1
|
Rhim JW, Kim DK, Han JY, Park J. A sensorineural hearing loss harboring novel compound heterozygous variant in the TRIOBP gene: A case report. Heliyon 2024; 10:e36717. [PMID: 39296067 PMCID: PMC11408809 DOI: 10.1016/j.heliyon.2024.e36717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/21/2024] Open
Abstract
Background Autosomal recessive non-syndromic deafness-28 (DFNB28; OMIM #609823) specifically refers to prelingual sensorineural hearing loss (SNHL) resulting from homozygous or compound heterozygous mutations in the TRIO- and F-actin-binding protein, TRIOBP gene. In this report, we present a pediatric patient exhibiting novel compound heterozygous deleterious variants in the TRIOBP gene. Methods The auditory brainstem response result revealed both left- and right-sided deafness with a threshold of 20 dB normal hearing level in the proband. A comprehensive trio whole exome sequencing (WES) using the Celemics G-Mendeliome Whole Exome Sequencing Panel was employed. Results The WES analysis revealed compound heterozygous TRIOBP variants in the proband, namely c.1192_1195delCAACinsT/p.Gln398* classified as pathogenic and c.3661C > T/p.Arg1221Trp categorized as a variant of uncertain significance according to American College of Medical Genetics and Genomics guidelines. These variants are considered the most probable cause of the proband's SNHL. Conclusion TRIOBP isoforms are predominantly expressed in the inner ear, contributing to the formation of stereocilia rootlets. Further investigations are required to fully understand the phenotypic variability and establish the pathogenicity of the identified variant in relation to the TRIOBP gene and SNHL.
Collapse
Affiliation(s)
- Jung Woo Rhim
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Dong-Kee Kim
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea, Seoul, 06591, Republic of Korea
| | - Ji Yoon Han
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Joonhong Park
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju, 54907, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, 54907, Republic of Korea
| |
Collapse
|
2
|
Jha SK, Nelson VK, Suryadevara PR, Panda SP, Pullaiah CP, Nuli MV, Kamal M, Imran M, Ausali S, Abomughaid MM, Srivastava R, Deka R, Pritam P, Gupta N, Shyam H, Singh IK, Pandey BW, Dewanjee S, Jha NK, Jafari SM. Cannabidiol and neurodegeneration: From molecular mechanisms to clinical benefits. Ageing Res Rev 2024; 100:102386. [PMID: 38969143 DOI: 10.1016/j.arr.2024.102386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/23/2024] [Accepted: 06/18/2024] [Indexed: 07/07/2024]
Abstract
Neurodegenerative disorders (NDs) such as Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, and amyotrophic lateral sclerosis are severe and life-threatening conditions in which significant damage of functional neurons occurs to produce psycho-motor malfunctions. NDs are an important cause of death in the elderly population worldwide. These disorders are commonly associated with the progression of age, oxidative stress, and environmental pollutants, which are the major etiological factors. Abnormal aggregation of specific proteins such as α-synuclein, amyloid-β, huntingtin, and tau, and accumulation of the associated oligomers in neurons are the hallmark pathological features of NDs. Existing therapeutic options for NDs are only symptomatic relief and do not address root-causing factors, such as protein aggregation, oxidative stress, and neuroinflammation. Cannabidiol (CBD) is a non-psychotic natural cannabinoid obtained from Cannabis sativa that possesses multiple pharmacological actions, including antioxidant, anti-inflammatory, and neuroprotective effects in various NDs and other neurological disorders both in vitro and in vivo. CBD has gained attention as a promising drug candidate for the management of neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease, by inhibiting protein aggregation, free radicals, and neuroinflammation. In parallel, CBD has shown positive results in other neurological disorders, such as epilepsy, depression, schizophrenia, and anxiety, as well as adjuvant treatment with existing standard therapeutic agents. Hence, the present review focuses on exploring the possible molecular mechanisms in controlling various neurological disorders as well as the clinical applications of CBD in NDs including epilepsy, depression and anxiety. In this way, the current review will serve as a standalone reference for the researchers working in this area.
Collapse
Affiliation(s)
- Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, 110008, India.
| | - Vinod Kumar Nelson
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute Of Medical And Technical Sciences, India
| | | | - Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Chitikela P Pullaiah
- Department of Chemistry, Siddha Central Research Institute, Central Council for Research in Siddha, Ministry of AYUSH, Govt. of India, Chennai, Tamil Nadu, India
| | - Mohana Vamsi Nuli
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Saijyothi Ausali
- College of Pharmacy, MNR Higher Education and Research Academy Campus, MNR Nagar, Sangareddy 502294, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Rashi Srivastava
- Department of Chemical & Biochemical Engineering, Indian Institute of Technology,Patna, 800013 India
| | - Rahul Deka
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Pingal Pritam
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Neha Gupta
- School of Studies in Biotechnology, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Harishankar Shyam
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Indrakant K Singh
- Molecular Biology Research Lab., Department of Zoology, Deshbandhu College & Delhi School of Public Health, Institute of Eminence, University of Delhi, New Delhi 110019, India
| | | | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal 700 032, India
| | - Niraj Kumar Jha
- Centre of Research Impact and Outcome, Chitkara University, Rajpura 140401, Punjab, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain
| |
Collapse
|
3
|
Zaharija B, Bradshaw NJ. Aggregation of Disrupted in Schizophrenia 1 arises from a central region of the protein. Prog Neuropsychopharmacol Biol Psychiatry 2024; 130:110923. [PMID: 38135095 DOI: 10.1016/j.pnpbp.2023.110923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
An emerging approach to studying major mental illness is through proteostasis, with the identification of several proteins that form insoluble aggregates in the brains of patients. One of these is Disrupted in Schizophrenia 1 (DISC1), a neurodevelopmentally-important scaffold protein, and product of a classic schizophrenia risk gene. DISC1 aggregates have been detected in post mortem brain tissue from patients with schizophrenia, bipolar disorder and major depressive disorder, as well as various model systems, although the mechanism by which it aggregates is still unclear. Aggregation of two other proteins implicated in mental illness, TRIOBP-1 and NPAS3, was shown to be dependent on very specific structural regions of the protein. We therefore looked at the domain structure of DISC1, and investigated which structural elements are key for its aggregation. While none of the known structured DISC1 regions (named D, I, S and C respectively) formed aggregates individually when expressed in neuroblastoma cells, the combination of the D and I regions, plus the linker region between them, formed visible aggregates. Further refinement revealed that a region of approximately 30 amino acids between these two regions is critical for aggregation, and deletion of this region is sufficient to abolish the aggregation propensity of DISC1. This finding from mammalian cell culture contrasts with the recent determination that the C-region of DISC1 can aggregate in vitro, although some variations of the C-terminal of DISC1 could aggregate in our system. It therefore appears likely that DISC1 aggregation, implicated in mental illness, can occur through at least two distinct mechanisms.
Collapse
Affiliation(s)
- Beti Zaharija
- Faculty of Biotechnology and Drug Development, University of Rijeka, Croatia
| | - Nicholas J Bradshaw
- Faculty of Biotechnology and Drug Development, University of Rijeka, Croatia.
| |
Collapse
|
4
|
Samardžija B, Juković M, Zaharija B, Renner É, Palkovits M, Bradshaw NJ. Co-Aggregation and Parallel Aggregation of Specific Proteins in Major Mental Illness. Cells 2023; 12:1848. [PMID: 37508512 PMCID: PMC10378145 DOI: 10.3390/cells12141848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Disrupted proteostasis is an emerging area of research into major depressive disorder. Several proteins have been implicated as forming aggregates specifically in the brains of subsets of patients with psychiatric illnesses. These proteins include CRMP1, DISC1, NPAS3 and TRIOBP-1. It is unclear, however, whether these proteins normally aggregate together in the same individuals and, if so, whether each protein aggregates independently of each other ("parallel aggregation") or if the proteins physically interact and aggregate together ("co-aggregation"). MATERIALS AND METHODS Post mortem insular cortex samples from major depressive disorder and Alzheimer's disease patients, suicide victims and control individuals had their insoluble fractions isolated and tested by Western blotting to determine which of these proteins are insoluble and, therefore, likely to be aggregating. The ability of the proteins to co-aggregate (directly interact and form common aggregate structures) was tested by systematic pairwise expression of the proteins in SH-SY5Y neuroblastoma cells, which were then examined by immunofluorescent microscopy. RESULTS Many individuals displayed multiple insoluble proteins in the brain, although not enough to imply interaction between the proteins. Cell culture analysis revealed that only a few of the proteins analyzed can consistently co-aggregate with each other: DISC1 with each of CRMP1 and TRIOBP-1. DISC1 was able to induce aggregation of full length TRIOBP-1, but not individual domains of TRIOBP-1 when they were expressed individually. CONCLUSIONS While specific proteins are capable of co-aggregating, and appear to do so in the brains of individuals with mental illness and potentially also with suicidal tendency, it is more common for such proteins to aggregate in a parallel manner, through independent mechanisms. This information aids in understanding the distribution of protein aggregates among mental illness patients and is therefore important for any future diagnostic or therapeutic approaches based on this aspect of mental illness pathology.
Collapse
Affiliation(s)
- Bobana Samardžija
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Maja Juković
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Beti Zaharija
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Éva Renner
- Human Brain Tissue Bank & Laboratory, Semmelweis University, 1094 Budapest, Hungary
| | - Miklós Palkovits
- Human Brain Tissue Bank & Laboratory, Semmelweis University, 1094 Budapest, Hungary
| | | |
Collapse
|
5
|
Zaharija B, Bradshaw NJ. Mapping the Domain Structure and Aggregation Propensity of Proteins Using a Gateway Plasmid Vector System. Methods Mol Biol 2023; 2551:649-677. [PMID: 36310230 DOI: 10.1007/978-1-0716-2597-2_39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Some proteins represent members of conserved families, meaning that their domain structure can be easily predicted by comparison to homologous proteins whose structures have been solved experimentally. Many other proteins, however, do not share significant detectable homology with other proteins, often as results of high amounts of coiled-coil structure and/or intrinsically unstructured regions. These proteins include many whose aggregation is linked to human disease.Here we present a refined and reliable workflow for identifying the domains of such proteins, through cloning of multiple alternative fragments, and testing whether they form soluble, folded structures when expressed as recombinant peptides in E. coli, through the use of size exclusion chromatography. By using Gateway recombination for cloning, these fragments can then be rapidly transferred to alternate vectors for testing in mammalian cells. We then specifically illustrate its use for proteins that form pathological aggregates in disease, mapping not just their basic domain structures but also the specific subdomains responsible for aggregation.
Collapse
Affiliation(s)
- Beti Zaharija
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | | |
Collapse
|
6
|
Zhang Z, Liu L, Zhang H, Li C, Chen Y, Zhang J, Pan C, Cheng S, Yang X, Meng P, Yao Y, Jia Y, Wen Y, Zhang F. The genetic structure of pain in depression patients: A genome-wide association study and proteome-wide association study. J Psychiatr Res 2022; 156:547-556. [PMID: 36368244 DOI: 10.1016/j.jpsychires.2022.10.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/18/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Comparing with the general population, the pain in depression patients has more complex biological mechanism. We aim to explore the etiological mechanism of pain in depression patients from the perspective of genetics. METHODS Utilizing the UK Biobank samples with self-reported depression status or PHQ score ≥10, we conducted genome-wide association studies (GWAS) of seven pain traits (N = 1,133-58,349). Additionally, we used FUSION pipeline to perform proteome-wide association study (PWAS) and transcriptome-wide association study (TWAS) by integrating GWAS summary data with two different proteome reference weights (ROS/MAP and Banner) and Rnaseq gene expression reference weights, respectively. RESULTS GWAS identified 3 significant genes associated with different pain traits in depression patients, including TRIOBP (PGWAS = 4.48 × 10-8) for stomach or abdominal pain, SLC9A9(PGWAS = 2.77 × 10-8) for multisite chronic pain (MCP) and ADGRF1 (PGWAS = 1.51 × 10-8) for neck or shoulder pain. In addition, PWAS and TWAS analysis also identified multiple candidate genes associated with different pain traits in depression patients, such as TPRG1L (PPWAS-Banner = 3.38 × 10-2) and SIRPA (PPWAS-Banner = 3.65 × 10-2) for MCP, etc. Notably, when comparing the results of PWAS and TWAS analysis, we found overlapping candidate genes in these pain traits, such as GSTM3 (PPWAS-Banner = 3.38 × 10-2, PTWAS = 6.92 × 10-3) in the stomach or abdominal pain phenotype, ATG7 (PPWAS-Rosmap = 3.15 × 10-2, PTWAS = 2.98 × 10-2) in the MCP, etc. CONCLUSIONS: We identified multiple novel candidate genes for pain traits in depression patients from different perspectives of genetics, which provided novel clues for understanding the genetic mechanisms underlying the pain in depression patients.
Collapse
Affiliation(s)
- Zhen Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Huijie Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Chun'e Li
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yujing Chen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jingxi Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Chuyu Pan
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Peilin Meng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yao Yao
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
7
|
Ochneva A, Zorkina Y, Abramova O, Pavlova O, Ushakova V, Morozova A, Zubkov E, Pavlov K, Gurina O, Chekhonin V. Protein Misfolding and Aggregation in the Brain: Common Pathogenetic Pathways in Neurodegenerative and Mental Disorders. Int J Mol Sci 2022; 23:14498. [PMID: 36430976 PMCID: PMC9695177 DOI: 10.3390/ijms232214498] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/07/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
Mental disorders represent common brain diseases characterized by substantial impairments of social and cognitive functions. The neurobiological causes and mechanisms of psychopathologies still have not been definitively determined. Various forms of brain proteinopathies, which include a disruption of protein conformations and the formation of protein aggregates in brain tissues, may be a possible cause behind the development of psychiatric disorders. Proteinopathies are known to be the main cause of neurodegeneration, but much less attention is given to the role of protein impairments in psychiatric disorders' pathogenesis, such as depression and schizophrenia. For this reason, the aim of this review was to discuss the potential contribution of protein illnesses in the development of psychopathologies. The first part of the review describes the possible mechanisms of disruption to protein folding and aggregation in the cell: endoplasmic reticulum stress, dysfunction of chaperone proteins, altered mitochondrial function, and impaired autophagy processes. The second part of the review addresses the known proteins whose aggregation in brain tissue has been observed in psychiatric disorders (amyloid, tau protein, α-synuclein, DISC-1, disbindin-1, CRMP1, SNAP25, TRIOBP, NPAS3, GluA1, FABP, and ankyrin-G).
Collapse
Affiliation(s)
- Aleksandra Ochneva
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
- Healthcare Department, Mental-Health Clinic No. 1 Named after N.A. Alexeev of Moscow, 117152 Moscow, Russia
| | - Yana Zorkina
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
- Healthcare Department, Mental-Health Clinic No. 1 Named after N.A. Alexeev of Moscow, 117152 Moscow, Russia
| | - Olga Abramova
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
- Healthcare Department, Mental-Health Clinic No. 1 Named after N.A. Alexeev of Moscow, 117152 Moscow, Russia
| | - Olga Pavlova
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
| | - Valeriya Ushakova
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
- Healthcare Department, Mental-Health Clinic No. 1 Named after N.A. Alexeev of Moscow, 117152 Moscow, Russia
- Department of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anna Morozova
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
- Healthcare Department, Mental-Health Clinic No. 1 Named after N.A. Alexeev of Moscow, 117152 Moscow, Russia
| | - Eugene Zubkov
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
| | - Konstantin Pavlov
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
- Healthcare Department, Mental-Health Clinic No. 1 Named after N.A. Alexeev of Moscow, 117152 Moscow, Russia
| | - Olga Gurina
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
| | - Vladimir Chekhonin
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- National University of Science and Technology “MISiS”, Leninskiy Avenue 4, 119049 Moscow, Russia
| |
Collapse
|
8
|
Zaharija B, Odorčić M, Hart A, Samardžija B, Marreiros R, Prikulis I, Juković M, Hyde TM, Kleinman JE, Korth C, Bradshaw NJ. TRIOBP-1 Protein Aggregation Exists in Both Major Depressive Disorder and Schizophrenia, and Can Occur through Two Distinct Regions of the Protein. Int J Mol Sci 2022; 23:ijms231911048. [PMID: 36232351 PMCID: PMC9569677 DOI: 10.3390/ijms231911048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/25/2022] Open
Abstract
The presence of proteinopathy, the accumulation of specific proteins as aggregates in neurons, is an emerging aspect of the pathology of schizophrenia and other major mental illnesses. Among the initial proteins implicated in forming such aggregates in these conditions is Trio and F-actin Binding Protein isoform 1 (TRIOBP-1), a ubiquitously expressed protein involved in the stabilization of the actin cytoskeleton. Here we investigate the insolubility of TRIOBP-1, as an indicator of aggregation, in brain samples from 25 schizophrenia patients, 25 major depressive disorder patients and 50 control individuals (anterior cingulate cortex, BA23). Strikingly, insoluble TRIOBP-1 is considerably more prevalent in both of these conditions than in controls, further implicating TRIOBP-1 aggregation in schizophrenia and indicating a role in major depressive disorder. These results were only seen using a high stringency insolubility assay (previously used to study DISC1 and other proteins), but not a lower stringency assay that would be expected to also detect functional, actin-bound TRIOBP-1. Previously, we have also determined that a region of 25 amino acids in the center of this protein is critical for its ability to form aggregates. Here we attempt to refine this further, through the expression of various truncated mutant TRIOBP-1 vectors in neuroblastoma cells and examining their aggregation. In this way, it was possible to narrow down the aggregation-critical region of TRIOBP-1 to just 8 amino acids (333–340 of the 652 amino acid-long TRIOBP-1). Surprisingly our results suggested that a second section of TRIOBP-1 is also capable of independently inducing aggregation: the optionally expressed 59 amino acids at the extreme N-terminus of the protein. As a result, the 597 amino acid long version of TRIOBP-1 (also referred to as “Tara” or “TAP68”) has reduced potential to form aggregates. The presence of insoluble TRIOBP-1 in brain samples from patients, combined with insight into the mechanism of aggregation of TRIOBP-1 and generation of an aggregation-resistant mutant TRIOBP-1 that lacks both these regions, will be of significant use in further investigating the mechanism and consequences of TRIOBP-1 aggregation in major mental illness.
Collapse
Affiliation(s)
- Beti Zaharija
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Maja Odorčić
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Anja Hart
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Bobana Samardžija
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Rita Marreiros
- Department of Neuropathology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Ingrid Prikulis
- Department of Neuropathology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Maja Juković
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Thomas M. Hyde
- Lieber Institute for Brain Development, Baltimore, MD 21295, USA
- Department of Psychiatry and Behavioral Sciences, John Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, John Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Joel E. Kleinman
- Lieber Institute for Brain Development, Baltimore, MD 21295, USA
- Department of Psychiatry and Behavioral Sciences, John Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Carsten Korth
- Department of Neuropathology, Heinrich Heine University, 40225 Düsseldorf, Germany
- Correspondence: (C.K.); (N.J.B.)
| | - Nicholas J. Bradshaw
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
- Department of Neuropathology, Heinrich Heine University, 40225 Düsseldorf, Germany
- Correspondence: (C.K.); (N.J.B.)
| |
Collapse
|
9
|
Hui KK, Endo R, Sawa A, Tanaka M. A Perspective on the Potential Involvement of Impaired Proteostasis in Neuropsychiatric Disorders. Biol Psychiatry 2022; 91:335-345. [PMID: 34836635 PMCID: PMC8792182 DOI: 10.1016/j.biopsych.2021.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 08/05/2021] [Accepted: 09/01/2021] [Indexed: 11/19/2022]
Abstract
Recent genetic approaches have demonstrated that genetic factors contribute to the pathologic origins of neuropsychiatric disorders. Nevertheless, the exact pathophysiological mechanism for most cases remains unclear. Recent studies have demonstrated alterations in pathways of protein homeostasis (proteostasis) and identified several proteins that are misfolded and/or aggregated in the brains of patients with neuropsychiatric disorders, thus providing early evidence that disrupted proteostasis may be a contributing factor to their pathophysiology. Unlike neurodegenerative disorders in which massive neuronal and synaptic losses are observed, proteostasis impairments in neuropsychiatric disorders do not lead to robust neuronal death, but rather likely act via loss- and gain-of-function effects to disrupt neuronal and synaptic functions. Furthermore, abnormal activation of or overwhelmed endoplasmic reticulum and mitochondrial quality control pathways may exacerbate the pathophysiological changes initiated by impaired proteostasis, as these organelles are critical for proper neuronal functions and involved in the maintenance of proteostasis. This perspective article reviews recent findings implicating proteostasis impairments in the pathophysiology of neuropsychiatric disorders and explores how neuronal and synaptic functions may be impacted by disruptions in protein homeostasis. A greater understanding of the contributions by proteostasis impairment in neuropsychiatric disorders will help guide future studies to identify additional candidate proteins and new targets for therapeutic development.
Collapse
Affiliation(s)
- Kelvin K Hui
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ryo Endo
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Akira Sawa
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, Maryland; Department of Neuroscience, John Hopkins University School of Medicine, Baltimore, Maryland; Department of Biomedical Engineering, John Hopkins University School of Medicine, Baltimore, Maryland; Department of Genetic Medicine, John Hopkins University School of Medicine, Baltimore, Maryland; Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Motomasa Tanaka
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Saitama, Japan.
| |
Collapse
|
10
|
Zhou C, Xiao Y, Xie H, Wang J, Liu S. Case Report: Novel Compound Heterozygous Variants in TRIOBP Associated With Congenital Deafness in a Chinese Family. Front Genet 2021; 12:766973. [PMID: 34868251 PMCID: PMC8635749 DOI: 10.3389/fgene.2021.766973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/25/2021] [Indexed: 11/24/2022] Open
Abstract
Autosomal recessive non-syndromic deafness-28 (DFNB28) is characterized by prelingual, profound sensorineural hearing loss (HL). The disease is related to variants of the TRIOBP gene. TRIO and F-actin binding protein (TRIOBP) plays crucial roles in modulating the assembly of the actin cytoskeleton and are responsible for the proper structure and function of stereocilia in the inner ear. This study aimed to identify pathogenic variants in a patient with HL. Genomic DNA obtained from a 33-year-old woman with HL was evaluated using a disease-targeted gene panel. Using next generation sequencing and bioinformatics analysis, we identified two novel TRIOBP c.1170delC (p.S391Pfs*488) and c.3764C > G (p.S1255*) variants. Both parents of the patient were heterozygous carriers of the gene. The two variants have not been reported in general population databases or published literature. The findings of this study will broaden the spectrum of pathogenic variants in the TRIOBP gene.
Collapse
Affiliation(s)
- Cong Zhou
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Yuanyuan Xiao
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Hanbing Xie
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Shanling Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Protein Aggregation of NPAS3, Implicated in Mental Illness, Is Not Limited to the V304I Mutation. J Pers Med 2021; 11:jpm11111070. [PMID: 34834422 PMCID: PMC8623263 DOI: 10.3390/jpm11111070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 01/01/2023] Open
Abstract
An emerging phenomenon in our understanding of the pathophysiology of mental illness is the idea that specific proteins may form insoluble aggregates in the brains of patients, in partial analogy to similar proteinopathies in neurodegenerative diseases. Several proteins have now been detected as forming such aggregates in the brains of patients, including DISC1, dysbindin-1 and TRIOBP-1. Recently, neuronal PAS domain protein 3 (NPAS3), a known genetic risk factor for schizophrenia, was implicated through a V304I point mutation in a family with major mental illness. Investigation of the mutation revealed that it may lead to aggregation of NPAS3. Here we investigated NPAS3 aggregation in insular cortex samples from 40 individuals, by purifying the insoluble fraction of these samples and testing them by Western blotting. Strikingly, full-length NPAS3 was found in the insoluble fraction of 70% of these samples, implying that aggregation is far more widely spread than can be accounted for by this rare mutation. We investigated the possible mechanism of aggregation further in neuroblastoma cells, finding that oxidative stress plays a larger role than the V304I mutation. Finally, we tested to see if NPAS3 aggregation could also be seen in blood serum, as a more accessible tissue than the human brain for future diagnosis. While no indication of NPAS3 aggregation was seen in the serum, soluble NPAS3 was detected, and was more prevalent in patients with schizophrenia than in those with major depressive disorder or controls. Aggregation of NPAS3 therefore appears to be a widespread and multifactorial phenomenon. Further research is now needed to determine whether it is specifically enhanced in schizophrenia or other mental illnesses.
Collapse
|
12
|
Zaharija B, Samardžija B, Bradshaw NJ. The TRIOBP Isoforms and Their Distinct Roles in Actin Stabilization, Deafness, Mental Illness, and Cancer. Molecules 2020; 25:molecules25214967. [PMID: 33121024 PMCID: PMC7663296 DOI: 10.3390/molecules25214967] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/16/2022] Open
Abstract
The TRIOBP (TRIO and F-actin Binding Protein) gene encodes multiple proteins, which together play crucial roles in modulating the assembly of the actin cytoskeleton. Splicing of the TRIOBP gene is complex, with the two most studied TRIOBP protein isoforms sharing no overlapping amino acid sequence with each other. TRIOBP-1 (also known as TARA or TAP68) is a mainly structured protein that is ubiquitously expressed and binds to F-actin, preventing its depolymerization. It has been shown to be important for many processes including in the cell cycle, adhesion junctions, and neuronal differentiation. TRIOBP-1 has been implicated in schizophrenia through the formation of protein aggregates in the brain. In contrast, TRIOBP-4 is an entirely disordered protein with a highly specialized expression pattern. It is known to be crucial for the bundling of actin in the stereocilia of the inner ear, with mutations in it causing severe or profound hearing loss. Both of these isoforms are implicated in cancer. Additional longer isoforms of TRIOBP exist, which overlap with both TRIOBP-1 and 4. These appear to participate in the functions of both shorter isoforms, while also possessing unique functions in the inner ear. In this review, the structures and functions of all of these isoforms are discussed, with a view to understanding how they operate, both alone and in combination, to modulate actin and their consequences for human illness.
Collapse
|
13
|
Woo Y, Kim SJ, Suh BK, Kwak Y, Jung HJ, Nhung TTM, Mun DJ, Hong JH, Noh SJ, Kim S, Lee A, Baek ST, Nguyen MD, Choe Y, Park SK. Sequential phosphorylation of NDEL1 by the DYRK2-GSK3β complex is critical for neuronal morphogenesis. eLife 2019; 8:e50850. [PMID: 31815665 PMCID: PMC6927744 DOI: 10.7554/elife.50850] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/08/2019] [Indexed: 12/20/2022] Open
Abstract
Neuronal morphogenesis requires multiple regulatory pathways to appropriately determine axonal and dendritic structures, thereby to enable the functional neural connectivity. Yet, however, the precise mechanisms and components that regulate neuronal morphogenesis are still largely unknown. Here, we newly identified the sequential phosphorylation of NDEL1 critical for neuronal morphogenesis through the human kinome screening and phospho-proteomics analysis of NDEL1 from mouse brain lysate. DYRK2 phosphorylates NDEL1 S336 to prime the phosphorylation of NDEL1 S332 by GSK3β. TARA, an interaction partner of NDEL1, scaffolds DYRK2 and GSK3β to form a tripartite complex and enhances NDEL1 S336/S332 phosphorylation. This dual phosphorylation increases the filamentous actin dynamics. Ultimately, the phosphorylation enhances both axonal and dendritic outgrowth and promotes their arborization. Together, our findings suggest the NDEL1 phosphorylation at S336/S332 by the TARA-DYRK2-GSK3β complex as a novel regulatory mechanism underlying neuronal morphogenesis.
Collapse
Affiliation(s)
- Youngsik Woo
- Department of Life SciencesPohang University of Science and TechnologyPohangRepublic of Korea
| | - Soo Jeong Kim
- Department of Life SciencesPohang University of Science and TechnologyPohangRepublic of Korea
| | - Bo Kyoung Suh
- Department of Life SciencesPohang University of Science and TechnologyPohangRepublic of Korea
| | - Yongdo Kwak
- Department of Life SciencesPohang University of Science and TechnologyPohangRepublic of Korea
| | - Hyun-Jin Jung
- Korea Brain Research InstituteDaeguRepublic of Korea
| | - Truong Thi My Nhung
- Department of Life SciencesPohang University of Science and TechnologyPohangRepublic of Korea
| | - Dong Jin Mun
- Department of Life SciencesPohang University of Science and TechnologyPohangRepublic of Korea
| | - Ji-Ho Hong
- Department of Life SciencesPohang University of Science and TechnologyPohangRepublic of Korea
| | - Su-Jin Noh
- Department of Life SciencesPohang University of Science and TechnologyPohangRepublic of Korea
| | - Seunghyun Kim
- Department of Life SciencesPohang University of Science and TechnologyPohangRepublic of Korea
| | - Ahryoung Lee
- Department of Life SciencesPohang University of Science and TechnologyPohangRepublic of Korea
| | - Seung Tae Baek
- Department of Life SciencesPohang University of Science and TechnologyPohangRepublic of Korea
| | - Minh Dang Nguyen
- Hotchkiss Brain Institute, Cumming School of MedicineUniversity of CalgaryCalgaryCanada
- Department of Clinical Neurosciences, Cumming School of MedicineUniversity of CalgaryCalgaryCanada
- Department of Cell Biology and Anatomy, Cumming School of MedicineUniversity of CalgaryCalgaryCanada
- Department of Biochemistry and Molecular Biology, Cumming School of MedicineUniversity of CalgaryCalgaryCanada
| | | | - Sang Ki Park
- Department of Life SciencesPohang University of Science and TechnologyPohangRepublic of Korea
| |
Collapse
|
14
|
Nucifora LG, MacDonald ML, Lee BJ, Peters ME, Norris AL, Orsburn BC, Yang K, Gleason K, Margolis RL, Pevsner J, Tamminga CA, Sweet RA, Ross CA, Sawa A, Nucifora FC. Increased Protein Insolubility in Brains From a Subset of Patients With Schizophrenia. Am J Psychiatry 2019; 176:730-743. [PMID: 31055969 DOI: 10.1176/appi.ajp.2019.18070864] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The mechanisms leading to schizophrenia are likely to be diverse. However, there may be common pathophysiological pathways for subtypes of the disease. The authors tested the hypothesis that increased protein insolubility and ubiquitination underlie the pathophysiology for a subtype of schizophrenia. METHODS Prefrontal cortex and superior temporal gyrus from postmortem brains of individuals with and without schizophrenia were subjected to cold sarkosyl fractionation, separating proteins into soluble and insoluble fractions. Protein insolubility and ubiquitin levels were quantified for each insoluble fraction, with normalization to total homogenate protein. Mass spectrometry analysis was then performed to identify the protein contents of the insoluble fractions. The potential biological relevance of the detected proteins was assessed using Gene Ontology enrichment analysis and Ingenuity Pathway Analysis. RESULTS A subset of the schizophrenia brains showed an increase in protein insolubility and ubiquitination in the insoluble fraction. Mass spectrometry of the insoluble fraction revealed that brains with increased insolubility and ubiquitination exhibited a similar peptide expression by principal component analysis. The proteins that were significantly altered in the insoluble fraction were enriched for pathways relating to axon target recognition as well as nervous system development and function. CONCLUSIONS This study suggests a pathological process related to protein insolubility for a subset of patients with schizophrenia. Determining the molecular mechanism of this subtype of schizophrenia could lead to a better understanding of the pathways underlying the clinical phenotype in some patients with major mental illness as well as to improved nosology and identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Leslie G Nucifora
- The Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore (L.G. Nucifora, Lee, Peters, Yang, Margolis, Pevsner, Ross, Sawa, F.C. Nucifora); the Departments of Psychiatry and Neurology, University of Pittsburgh, and the VISN 4 Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh (MacDonald, Sweet); the Department of Neurology, Kennedy Krieger Institute, Baltimore (Norris, Pevsner); the Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore (Norris, Pevsner, Ross, Sawa); Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Md. (Orsburn); the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas (Gleason, Tamminga); the Department of Neurology, Johns Hopkins University School of Medicine, Baltimore (Margolis, Ross, Sawa, F.C. Nucifora); Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore (Lee, Sawa); the Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore (Ross)
| | - Matthew L MacDonald
- The Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore (L.G. Nucifora, Lee, Peters, Yang, Margolis, Pevsner, Ross, Sawa, F.C. Nucifora); the Departments of Psychiatry and Neurology, University of Pittsburgh, and the VISN 4 Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh (MacDonald, Sweet); the Department of Neurology, Kennedy Krieger Institute, Baltimore (Norris, Pevsner); the Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore (Norris, Pevsner, Ross, Sawa); Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Md. (Orsburn); the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas (Gleason, Tamminga); the Department of Neurology, Johns Hopkins University School of Medicine, Baltimore (Margolis, Ross, Sawa, F.C. Nucifora); Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore (Lee, Sawa); the Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore (Ross)
| | - Brian J Lee
- The Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore (L.G. Nucifora, Lee, Peters, Yang, Margolis, Pevsner, Ross, Sawa, F.C. Nucifora); the Departments of Psychiatry and Neurology, University of Pittsburgh, and the VISN 4 Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh (MacDonald, Sweet); the Department of Neurology, Kennedy Krieger Institute, Baltimore (Norris, Pevsner); the Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore (Norris, Pevsner, Ross, Sawa); Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Md. (Orsburn); the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas (Gleason, Tamminga); the Department of Neurology, Johns Hopkins University School of Medicine, Baltimore (Margolis, Ross, Sawa, F.C. Nucifora); Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore (Lee, Sawa); the Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore (Ross)
| | - Matthew E Peters
- The Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore (L.G. Nucifora, Lee, Peters, Yang, Margolis, Pevsner, Ross, Sawa, F.C. Nucifora); the Departments of Psychiatry and Neurology, University of Pittsburgh, and the VISN 4 Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh (MacDonald, Sweet); the Department of Neurology, Kennedy Krieger Institute, Baltimore (Norris, Pevsner); the Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore (Norris, Pevsner, Ross, Sawa); Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Md. (Orsburn); the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas (Gleason, Tamminga); the Department of Neurology, Johns Hopkins University School of Medicine, Baltimore (Margolis, Ross, Sawa, F.C. Nucifora); Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore (Lee, Sawa); the Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore (Ross)
| | - Alexis L Norris
- The Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore (L.G. Nucifora, Lee, Peters, Yang, Margolis, Pevsner, Ross, Sawa, F.C. Nucifora); the Departments of Psychiatry and Neurology, University of Pittsburgh, and the VISN 4 Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh (MacDonald, Sweet); the Department of Neurology, Kennedy Krieger Institute, Baltimore (Norris, Pevsner); the Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore (Norris, Pevsner, Ross, Sawa); Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Md. (Orsburn); the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas (Gleason, Tamminga); the Department of Neurology, Johns Hopkins University School of Medicine, Baltimore (Margolis, Ross, Sawa, F.C. Nucifora); Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore (Lee, Sawa); the Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore (Ross)
| | - Benjamin C Orsburn
- The Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore (L.G. Nucifora, Lee, Peters, Yang, Margolis, Pevsner, Ross, Sawa, F.C. Nucifora); the Departments of Psychiatry and Neurology, University of Pittsburgh, and the VISN 4 Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh (MacDonald, Sweet); the Department of Neurology, Kennedy Krieger Institute, Baltimore (Norris, Pevsner); the Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore (Norris, Pevsner, Ross, Sawa); Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Md. (Orsburn); the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas (Gleason, Tamminga); the Department of Neurology, Johns Hopkins University School of Medicine, Baltimore (Margolis, Ross, Sawa, F.C. Nucifora); Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore (Lee, Sawa); the Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore (Ross)
| | - Kun Yang
- The Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore (L.G. Nucifora, Lee, Peters, Yang, Margolis, Pevsner, Ross, Sawa, F.C. Nucifora); the Departments of Psychiatry and Neurology, University of Pittsburgh, and the VISN 4 Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh (MacDonald, Sweet); the Department of Neurology, Kennedy Krieger Institute, Baltimore (Norris, Pevsner); the Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore (Norris, Pevsner, Ross, Sawa); Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Md. (Orsburn); the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas (Gleason, Tamminga); the Department of Neurology, Johns Hopkins University School of Medicine, Baltimore (Margolis, Ross, Sawa, F.C. Nucifora); Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore (Lee, Sawa); the Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore (Ross)
| | - Kelly Gleason
- The Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore (L.G. Nucifora, Lee, Peters, Yang, Margolis, Pevsner, Ross, Sawa, F.C. Nucifora); the Departments of Psychiatry and Neurology, University of Pittsburgh, and the VISN 4 Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh (MacDonald, Sweet); the Department of Neurology, Kennedy Krieger Institute, Baltimore (Norris, Pevsner); the Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore (Norris, Pevsner, Ross, Sawa); Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Md. (Orsburn); the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas (Gleason, Tamminga); the Department of Neurology, Johns Hopkins University School of Medicine, Baltimore (Margolis, Ross, Sawa, F.C. Nucifora); Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore (Lee, Sawa); the Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore (Ross)
| | - Russell L Margolis
- The Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore (L.G. Nucifora, Lee, Peters, Yang, Margolis, Pevsner, Ross, Sawa, F.C. Nucifora); the Departments of Psychiatry and Neurology, University of Pittsburgh, and the VISN 4 Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh (MacDonald, Sweet); the Department of Neurology, Kennedy Krieger Institute, Baltimore (Norris, Pevsner); the Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore (Norris, Pevsner, Ross, Sawa); Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Md. (Orsburn); the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas (Gleason, Tamminga); the Department of Neurology, Johns Hopkins University School of Medicine, Baltimore (Margolis, Ross, Sawa, F.C. Nucifora); Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore (Lee, Sawa); the Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore (Ross)
| | - Jonathan Pevsner
- The Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore (L.G. Nucifora, Lee, Peters, Yang, Margolis, Pevsner, Ross, Sawa, F.C. Nucifora); the Departments of Psychiatry and Neurology, University of Pittsburgh, and the VISN 4 Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh (MacDonald, Sweet); the Department of Neurology, Kennedy Krieger Institute, Baltimore (Norris, Pevsner); the Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore (Norris, Pevsner, Ross, Sawa); Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Md. (Orsburn); the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas (Gleason, Tamminga); the Department of Neurology, Johns Hopkins University School of Medicine, Baltimore (Margolis, Ross, Sawa, F.C. Nucifora); Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore (Lee, Sawa); the Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore (Ross)
| | - Carol A Tamminga
- The Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore (L.G. Nucifora, Lee, Peters, Yang, Margolis, Pevsner, Ross, Sawa, F.C. Nucifora); the Departments of Psychiatry and Neurology, University of Pittsburgh, and the VISN 4 Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh (MacDonald, Sweet); the Department of Neurology, Kennedy Krieger Institute, Baltimore (Norris, Pevsner); the Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore (Norris, Pevsner, Ross, Sawa); Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Md. (Orsburn); the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas (Gleason, Tamminga); the Department of Neurology, Johns Hopkins University School of Medicine, Baltimore (Margolis, Ross, Sawa, F.C. Nucifora); Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore (Lee, Sawa); the Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore (Ross)
| | - Robert A Sweet
- The Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore (L.G. Nucifora, Lee, Peters, Yang, Margolis, Pevsner, Ross, Sawa, F.C. Nucifora); the Departments of Psychiatry and Neurology, University of Pittsburgh, and the VISN 4 Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh (MacDonald, Sweet); the Department of Neurology, Kennedy Krieger Institute, Baltimore (Norris, Pevsner); the Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore (Norris, Pevsner, Ross, Sawa); Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Md. (Orsburn); the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas (Gleason, Tamminga); the Department of Neurology, Johns Hopkins University School of Medicine, Baltimore (Margolis, Ross, Sawa, F.C. Nucifora); Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore (Lee, Sawa); the Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore (Ross)
| | - Christopher A Ross
- The Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore (L.G. Nucifora, Lee, Peters, Yang, Margolis, Pevsner, Ross, Sawa, F.C. Nucifora); the Departments of Psychiatry and Neurology, University of Pittsburgh, and the VISN 4 Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh (MacDonald, Sweet); the Department of Neurology, Kennedy Krieger Institute, Baltimore (Norris, Pevsner); the Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore (Norris, Pevsner, Ross, Sawa); Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Md. (Orsburn); the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas (Gleason, Tamminga); the Department of Neurology, Johns Hopkins University School of Medicine, Baltimore (Margolis, Ross, Sawa, F.C. Nucifora); Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore (Lee, Sawa); the Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore (Ross)
| | - Akira Sawa
- The Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore (L.G. Nucifora, Lee, Peters, Yang, Margolis, Pevsner, Ross, Sawa, F.C. Nucifora); the Departments of Psychiatry and Neurology, University of Pittsburgh, and the VISN 4 Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh (MacDonald, Sweet); the Department of Neurology, Kennedy Krieger Institute, Baltimore (Norris, Pevsner); the Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore (Norris, Pevsner, Ross, Sawa); Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Md. (Orsburn); the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas (Gleason, Tamminga); the Department of Neurology, Johns Hopkins University School of Medicine, Baltimore (Margolis, Ross, Sawa, F.C. Nucifora); Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore (Lee, Sawa); the Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore (Ross)
| | - Frederick C Nucifora
- The Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore (L.G. Nucifora, Lee, Peters, Yang, Margolis, Pevsner, Ross, Sawa, F.C. Nucifora); the Departments of Psychiatry and Neurology, University of Pittsburgh, and the VISN 4 Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh (MacDonald, Sweet); the Department of Neurology, Kennedy Krieger Institute, Baltimore (Norris, Pevsner); the Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore (Norris, Pevsner, Ross, Sawa); Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Md. (Orsburn); the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas (Gleason, Tamminga); the Department of Neurology, Johns Hopkins University School of Medicine, Baltimore (Margolis, Ross, Sawa, F.C. Nucifora); Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore (Lee, Sawa); the Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore (Ross)
| |
Collapse
|
15
|
Protein misassembly and aggregation as potential convergence points for non-genetic causes of chronic mental illness. Mol Psychiatry 2019; 24:936-951. [PMID: 30089789 DOI: 10.1038/s41380-018-0133-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/10/2018] [Accepted: 06/18/2018] [Indexed: 12/13/2022]
Abstract
Chronic mental illnesses (CMI), such as schizophrenia or recurrent affective disorders, are complex conditions with both genetic and non-genetic elements. In many other chronic brain conditions, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and frontotemporal dementia, sporadic instances of the disease are more common than gene-driven familial cases. Yet, the pathology of these conditions can be characterized by the presence of aberrant protein homeostasis, proteostasis, resulting in misfolded or aggregated proteins in the brains of patients that predominantly do not derive from genetic mutations. While visible deposits of aggregated protein have not yet been detected in CMI patients, we propose the existence of more subtle protein misassembly in these conditions, which form a continuum with the psychiatric phenotypes found in the early stages of many neurodegenerative conditions. Such proteinopathies need not rely on genetic variation. In a similar manner to the established aberrant neurotransmitter homeostasis in CMI, aberrant homeostasis of proteins is a functional statement that can only partially be explained by, but is certainly complementary to, genetic approaches. Here, we review evidence for aberrant proteostasis signatures from post mortem human cases, in vivo animal work, and in vitro analysis of candidate proteins misassembled in CMI. The five best-characterized proteins in this respect are currently DISC1, dysbindin-1, CRMP1, TRIOBP-1, and NPAS3. Misassembly of these proteins with inherently unstructured domains is triggered by extracellular stressors and thus provides a converging point for non-genetic causes of CMI.
Collapse
|
16
|
Chung CG, Lee H, Lee SB. Mechanisms of protein toxicity in neurodegenerative diseases. Cell Mol Life Sci 2018; 75:3159-3180. [PMID: 29947927 PMCID: PMC6063327 DOI: 10.1007/s00018-018-2854-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 12/12/2022]
Abstract
Protein toxicity can be defined as all the pathological changes that ensue from accumulation, mis-localization, and/or multimerization of disease-specific proteins. Most neurodegenerative diseases manifest protein toxicity as one of their key pathogenic mechanisms, the details of which remain unclear. By systematically deconstructing the nature of toxic proteins, we aim to elucidate and illuminate some of the key mechanisms of protein toxicity from which therapeutic insights may be drawn. In this review, we focus specifically on protein toxicity from the point of view of various cellular compartments such as the nucleus and the mitochondria. We also discuss the cell-to-cell propagation of toxic disease proteins that complicates the mechanistic understanding of the disease progression as well as the spatiotemporal point at which to therapeutically intervene. Finally, we discuss selective neuronal vulnerability, which still remains largely enigmatic.
Collapse
Affiliation(s)
- Chang Geon Chung
- Department of Brain and Cognitive Sciences, DGIST, Daegu, 42988, Republic of Korea
| | - Hyosang Lee
- Department of Brain and Cognitive Sciences, DGIST, Daegu, 42988, Republic of Korea.
| | - Sung Bae Lee
- Department of Brain and Cognitive Sciences, DGIST, Daegu, 42988, Republic of Korea.
| |
Collapse
|
17
|
Wang H, Pardeshi LA, Rong X, Li E, Wong KH, Peng Y, Xu RH. Novel Variants Identified in Multiple Sclerosis Patients From Southern China. Front Neurol 2018; 9:582. [PMID: 30140248 PMCID: PMC6094994 DOI: 10.3389/fneur.2018.00582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/27/2018] [Indexed: 11/13/2022] Open
Abstract
Background: Multiple sclerosis (MS) is an autoimmune and demyelinating disease. Genome-wide association studies have shown that MS is associated with many genetic variants in some human leucocyte antigen genes and other immune-related genes, however, those studies were mostly specific to Caucasian populations. We attempt to address whether the same associations are also true for Asian populations by conducting whole-exome sequencing on MS patients from southern China. Methods: Genomic DNA was extracted from the peripheral blood mononucleocytes of 8 MS patients and 26 healthy controls and followed by exome sequencing. Results: In total, 41,227 variants were found to have moderate to high impact on their protein products. After filtering per allele frequencies according to known database, 17 variants with the allele frequency <1% or variants with undetermined frequency were identified to be unreported and have significantly different frequencies between the MS patients and healthy controls. After validation via Sanger sequencing, one rare variant located in exon 7 of TRIOBP (Chr22: 37723520G>T, Ala322Ser, rs201693690) was found to be a novel missense variant. Conclusion: MS in southern China may have association with unique genetic variants, our data suggest TRIOBP as a potential novel risk gene.
Collapse
Affiliation(s)
- Hongxuan Wang
- Department of Neurology, Sun Yat-sen Memorial Hospital,Sun Yat-sen University, Guangzhou, China.,Faculty of Health Sciences, University of Macau, Taipa, Macau
| | | | - Xiaoming Rong
- Department of Neurology, Sun Yat-sen Memorial Hospital,Sun Yat-sen University, Guangzhou, China
| | - Enqin Li
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Koon Ho Wong
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Ying Peng
- Department of Neurology, Sun Yat-sen Memorial Hospital,Sun Yat-sen University, Guangzhou, China
| | - Ren-He Xu
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| |
Collapse
|
18
|
Park S, Lee H, Kim M, Park J, Kim SH, Park J. Emerging roles of TRIO and F-actin-binding protein in human diseases. Cell Commun Signal 2018; 16:29. [PMID: 29890989 PMCID: PMC5996455 DOI: 10.1186/s12964-018-0237-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/18/2018] [Indexed: 12/19/2022] Open
Abstract
TRIO and F-actin-binding protein (TRIOBP) also referred to as Tara, was originally isolated as a cytoskeleton remodeling protein. TRIOBP-1 is important for regulating F-actin filament reorganization. TRIOBP variants are broadly classified as variant-1 or − 4 and do not share exons. TRIOBP variant-5 contains all exons. Earlier studies indicated that TRIOBP-4/5 mutation is a pivotal element of autosomal recessive nonsyndromic hearing loss. However, recent studies provide clues that TRIOBP variants are associated with other human diseases including cancer and brain diseases. In this review, recent functional studies focusing on TRIOBP variants and its possible disease models are described.
Collapse
Affiliation(s)
- Sungjin Park
- Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Hyunji Lee
- Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Minhee Kim
- Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Jisoo Park
- Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Seon-Hwan Kim
- Department of Neurosurgery, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea.
| | - Jongsun Park
- Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea. .,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea.
| |
Collapse
|
19
|
Jones DK, Johnson AC, Roti Roti EC, Liu F, Uelmen R, Ayers RA, Baczko I, Tester DJ, Ackerman MJ, Trudeau MC, Robertson GA. Localization and functional consequences of a direct interaction between TRIOBP-1 and hERG proteins in the heart. J Cell Sci 2018; 131:jcs.206730. [PMID: 29507111 DOI: 10.1242/jcs.206730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 02/12/2018] [Indexed: 12/22/2022] Open
Abstract
Reduced levels of the cardiac human (h)ERG ion channel protein and the corresponding repolarizing current IKr can cause arrhythmia and sudden cardiac death, but the underlying cellular mechanisms controlling hERG surface expression are not well understood. Here, we identified TRIOBP-1, an F-actin-binding protein previously associated with actin polymerization, as a putative hERG-interacting protein in a yeast-two hybrid screen of a cardiac library. We corroborated this interaction by performing Förster resonance energy transfer (FRET) in HEK293 cells and co-immunoprecipitation in HEK293 cells and native cardiac tissue. TRIOBP-1 overexpression reduced hERG surface expression and current density, whereas reducing TRIOBP-1 expression via shRNA knockdown resulted in increased hERG protein levels. Immunolabeling in rat cardiomyocytes showed that native TRIOBP-1 colocalized predominantly with myosin-binding protein C and secondarily with rat ERG. In human stem cell-derived cardiomyocytes, TRIOBP-1 overexpression caused intracellular co-sequestration of hERG signal, reduced native IKr and disrupted action potential repolarization. Ca2+ currents were also somewhat reduced and cell capacitance was increased. These findings establish that TRIOBP-1 interacts directly with hERG and can affect protein levels, IKr magnitude and cardiac membrane excitability.
Collapse
Affiliation(s)
- David K Jones
- Department of Neuroscience, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison SMPH, 1111 Highland Ave. #5505, Madison, WI 53705, USA
| | - Ashley C Johnson
- Department of Physiology, University of Maryland School of Medicine, 660 W. Redwood St., Baltimore, MD 21201, USA
| | - Elon C Roti Roti
- Department of Neuroscience, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison SMPH, 1111 Highland Ave. #5505, Madison, WI 53705, USA
| | - Fang Liu
- Department of Neuroscience, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison SMPH, 1111 Highland Ave. #5505, Madison, WI 53705, USA
| | - Rebecca Uelmen
- Department of Neuroscience, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison SMPH, 1111 Highland Ave. #5505, Madison, WI 53705, USA
| | - Rebecca A Ayers
- Department of Neuroscience, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison SMPH, 1111 Highland Ave. #5505, Madison, WI 53705, USA
| | - Istvan Baczko
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged 6720, Hungary
| | - David J Tester
- Department of Cardiovascular Diseases, Division of Heart Rhythm Service, Mayo Clinic, Rochester, NY 55905, USA
| | - Michael J Ackerman
- Department of Cardiovascular Diseases, Division of Heart Rhythm Service, Mayo Clinic, Rochester, NY 55905, USA
| | - Matthew C Trudeau
- Department of Physiology, University of Maryland School of Medicine, 660 W. Redwood St., Baltimore, MD 21201, USA
| | - Gail A Robertson
- Department of Neuroscience, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison SMPH, 1111 Highland Ave. #5505, Madison, WI 53705, USA
| |
Collapse
|
20
|
Bradshaw NJ, Yerabham ASK, Marreiros R, Zhang T, Nagel-Steger L, Korth C. An unpredicted aggregation-critical region of the actin-polymerizing protein TRIOBP-1/Tara, determined by elucidation of its domain structure. J Biol Chem 2017; 292:9583-9598. [PMID: 28438837 DOI: 10.1074/jbc.m116.767939] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 04/20/2017] [Indexed: 12/22/2022] Open
Abstract
Aggregation of specific proteins in the brains of patients with chronic mental illness as a result of disruptions in proteostasis is an emerging theme in the study of schizophrenia in particular. Proteins including DISC1 (disrupted in schizophrenia 1) and dysbindin-1B are found in insoluble forms within brain homogenates from such patients. We recently identified TRIOBP-1 (Trio-binding protein 1, also known as Tara) to be another such protein through an epitope discovery and proteomics approach by comparing post-mortem brain material from schizophrenia patients and control individuals. We hypothesized that this was likely to occur as a result of a specific subcellular process and that it, therefore, should be possible to identify a region of the TRIOBP-1 protein that is essential for its aggregation to occur. Here, we probe the domain organization of TRIOBP-1, finding it to possess two distinct coiled-coil domains: the central and C-terminal domains. The central domain inhibits the depolymerization of F-actin and is also responsible for oligomerization of TRIOBP-1. Along with an N-terminal pleckstrin homology domain, the central domain affects neurite outgrowth. In neuroblastoma cells it was found that the aggregation propensity of TRIOBP-1 arises from its central domain, with a short "linker" region narrowed to within amino acids 324-348, between its first two coiled coils, as essential for the formation of TRIOBP-1 aggregates. TRIOBP-1 aggregation, therefore, appears to occur through one or more specific cellular mechanisms, which therefore have the potential to be of physiological relevance for the biological process underlying the development of chronic mental illness.
Collapse
Affiliation(s)
| | | | | | - Tao Zhang
- the Institute of Physical Biology, Heinrich Heine University, 40225 Düsseldorf, Germany and.,the Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Luitgard Nagel-Steger
- the Institute of Physical Biology, Heinrich Heine University, 40225 Düsseldorf, Germany and.,the Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | | |
Collapse
|
21
|
Pejvakin, a Candidate Stereociliary Rootlet Protein, Regulates Hair Cell Function in a Cell-Autonomous Manner. J Neurosci 2017; 37:3447-3464. [PMID: 28209736 DOI: 10.1523/jneurosci.2711-16.2017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 01/02/2017] [Accepted: 01/25/2017] [Indexed: 11/21/2022] Open
Abstract
Mutations in the Pejvakin (PJVK) gene are thought to cause auditory neuropathy and hearing loss of cochlear origin by affecting noise-induced peroxisome proliferation in auditory hair cells and neurons. Here we demonstrate that loss of pejvakin in hair cells, but not in neurons, causes profound hearing loss and outer hair cell degeneration in mice. Pejvakin binds to and colocalizes with the rootlet component TRIOBP at the base of stereocilia in injectoporated hair cells, a pattern that is disrupted by deafness-associated PJVK mutations. Hair cells of pejvakin-deficient mice develop normal rootlets, but hair bundle morphology and mechanotransduction are affected before the onset of hearing. Some mechanotransducing shorter row stereocilia are missing, whereas the remaining ones exhibit overextended tips and a greater variability in height and width. Unlike previous studies of Pjvk alleles with neuronal dysfunction, our findings reveal a cell-autonomous role of pejvakin in maintaining stereocilia architecture that is critical for hair cell function.SIGNIFICANCE STATEMENT Two missense mutations in the Pejvakin (PJVK or DFNB59) gene were first identified in patients with audiological hallmarks of auditory neuropathy spectrum disorder, whereas all other PJVK alleles cause hearing loss of cochlear origin. These findings suggest that complex pathogenetic mechanisms underlie human deafness DFNB59. In contrast to recent studies, we demonstrate that pejvakin in auditory neurons is not essential for normal hearing in mice. Moreover, pejvakin localizes to stereociliary rootlets in hair cells and is required for stereocilia maintenance and mechanosensory function of the hair bundle. Delineating the site of the lesion and the mechanisms underlying DFNB59 will allow clinicians to predict the efficacy of different therapeutic approaches, such as determining compatibility for cochlear implants.
Collapse
|
22
|
Hong JH, Kwak Y, Woo Y, Park C, Lee SA, Lee H, Park SJ, Suh Y, Suh BK, Goo BS, Mun DJ, Sanada K, Nguyen MD, Park SK. Regulation of the actin cytoskeleton by the Ndel1-Tara complex is critical for cell migration. Sci Rep 2016; 6:31827. [PMID: 27546710 PMCID: PMC4992831 DOI: 10.1038/srep31827] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/27/2016] [Indexed: 11/16/2022] Open
Abstract
Nuclear distribution element-like 1 (Ndel1) plays pivotal roles in diverse biological processes and is implicated in the pathogenesis of multiple neurodevelopmental disorders. Ndel1 function by regulating microtubules and intermediate filaments; however, its functional link with the actin cytoskeleton is largely unknown. Here, we show that Ndel1 interacts with TRIO-associated repeat on actin (Tara), an actin-bundling protein, to regulate cell movement. In vitro wound healing and Boyden chamber assays revealed that Ndel1- or Tara-deficient cells were defective in cell migration. Moreover, Tara overexpression induced the accumulation of Ndel1 at the cell periphery and resulted in prominent co-localization with F-actin. This redistribution of Ndel1 was abolished by deletion of the Ndel1-interacting domain of Tara, suggesting that the altered peripheral localization of Ndel1 requires a physical interaction with Tara. Furthermore, co-expression of Ndel1 and Tara in SH-SY5Y cells caused a synergistic increase in F-actin levels and filopodia formation, suggesting that Tara facilitates cell movement by sequestering Ndel1 at peripheral structures to regulate actin remodeling. Thus, we demonstrated that Ndel1 interacts with Tara to regulate cell movement. These findings reveal a novel role of the Ndel1-Tara complex in actin reorganization during cell movement.
Collapse
Affiliation(s)
- Ji-Ho Hong
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Yongdo Kwak
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Youngsik Woo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Cana Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Seol-Ae Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Haeryun Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Sung Jin Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Yeongjun Suh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Bo Kyoung Suh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Bon Seong Goo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Dong Jin Mun
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Kamon Sanada
- Molecular Genetics Research Laboratory, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Minh Dang Nguyen
- Hotchkiss Brain Institute, Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, University of Calgary, Calgary T2N 4N1, Canada
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| |
Collapse
|
23
|
Propagation of dysbindin-1B aggregates: Exosome-mediated transmission of neurotoxic deposits. Neuroscience 2015; 291:301-16. [DOI: 10.1016/j.neuroscience.2015.02.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/09/2015] [Accepted: 02/09/2015] [Indexed: 11/21/2022]
|