University, Durham, NC
| | - Qimeng Gao
- Duke Ex-Vivo Organ Lab (DEVOL), Division of Abdominal Transplantation, Department of Surgery, Duke University School of Medicine, Duke University, Durham, NC
| | - Riley Kahan
- Duke Ex-Vivo Organ Lab (DEVOL), Division of Abdominal Transplantation, Department of Surgery, Duke University School of Medicine, Duke University, Durham, NC
| | - Donna Niedzwiecki
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Duke University, Durham, NC
| | - Diana M. Cardona
- Department of Pathology, Duke University Medical Center, Durham, NC
| | - Katherine S. Garman
- Duke Ex-Vivo Organ Lab (DEVOL), Division of Abdominal Transplantation, Department of Surgery, Duke University School of Medicine, Duke University, Durham, NC
| | - Andrew S. Barbas
- Duke Ex-Vivo Organ Lab (DEVOL), Division of Abdominal Transplantation, Department of Surgery, Duke University School of Medicine, Duke University, Durham, NC
| | - Debra L. Sudan
- Duke Ex-Vivo Organ Lab (DEVOL), Division of Abdominal Transplantation, Department of Surgery, Duke University School of Medicine, Duke University, Durham, NC
| | - Liara M. Gonzalez
- Intestinal Regenerative Medicine Lab, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| |
Collapse
|
18
|
Krüger M, Ruppelt A, Kappler B, Van Soest E, Samsom RA, Grinwis GCM, Geijsen N, Helms JB, Stijnen M, Kock LM, Rasponi M, Kooistra HS, Spee B. Normothermic Ex Vivo Liver Platform Using Porcine Slaughterhouse Livers for Disease Modeling. Bioengineering (Basel) 2022; 9:bioengineering9090471. [PMID: 36135018 PMCID: PMC9495507 DOI: 10.3390/bioengineering9090471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/25/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Metabolic and toxic liver disorders, such as fatty liver disease (steatosis) and drug-induced liver injury, are highly prevalent and potentially life-threatening. To allow for the study of these disorders from the early stages onward, without using experimental animals, we collected porcine livers in a slaughterhouse and perfused these livers normothermically. With our simplified protocol, the perfused slaughterhouse livers remained viable and functional over five hours of perfusion, as shown by hemodynamics, bile production, indocyanine green clearance, ammonia metabolism, gene expression and histology. As a proof-of-concept to study liver disorders, we show that an infusion of free fatty acids and acetaminophen results in early biochemical signs of liver damage, including reduced functionality. In conclusion, the present platform offers an accessible system to perform research in a functional, relevant large animal model while avoiding using experimental animals. With further improvements to the model, prolonged exposure could make this model a versatile tool for studying liver diseases and potential treatments.
Collapse
Affiliation(s)
- Melanie Krüger
- LifeTec Group BV, 5611 ZS Eindhoven, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Alicia Ruppelt
- LifeTec Group BV, 5611 ZS Eindhoven, The Netherlands
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy
- Correspondence:
| | | | | | - Roos Anne Samsom
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Guy C. M. Grinwis
- Veterinary Pathology Diagnostic Centre, Department of Biomedical Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3508 TD Utrecht, The Netherlands
| | - Niels Geijsen
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - J. Bernd Helms
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Marco Stijnen
- LifeTec Group BV, 5611 ZS Eindhoven, The Netherlands
| | - Linda M. Kock
- LifeTec Group BV, 5611 ZS Eindhoven, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Marco Rasponi
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy
| | - Hans S. Kooistra
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Bart Spee
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
19
|
Tessier SN, de Vries RJ, Pendexter CA, Cronin SEJ, Ozer S, Hafiz EOA, Raigani S, Oliveira-Costa JP, Wilks BT, Lopera Higuita M, van Gulik TM, Usta OB, Stott SL, Yeh H, Yarmush ML, Uygun K, Toner M. Partial freezing of rat livers extends preservation time by 5-fold. Nat Commun 2022; 13:4008. [PMID: 35840553 PMCID: PMC9287450 DOI: 10.1038/s41467-022-31490-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
The limited preservation duration of organs has contributed to the shortage of organs for transplantation. Recently, a tripling of the storage duration was achieved with supercooling, which relies on temperatures between -4 and -6 °C. However, to achieve deeper metabolic stasis, lower temperatures are required. Inspired by freeze-tolerant animals, we entered high-subzero temperatures (-10 to -15 °C) using ice nucleators to control ice and cryoprotective agents (CPAs) to maintain an unfrozen liquid fraction. We present this approach, termed partial freezing, by testing gradual (un)loading and different CPAs, holding temperatures, and storage durations. Results indicate that propylene glycol outperforms glycerol and injury is largely influenced by storage temperatures. Subsequently, we demonstrate that machine perfusion enhancements improve the recovery of livers after freezing. Ultimately, livers that were partially frozen for 5-fold longer showed favorable outcomes as compared to viable controls, although frozen livers had lower cumulative bile and higher liver enzymes.
Collapse
Affiliation(s)
- Shannon N. Tessier
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA
| | - Reinier J. de Vries
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA ,grid.7177.60000000084992262Department of Surgery, Amsterdam University Medical Centers – location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Casie A. Pendexter
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA ,Present Address: Sylvatica Biotech Inc., North Charleston, SC USA
| | - Stephanie E. J. Cronin
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA
| | - Sinan Ozer
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA
| | - Ehab O. A. Hafiz
- grid.420091.e0000 0001 0165 571XDepartment of Electron Microscopy Research, Theodor Bilharz Research Institute, Giza, Egypt
| | - Siavash Raigani
- grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA ,grid.32224.350000 0004 0386 9924Department of Surgery, Division of Transplantation, Massachusetts General Hospital, Boston, MA USA
| | - Joao Paulo Oliveira-Costa
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Medicine and Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA USA
| | - Benjamin T. Wilks
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA
| | - Manuela Lopera Higuita
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA
| | - Thomas M. van Gulik
- grid.7177.60000000084992262Department of Surgery, Amsterdam University Medical Centers – location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Osman Berk Usta
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA
| | - Shannon L. Stott
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Medicine and Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA USA
| | - Heidi Yeh
- grid.32224.350000 0004 0386 9924Department of Surgery, Division of Transplantation, Massachusetts General Hospital, Boston, MA USA
| | - Martin L. Yarmush
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA ,grid.430387.b0000 0004 1936 8796Department of Biomedical Engineering, Rutgers University, Piscataway, NJ USA
| | - Korkut Uygun
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA
| | - Mehmet Toner
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA
| |
Collapse
|
20
|
Hou J, Liavåg OMI, Færden IH, Martinsen ØG, Tønnessen TI, Line PD, Hagness M, Høgetveit JO, Pischke SE, Strand-Amundsen R. Utilization of dielectric properties for assessment of liver ischemia-reperfusion injury in vivo and during machine perfusion. Sci Rep 2022; 12:11183. [PMID: 35778457 PMCID: PMC9249774 DOI: 10.1038/s41598-022-14817-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 06/13/2022] [Indexed: 11/20/2022] Open
Abstract
There is a shortage of donor livers and patients consequently die on waiting lists worldwide. Livers are discarded if they are clinically judged to have a high risk of non-function following transplantation. With the aim of extending the pool of available donor livers, we assessed the condition of porcine livers by monitoring the microwave dielectric properties. A total of 21 livers were divided into three groups: control with no injury (CON), biliary injury by hepatic artery occlusion (AHEP), and overall hepatic injury by static cold storage (SCS). All were monitored for four hours in vivo, followed by ex vivo plurithermic machine perfusion (PMP). Permittivity data was modeled with a two-pole Cole-Cole equation, and dielectric properties from one-hour intervals were analyzed during in vivo and normothermic machine perfusion (NMP). A clear increasing trend in the conductivity was observed in vivo in the AHEP livers compared to the control livers. After four hours of NMP, separations in the conductivity were observed between the three groups. Our results indicate that dielectric relaxation spectroscopy (DRS) can be used to detect and differentiate liver injuries, opening for a standardized and reliable point of evaluation for livers prior to transplantation.
Collapse
Affiliation(s)
- Jie Hou
- Department of Physics, University of Oslo, Sem Sælands vei 24, 0316, Oslo, Norway.
- Department of Clinical and Biomedical Engineering, Oslo University Hospital, 0424, Oslo, Norway.
| | - Olav Magnus Ivar Liavåg
- Section for Transplantation Surgery, Department of Transplantation Medicine, Oslo University Hospital, 0424, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, 0318, Oslo, Norway
| | - Ida Høy Færden
- Institute of Clinical Medicine, University of Oslo, 0318, Oslo, Norway
- Department of Immunology, University of Oslo, 0372, Oslo, Norway
| | - Ørjan Grøttem Martinsen
- Department of Physics, University of Oslo, Sem Sælands vei 24, 0316, Oslo, Norway
- Department of Clinical and Biomedical Engineering, Oslo University Hospital, 0424, Oslo, Norway
| | - Tor Inge Tønnessen
- Department of Emergencies and Critical Care, Oslo University Hospital, 0424, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, 0318, Oslo, Norway
| | - Pål-Dag Line
- Section for Transplantation Surgery, Department of Transplantation Medicine, Oslo University Hospital, 0424, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, 0318, Oslo, Norway
| | - Morten Hagness
- Section for Transplantation Surgery, Department of Transplantation Medicine, Oslo University Hospital, 0424, Oslo, Norway
| | - Jan Olav Høgetveit
- Department of Physics, University of Oslo, Sem Sælands vei 24, 0316, Oslo, Norway
- Division of Technology and Innovation, Oslo University Hospital, 0424, Oslo, Norway
| | - Søren Erik Pischke
- Department of Emergencies and Critical Care, Oslo University Hospital, 0424, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, 0318, Oslo, Norway
- Department of Immunology, University of Oslo, 0372, Oslo, Norway
| | - Runar Strand-Amundsen
- Department of Clinical and Biomedical Engineering, Oslo University Hospital, 0424, Oslo, Norway
| |
Collapse
|
21
|
van Leeuwen OB, Bodewes SB, Lantinga VA, Haring MP, Thorne AM, Brüggenwirth IM, van den Berg AP, de Boer MT, de Jong IE, de Kleine RH, Lascaris B, Nijsten MW, Reyntjens KM, de Meijer VE, Porte RJ. Sequential hypothermic and normothermic machine perfusion enables safe transplantation of high-risk donor livers. Am J Transplant 2022; 22:1658-1670. [PMID: 35286759 PMCID: PMC9325426 DOI: 10.1111/ajt.17022] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/01/2022] [Accepted: 02/24/2022] [Indexed: 01/25/2023]
Abstract
Ex situ normothermic machine perfusion (NMP) is increasingly used for viability assessment of high-risk donor livers, whereas dual hypothermic oxygenated machine perfusion (DHOPE) reduces ischemia-reperfusion injury. We aimed to resuscitate and test the viability of initially-discarded, high-risk donor livers using sequential DHOPE and NMP with two different oxygen carriers: an artificial hemoglobin-based oxygen carrier (HBOC) or red blood cells (RBC). In a prospective observational cohort study of 54 livers that underwent DHOPE-NMP, the first 18 procedures were performed with a HBOC-based perfusion solution and the subsequent 36 procedures were performed with an RBC-based perfusion solution for the NMP phase. All but one livers were derived from extended criteria donation after circulatory death donors, with a median donor risk index of 2.84 (IQR 2.52-3.11). After functional assessment during NMP, 34 livers (63% utilization), met the viability criteria and were transplanted. One-year graft and patient survival were 94% and 100%, respectively. Post-transplant cholangiopathy occurred in 1 patient (3%). There were no significant differences in utilization rate and post-transplant outcomes between the HBOC and RBC group. Ex situ machine perfusion using sequential DHOPE-NMP for resuscitation and viability assessment of high-risk donor livers results in excellent transplant outcomes, irrespective of the oxygen carrier used.
Collapse
Affiliation(s)
- Otto B. van Leeuwen
- Department of SurgerySection of Hepatobiliary Surgery & Liver TransplantationUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands,Surgical Research LaboratoryDepartment of SurgeryUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Silke B. Bodewes
- Department of SurgerySection of Hepatobiliary Surgery & Liver TransplantationUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Veerle A. Lantinga
- Department of SurgerySection of Hepatobiliary Surgery & Liver TransplantationUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Martijn P.D. Haring
- Department of SurgerySection of Hepatobiliary Surgery & Liver TransplantationUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Adam M. Thorne
- Department of SurgerySection of Hepatobiliary Surgery & Liver TransplantationUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Isabel M.A. Brüggenwirth
- Department of SurgerySection of Hepatobiliary Surgery & Liver TransplantationUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Aad P. van den Berg
- Department of Gastroenterology and HepatologyUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Marieke T. de Boer
- Department of SurgerySection of Hepatobiliary Surgery & Liver TransplantationUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Iris E.M. de Jong
- Department of SurgerySection of Hepatobiliary Surgery & Liver TransplantationUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands,Surgical Research LaboratoryDepartment of SurgeryUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Ruben H.J. de Kleine
- Department of SurgerySection of Hepatobiliary Surgery & Liver TransplantationUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Bianca Lascaris
- Department of SurgerySection of Hepatobiliary Surgery & Liver TransplantationUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Maarten W.N. Nijsten
- Department of Intensive CareUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Koen M.E.M. Reyntjens
- Department of AnesthesiologyUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Vincent E. de Meijer
- Department of SurgerySection of Hepatobiliary Surgery & Liver TransplantationUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Robert J. Porte
- Department of SurgerySection of Hepatobiliary Surgery & Liver TransplantationUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| |
Collapse
|
22
|
Mergental H, Laing RW, Hodson J, Boteon YL, Attard JA, Walace LL, Neil DAH, Barton D, Schlegel A, Muiesan P, Abradelo M, Isaac JR, Roberts K, Perera MTPR, Afford SC, Mirza DF. Introduction of the Concept of Diagnostic Sensitivity and Specificity of Normothermic Perfusion Protocols to Assess High-Risk Donor Livers. Liver Transpl 2022; 28:794-806. [PMID: 34619014 DOI: 10.1002/lt.26326] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/23/2021] [Accepted: 09/10/2021] [Indexed: 12/14/2022]
Abstract
Normothermic machine perfusion (NMP) allows objective assessment of donor liver transplantability. Several viability evaluation protocols have been established, consisting of parameters such as perfusate lactate clearance, pH, transaminase levels, and the production and composition of bile. The aims of this study were to assess 3 such protocols, namely, those introduced by the teams from Birmingham (BP), Cambridge (CP), and Groningen (GP), using a cohort of high-risk marginal livers that had initially been deemed unsuitable for transplantation and to introduce the concept of the viability assessment sensitivity and specificity. To demonstrate and quantify the diagnostic accuracy of these protocols, we used a composite outcome of organ use and 24-month graft survival as a surrogate endpoint. The effects of assessment modifications, including the removal of the most stringent components of the protocols, were also assessed. Of the 31 organs, 22 were transplanted after a period of NMP, of which 18 achieved the outcome of 24-month graft survival. The BP yielded 94% sensitivity and 50% specificity when predicting this outcome. The GP and CP both seemed overly conservative, with 1 and 0 organs, respectively, meeting these protocols. Modification of the GP and CP to exclude their most stringent components increased this to 11 and 8 organs, respectively, and resulted in moderate sensitivity (56% and 44%) but high specificity (92% and 100%, respectively) with respect to the composite outcome. This study shows that the normothermic assessment protocols can be useful in identifying potentially viable organs but that the balance of risk of underuse and overuse varies by protocol.
Collapse
Affiliation(s)
- Hynek Mergental
- Liver Unit Queen Elizabeth HospitalUniversity Hospitals Birmingham NHS Foundation Trust Birmingham United Kingdom National Institute for Health Research, Birmingham Biomedical Research Centre University of Birmingham and University Hospitals Birmingham NHS Foundation Trust Birmingham United Kingdom Centre for Liver and Gastrointestinal ResearchInstitute of Immunology and Immunotherapy University of Birmingham Birmingham United Kingdom Department of StatisticsInstitute for Translational Medicine Queen Elizabeth HospitalUniversity Hospitals Birmingham NHS Foundation Trust Birmingham United Kingdom Department of Cellular Pathology Queen Elizabeth HospitalUniversity Hospitals Birmingham NHS Foundation Trust Birmingham United Kingdom D B Team, Cancer Research UK Clinical Trials Unit University of Birmingham Birmingham United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lodhi S, Stone JP, Entwistle TR, Fildes JE. The Use of Hemoglobin-Based Oxygen Carriers in Ex Vivo Machine Perfusion of Donor Organs for Transplantation. ASAIO J 2022; 68:461-470. [PMID: 35220355 DOI: 10.1097/mat.0000000000001597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
There has been significant progress in the development of ex vivo machine perfusion for the nonischemic preservation of donor organs. However, several complications remain, including the logistics of using human blood for graft oxygenation and hemolysis occurring as a result of mechanical technology. Recently, hemoglobin-based oxygen carriers, originally developed for use as blood substitutes, have been studied as an alternative to red blood cell-based perfusates. Although research in this field is somewhat limited, the findings are promising. We offer a brief review of the use of hemoglobin-based oxygen carriers in ex vivo machine perfusion and discuss future directions that will likely have a major impact in progressing oxygen carrier use in clinical practice.
Collapse
Affiliation(s)
- Sirat Lodhi
- From the The Ex-Vivo Research Centre, 3F66, Block 3, Alderley Park, Nether Alderley, Cheshire, United Kingdom
- The Ex-Vivo Lab, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - John P Stone
- From the The Ex-Vivo Research Centre, 3F66, Block 3, Alderley Park, Nether Alderley, Cheshire, United Kingdom
- The Ex-Vivo Lab, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- The Transplant Centre, Manchester Foundation Trust, Manchester, United Kingdom
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Timothy R Entwistle
- From the The Ex-Vivo Research Centre, 3F66, Block 3, Alderley Park, Nether Alderley, Cheshire, United Kingdom
- The Ex-Vivo Lab, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- The Transplant Centre, Manchester Foundation Trust, Manchester, United Kingdom
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - James E Fildes
- From the The Ex-Vivo Research Centre, 3F66, Block 3, Alderley Park, Nether Alderley, Cheshire, United Kingdom
- The Ex-Vivo Lab, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- The Transplant Centre, Manchester Foundation Trust, Manchester, United Kingdom
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
24
|
Abraham N, Zhang M, Cray P, Gao Q, Samy KP, Neill R, Cywinska G, Migaly J, Kahan R, Pontula A, Halpern SE, Rush C, Penaflor J, Kesseli SJ, Krischak M, Song M, Hartwig MG, Pollara JJ, Barbas AS. Two Compartment Evaluation of Liver Grafts During Acellular Room Temperature Machine Perfusion (acRTMP) in a Rat Liver Transplant Model. Front Med (Lausanne) 2022; 9:804834. [PMID: 35280912 PMCID: PMC8907827 DOI: 10.3389/fmed.2022.804834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/25/2022] [Indexed: 11/24/2022] Open
Abstract
Background Subnormothermic machine perfusion (SNMP) of liver grafts is currently less clinically developed than normothermic and hypothermic approaches, but may have logistical advantages. At intermediate temperatures, the oxygen demand of the graft is low enough to be satisfied with an acellular perfusate, obviating the need for oxygen carrying molecules. This intermediate metabolic rate, however, is sufficient to support the production of bile, which is emerging as an important indicator of graft injury and viability. In this study, we hypothesized that the biliary compartment would be more sensitive than perfusate in detecting graft injury during SNMP. Methods To test this hypothesis in a rat model, we performed liver transplants with DCD and control liver grafts after 1 h of acellular room temperature machine perfusion (acRTMP) or static cold storage (SCS). Point of care liver function tests were measured in biliary and perfusate samples after 1 h of machine perfusion. Following transplantation, rats were sacrificed at 24 h for assessment of post-transplant graft function and histology. Results All point-of-care liver function tests were significantly more concentrated in the biliary compartment than the perfusate compartment during acRTMP. DCD liver grafts could be distinguished from control liver grafts by significantly higher markers of hepatocyte injury (AST, ALT) in the biliary compartment, but not in the perfusate compartment. Classical markers of cholangiocyte injury, such as gammy-glut amyl transferase (GGT), amylase (AML), and alkaline phosphatase were detectable in the biliary compartment, but not in the perfusate compartment. In comparison to SCS, graft preservation by acRTMP produced a significant survival benefit in DCD liver transplantation (75 vs. 0%, p < 0.0030). Conclusion Together, these findings demonstrate that during acRTMP, the biliary compartment may be a more sensitive indicator of graft injury than the perfusate compartment. Moreover, acRTMP provides superior graft preservation to SCS in rat DCD liver transplantation.
Collapse
Affiliation(s)
- Nader Abraham
- Duke Ex-Vivo Organ Lab (DEVOL) - Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| | - Min Zhang
- Duke Ex-Vivo Organ Lab (DEVOL) - Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| | - Paul Cray
- Duke Ex-Vivo Organ Lab (DEVOL) - Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| | - Qimeng Gao
- Duke Ex-Vivo Organ Lab (DEVOL) - Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| | - Kannan P Samy
- Duke Ex-Vivo Organ Lab (DEVOL) - Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| | - Ryan Neill
- Duke Ex-Vivo Organ Lab (DEVOL) - Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| | - Greta Cywinska
- Duke Ex-Vivo Organ Lab (DEVOL) - Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| | - JonCarlo Migaly
- Duke Ex-Vivo Organ Lab (DEVOL) - Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| | - Riley Kahan
- Duke Ex-Vivo Organ Lab (DEVOL) - Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| | - Arya Pontula
- Duke Ex-Vivo Organ Lab (DEVOL) - Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| | - Samantha E Halpern
- Duke Ex-Vivo Organ Lab (DEVOL) - Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| | - Caroline Rush
- Duke Ex-Vivo Organ Lab (DEVOL) - Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| | - Jude Penaflor
- Duke Ex-Vivo Organ Lab (DEVOL) - Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| | - Samuel J Kesseli
- Duke Ex-Vivo Organ Lab (DEVOL) - Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| | - Madison Krischak
- Duke Ex-Vivo Organ Lab (DEVOL) - Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| | - Mingqing Song
- Duke Ex-Vivo Organ Lab (DEVOL) - Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| | - Matthew G Hartwig
- Duke Ex-Vivo Organ Lab (DEVOL) - Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| | - Justin J Pollara
- Duke Ex-Vivo Organ Lab (DEVOL) - Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| | - Andrew S Barbas
- Duke Ex-Vivo Organ Lab (DEVOL) - Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| |
Collapse
|
25
|
Verstraeten L, Jochmans I. Sense and Sensibilities of Organ Perfusion as a Kidney and Liver Viability Assessment Platform. Transpl Int 2022; 35:10312. [PMID: 35356401 PMCID: PMC8958413 DOI: 10.3389/ti.2022.10312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/26/2022] [Indexed: 12/13/2022]
Abstract
Predicting organ viability before transplantation remains one of the most challenging and ambitious objectives in transplant surgery. Waitlist mortality is high while transplantable organs are discarded. Currently, around 20% of deceased donor kidneys and livers are discarded because of “poor organ quality”, Decisions to discard are still mainly a subjective judgement since there are only limited reliable tools predictive of outcome available. Organ perfusion technology has been posed as a platform for pre-transplant organ viability assessment. Markers of graft injury and function as well as perfusion parameters have been investigated as possible viability markers during ex-situ hypothermic and normothermic perfusion. We provide an overview of the available evidence for the use of kidney and liver perfusion as a tool to predict posttransplant outcomes. Although evidence shows post-transplant outcomes can be predicted by both injury markers and perfusion parameters during hypothermic kidney perfusion, the predictive accuracy is too low to warrant clinical decision making based upon these parameters alone. In liver, further evidence on the usefulness of hypothermic perfusion as a predictive tool is needed. Normothermic perfusion, during which the organ remains fully metabolically active, seems a more promising platform for true viability assessment. Although we do not yet fully understand “on-pump” organ behaviour at normothermia, initial data in kidney and liver are promising. Besides the need for well-designed (registry) studies to advance the field, the catch-22 of selection bias in clinical studies needs addressing.
Collapse
Affiliation(s)
- Laurence Verstraeten
- Lab of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Ina Jochmans
- Lab of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Abdominal Transplantation, University Hospitals Leuven, Leuven, Belgium
- *Correspondence: Ina Jochmans,
| |
Collapse
|
26
|
Brüggenwirth IMA, van der Plas WS, van Leeuwen OB, Thorne AM, Rayar M, de Meijer VE, Porte RJ. Oxygenated versus non-oxygenated flush out and storage of donor livers-An experimental study. Artif Organs 2021; 46:201-209. [PMID: 34866205 PMCID: PMC9299999 DOI: 10.1111/aor.14135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/18/2021] [Accepted: 10/20/2021] [Indexed: 11/28/2022]
Abstract
Background During donor organ procurement and subsequent static cold storage (SCS), hepatic adenosine triphosphate (ATP) levels are progressively depleted, which contributes to ischemia‐reperfusion injury (IRI). We sought to investigate a simple approach to prevent ATP depletion and IRI using a porcine donation after circulatory death (DCD) liver reperfusion model. Methods After 30 min warm ischemia, porcine livers were flushed via the portal vein with cold (4°C) non‐oxygenated University of Wisconsin (UW) preservation solution (n = 6, control group) or with oxygenated UW (n = 6, OxyFlush group). Livers were then subjected to 4 h SCS in non‐oxygenated (control) or oxygenated (OxyFlush) UW, followed by 4 h normothermic reperfusion using whole blood. Hepatic ATP levels were compared, and hepatobiliary function and injury were assessed. Results At the end of SCS, ATP was higher in the OxyFlush group compared to controls (delta ATP of +0.26 vs. −0.68 µmol/g protein, p = 0.04). All livers produced bile and metabolized lactate, and there were no differences between the groups. Grafts in the OxyFlush group had lower blood glucose levels after reperfusion (p = 0.04). Biliary pH, glucose and bicarbonate were not different between the groups. Injury markers including liver transaminases, lactate dehydrogenase, malondialdehyde, cell‐free DNA and flavin mononucleotide in the SCS solution and during reperfusion were also similar. Histological assessment of the parenchyma and bile ducts did not reveal differences between the groups. Conclusion Oxygenated flush out and storage of DCD porcine livers prevents ATP depletion during ischemia, but this does not seem sufficient to mitigate early signs of IRI.
Collapse
Affiliation(s)
- Isabel M A Brüggenwirth
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University Medical Center Groningen, Groningen, The Netherlands
| | - Willemijn S van der Plas
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University Medical Center Groningen, Groningen, The Netherlands
| | - Otto B van Leeuwen
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University Medical Center Groningen, Groningen, The Netherlands
| | - Adam M Thorne
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University Medical Center Groningen, Groningen, The Netherlands
| | - Michel Rayar
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University Medical Center Groningen, Groningen, The Netherlands.,Centre Hospitalier Universitaire de Rennes, Service de Chirurgie Hépatobiliaire et Digestive, Rennes, France
| | - Vincent E de Meijer
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University Medical Center Groningen, Groningen, The Netherlands
| | - Robert J Porte
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
27
|
A proof of concept study on real-time LiMAx CYP1A2 liver function assessment of donor grafts during normothermic machine perfusion. Sci Rep 2021; 11:23444. [PMID: 34873187 PMCID: PMC8648778 DOI: 10.1038/s41598-021-02641-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
No single reliable parameter exists to assess liver graft function of extended criteria donors during ex-vivo normothermic machine perfusion (NMP). The liver maximum capacity (LiMAx) test is a clinically validated cytochromal breath test, measuring liver function based on 13CO2 production. As an innovative concept, we aimed to integrate the LiMAx breath test with NMP to assess organ function. Eleven human livers were perfused using NMP. After one hour of stabilization, LiMAx testing was performed. Injury markers (ALT, AST, miR-122, FMN, and Suzuki-score) and lactate clearance were measured and related to LiMAx values. LiMAx values ranged between 111 and 1838 µg/kg/h, and performing consecutive LiMAx tests during longer NMP was feasible. No correlation was found between LiMAx value and miR-122 and FMN levels in the perfusate. However, a significant inverse correlation was found between LiMAx value and histological injury (Suzuki-score, R = − 0.874, P < 0.001), AST (R = − 0.812, P = 0.004) and ALT (R = − 0.687, P = 0.028). Furthermore, a significant correlation was found with lactate clearance (R = 0.683, P = 0.043). We demonstrate, as proof of principle, that liver function during NMP can be quantified using the LiMAx test, illustrating a positive correlation with traditional injury markers. This new breath-test application separates livers with adequate cytochromal liver function from inadequate ones and may support decision-making in the safe utilization of extended criteria donor grafts.
Collapse
|
28
|
Dual Lactate Clearance in the Viability Assessment of Livers Donated After Circulatory Death With Ex Situ Normothermic Machine Perfusion. Transplant Direct 2021; 7:e789. [PMID: 34805491 PMCID: PMC8601326 DOI: 10.1097/txd.0000000000001243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/26/2021] [Accepted: 09/11/2021] [Indexed: 12/16/2022] Open
Abstract
Supplemental Digital Content is available in the text. Perfusate lactate clearance (LC) is considered one of the useful indicators of liver viability assessment during normothermic machine perfusion (NMP); however, the applicable scope and potential mechanisms of LC remain poorly defined in the setting of liver donation after circulatory death.
Collapse
|
29
|
The use of normothermic machine perfusion to rescue liver allografts from expanded criteria donors. Updates Surg 2021; 74:193-202. [PMID: 34542843 DOI: 10.1007/s13304-021-01169-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/09/2021] [Indexed: 12/16/2022]
Abstract
The use of expanded criteria donors is one of the strategies used to overcome the gap between the demand for organs and the number of donors. Physicians debate the extent to which marginal grafts can be used. In recent years, normothermic machine perfusion (NMP) has been used to test liver viability before transplantation. Grafts underwent NMP whenever histological steatosis was > 40% or there were at least three Eurotransplant criteria for expanded criteria donor (ECD). We used NMP to test 19 grafts, 3 from donation after type 3 controlled cardiac death (DCD), and 16 from donation after brain death (DBD). Only two grafts from DBD were not transplanted, because perfusion proved they were not suitable (total of 17 transplanted grafts of 19 tested grafts). Kaplan-Meier survival estimates at 30, 90, 180, and 1 year after transplant were all 94% (95% CI 84-100%); estimated 3-years survival was 82% (95% CI 62-100%). Overall survival rates did not differ from those of patients transplanted with non-perfused grafts from an ECD. In our experience, the use of very marginal grafts preventively tested by NMP does not negatively influence the patient's outcome, and increases the number of transplants in low donation areas.
Collapse
|
30
|
Kesseli SJ, Gloria JN, Abraham N, Halpern SE, Cywinska GN, Zhang M, Moris D, Schmitz R, Shaw BI, Fitch ZW, Song M, Guy CD, Hartwig MG, Knechtle S, Barbas AS. Point-of-Care Assessment of DCD Livers During Normothermic Machine Perfusion in a Nonhuman Primate Model. Hepatol Commun 2021; 5:1527-1542. [PMID: 34510831 PMCID: PMC8435285 DOI: 10.1002/hep4.1734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/14/2021] [Accepted: 03/31/2021] [Indexed: 02/04/2023] Open
Abstract
Normothermic machine perfusion (NMP) provides clinicians an opportunity to assess marginal livers before transplantation. However, objective criteria and point-of-care (POC) biomarkers to predict risk and guide decision making are lacking. In this investigation, we characterized trends in POC biomarkers during NMP and compared primate donation after circulatory death (DCD) livers with short and prolonged warm ischemic injury. Following asystole, livers were subjected to either 5 minutes (DCD-5min, n = 4) or 45 minutes (DCD-45min, n = 4) of warm ischemia time. Livers were flushed with heparinized UW solution, and preserved in cold storage before NMP. During flow-controlled NMP, circulating perfusate and tissue biopsies were collected at 0, 2, 4, 6, and 8 hours for analysis. DCD-45min livers had greater terminal portal vein pressure (8.5 vs. 13.3 mm Hg, P = 0.027) and terminal portal vein resistance (16.3 vs. 32.4 Wood units, P = 0.005). During perfusion, DCD-45min livers had equivalent terminal lactate clearance (93% vs. 96%, P = 0.344), greater terminal alanine aminotransferase (163 vs. 883 U/L, P = 0.002), and greater terminal perfusate gamma glutamyltransferase (GGT) (5.0 vs. 31.7 U/L, P = 0.002). DCD-45min livers had higher circulating levels of flavin mononucleotide (FMN) at hours 2 and 4 of perfusion (136 vs. 250 ng/mL, P = 0.029; and 158 vs. 293 ng/mL, P = 0.003; respectively). DCD-5min livers produced more bile and demonstrated progressive decline in bile lactate dehydrogenase, whereas DCD-45min livers did not. On blinded histologic evaluation, DCD-45min livers demonstrated greater injury and necrosis at late stages of perfusion, indicative of nonviability. Conclusion: Objective criteria are needed to define graft viability during NMP. Perfusate lactate clearance does not discriminate between viable and nonviable livers during NMP. Perfusate GGT and FMN may represent POC biomarkers predictive of liver injury during NMP.
Collapse
Affiliation(s)
| | | | - Nader Abraham
- Department of SurgeryDuke University Medical CenterDurhamNCUSA
| | | | | | - Min Zhang
- Department of SurgeryDuke University Medical CenterDurhamNCUSA
| | - Dimitrios Moris
- Department of SurgeryDuke University Medical CenterDurhamNCUSA
| | - Robin Schmitz
- Department of SurgeryDuke University Medical CenterDurhamNCUSA
| | - Brian I. Shaw
- Department of SurgeryDuke University Medical CenterDurhamNCUSA
| | | | - Mingqing Song
- Department of SurgeryDuke University Medical CenterDurhamNCUSA
| | - Cynthia D. Guy
- Department of PathologyDuke University Medical CenterDurhamNCUSA
| | | | - Stuart Knechtle
- Department of SurgeryDuke University Medical CenterDurhamNCUSA
| | | |
Collapse
|
31
|
Dual Versus Single Oxygenated Hypothermic Machine Perfusion of Porcine Livers: Impact on Hepatobiliary and Endothelial Cell Injury. Transplant Direct 2021; 7:e741. [PMID: 34386578 PMCID: PMC8354629 DOI: 10.1097/txd.0000000000001184] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/09/2021] [Indexed: 12/12/2022] Open
Abstract
Supplemental Digital Content is available in the text. Background. Hypothermic oxygenated machine perfusion (HOPE) reduces ischemia-reperfusion injury of donor livers and is increasingly used in clinical transplantation. However, it remains unclear whether perfusion via the portal vein alone (HOPE) or via both the portal vein and hepatic artery (dual HOPE or DHOPE) is superior. Methods. Twelve porcine livers donated after circulatory death were randomized for 2 h of HOPE (n = 6) or DHOPE (n = 6), followed by 4 h of warm reperfusion with whole blood, to mimic transplantation. Hepatobiliary and endothelial cell function and injury markers were determined in perfusate and bile samples. Biopsies of bile ducts, hepatic arteries, and liver parenchyma were collected to assess histological damage and the expression of endothelial protective genes (KLF-2, eNOS, ET-1, CD31, VWF, VEGF-A). Results. There were no differences in hepatobiliary function and injury after warm reperfusion between the groups, apart from a 2-fold lower concentration of alanine aminotransferase in the perfusate (P = 0.045) and a lower peak lactate dehydrogenase in bile (P = 0.04) of livers preserved by DHOPE. Endothelial cell function and injury, as assessed by perfusate nitric oxide and von Willebrand factor antigen levels, as well as endothelial protective gene expressions, were similar between the groups. The hepatic arteries of both groups showed no microscopic evidence of injury. Conclusions. This study did not reveal major differences in hepatobiliary or endothelial function and injury after preservation by single or dual HOPE of porcine livers donated after circulatory death.
Collapse
|
32
|
Eshmuminov D, Hefti M, Mueller M, Schuler MJ, Bautista Borrego L, Schneider MA, Koch K, Weisskopf M, Tibbitt MW, Dutkowski P, Rudolf von Rohr P, Studt JD, Becker D, Clavien PA. Synthesis of coagulation factors during long-term ex situ liver perfusion. Artif Organs 2021; 46:273-280. [PMID: 34287985 DOI: 10.1111/aor.14041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/10/2021] [Accepted: 07/06/2021] [Indexed: 01/04/2023]
Abstract
Robust viability assessment of grafts during normothermic liver perfusion is a prerequisite for organ use. Coagulation parameters are used commonly for liver assessment in patients. However, they are not yet included in viability assessment during ex situ perfusion. In this study, we analysed coagulation parameters during one week ex situ perfusion at 34℃. Eight discarded human livers were perfused with blood-based, heparinised perfusate for one week; perfusions in a further four livers were terminated on day 4 due to massive ongoing cell death. Coagulation parameters were well below the physiologic range at perfusion start. Physiologic levels were achieved within the first two perfusion days for factor V (68.5 ± 35.5%), factor VII (83.5 ± 26.2%), fibrinogen (2.1 ± 0.4 g/L) and antithrombin (107 ± 26.5%) in the livers perfused for one week. Despite the increased production of coagulation factors, INR was detectable only at 24h of perfusion (2.1 ± 0.3) and prolonged thereafter (INR > 9). The prolongation of INR was related to the high heparin level in the perfusate (anti-FXa > 3 U/mL). Intriguingly, livers with ongoing massive cell death also disclosed synthesis of factor V and improved INR. In summary, perfused livers were able to produce coagulation factors at a physiological level ex situ. We propose that single coagulation factor analysis is more reliable for assessing the synthetic function of perfused livers as compared to INR when using a heparinised perfusate.
Collapse
Affiliation(s)
- Dilmurodjon Eshmuminov
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland.,Wyss Zurich - ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Max Hefti
- Wyss Zurich - ETH Zurich/University of Zurich, Zurich, Switzerland.,Transport Processes and Reactions Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Matteo Mueller
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland.,Wyss Zurich - ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Martin J Schuler
- Wyss Zurich - ETH Zurich/University of Zurich, Zurich, Switzerland.,Transport Processes and Reactions Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Lucia Bautista Borrego
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland.,Wyss Zurich - ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Marcel André Schneider
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | - Karin Koch
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Miriam Weisskopf
- Center of Surgical Research, University Hospital Zürich University of Zürich, Zurich, Switzerland
| | - Mark W Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Philipp Dutkowski
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | - Philipp Rudolf von Rohr
- Wyss Zurich - ETH Zurich/University of Zurich, Zurich, Switzerland.,Transport Processes and Reactions Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Jan-Dirk Studt
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Dustin Becker
- Wyss Zurich - ETH Zurich/University of Zurich, Zurich, Switzerland.,Transport Processes and Reactions Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Pierre-Alain Clavien
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland.,Wyss Zurich - ETH Zurich/University of Zurich, Zurich, Switzerland
| |
Collapse
|
33
|
Lembach Jahnsen H, Mergental H, Perera MTPR, Mirza DF. Ex-situ liver preservation with machine preservation. Curr Opin Organ Transplant 2021; 26:121-132. [PMID: 33650995 DOI: 10.1097/mot.0000000000000864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW To summarize key studies in liver preservation published over the last 3 years and evaluate benefits and limitations of the different perfusion techniques. Selected experimental applications that may be translated to the clinical use will be also discussed. RECENT FINDINGS Normothermic machine perfusion (NMP) has transitioned into clinical practice. Viability assessment is a reliable tool for clinical decision-making, and safety of the back-to-base approach has facilitated adoption of the technology. Data supporting well tolerated use of declined livers after NMP and new protocols selecting complex recipients aim to improve access to suitable organs. Hypothermic machine perfusion (HMP) is showing promising clinical results by decreasing biliary complications in recipients' receiving organs donated after circulatory death (DCD) and improving early graft function in extended criteria organs. Long-term data of HMP on DCD livers shows improved graft survival over standard SCS. Novel approaches utilizing sequential HMP--NMP or ischaemia-free preservation aim to improve outcomes of extended criteria organs. SUMMARY Machine perfusion for organ transplantation has become an established technique but the field is rapidly evolving. Ongoing research focuses on evaluation of the intervention efficacy and finding optimal indications to use each perfusion strategy according to graft type and clinical scenario.
Collapse
Affiliation(s)
- Hanns Lembach Jahnsen
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust (UHBFT), Birmingham
| | - Hynek Mergental
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust (UHBFT), Birmingham
- National Institute for Health Research (NIHR), Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, United Kingdom
| | - M Thamara P R Perera
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust (UHBFT), Birmingham
| | - Darius F Mirza
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust (UHBFT), Birmingham
- National Institute for Health Research (NIHR), Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, United Kingdom
| |
Collapse
|
34
|
Becker D, Eshmuminov D, Keller R, Mueller M, Bautista Borrego L, Hagedorn C, Duskabilova M, Tibbitt MW, Onder C, Clavien PA, Rudolf von Rohr P, Schuler MJ, Hefti M. Automated Insulin Delivery - Continuous Blood Glucose Control During Ex Situ Liver Perfusion. IEEE Trans Biomed Eng 2021; 68:1399-1408. [DOI: 10.1109/tbme.2020.3033663] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
35
|
Ivanics T, Abreu P, De Martin E, Sapisochin G. Changing Trends in Liver Transplantation: Challenges and Solutions. Transplantation 2021; 105:743-756. [PMID: 32910093 DOI: 10.1097/tp.0000000000003454] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite improvements in postliver transplant outcomes through refinements in perioperative management and surgical techniques, several changing trends in liver transplantation have presented challenges. Mortality on the waitlist remains high. In the United States, Europe, and the United Kingdom, there is an increasing need for liver transplantation, primarily as a result of increased incidence of nonalcoholic steatohepatitis-related cirrhosis and cancer indications. Meanwhile, donor suitability has decreased, as donors are often older and have more comorbidities. Despite a mismatch between organ need and availability, many organs are discarded. Notwithstanding this, many solutions have been developed to overcome these challenges. Innovative techniques in allograft preservation, viability assessment, and reconditioning have allowed the use of suboptimal organs with adequate results. Refinements in surgical procedures, including live donor liver transplantations, have increased the organ pool and are decreasing the time and mortality on the waitlist. Despite many challenges, a similar number of solutions and prospects are on the horizon. This review seeks to explore the changing trends and challenges in liver transplantation and highlight possible solutions and future directions.
Collapse
Affiliation(s)
- Tommy Ivanics
- Multi-Organ Transplant Program, University Health Network, Toronto, ON, Canada
| | - Phillipe Abreu
- Multi-Organ Transplant Program, University Health Network, Toronto, ON, Canada
| | - Eleonora De Martin
- APHP, Hôpital Paul Brousse, Centre Hépato-Biliaire, INSERM 1193, Université Paris-Sud, DHU Hepatinov, Villejuif, France
| | - Gonzalo Sapisochin
- Multi-Organ Transplant Program, University Health Network, Toronto, ON, Canada
| |
Collapse
|
36
|
Tatum R, O'Malley TJ, Bodzin AS, Tchantchaleishvili V. Machine perfusion of donor organs for transplantation. Artif Organs 2021; 45:682-695. [PMID: 33349946 DOI: 10.1111/aor.13894] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/25/2020] [Accepted: 12/17/2020] [Indexed: 12/16/2022]
Abstract
The ever-widening gap between organ supply and demand has resulted in an organ shortage crisis that affects patients all over the world. For decades, static cold storage (SCS) was the gold standard preservation strategy because of its simplicity and cost-effectiveness, but the rising unmet demand for donor organ transplants has prompted investigation into preservation strategies that can expand the available donor pool. Through ex vivo functional assessment of the organ prior to transplant, newer methods to preserve organs such as perfusion-based therapy can potentially expand the available organ pool. This review will explain the physiologic rationale for SCS before exploring the advantages and disadvantages associated with the two broad classes of preservation strategies that have emerged to address the crisis: hypothermic and normothermic machine perfusion. A detailed analysis of how each preservation strategy works will be provided before investigating the current status of clinical data for each preservation strategy for the kidney, liver, pancreas, heart, and lung. For some organs there is robust data to support the use of machine perfusion technologies over SCS, and in others the data are less clear. Nonetheless, machine perfusion technologies represent an exciting frontier in organ preservation research and will remain a crucial component of closing the gap between organ supply and recipient demand.
Collapse
Affiliation(s)
- Robert Tatum
- Division of Cardiac Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Thomas J O'Malley
- Division of Cardiac Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Adam S Bodzin
- Division of Cardiac Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | | |
Collapse
|
37
|
Panconesi R, Flores Carvalho M, Mueller M, Meierhofer D, Dutkowski P, Muiesan P, Schlegel A. Viability Assessment in Liver Transplantation-What Is the Impact of Dynamic Organ Preservation? Biomedicines 2021; 9:161. [PMID: 33562406 PMCID: PMC7915925 DOI: 10.3390/biomedicines9020161] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023] Open
Abstract
Based on the continuous increase of donor risk, with a majority of organs classified as marginal, quality assessment and prediction of liver function is of utmost importance. This is also caused by the notoriously lack of effective replacement of a failing liver by a device or intensive care treatment. While various parameters of liver function and injury are well-known from clinical practice, the majority of specific tests require prolonged diagnostic time and are more difficult to assess ex situ. In addition, viability assessment of procured organs needs time, because the development of the full picture of cellular injury and the initiation of repair processes depends on metabolic active tissue and reoxygenation with full blood over several hours or days. Measuring injury during cold storage preservation is therefore unlikely to predict the viability after transplantation. In contrast, dynamic organ preservation strategies offer a great opportunity to assess organs before implantation through analysis of recirculating perfusates, bile and perfused liver tissue. Accordingly, several parameters targeting hepatocyte or cholangiocyte function or metabolism have been recently suggested as potential viability tests before organ transplantation. We summarize here a current status of respective machine perfusion tests, and report their clinical relevance.
Collapse
Affiliation(s)
- Rebecca Panconesi
- Hepatobiliary Unit, Careggi University Hospital, University of Florence, 50134 Florence, Italy; (R.P.); (M.F.C.); (P.M.)
| | - Mauricio Flores Carvalho
- Hepatobiliary Unit, Careggi University Hospital, University of Florence, 50134 Florence, Italy; (R.P.); (M.F.C.); (P.M.)
| | - Matteo Mueller
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, Swiss HPB and Transplant Center, 8091 Zurich, Switzerland; (M.M.); (P.D.)
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Mass Spectrometry Facility, 14195 Berlin, Germany;
| | - Philipp Dutkowski
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, Swiss HPB and Transplant Center, 8091 Zurich, Switzerland; (M.M.); (P.D.)
| | - Paolo Muiesan
- Hepatobiliary Unit, Careggi University Hospital, University of Florence, 50134 Florence, Italy; (R.P.); (M.F.C.); (P.M.)
| | - Andrea Schlegel
- Hepatobiliary Unit, Careggi University Hospital, University of Florence, 50134 Florence, Italy; (R.P.); (M.F.C.); (P.M.)
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, Swiss HPB and Transplant Center, 8091 Zurich, Switzerland; (M.M.); (P.D.)
| |
Collapse
|
38
|
Michelotto J, Gassner JMGV, Moosburner S, Muth V, Patel MS, Selzner M, Pratschke J, Sauer IM, Raschzok N. Ex vivo machine perfusion: current applications and future directions in liver transplantation. Langenbecks Arch Surg 2021; 406:39-54. [PMID: 33216216 PMCID: PMC7870621 DOI: 10.1007/s00423-020-02014-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/21/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Liver transplantation is the only curative treatment option for end-stage liver disease; however, its use remains limited due to a shortage of suitable organs. In recent years, ex vivo liver machine perfusion has been introduced to liver transplantation, as a means to expand the donor organ pool. PURPOSE To present a systematic review of prospective clinical studies on ex vivo liver machine perfusion, in order to assess current applications and highlight future directions. METHODS A systematic literature search of both PubMed and ISI web of science databases as well as the ClinicalTrials.gov registry was performed. RESULTS Twenty-one articles on prospective clinical trials on ex vivo liver machine perfusion were identified. Out of these, eight reported on hypothermic, eleven on normothermic, and two on sequential perfusion. These trials have demonstrated the safety and feasibility of ex vivo liver machine perfusion in both standard and expanded criteria donors. Currently, there are twelve studies enrolled in the clinicaltrials.gov registry, and these focus on use of ex vivo perfusion in extended criteria donors and declined organs. CONCLUSION Ex vivo liver machine perfusion seems to be a suitable strategy to expand the donor pool for liver transplantation and holds promise as a platform for reconditioning diseased organs.
Collapse
Affiliation(s)
- Julian Michelotto
- Charité - Universitätsmedizin Berlin, Department of Surgery, Experimental Surgery, corporate member of Freie Universität Berlin, Humboldt- Universität zu Berlin and Berlin Institute of Health, Campus Charité Mitte | Campus Virchow-Klinikum, Berlin, Germany
| | - Joseph M G V Gassner
- Charité - Universitätsmedizin Berlin, Department of Surgery, Experimental Surgery, corporate member of Freie Universität Berlin, Humboldt- Universität zu Berlin and Berlin Institute of Health, Campus Charité Mitte | Campus Virchow-Klinikum, Berlin, Germany
| | - Simon Moosburner
- Charité - Universitätsmedizin Berlin, Department of Surgery, Experimental Surgery, corporate member of Freie Universität Berlin, Humboldt- Universität zu Berlin and Berlin Institute of Health, Campus Charité Mitte | Campus Virchow-Klinikum, Berlin, Germany
| | - Vanessa Muth
- Charité - Universitätsmedizin Berlin, Department of Surgery, Experimental Surgery, corporate member of Freie Universität Berlin, Humboldt- Universität zu Berlin and Berlin Institute of Health, Campus Charité Mitte | Campus Virchow-Klinikum, Berlin, Germany
| | - Madhukar S Patel
- Department of Surgery, Abdominal Transplant and HPB Surgery, Ajmera Family Transplant Centre, Toronto General Hospital, Toronto, ON, Canada
| | - Markus Selzner
- Department of Surgery, Abdominal Transplant and HPB Surgery, Ajmera Family Transplant Centre, Toronto General Hospital, Toronto, ON, Canada
| | - Johann Pratschke
- Charité - Universitätsmedizin Berlin, Department of Surgery, Experimental Surgery, corporate member of Freie Universität Berlin, Humboldt- Universität zu Berlin and Berlin Institute of Health, Campus Charité Mitte | Campus Virchow-Klinikum, Berlin, Germany
| | - Igor M Sauer
- Charité - Universitätsmedizin Berlin, Department of Surgery, Experimental Surgery, corporate member of Freie Universität Berlin, Humboldt- Universität zu Berlin and Berlin Institute of Health, Campus Charité Mitte | Campus Virchow-Klinikum, Berlin, Germany
| | - Nathanael Raschzok
- Charité - Universitätsmedizin Berlin, Department of Surgery, Experimental Surgery, corporate member of Freie Universität Berlin, Humboldt- Universität zu Berlin and Berlin Institute of Health, Campus Charité Mitte | Campus Virchow-Klinikum, Berlin, Germany.
- Department of Surgery, Abdominal Transplant and HPB Surgery, Ajmera Family Transplant Centre, Toronto General Hospital, Toronto, ON, Canada.
| |
Collapse
|
39
|
Reiling J, Butler N, Simpson A, Hodgkinson P, Campbell C, Lockwood D, Bridle K, Santrampurwala N, Britton L, Crawford D, Dejong CHC, Fawcett J. Assessment and Transplantation of Orphan Donor Livers: A Back-to-Base Approach to Normothermic Machine Perfusion. Liver Transpl 2020; 26:1618-1628. [PMID: 32682340 DOI: 10.1002/lt.25850] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/14/2020] [Accepted: 07/11/2020] [Indexed: 02/06/2023]
Abstract
Globally, a large proportion of donor livers are discarded due to concerns over inadequate organ quality. Normothermic machine perfusion (NMP) allows for hepatocellular and biliary viability assessment prior to transplantation and might therefore enable the safe use of these orphan donor livers. We describe here the first Australasian experience of NMP-preserved liver transplants using a 'back-to-base' approach, where NMP was commenced at the recipient hospital following initial static cold storage. In the preclinical phase, 10 human donor livers declined for transplantation (7 from donation after circulatory death [DCD] and 3 from donation after brain death [DBD]) were perfused using a custom-made NMP setup. Subsequently, 10 orphan donor livers (5 from DCD and 5 from DBD) underwent NMP and viability assessment on the OrganOx metra device (OrganOx Limited, Oxford, United Kingdom). Both hepatocellular and biliary viability criteria were used. The median donor risk index was 1.53 (1.16-1.71), and the median recipient Model for End-Stage Liver Disease score was 17 (11-21). In the preclinical phase, 'back-to-base' NMP was deemed suitable and feasible. In the clinical phase, each graft met predefined criteria for implantation during NMP and was subsequently transplanted. Five (50%) recipients developed early allograft dysfunction based on peak aspartate aminotransferase. To date, all grafts function satisfactorily, and none of the 5 recipients who received a DCD liver have developed cholangiopathy. The OrganOx metra using a back-to-base approach has enabled the safe use of 10 high-risk orphan donor livers with 100% 6-month patient and graft survival. NMP improved surgeon confidence to use orphan donor livers and has enabled a safe expansion of the donor pool.
Collapse
Affiliation(s)
- Janske Reiling
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, Queensland, Australia
- Princess Alexandra Research Foundation, Princess Alexandra Hospital, Brisbane, Queensland, Australia
- Queensland Liver Transplant Service, Princess Alexandra Hospital, Brisbane, Queensland, Australia
- Department of Surgery, Nutrition and Toxicology Research Institute Maastricht School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Nick Butler
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Queensland Liver Transplant Service, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Andrew Simpson
- Visiting Medical Officer Perfusion, Departments of Cardiac Anesthetics, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Peter Hodgkinson
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Queensland Liver Transplant Service, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | | | - David Lockwood
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Queensland Liver Transplant Service, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Kim Bridle
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, Queensland, Australia
| | - Nishreen Santrampurwala
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, Queensland, Australia
| | - Laurence Britton
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, Queensland, Australia
- Queensland Liver Transplant Service, Princess Alexandra Hospital, Brisbane, Queensland, Australia
- Department of Gastroenterology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Darrell Crawford
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, Queensland, Australia
| | - Cornelius H C Dejong
- Department of Surgery, Nutrition and Toxicology Research Institute Maastricht School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
- Department of Surgery, Universitätsklinikum Aachen, Aachen, Germany
| | - Jonathan Fawcett
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, Queensland, Australia
- Princess Alexandra Research Foundation, Princess Alexandra Hospital, Brisbane, Queensland, Australia
- Queensland Liver Transplant Service, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| |
Collapse
|
40
|
Panayotova GG, Lunsford KE, Guarrera JV. Bile formation in long-term (1 week), ex situ perfused livers: Analysis and commentary. Surgery 2020; 169:1551-1552. [PMID: 33218702 DOI: 10.1016/j.surg.2020.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Guergana G Panayotova
- Department of Surgery, Division of Transplant and Hepatobiliary Surgery, Rutgers New Jersey Medical School, Newark, NJ
| | - Keri E Lunsford
- Department of Surgery, Division of Transplant and Hepatobiliary Surgery, Rutgers New Jersey Medical School, Newark, NJ; Center for Immunity and Inflammation, Institute for Infectious and Inflammatory Disease, Rutgers New Jersey Medical School, Newark, NJ
| | - James V Guarrera
- Department of Surgery, Division of Transplant and Hepatobiliary Surgery, Rutgers New Jersey Medical School, Newark, NJ.
| |
Collapse
|
41
|
Brüggenwirth IMA, de Meijer VE, Porte RJ, Martins PN. Viability criteria assessment during liver machine perfusion. Nat Biotechnol 2020; 38:1260-1262. [PMID: 33106683 DOI: 10.1038/s41587-020-0720-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Isabel M A Brüggenwirth
- Section of Hepato-Pancreato-Biliary Surgery and Liver Transplantation, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Department of Surgery, Division of Organ Transplantation, UMass Memorial Medical Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Vincent E de Meijer
- Section of Hepato-Pancreato-Biliary Surgery and Liver Transplantation, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Robert J Porte
- Section of Hepato-Pancreato-Biliary Surgery and Liver Transplantation, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Paulo N Martins
- Department of Surgery, Division of Organ Transplantation, UMass Memorial Medical Center, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
42
|
Immunological organ modification during Ex Vivo machine perfusion: The future of organ acceptance. Transplant Rev (Orlando) 2020; 35:100586. [PMID: 33876730 DOI: 10.1016/j.trre.2020.100586] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 10/01/2020] [Accepted: 10/14/2020] [Indexed: 12/27/2022]
Abstract
Ex vivo machine perfusion (EVMP) has gained revitalized interest in recent years due to the increasing use of marginal organs which poorly tolerate the standard preservation method static cold storage (SCS). EVMP improves on SCS in a number of ways, most notably by the potential for reconditioning of the donor organ prior to transplantation without the ethical concerns associated with organ modulation before procurement. Immunomodulatory therapies administered during EVMP can influence innate and adaptive immune responses to reduce production of inflammatory molecules and polarize tissue-resident immune cells to a regulatory phenotype. The targeted inhibition of an inflammatory response can reduce ischemia-reperfusion injury following organ reoxygenation and therefore reduce incidence of graft dysfunction and rejection. Numerous approaches to modulate the inflammatory response have been applied in experimental models, with the ultimate goal of clinical translatability. Strategies to target the innate immune system include inhibiting inflammatory signaling pathways, upregulating anti-inflammatory mediators, and decreasing mitochondrial damage while those which target the adaptive immune system include mesenchymal stromal cells. Inhibitory RNA approaches target both the innate and adaptive immune systems with a focus on MHC knock-down. Future studies may address issues of therapeutic agent delivery through use of nanoparticles and explore novel strategies such as targeting co-inhibitory molecules to educate T-cells to a tolerogenic state. In this review, we summarize the cellular and acellular contributors to allograft dysfunction and rejection, discuss the strategies which have been employed pre-clinically during EVMP to modulate the donor organ immune environment, and suggest future directions for immunomodulatory EVMP studies.
Collapse
|
43
|
Abstract
Because of the high demand of organs, the usage of marginal grafts has increased. These marginal organs have a higher risk of developing ischemia-reperfusion injury, which can lead to posttransplant complications. Ex situ machine perfusion (MP), compared with the traditional static cold storage, may better protect these organs from ischemia-reperfusion injury. In addition, MP can also act as a platform for dynamic administration of pharmacological agents or gene therapy to further improve transplant outcomes. Numerous therapeutic agents have been studied under both hypothermic (1-8°C) and normothermic settings. Here, we review all the therapeutics used during MP in different organ systems (lung, liver, kidney, heart). The major categories of therapeutic agents include vasodilators, mesenchymal stem cells, antiinflammatory agents, antiinfection agents, siRNA, and defatting agents. Numerous animal and clinical studies have examined MP therapeutic agents, some of which have even led to the successful reconditioning of discarded grafts. More clinical studies, especially randomized controlled trials, will need to be conducted in the future to solidify these promising results and to define the role of MP therapeutic agents in solid organ transplantation.
Collapse
|
44
|
Martins PN, Buchwald JE, Mergental H, Vargas L, Quintini C. The role of normothermic machine perfusion in liver transplantation. Int J Surg 2020; 82S:52-60. [PMID: 32417462 DOI: 10.1016/j.ijsu.2020.05.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/14/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023]
Abstract
To expand the donor pool of suitable organs for transplantation, there is an increased interest in utilizing extended criteria donor grafts (ECD). Ex-situ machine perfusion has shown to be a promising new modality in the organ preservation field to reduce injury and recover ECD liver grafts. Machine perfusion (MP) is considered a significant improvement in the field of transplantation over the past 20 years. Normothermic machine perfusion has entered the clinical arena in the last decade and has shown promising results to improve the quality of marginal organs and to increase the pool of liver grafts. It allows assessment of viability and function of grafts prior to transplantation. In addition, it has the potential to serve as a platform for pharmacologic organ treatment and graft optimization. Machine perfusion moved from the experimental phase to a more mature phase after safety was confirmed by initial clinical trials. Now, it is time to confirm its superiority and cost-effectiveness before a broader clinical use. In this paper we review the history, current status including outcomes of all clinical trials, limitations, and future trends of normothermic machine preservation.
Collapse
Affiliation(s)
- Paulo N Martins
- University of Massachusetts, Dept of Surgery, Transplant Division, Worcester, MA, USA.
| | - Julianna E Buchwald
- University of Massachusetts, Dept of Surgery, Transplant Division, Worcester, MA, USA
| | - Hynek Mergental
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Luciano Vargas
- Dept of Surgery, Transplant Division, University of Nebraska Medical Center, USA
| | - Cristiano Quintini
- Dept of Surgery, Transplant Division, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
45
|
Brüggenwirth IMA, Porte RJ, Martins PN. Bile Composition as a Diagnostic and Prognostic Tool in Liver Transplantation. Liver Transpl 2020; 26:1177-1187. [PMID: 32246581 DOI: 10.1002/lt.25771] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/06/2020] [Accepted: 03/22/2020] [Indexed: 02/07/2023]
Abstract
Bile secretion and composition reflects the functional status of hepatocytes and cholangiocytes. Bile composition can have a role in the assessment of donor grafts before implantation in the recipient. In addition, changes in bile composition after liver transplantation can serve as a diagnostic and prognostic tool to predict posttransplant complications, such as primary nonfunction, acute cellular rejection, or nonanastomotic biliary strictures. With the popularization of liver machine perfusion preservation in the clinical setting, there is a revisited interest in biliary biomarkers to assess graft viability before implantation. This review discusses current literature on biliary biomarkers that could predict or assess liver graft and bile duct viability. Bile composition offers an exciting and novel perspective in the search for reliable hepatocyte and cholangiocyte viability biomarkers.
Collapse
Affiliation(s)
- Isabel M A Brüggenwirth
- Division of Organ Transplantation, Department of Surgery, UMass Memorial Medical Center, University of Massachusetts, Worcester, MA
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University Medical Center Groningen, Groningen, the Netherlands
| | - Robert J Porte
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University Medical Center Groningen, Groningen, the Netherlands
| | - Paulo N Martins
- Division of Organ Transplantation, Department of Surgery, UMass Memorial Medical Center, University of Massachusetts, Worcester, MA
| |
Collapse
|
46
|
Posma RA, Venema LH, Huijink TM, Westerkamp AC, Wessels AMA, De Vries NJ, Doesburg F, Roggeveld J, Ottens PJ, Touw DJ, Nijsten MW, Leuvenink HGD. Increasing metformin concentrations and its excretion in both rat and porcine ex vivo normothermic kidney perfusion model. BMJ Open Diabetes Res Care 2020; 8:8/1/e000816. [PMID: 32816871 PMCID: PMC7437879 DOI: 10.1136/bmjdrc-2019-000816] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 05/12/2020] [Accepted: 06/12/2020] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Metformin can accumulate and cause lactic acidosis in patients with renal insufficiency. Metformin is known to inhibit mitochondria, while renal secretion of the drug by proximal tubules indirectly requires energy. We investigated whether addition of metformin before or during ex vivo isolated normothermic machine perfusion (NMP) of porcine and rat kidneys affects its elimination. RESEARCH DESIGN AND METHODS First, Lewis rats were pretreated with metformin or saline the day before nephrectomy. Subsequently, NMP of the kidney was performed for 90 min. Metformin was added to the perfusion fluid in one of three different concentrations (none, 30 mg/L or 300 mg/L). Second, metformin was added in increasing doses to the perfusion fluid during 4 hours of NMP of porcine kidneys. Metformin concentration was determined in the perfusion fluid and urine by liquid chromatography-tandem mass spectrometry. RESULTS Metformin clearance was approximately 4-5 times higher than creatinine clearance in both models, underscoring secretion of the drug. Metformin clearance at the end of NMP in rat kidneys perfused with 30 mg/L was lower than in metformin pretreated rats without the addition of metformin during perfusion (both p≤0.05), but kidneys perfused with 300 mg/L trended toward lower metformin clearance (p=0.06). Creatinine clearance was not different between treatment groups. During NMP of porcine kidneys, metformin clearance peaked at 90 min of NMP (18.2±13.7 mL/min/100 g). Thereafter, metformin clearance declined, while creatinine clearance remained stable. This observation can be explained by saturation of metformin transporters with a Michaelis-Menten constant (95% CI) of 23.0 (10.0 to 52.3) mg/L. CONCLUSIONS Metformin was secreted during NMP of both rat and porcine kidneys. Excretion of metformin decreased under increasing concentrations of metformin, which might be explained by saturation of metformin transporters rather than a self-inhibitory effect. It remains unknown whether a self-inhibitory effect contributes to metformin accumulation in humans with longer exposure times.
Collapse
Affiliation(s)
- Rene A Posma
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Leonie H Venema
- Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Tobias M Huijink
- Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Andrie C Westerkamp
- Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - A Mireille A Wessels
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Nynke J De Vries
- Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Frank Doesburg
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - J Roggeveld
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Petra J Ottens
- Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Daan J Touw
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Maarten W Nijsten
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Henri G D Leuvenink
- Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
47
|
Bonaccorsi-Riani E, Brüggenwirth IMA, Buchwald JE, Iesari S, Martins PN. Machine Perfusion: Cold versus Warm, versus Neither. Update on Clinical Trials. Semin Liver Dis 2020; 40:264-281. [PMID: 32557478 DOI: 10.1055/s-0040-1713118] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Machine perfusion (MP) preservation is potentially one of the most significant improvements in the field of liver transplantation in the last 20 years, and it has been considered a promising strategy for improved preservation and ex situ evaluation of extended criteria donor (ECD) organs. However, MP preservation adds significant cost and logistical considerations to liver transplantation. MP protocols are mainly classified according to the perfusion temperature with hypothermic machine perfusion (HMP) and normothermic machine perfusion (NMP) being the two categories most studied so far. After extensive preclinical work, MP entered the clinical setting, and there are now several studies that demonstrated feasibility and safety. However, because of the limited quality of clinical trials, there is no compelling evidence of superiority in preservation quality, and liver MP is still considered experimental in most countries. MP preservation is moving to a more mature phase, where ongoing and future studies will bring new evidence in order to confirm their superiority in terms of clinical outcomes, organ utilization, and cost-effectiveness. Here, we present an overview of all preclinical MP studies using discarded human livers and liver MP clinical trials, and discuss their results. We describe the different perfusion protocols, pitfalls in MP study design, and provide future perspectives. Recent trials in liver MP have revealed unique challenges beyond those seen in most clinical studies. Randomized trials, correct trial design, and interpretation of data are essential to generate the data necessary to prove if MP will be the new gold standard method of liver preservation.
Collapse
Affiliation(s)
- E Bonaccorsi-Riani
- Abdominal Transplant Unit, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium.,Pôle de Chirurgie Expérimentale et Transplantation, Université Catholique de Louvain, Brussels, Belgium
| | - I M A Brüggenwirth
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - J E Buchwald
- Division of Transplant, Department of Surgery, UMass Memorial Medical Center, University of Massachusetts, Worcester, Massachusetts
| | - S Iesari
- Pôle de Chirurgie Expérimentale et Transplantation, Université Catholique de Louvain, Brussels, Belgium.,Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - P N Martins
- Division of Transplant, Department of Surgery, UMass Memorial Medical Center, University of Massachusetts, Worcester, Massachusetts
| |
Collapse
|
48
|
Laing RW, Stubblefield S, Wallace L, Roobrouck VD, Bhogal RH, Schlegel A, Boteon YL, Reynolds GM, Ting AE, Mirza DF, Newsome PN, Mergental H, Afford SC. The Delivery of Multipotent Adult Progenitor Cells to Extended Criteria Human Donor Livers Using Normothermic Machine Perfusion. Front Immunol 2020; 11:1226. [PMID: 32714318 PMCID: PMC7344318 DOI: 10.3389/fimmu.2020.01226] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/15/2020] [Indexed: 12/30/2022] Open
Abstract
Background: Pre-clinical research with multi-potent adult progenitor cells (MAPC® cells, Multistem, Athersys Inc., Cleveland, Ohio) suggests their potential as an anti-inflammatory and immunomodulatory therapy in organ transplantation. Normothermic machine perfusion of the liver (NMP-L) has been proposed as a way of introducing therapeutic agents into the donor organ. Delivery of cellular therapy to human donor livers using this technique has not yet been described in the literature. The primary objectives of this study were to develop a technique for delivering cellular therapy to human donor livers using NMP-L and demonstrate engraftment. Methods: Six discarded human livers were perfused for 6 h at 37°C using the Liver Assist (Organ Assist, Groningen). 50 × 106 CMPTX-labeled MAPC cells were infused directly into the right lobe via the hepatic artery (HA, n = 3) or portal vein (PV, n = 3) over 20 min at different time points during the perfusion. Perfusion parameters were recorded and central and peripheral biopsies were taken at multiple time-points from both lobes and subjected to standard histological stains and confocal microscopy. Perfusate was analyzed using a 35-plex multiplex assay and proteomic analysis. Results: There was no detrimental effect on perfusion flow parameters on infusion of MAPC cells by either route. Three out of six livers met established criteria for organ viability. Confocal microscopy demonstrated engraftment of MAPC cells across vascular endothelium when perfused via the artery. 35-plex multiplex analysis of perfusate yielded 13 positive targets, 9 of which appeared to be related to the infusion of MAPC cells (including Interleukin's 1b, 4, 5, 6, 8, 10, MCP-1, GM-CSF, SDF-1a). Proteomic analysis revealed 295 unique proteins in the perfusate from time-points following the infusion of cellular therapy, many of which have strong links to MAPC cells and mesenchymal stem cells in the literature. Functional enrichment analysis demonstrated their immunomodulatory potential. Conclusion: We have demonstrated that cells can be delivered directly to the target organ, prior to host immune cell population exposure and without compromising the perfusion. Transendothelial migration occurs following arterial infusion. MAPC cells appear to secrete a host of soluble factors that would have anti-inflammatory and immunomodulatory benefits in a human model of liver transplantation.
Collapse
Affiliation(s)
- Richard W. Laing
- NIHR Liver Biomedical Research Unit, Centre for Liver Research, College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | | | - Lorraine Wallace
- NIHR Liver Biomedical Research Unit, Centre for Liver Research, College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | | | - Ricky H. Bhogal
- NIHR Liver Biomedical Research Unit, Centre for Liver Research, College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Andrea Schlegel
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Yuri L. Boteon
- NIHR Liver Biomedical Research Unit, Centre for Liver Research, College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Gary M. Reynolds
- NIHR Liver Biomedical Research Unit, Centre for Liver Research, College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | | | - Darius F. Mirza
- NIHR Liver Biomedical Research Unit, Centre for Liver Research, College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Philip N. Newsome
- NIHR Liver Biomedical Research Unit, Centre for Liver Research, College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Hynek Mergental
- NIHR Liver Biomedical Research Unit, Centre for Liver Research, College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Simon C. Afford
- NIHR Liver Biomedical Research Unit, Centre for Liver Research, College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| |
Collapse
|
49
|
Biliary Bicarbonate, pH, and Glucose Are Suitable Biomarkers of Biliary Viability During Ex Situ Normothermic Machine Perfusion of Human Donor Livers. Transplantation 2020; 103:1405-1413. [PMID: 30395120 PMCID: PMC6613725 DOI: 10.1097/tp.0000000000002500] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Ex situ normothermic machine perfusion (NMP) can be used to assess viability of suboptimal donor livers before implantation. Our aim was to assess the diagnostic accuracy of bile biochemistry for the assessment of bile duct injury (BDI). METHODS In a preclinical study, 23 human donor livers underwent 6 hours of end-ischemic NMP to determine biomarkers of BDI. Livers were divided into groups with low or high BDI, based on a clinically relevant histological grading system. During NMP, bile was analyzed biochemically and potential biomarkers were correlated with the degree of BDI. Receiver operating characteristics curves were generated to determine optimal cutoff values. For clinical validation, identified biomarkers were subsequently included as viability criteria in a clinical trial (n = 6) to identify transplantable liver grafts with low BDI. RESULTS Biliary bicarbonate and pH were significantly higher and biliary glucose was significantly lower in livers with low BDI, compared with high BDI. The following cutoff values were associated with low BDI: biliary bicarbonate greater than 18 mmol/L (P = 0.002), biliary pH greater than 7.48 (P = 0.019), biliary glucose less than 16 mmol/L (P = 0.013), and bile/perfusate glucose ratio less than 0.67 (P = 0.013). In the clinical trial, 4 of 6 livers met these criteria and were transplanted, and none developed clinical evidence of posttransplant cholangiopathy. CONCLUSIONS Biliary bicarbonate, pH, and glucose during ex situ NMP of liver grafts are accurate biomarkers of BDI and can be easily determined point of care, making them suitable for the pretransplant assessment of bile duct viability. This may improve graft selection and decrease the risk of posttransplant cholangiopathy.
Collapse
|
50
|
de Vries RJ, Tessier SN, Banik PD, Nagpal S, Cronin SEJ, Ozer S, Hafiz EOA, van Gulik TM, Yarmush ML, Markmann JF, Toner M, Yeh H, Uygun K. Subzero non-frozen preservation of human livers in the supercooled state. Nat Protoc 2020; 15:2024-2040. [PMID: 32433625 DOI: 10.1038/s41596-020-0319-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 03/10/2020] [Indexed: 12/20/2022]
Abstract
Preservation of human organs at subzero temperatures has been an elusive goal for decades. The major complication hindering successful subzero preservation is the formation of ice at temperatures below freezing. Supercooling, or subzero non-freezing, preservation completely avoids ice formation at subzero temperatures. We previously showed that rat livers can be viably preserved three times longer by supercooling as compared to hypothermic preservation at +4 °C. Scalability of supercooling preservation to human organs was intrinsically limited because of volume-dependent stochastic ice formation at subzero temperatures. However, we recently adapted the rat preservation approach so it could be applied to larger organs. Here, we describe a supercooling protocol that averts freezing of human livers by minimizing air-liquid interfaces as favorable sites of ice nucleation and uses preconditioning with cryoprotective agents to depress the freezing point of the liver tissue. Human livers are homogeneously preconditioned during multiple machine perfusion stages at different temperatures. Including preparation, the protocol takes 31 h to complete. Using this protocol, human livers can be stored free of ice at -4 °C, which substantially extends the ex vivo life of the organ. To our knowledge, this is the first detailed protocol describing how to perform subzero preservation of human organs.
Collapse
Affiliation(s)
- Reinier J de Vries
- Center for Engineering in Medicine, Harvard Medical School & Massachusetts General Hospital, Boston, MA, USA.,Department of Surgery, Amsterdam University Medical Centers-location AMC, University of Amsterdam, Amsterdam, the Netherlands.,Department of Research, Shriners Hospitals for Children-Boston, Boston, MA, USA
| | - Shannon N Tessier
- Center for Engineering in Medicine, Harvard Medical School & Massachusetts General Hospital, Boston, MA, USA.,Department of Research, Shriners Hospitals for Children-Boston, Boston, MA, USA
| | - Peony D Banik
- Center for Engineering in Medicine, Harvard Medical School & Massachusetts General Hospital, Boston, MA, USA.,Department of Research, Shriners Hospitals for Children-Boston, Boston, MA, USA
| | - Sonal Nagpal
- Center for Engineering in Medicine, Harvard Medical School & Massachusetts General Hospital, Boston, MA, USA.,Department of Research, Shriners Hospitals for Children-Boston, Boston, MA, USA
| | - Stephanie E J Cronin
- Center for Engineering in Medicine, Harvard Medical School & Massachusetts General Hospital, Boston, MA, USA.,Department of Research, Shriners Hospitals for Children-Boston, Boston, MA, USA
| | - Sinan Ozer
- Center for Engineering in Medicine, Harvard Medical School & Massachusetts General Hospital, Boston, MA, USA.,Department of Research, Shriners Hospitals for Children-Boston, Boston, MA, USA
| | - Ehab O A Hafiz
- Center for Engineering in Medicine, Harvard Medical School & Massachusetts General Hospital, Boston, MA, USA.,Department of Research, Shriners Hospitals for Children-Boston, Boston, MA, USA.,Department of Electron Microscopy Research, Theodor Bilharz Research Institute, Giza, Egypt
| | - Thomas M van Gulik
- Department of Surgery, Amsterdam University Medical Centers-location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Martin L Yarmush
- Center for Engineering in Medicine, Harvard Medical School & Massachusetts General Hospital, Boston, MA, USA.,Department of Research, Shriners Hospitals for Children-Boston, Boston, MA, USA
| | - James F Markmann
- Center for Transplant Sciences, Massachusetts General Hospital, Boston, MA, USA
| | - Mehmet Toner
- Center for Engineering in Medicine, Harvard Medical School & Massachusetts General Hospital, Boston, MA, USA.,Department of Research, Shriners Hospitals for Children-Boston, Boston, MA, USA
| | - Heidi Yeh
- Center for Transplant Sciences, Massachusetts General Hospital, Boston, MA, USA
| | - Korkut Uygun
- Center for Engineering in Medicine, Harvard Medical School & Massachusetts General Hospital, Boston, MA, USA. .,Department of Research, Shriners Hospitals for Children-Boston, Boston, MA, USA.
| |
Collapse
|