1
|
Jean Pierre AR, Kasirajan A, Green SR, Sivaprakasam M, Sahaya Raj RS, Josyula JVN, Mutheneni SR, Subramanyam V, Pillai AB. Clinical correlations of plasma sphingosine-1-phosphate and sphingolipid key enzymes in severe dengue using laboratory and machine learning approach. Clin Chim Acta 2025; 574:120335. [PMID: 40306535 DOI: 10.1016/j.cca.2025.120335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 04/05/2025] [Accepted: 04/26/2025] [Indexed: 05/02/2025]
Abstract
BACKGROUND Sphingolipids are crucial for vascular integrity and cellular homeostasis, with recent studies highlighting their role in viral diseases. OBJECTIVES The study aimed to assess the plasma levels of sphingolipids, specifically Sphingosine-1-phosphate (S1P) and the key enzymes of sphingolipid metabolism: Sphingomyelin synthase (SMS1), Ceramide Kinase (CERK) and acid ceramidase (ASAH1) and its association with clinical outcomes of dengue. METHODS This prospective cohort study had 102 dengue cases with 17 severe dengue (SD), 33 dengue with warning signs (DWW), 52 dengue without warning signs (DWOW) along with 10 each from other febrile illnesses and healthy controls. Blood was collected across febrile, defervescence, and convalescence phases. Plasma levels of S1P and the enzymes were measured using ELISA, mRNA using qRT-PCR. Predictive efficacy was determined using Support vector machine (SVM) models. RESULTS Study showed a significant reduction in S1P levels across all dengue forms during febrile phases, with further decline in SD during the critical phase (P < 0.05).mRNA levels of the enzymes were increasing during critical phase (P ≤ 0.001) with no significant difference noted in their respective protein levels. S1P and SMS1 levels correlated significantly with clinical severity indicators, including hematocrit, albumin, platelet count, and liver enzymes. SVM analysis identified CERK levels along with platelet count, HCT, and ALT as markers with high predictive accuracy for dengue severity. CONCLUSION The study reports an association of sphingolipids with dengue virulence, emphasizing the role of S1P metabolism in disease progression and plasma leakage, and highlighting the potential of targeting sphingolipids in managing severe dengue.
Collapse
Affiliation(s)
- Aashika Raagavi Jean Pierre
- MGM Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry 607402, India
| | - Anand Kasirajan
- MGM Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry 607402, India
| | - Siva Ranganathan Green
- Department of General Medicine, Mahatma Gandhi Medical College and Research Institute (MGMCRI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry 607 402, India
| | - Manikandan Sivaprakasam
- MGM Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry 607402, India
| | - Rithanya Syam Sahaya Raj
- MGM Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry 607402, India
| | | | - Srinivasa Rao Mutheneni
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
| | - Veni Subramanyam
- MGM Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry 607402, India
| | | |
Collapse
|
2
|
Chermahini FA, Arvejeh PM, Marincola FM, Ahmad S, Naderian R, Pajand O, Eslami M, Hasannia M, Sanami S. Investigating how dengue virus-induced metabolic changes affect the host immune response and how to develop Immunomodulatory strategies. Virol J 2025; 22:117. [PMID: 40281578 PMCID: PMC12023479 DOI: 10.1186/s12985-025-02745-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
Dengue virus (DENV) infection imposes a significant global health burden, driven by its ability to manipulate host cellular processes to facilitate replication and evade immune defenses. This review explores the complex interplay between DENV, host immunometabolism, and signaling pathways. DENV induces metabolic reprogramming, including glycolytic upregulation, lipid droplet utilization through lipophagy, and alterations in amino acid metabolism, to fulfill its energy and biosynthetic needs. The virus also disrupts mitochondrial dynamics, leading to increased reactive oxygen species (ROS) production, which modulates immune responses but may also contribute to oxidative stress and severe pathology. Concurrently, DENV hijacks host signaling pathways, including PI3K/Akt, NF-κB, and JAK/STAT, to suppress apoptosis, evade type I interferon responses, and drive pro-inflammatory cytokine production. The interplay between these signaling and metabolic pathways highlights a dual role of host processes: enabling viral replication while activating antiviral immune responses. The review also examines potential therapeutic strategies targeting metabolic and signaling pathways to combat DENV infection, including glycolysis inhibitors, lipid metabolism modulators, and host-directed therapies. While significant progress has been made in understanding DENV-induced immunometabolism, further research is needed to elucidate the precise molecular mechanisms and translate these findings into clinical applications. This study underscores the importance of integrating metabolic and signaling insights to identify novel therapeutic targets against DENV and related flaviviruses, addressing the critical need for effective antiviral interventions.
Collapse
Affiliation(s)
- Fatemeh Amini Chermahini
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Pooria Mohammadi Arvejeh
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, 25000, Pakistan
| | - Ramtin Naderian
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Pajand
- Clinical Research Development Unit, Kowsar Educational, Research and Therapeutic Hospital, Semnan University of Medical Sciences, Semnan, Iran
| | - Majid Eslami
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Bacteriology and Virology, Semnan University of Medical Sciences, Semnan, Iran
| | - Maliheh Hasannia
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Samira Sanami
- Abnormal Uterine Bleeding Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
3
|
Zhu ZM, Liu HY, An N, Li AL, Li J, Wang SJ, Yang G, Duan YW, Yang Y, Zhang M, Zhu QF, Liu SM, Feng YQ. Metabolic Profiling Reveals Potential Prognostic Biomarkers for SFTS: Insights into Disease Severity and Clinical Outcomes. Metabolites 2025; 15:228. [PMID: 40278357 PMCID: PMC12028903 DOI: 10.3390/metabo15040228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
Background/Objectives: Severe fever with thrombocytopenia syndrome (SFTS) is a viral infection primarily found in Asia, with a case fatality rate of about 10%. Despite its increasing prevalence, the underlying pathogenic mechanisms remain poorly understood, limiting the development of effective therapeutic interventions. Methods: We employed an untargeted metabolomics approach using liquid chromatography-mass spectrometry (LC-MS) to analyze serum samples from 78 SFTS patients during the acute phase of their illness. Differential metabolic features between survival and fatal cases were identified through multivariate statistical analysis. Furthermore, we constructed a metabolic prognostic model based on these biomarkers to predict disease severity. Results: Significant alterations were observed in four key metabolic pathways: sphingolipid metabolism, biosynthesis of phenylalanine, tyrosine, and tryptophan, primary bile acid biosynthesis, and phenylalanine metabolism. Elevated levels of phenyllactic acid and isocitric acid were strongly associated with adverse outcomes and demonstrated high discriminatory power in distinguishing fatal cases from survivors. The metabolic prognostic model incorporating these biomarkers achieved a sensitivity of 75% and a specificity of 90% in predicting disease severity. Conclusions: Our findings highlight the pivotal role of metabolic dysregulation in the pathogenesis of SFTS and suggest that targeting specific metabolic pathways could open new avenues for therapeutic development. The identification of prognostic biomarkers provides a valuable tool for early risk stratification and timely clinical intervention, potentially improving patient outcomes.
Collapse
Affiliation(s)
- Zhuo-Min Zhu
- School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, China; (Z.-M.Z.); (N.A.); (J.L.); (Y.-Q.F.)
- School of Public Health, Wuhan University, Wuhan 430072, China;
| | - Huan-Yu Liu
- Department of Clinical Laboratory, Center for Gene Diagnosis & Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; (H.-Y.L.); (A.-L.L.); (G.Y.); (Y.-W.D.); (Y.Y.)
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Na An
- School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, China; (Z.-M.Z.); (N.A.); (J.L.); (Y.-Q.F.)
- School of Public Health, Wuhan University, Wuhan 430072, China;
| | - An-Ling Li
- Department of Clinical Laboratory, Center for Gene Diagnosis & Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; (H.-Y.L.); (A.-L.L.); (G.Y.); (Y.-W.D.); (Y.Y.)
| | - Jia Li
- School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, China; (Z.-M.Z.); (N.A.); (J.L.); (Y.-Q.F.)
- School of Public Health, Wuhan University, Wuhan 430072, China;
| | - Sai-Jun Wang
- School of Public Health, Wuhan University, Wuhan 430072, China;
| | - Gui Yang
- Department of Clinical Laboratory, Center for Gene Diagnosis & Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; (H.-Y.L.); (A.-L.L.); (G.Y.); (Y.-W.D.); (Y.Y.)
| | - Yong-Wei Duan
- Department of Clinical Laboratory, Center for Gene Diagnosis & Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; (H.-Y.L.); (A.-L.L.); (G.Y.); (Y.-W.D.); (Y.Y.)
| | - Ying Yang
- Department of Clinical Laboratory, Center for Gene Diagnosis & Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; (H.-Y.L.); (A.-L.L.); (G.Y.); (Y.-W.D.); (Y.Y.)
| | - Mei Zhang
- Department of Clinical Laboratory, Ezhou Hospital of Traditional Chinese Medicine, Ezhou 436000, China;
| | - Quan-Fei Zhu
- School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, China; (Z.-M.Z.); (N.A.); (J.L.); (Y.-Q.F.)
| | - Song-Mei Liu
- Department of Clinical Laboratory, Center for Gene Diagnosis & Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; (H.-Y.L.); (A.-L.L.); (G.Y.); (Y.-W.D.); (Y.Y.)
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yu-Qi Feng
- School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, China; (Z.-M.Z.); (N.A.); (J.L.); (Y.-Q.F.)
- School of Public Health, Wuhan University, Wuhan 430072, China;
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| |
Collapse
|
4
|
Khazali AS, Hadrawi WH, Ibrahim F, Othman S, Nor Rashid N. Thrombocytopenia in dengue infection: mechanisms and a potential application. Expert Rev Mol Med 2024; 26:e26. [PMID: 39397710 PMCID: PMC11488332 DOI: 10.1017/erm.2024.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 03/18/2024] [Accepted: 05/30/2024] [Indexed: 10/15/2024]
Abstract
Thrombocytopenia is a common symptom and one of the warning signs of dengue virus (DENV) infection. Platelet depletion is critical as it may lead to other severe dengue symptoms. Understanding the molecular events of this condition during dengue infection is challenging because of the multifaceted factors involved in DENV infection and the dynamics of the disease progression. Platelet levels depend on the balance between platelet production and platelet consumption or clearance. Megakaryopoiesis and thrombopoiesis, two interdependent processes in platelet production, are hampered during dengue infection. Conversely, platelet elimination via platelet activation, apoptosis and clearance processes are elevated. Together, these anomalies contribute to thrombocytopenia in dengue patients. Targeting the molecular events of dengue-mediated thrombocytopenia shows great potential but still requires further investigation. Nonetheless, the application of new knowledge in this field, such as immature platelet fraction analysis, may facilitate physicians in monitoring the progression of the disease.
Collapse
Affiliation(s)
- Ahmad Suhail Khazali
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM) Cawangan Perlis, Arau, Perlis, Malaysia
| | - Waqiyuddin Hilmi Hadrawi
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Fatimah Ibrahim
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
- Center for Innovation in Medical Engineering (CIME), Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Shatrah Othman
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Nurshamimi Nor Rashid
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Center for Innovation in Medical Engineering (CIME), Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Malavige GN, Ogg GS. Molecular mechanisms in the pathogenesis of dengue infections. Trends Mol Med 2024; 30:484-498. [PMID: 38582622 DOI: 10.1016/j.molmed.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/08/2024]
Abstract
Dengue is the most rapidly emerging climate-sensitive infection, and morbidity/mortality and disease incidence are rising markedly, leading to healthcare systems being overwhelmed. There are currently no specific treatments for dengue or prognostic markers to identify those who will progress to severe disease. Owing to an increase in the burden of illness and a change in epidemiology, many patients experience severe disease. Our limited understanding of the complex mechanisms of disease pathogenesis has significantly hampered the development of safe and effective treatments, vaccines, and biomarkers. We discuss the molecular mechanisms of dengue pathogenesis, the gaps in our knowledge, and recent advances, as well as the most crucial questions to be answered to enable the development of therapeutics, biomarkers, and vaccines.
Collapse
Affiliation(s)
- Gathsaurie Neelika Malavige
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka; Medical Research Council (MRC) Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| | - Graham S Ogg
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka; Medical Research Council (MRC) Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Modak A, Mishra SR, Awasthi M, Aravind A, Singh S, Sreekumar E. Fingolimod (FTY720), an FDA-approved sphingosine 1-phosphate (S1P) receptor agonist, restores endothelial hyperpermeability in cellular and animal models of dengue virus serotype 2 infection. IUBMB Life 2024; 76:267-285. [PMID: 38031996 DOI: 10.1002/iub.2795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
Extensive vascular leakage and shock is a major cause of dengue-associated mortality. At present, there are no specific treatments available. Sphingolipid pathway is a key player in the endothelial barrier integrity; and is mediated through the five sphingosine-1-phosphate receptors (S1PR1-S1PR5). Signaling through S1PR2 promotes barrier disruption; and in Dengue virus (DENV)-infection, there is overexpression of this receptor. Fingolimod (FTY720) is a specific agonist that targets the remaining barrier-protective S1P receptors, without targeting S1PR2. In the present study, we explored whether FTY720 treatment can alleviate DENV-induced endothelial hyperpermeability. In functional assays, in both in vitro systems and in AG129 animal models, FTY720 treatment was found effective. Upon treatment, there was complete restoration of the monolayer integrity in DENV serotype 2-infected human microvascular endothelial cells (HMEC-1). At the molecular level, the treatment reversed activation of the S1P pathway. It significantly reduced the phosphorylation of the key molecules such as PTEN, RhoA, and VE-Cadherin; and also, the expression levels of S1PR2. In DENV2-infected AG129 mice treated with FTY720, there was significant improvement in weight gain, in overall clinical symptoms, and in survival. Whereas 100% of the DENV2-infected, untreated animals died by day-10 post-infection, 70% of the FTY720-treated animals were alive; and at the end of the 15-day post-infection observation period, 30% of them were still surviving. There was a significant reduction in the Evan's-blue dye permeability in the organs of FTY720-treated, DENV-2 infected animals; and also improvement in the hemogram, with complete restoration of thrombocytopenia and hepatic function. Our results show that the FDA-approved molecule Fingolimod (FTY720) is a promising therapeutic intervention in severe dengue.
Collapse
Affiliation(s)
- Ayan Modak
- Molecular Virology Laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
- Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad, Haryana (NCR Delhi), India
| | - Srishti Rajkumar Mishra
- Molecular Virology Laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
- Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad, Haryana (NCR Delhi), India
| | - Mansi Awasthi
- Molecular Virology Laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
- Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad, Haryana (NCR Delhi), India
| | - Arya Aravind
- Animal Research Facility, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
| | - Sneha Singh
- Molecular Virology Laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
| | - Easwaran Sreekumar
- Molecular Virology Laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
- Molecular Bioassay Laboratory, Institute of Advanced Virology (IAV), Thiruvananthapuram, Kerala, India
| |
Collapse
|
7
|
Mohammed S, Bindu A, Viswanathan A, Harikumar KB. Sphingosine 1-phosphate signaling during infection and immunity. Prog Lipid Res 2023; 92:101251. [PMID: 37633365 DOI: 10.1016/j.plipres.2023.101251] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Sphingolipids are essential components of all eukaryotic membranes. The bioactive sphingolipid molecule, Sphingosine 1-Phosphate (S1P), regulates various important biological functions. This review aims to provide a comprehensive overview of the role of S1P signaling pathway in various immune cell functions under different pathophysiological conditions including bacterial and viral infections, autoimmune disorders, inflammation, and cancer. We covered the aspects of S1P pathways in NOD/TLR pathways, bacterial and viral infections, autoimmune disorders, and tumor immunology. This implies that targeting S1P signaling can be used as a strategy to block these pathologies. Our current understanding of targeting various components of S1P signaling for therapeutic purposes and the present status of S1P pathway inhibitors or modulators in disease conditions where the host immune system plays a pivotal role is the primary focus of this review.
Collapse
Affiliation(s)
- Sabira Mohammed
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala State 695014, India
| | - Anu Bindu
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala State 695014, India
| | - Arun Viswanathan
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala State 695014, India; Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Kuzhuvelil B Harikumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala State 695014, India.
| |
Collapse
|
8
|
Peng J, Qiu C, Zhang J, Xiao X. Serum metabolite profiling reveals metabolic characteristics of sepsis patients using LC/MS-based metabolic profiles: a cross-sectional study. BMC Med Genomics 2023; 16:224. [PMID: 37752563 PMCID: PMC10521453 DOI: 10.1186/s12920-023-01666-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 09/18/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Individuals with sepsis exhibited a higher likelihood of benefiting from early initiation of specialized treatment to enhance the prognosis of the condition. The objective of this study is to identify potential biomarkers of sepsis by means of serum metabolomics. MATERIALS AND METHODS The screening of putative biomarkers of sepsis was conducted using serum samples from patients with sepsis and a control group of healthy individuals. The pathogenesis of sepsis was determined through the utilization of liquid chromatography-mass spectrometry-based metabolic profiles and bioinformatic techniques, which in turn provided a foundation for timely diagnosis and intervention. RESULTS Individuals with sepsis had significantly different metabolic characteristics compared to those with normal health. The concentrations of phosphatidylcholines (PCs), phosphatidylserine (PS), lysophosphatidylethanolamine (LysoPEs), and lysophosphatidylcholine (LysoPCs) exhibited a decrease, while the levels of creatinine, C17-Sphinganine, and PS(22:0/22:1(11Z)) demonstrated an increase in the serum of sepsis patients when compared to the control group. Additionally, ROC curves were generated to assess the discriminatory ability of the differentially expressed metabolites. The area under the ROC curve for PS (22:0/22:1(11Z)) and C17-Sphinganine were determined to be 0.976 and 0.913, respectively. These metabolites may potentially serve as diagnostic markers for sepsis. Additionally, the pathogenesis of sepsis is associated with mTOR signaling, NF-κB signaling pathway, calcium signaling, calcium transport, and tRNA charging pathway. CONCLUSION The identification of differential expression of these metabolites in sepsis serum samples could aid in the timely diagnosis and intervention of sepsis, as well as enhance our understanding of its pathogenesis.
Collapse
Affiliation(s)
- Jinliang Peng
- Department of Emergency, The Affiliated Ganzhou Hospital of Nanchang university, Ganzhou, Jiangxi Province, 341000, China
| | - Chongrong Qiu
- Department of Emergency, The Affiliated Ganzhou Hospital of Nanchang university, Ganzhou, Jiangxi Province, 341000, China
| | - Jun Zhang
- Department of Emergency, The Affiliated Ganzhou Hospital of Nanchang university, Ganzhou, Jiangxi Province, 341000, China
| | - Xiaoliu Xiao
- Department of Emergency, The Affiliated Ganzhou Hospital of Nanchang university, Ganzhou, Jiangxi Province, 341000, China.
| |
Collapse
|
9
|
Association of apolipoprotein M and sphingosine-1-phosphate with brown adipose tissue after cold exposure in humans. Sci Rep 2022; 12:18753. [PMID: 36335116 PMCID: PMC9637161 DOI: 10.1038/s41598-022-21938-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 10/06/2022] [Indexed: 11/07/2022] Open
Abstract
The HDL-associated apolipoprotein M (apoM) and its ligand sphingosine-1-phosphate (S1P) may control energy metabolism. ApoM deficiency in mice is associated with increased vascular permeability, brown adipose tissue (BAT) mass and activity, and protection against obesity. In the current study, we explored the connection between plasma apoM/S1P levels and parameters of BAT as measured via 18F-FDG PET/CT after cold exposure in humans. Fixed (n = 15) vs personalized (n = 20) short-term cooling protocols decreased and increased apoM (- 8.4%, P = 0.032 vs 15.7%, P < 0.0005) and S1P (- 41.0%, P < 0.0005 vs 19.1%, P < 0.005) plasma levels, respectively. Long-term cooling (n = 44) did not affect plasma apoM or S1P levels. Plasma apoM and S1P did not correlate significantly to BAT volume and activity in the individual studies. However, short-term studies combined, showed that increased changes in plasma apoM correlated with BAT metabolic activity (β: 0.44, 95% CI [0.06-0.81], P = 0.024) after adjusting for study design but not BAT volume (β: 0.39, 95% CI [- 0.01-0.78], P = 0.054). In conclusion, plasma apoM and S1P levels are altered in response to cold exposure and may be linked to changes in BAT metabolic activity but not BAT volume in humans. This contrasts partly with observations in animals and highlights the need for further studies to understand the biological role of apoM/S1P complex in human adipose tissue and lipid metabolism.
Collapse
|
10
|
Tran L, Tuan NM, Tam DNH, Alshareef A, Emad E, Khalifa AM, Hieu TH, Khan ZA, Jun LW, Hirayama K, Huy NT. The timing setting in kinetic dengue studies: a systematic review. Acta Trop 2022; 234:106584. [DOI: 10.1016/j.actatropica.2022.106584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/14/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022]
|
11
|
Greiwe G, Moritz E, Amschler K, Poppe A, Sarwari H, Nierhaus A, Kluge S, Reichenspurner H, Zoellner C, Schwedhelm E, Daum G, Tampe B, Winkler MS. Dynamics of Vascular Protective and Immune Supportive Sphingosine-1-Phosphate During Cardiac Surgery. Front Immunol 2021; 12:761475. [PMID: 34745137 PMCID: PMC8563789 DOI: 10.3389/fimmu.2021.761475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/01/2021] [Indexed: 01/22/2023] Open
Abstract
Introduction Sphingosine-1-phosphate (S1P) is a signaling lipid and crucial in vascular protection and immune response. S1P mediated processes involve regulation of the endothelial barrier, blood pressure and S1P is the only known inducer of lymphocyte migration. Low levels of circulatory S1P correlate with severe systemic inflammatory syndromes such as sepsis and shock states, which are associated with endothelial barrier breakdown and immunosuppression. We investigated whether S1P levels are affected by sterile inflammation induced by cardiac surgery. Materials and Methods In this prospective observational study we included 46 cardiac surgery patients, with cardiopulmonary bypass (CPB, n=31) and without CPB (off-pump, n=15). Serum-S1P, S1P-sources and carriers, von-Willebrand factor (vWF), C-reactive protein (CRP), procalcitonin (PCT) and interleukin-6 (IL-6) were measured at baseline, post-surgery and at day 1 (POD 1) and day 4 (POD 4) after surgical stimulus. Results Median S1P levels at baseline were 0.77 nmol/mL (IQR 0.61-0.99) and dropped significantly post-surgery. S1P was lowest post-surgery with median levels of 0.37 nmol/mL (IQR 0.31-0.47) after CPB and 0.46 nmol/mL (IQR 0.36-0.51) after off-pump procedures (P<0.001). The decrease of S1P was independent of surgical technique and observed in all individuals. In patients, in which S1P levels did not recover to preoperative baseline ICU stay was longer and postoperative inflammation was more severe. S1P levels are associated with its sources and carriers and vWF, as a more specific endothelial injury marker, in different phases of the postoperative course. Determination of S1P levels during surgery suggested that also the anticoagulative effect of heparin might influence systemic S1P. Discussion In summary, serum-S1P levels are disrupted by major cardiac surgery. Low S1P levels post-surgery may play a role as a new marker for severity of cardiac surgery induced inflammation. Due to well-known protective effects of S1P, low S1P levels may further contribute to the observed prolonged ICU stay and worse clinical status. Moreover, we cannot exclude a potential inhibitory effect on circulating S1P levels by heparin anticoagulation during surgery, which would be a new pro-inflammatory pleiotropic effect of high dose heparin in patients undergoing cardiac surgery.
Collapse
Affiliation(s)
- Gillis Greiwe
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eileen Moritz
- Institute of Pharmacology, Department of General Pharmacology, University Medicine Greifswald, Greifswald, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany.,Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Amschler
- Department of Dermatology, Venereology and Allergology, University Medical Center, Göttingen, Germany
| | - Annika Poppe
- Clinic and Policlinic for Anesthesiology and Intensive Care Medicine, University Medicine Rostock, Rostock, Germany
| | - Harun Sarwari
- Department of Cardiovascular Surgery, University Heart Center Hamburg, Hamburg, Germany
| | - Axel Nierhaus
- Department of Intensive Care Medicine, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Kluge
- Department of Intensive Care Medicine, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Christian Zoellner
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Edzard Schwedhelm
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Günter Daum
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany.,Department of Vascular Medicine, University Heart and Vascular Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Tampe
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| | - Martin Sebastian Winkler
- Department of Anesthesiology and Intensive Care, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
12
|
Monson EA, Trenerry AM, Laws JL, Mackenzie JM, Helbig KJ. Lipid droplets and lipid mediators in viral infection and immunity. FEMS Microbiol Rev 2021; 45:fuaa066. [PMID: 33512504 PMCID: PMC8371277 DOI: 10.1093/femsre/fuaa066] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022] Open
Abstract
Lipid droplets (LDs) contribute to key pathways important for the physiology and pathophysiology of cells. In a homeostatic view, LDs regulate the storage of neutral lipids, protein sequestration, removal of toxic lipids and cellular communication; however, recent advancements in the field show these organelles as essential for various cellular stress response mechanisms, including inflammation and immunity, with LDs acting as hubs that integrate metabolic and inflammatory processes. The accumulation of LDs has become a hallmark of infection, and is often thought to be virally driven; however, recent evidence is pointing to a role for the upregulation of LDs in the production of a successful immune response to viral infection. The fatty acids housed in LDs are also gaining interest due to the role that these lipid species play during viral infection, and their link to the synthesis of bioactive lipid mediators that have been found to have a very complex role in viral infection. This review explores the role of LDs and their subsequent lipid mediators during viral infections and poses a paradigm shift in thinking in the field, whereby LDs may play pivotal roles in protecting the host against viral infection.
Collapse
Affiliation(s)
- Ebony A Monson
- School of Life Sciences, La Trobe University, Melbourne, Australia, 3083
| | - Alice M Trenerry
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia, 3000
| | - Jay L Laws
- School of Life Sciences, La Trobe University, Melbourne, Australia, 3083
| | - Jason M Mackenzie
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia, 3000
| | - Karla J Helbig
- School of Life Sciences, La Trobe University, Melbourne, Australia, 3083
| |
Collapse
|
13
|
Silva T, Jeewandara C, Gomes L, Gangani C, Mahapatuna SD, Pathmanathan T, Wijewickrama A, Ogg GS, Malavige GN. Urinary leukotrienes and histamine in patients with varying severity of acute dengue. PLoS One 2021; 16:e0245926. [PMID: 33544746 PMCID: PMC7864425 DOI: 10.1371/journal.pone.0245926] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/08/2021] [Indexed: 11/23/2022] Open
Abstract
Background Vascular leak is a hallmark of severe dengue, and high leukotriene levels have been observed in dengue mouse models, suggesting a role in disease pathogenesis. We sought to explore their role in acute dengue, by assessing levels of urinary LTE4 and urinary histamine in patients with varying severity of acute dengue. Methods Urinary LTE4, histamine and creatinine were measured by a quantitative ELISA, in healthy individuals (n = 19), patients with dengue fever (DF = 72) and dengue haemorrhagic fever DHF (n = 48). The kinetics of LTE4 and histamine and diurnal variations were assessed in a subset of patients. Results Urinary LTE4 levels were significantly higher (p = 0.004) in patients who proceed to develop DHF when compared to patients with DF during early illness (≤ 4 days) and during the critical phase (p = 0.02), which continued to rise in patients who developed DHF during the course of illness. However, LTE4 is unlikely to be a good biomarker as ROCs gave an AUC value of 0.67 (95% CI 0.57 and 0.76), which was nevertheless significant (p = 0.002). Urinary LTE4 levels did not associate with the degree of viraemia, infecting virus serotype and was not different in those with primary vs secondary dengue. Urinary histamine levels were significantly high in patients with acute dengue although no difference was observed between patients with DF and DHF and again did not associate with the viraemia. Interestingly, LTE4, histamine and the viral loads showed a marked diurnal variation in both patients with DF and DHF. Conclusions Our data suggest that LTE4 could play a role in disease pathogenesis and since there are safe and effective cysteinyl leukotriene receptor blockers, it would be important to assess their efficacy in reducing dengue disease severity.
Collapse
Affiliation(s)
- Tehani Silva
- Centre for Dengue Research, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
- General Sir John Kotelawala Defence University, Rathmalana, Sri Lanka
| | - Chandima Jeewandara
- Centre for Dengue Research, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Laksiri Gomes
- Centre for Dengue Research, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Chathurika Gangani
- Centre for Dengue Research, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | | | | | | | - Graham S. Ogg
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Gathsaurie Neelika Malavige
- Centre for Dengue Research, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
Hodun K, Chabowski A, Baranowski M. Sphingosine-1-phosphate in acute exercise and training. Scand J Med Sci Sports 2020; 31:945-955. [PMID: 33345415 DOI: 10.1111/sms.13907] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/27/2020] [Accepted: 12/07/2020] [Indexed: 12/24/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid found in all eukaryotic cells. Although it may function as an intracellular second messenger, most of its effects are induced extracellularly via activation of a family of five specific membrane receptors. Sphingosine-1-phosphate is enriched in plasma, where it is transported by high-density lipoprotein and albumin, as well as in erythrocytes and platelets which store and release large amounts of this sphingolipid. Sphingosine-1-phosphate regulates a host of cellular processes such as growth, proliferation, differentiation, migration, and apoptosis suppression. It was also shown to play an important role in skeletal muscle physiology and pathophysiology. In recent years, S1P metabolism in both muscle and blood was found to be modulated by exercise. In this review, we summarize the current knowledge on the effect of acute exercise and training on S1P metabolism, highlighting the role of this sphingolipid in skeletal muscle adaptation to physical effort.
Collapse
Affiliation(s)
- Katarzyna Hodun
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Marcin Baranowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
15
|
Wongsawat J, Vivong N, Suttha P, Utayamakul S, Aumpornareekul S, Chewcharat A, Chokephaibulkit K. Zika Virus Disease Comparing Children and Adults in a Dengue-Endemic Setting. Am J Trop Med Hyg 2020; 104:557-563. [PMID: 33241785 PMCID: PMC7866303 DOI: 10.4269/ajtmh.20-0795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/01/2020] [Indexed: 11/27/2022] Open
Abstract
Acute Zika virus (ZIKV) infection may mimic dengue virus (DENV) infection. We aimed to study the clinical difference of ZIKV disease among suspected non-severe DENV patients comparing children and adults. Patients with acute illness suspected of DENV disease plus no evidence of plasma leakage at the Bamrasnaradura Infectious Diseases Institute, Nonthaburi, Thailand, were enrolled from December 2016 to September 2018. Clinical data including DENV rapid diagnostic test (RDT) results were collected. Zika virus diagnosis was confirmed by real-time reverse transcription PCR on urine. Of 291 (180 pediatric and 111 adult) cases enrolled, 27 (10 pediatric and 17 adult) confirmed ZIKV cases were found. Rash was more frequent among pediatric ZIKV than pediatric non-ZIKV cases (100% versus 60%, P = 0.01). Rash, arthralgia, and conjunctivitis were more frequent among adult ZIKV than adult non-ZIKV cases (100% versus 29.8%, 64.7% versus 26.6%, 52.9% versus 9.7%, all P < 0.01, respectively). The median (interquartile range [IQR]) duration of rash was 4.5 (3.0, 7.25) days and 6.0 (4.5, 7.0) days in pediatric and adults ZIKV cases, respectively. Pediatric ZIKV cases had more fever (100% versus 58.5%, P = 0.03) but less arthralgia (20% versus 64.7%, P = 0.04) and less conjunctivitis (10% versus 52.9%, P = 0.04) than adult ZIKV cases. No ZIKV cases with DENV RDTs performed around day 3 of illness were positive for dengue nonstructural protein 1 (NS1) antigen. In dengue-endemic settings, rash and fever in children, and rash, arthralgia, and conjunctivitis in adults, particularly if rash persists for ≥ 3 days, plus negative dengue NS1 Ag during early febrile phase should prompt ZIKV diagnostic testing.
Collapse
Affiliation(s)
- Jurai Wongsawat
- Department of Diseases Control, Bamrasnaradura Infectious Diseases Institute, Ministry of Public Health, Nonthaburi, Thailand
| | - Nutcharin Vivong
- Department of Diseases Control, Bamrasnaradura Infectious Diseases Institute, Ministry of Public Health, Nonthaburi, Thailand
| | - Patama Suttha
- Department of Diseases Control, Bamrasnaradura Infectious Diseases Institute, Ministry of Public Health, Nonthaburi, Thailand
| | - Sumonmal Utayamakul
- Department of Diseases Control, Bamrasnaradura Infectious Diseases Institute, Ministry of Public Health, Nonthaburi, Thailand
| | - Somtavil Aumpornareekul
- Department of Diseases Control, Bamrasnaradura Infectious Diseases Institute, Ministry of Public Health, Nonthaburi, Thailand
| | - Api Chewcharat
- Mount Auburn Hospital, Harvard Medical School, Cambridge, Massachusetts
| | - Kulkanya Chokephaibulkit
- Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
16
|
Fan Y, Chen J, Liu D, Li W, Wang H, Huang Y, Gao C. HDL-S1P protects endothelial function and reduces lung injury during sepsis in vivo and in vitro. Int J Biochem Cell Biol 2020; 126:105819. [PMID: 32750426 DOI: 10.1016/j.biocel.2020.105819] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/27/2020] [Accepted: 07/29/2020] [Indexed: 12/29/2022]
Abstract
OBJECTIVE In sepsis, the protection of the vascular endothelium is essential and the maintenance of its function is critical to prevent further deterioration. High-density lipoprotein (HDL)-associated sphingosine-1-phosphate (S1P) is a bioactive lipid in plasma and its role in sepsis has not been extensively studied. This study aimed to investigate the effects of HDL-S1P on sepsis in cellular and animal models, as well as human plasma samples. MEASUREMENTS We established an animal model of sepsis with different severities achieved by caecal ligation and puncture (CLP) and lipopolysaccharide (LPS) injection, and then explored the relationship between HDL-S1P and lung endothelial dysfunction in vivo. To determine the effects of HDL-S1P in the pulmonary endothelium of septic rats, we then injected HDL-S1P into septic rats to find out if it can reduce the lung injury caused by sepsis. Further, we explored the mechanism in vitro by studying the role of S1P-specific receptor agonists and inhibitors in LPS-stimulated human umbilical vein endothelial cells. We also explored the relationship between plasma HDL-S1P content and sepsis severity in septic patients by analysing their plasma samples. RESULTS HDL-S1P concentrations in plasma were negatively correlated with endothelial functional damage in sepsis, both in the animal model and in the septic patients in our study. In vivo, HDL-S1P injection significantly reduced pulmonary oedema and endothelial leakage in septic rats. In vitro, cell experiments showed that HDL-S1P effectively protected the proliferation and migration abilities of endothelial cells, which could be partly explained by its biased activation of the S1P receptor 1. CONCLUSION Our study preliminary explored the function of HDL-S1P in sepsis in cellular and animal models, as well as human subjects. The results indicate HDL-S1P protected endothelial functions in septic patients. Thus, it has therapeutic potential and can be used for the clinical treatment of sepsis.
Collapse
Affiliation(s)
- YiWen Fan
- Department of Emergency, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - JiaMeng Chen
- Department of Emergency, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Dan Liu
- Department of Emergency, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - WenJie Li
- Department of Emergency, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - HuiQi Wang
- Department of Emergency, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - YingYing Huang
- Department of Emergency, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - ChengJin Gao
- Department of Emergency, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China.
| |
Collapse
|
17
|
Inflammatory Conditions Disrupt Constitutive Endothelial Cell Barrier Stabilization by Alleviating Autonomous Secretion of Sphingosine 1-Phosphate. Cells 2020; 9:cells9040928. [PMID: 32290092 PMCID: PMC7226983 DOI: 10.3390/cells9040928] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/30/2020] [Accepted: 04/07/2020] [Indexed: 01/29/2023] Open
Abstract
The breakdown of the endothelial cell (EC) barrier contributes significantly to sepsis mortality. Sphingosine 1-phosphate (S1P) is one of the most effective EC barrier-stabilizing signaling molecules. Stabilization is mainly transduced via the S1P receptor type 1 (S1PR1). Here, we demonstrate that S1P was autonomously produced by ECs. S1P secretion was significantly higher in primary human umbilical vein endothelial cells (HUVEC) compared to the endothelial cell line EA.hy926. Constitutive barrier stability of HUVEC, but not EA.hy926, was significantly compromised by the S1PR1 antagonist W146 and by the anti-S1P antibody Sphingomab. HUVEC and EA.hy926 differed in the expression of the S1P-transporter Spns2, which allowed HUVEC, but not EA.hy926, to secrete S1P into the extracellular space. Spns2 deficient mice showed increased serum albumin leakage in bronchoalveolar lavage fluid (BALF). Lung ECs isolated from Spns2 deficient mice revealed increased leakage of fluorescein isothiocyanate (FITC) labeled dextran and decreased resistance in electric cell-substrate impedance sensing (ECIS) measurements. Spns2 was down-regulated in HUVEC after stimulation with pro-inflammatory cytokines and lipopolysaccharides (LPS), which contributed to destabilization of the EC barrier. Our work suggests a new mechanism for barrier integrity maintenance. Secretion of S1P by EC via Spns2 contributed to constitutive EC barrier maintenance, which was disrupted under inflammatory conditions via the down-regulation of the S1P-transporter Spns2.
Collapse
|
18
|
Zhao J, Tan Y, Wang L, Su X, Shi Y. Serum sphingosine-1-phosphate levels and Sphingosine-1-Phosphate gene polymorphisms in acute respiratory distress syndrome: a multicenter prospective study. J Transl Med 2020; 18:156. [PMID: 32252779 PMCID: PMC7137241 DOI: 10.1186/s12967-020-02322-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/28/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Sphingosine-1-phosphate (S1P) is a signaling phospholipid involved in pathophysiologic progression of acute respiratory distress syndrome (ARDS) through its roles in endothelial barrier function and immune modulation. We hypothesized that decreased serum S1P level is associated with the clinical outcomes of ARDS and polymorphisms in the S1P gene are associated with serum S1P levels. METHODS This multicenter prospective study includes ARDS patients and healthy blood donors as controls. Serum S1P levels were quantified using enzyme-linked immunosorbent assays. Eight tag single nucleotide polymorphisms (SNPs) in the S1P gene were detected, and their associations with S1P levels were evaluated. RESULTS A total of 121 ARDS patients and 100 healthy individuals were enrolled. Serum S1P levels were lower in ARDS patients than in controls (P < 0.001). Decreased S1P levels correlated with more organ dysfunction and higher Acute Physiology and Chronic Health Evaluation II scores. Changes in S1P levels in ARDS patients were associated with the clinical outcomes. The recessive model for SNP rs3743631 suggests that GG homozygote is associate with a higher risk for ARDS. The dominant model for SNP rs907045 suggests that AA or TA genotype might increase the risk for ARDS. In ARDS patients, the rs3743631 GG genotype showed lower S1P levels than those harboring AG and AA genotypes. The serum S1P levels of rs907045 AA or TA genotype patients were lower than those of TT genotype. CONCLUSIONS Serum S1P levels are dramatically decreased in ARDS patients. Reduced S1P levels are associated with worse clinical outcomes. There is a significant association between S1P rs3743631, rs907045 polymorphisms and susceptibility of ARDS.
Collapse
Affiliation(s)
- Jiangnan Zhao
- Department of Respiratory and Critical Medicine, Jinling Hospital, Medical School of Nanjing University, No. 305 Zhongshan East Road, Nanjing, 210000 China
| | - Yan Tan
- grid.89957.3a0000 0000 9255 8984Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210000 China
| | - Li Wang
- grid.89957.3a0000 0000 9255 8984Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210000 China
| | - Xin Su
- Department of Respiratory and Critical Medicine, Jinling Hospital, Medical School of Nanjing University, No. 305 Zhongshan East Road, Nanjing, 210000 China
| | - Yi Shi
- Department of Respiratory and Critical Medicine, Jinling Hospital, Medical School of Nanjing University, No. 305 Zhongshan East Road, Nanjing, 210000 China
| |
Collapse
|
19
|
Sah RK, Pati S, Saini M, Boopathi PA, Kochar SK, Kochar DK, Das A, Singh S. Reduction of Sphingosine Kinase 1 Phosphorylation and Activity in Plasmodium-Infected Erythrocytes. Front Cell Dev Biol 2020; 8:80. [PMID: 32195246 PMCID: PMC7062701 DOI: 10.3389/fcell.2020.00080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/29/2020] [Indexed: 01/11/2023] Open
Abstract
Sphingosine-1-phosphate (S1P), a bioactive lipid mediator is involved in an array of biological processes and linked to pathological manifestations. Erythrocyte is known as the major reservoir for S1P as they lack S1P-degrading enzymes (S1P lyase and S1P phosphohydrolase) and harbor sphingosine kinase-1 (SphK-1) essential for sphingosine conversion to S1P. Reduced S1P concentration in serum was correlated with disease severity in patients with Plasmodium falciparum and Plasmodium vivax infections. Herein, we aimed to identify the underlying mechanism and contribution of host erythrocytes toward depleted S1P levels in Plasmodium-infected patients vs. healthy individuals. The level and activity of SphK-1 were measured in vitro in both uninfected and cultured P. falciparum-infected erythrocytes. Infected erythrocytes demonstrated a significant decrease in SphK-1 level in a time-dependent manner. We found that 10–42 h post invasion (hpi), SphK1 level was predominantly reduced to ∼50% in rings, trophozoites, and schizonts compared to uninfected erythrocytes. We next analyzed the phosphorylation status of SphK-1, a modification responsible for its activity and S1P production, in both uninfected control and Plasmodium-infected erythrocytes. Almost ∼50% decrease in phosphorylation of SphK-1 was observed that could be corroborated with significant reduction in the production and release of S1P in infected erythrocytes. Serum S1P levels were studied in parallel in P. falciparum (N = 15), P. vivax (N = 36)-infected patients, and healthy controls (N = 6). The findings revealed that S1P concentration was significantly depleted in uncomplicated malaria cases and was found to be lowest in complicated malaria and thrombocytopenia in both P. falciparum and P. vivax-infected groups (∗∗p < 0.01). The lower serum S1P level could be correlated with the reduced platelet count defining the role of S1P level in platelet formation. In conclusion, erythrocyte SphK-1 and S1P levels were studied in Plasmodium-infected individuals and erythrocytes that helped in characterizing the complications associated with malaria and thrombocytopenia, providing insights into the contribution of host erythrocyte biology in malaria pathogenesis. Finally, this study proposes the use of S1P and its analog as a novel adjunct therapy for malaria complications.
Collapse
Affiliation(s)
- Raj Kumar Sah
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Soumya Pati
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| | - Monika Saini
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.,Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| | | | | | | | - Ashis Das
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
20
|
Daum G, Winkler M, Moritz E, Müller T, Geffken M, von Lucadou M, Haddad M, Peine S, Böger RH, Larena-Avellaneda A, Debus ES, Gräler M, Schwedhelm E. Determinants of Serum- and Plasma Sphingosine-1-Phosphate Concentrations in a Healthy Study Group. TH OPEN 2020; 4:e12-e19. [PMID: 31984305 PMCID: PMC6978167 DOI: 10.1055/s-0040-1701205] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/18/2019] [Indexed: 12/16/2022] Open
Abstract
Introduction
To correctly interpret plasma- or serum-sphingosine-1-phosphate (S1P) concentrations measured in clinical studies it is critical to understand all major determinants in healthy controls.
Methods
Serum- and plasma-S1P from 174 healthy blood donors was measured by liquid chromatography-tandem mass spectrometry and correlated to clinical laboratory data. Selected plasma samples, 10 with high and 10 with low S1P concentrations, were fractionated into very low-density lipoprotein (VLDL)-, low density lipoprotein (LDL)-, high density lipoprotein (HDL)-, and lipoprotein-free fractions. S1P was then measured in each fraction to determine its distribution.
Results
The mean S1P concentration in serum (1.04 ± 0.24 nmol/mL) was found 39% higher compared with plasma (0.75 ± 0.16 nmol/mL) and overall was not different between men and women. Only when stratified for age and gender, older women were found to exhibit higher circulatory S1P levels than men. In plasma, S1P levels correlate to red blood cell (RBC) counts but not to platelet counts. Conversely, serum-S1P correlates to platelet counts but not to RBC counts. In addition, eosinophil counts are strongly associated with serum-S1P concentrations. Both serum- and plasma-S1P correlate to total cholesterol but not to HDL-C. The distribution of S1P between VLDL-, LDL-, HDL-, and lipoprotein-free fractions is independent of total plasma-S1P concentrations. S1P concentrations in HDL but not in LDL are highly variable.
Conclusion
These data indicate S1P concentrations in plasma and serum to be differentially associated with cell counts and S1P carrier proteins. Besides platelets, eosinophil counts are identified as a novel determinant for serum-S1P concentrations further suggesting a role for S1P in eosinophil pathologies.
Collapse
Affiliation(s)
- Günter Daum
- Clinic and Polyclinic for Vascular Medicine, University Heart and Vascular Center, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck (GD, ES, MvL) and Greifswald (EM), Berlin, Germany
| | - Martin Winkler
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Anesthesiology and Intensive Care Medicine, University Medicine, Göttingen, Germany
| | - Eileen Moritz
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck (GD, ES, MvL) and Greifswald (EM), Berlin, Germany.,Institute for Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute of Pharmacology, Department of General Pharmacology, University Medicine, Greifswald, Germany
| | - Tina Müller
- Department of Anesthesiology and Intensive Care Medicine, Center for Sepsis Control and Care (CSCC), and the Center for Molecular Biomedicine (CMB), Jena University Hospital, Jena, Germany
| | - Maria Geffken
- Institute for Transfusion Medicine, University Medical Center Hamburg, Eppendorf, Germany
| | - Mirjam von Lucadou
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck (GD, ES, MvL) and Greifswald (EM), Berlin, Germany.,Institute for Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Munif Haddad
- Institute for Clinical Chemistry, University Medical Center Hamburg, Eppendorf, Germany
| | - Sven Peine
- Institute for Transfusion Medicine, University Medical Center Hamburg, Eppendorf, Germany
| | - Rainer H Böger
- Institute for Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Axel Larena-Avellaneda
- Clinic and Polyclinic for Vascular Medicine, University Heart and Vascular Center, Hamburg, Germany
| | - Eike Sebastian Debus
- Clinic and Polyclinic for Vascular Medicine, University Heart and Vascular Center, Hamburg, Germany
| | - Markus Gräler
- Department of Anesthesiology and Intensive Care Medicine, Center for Sepsis Control and Care (CSCC), and the Center for Molecular Biomedicine (CMB), Jena University Hospital, Jena, Germany
| | - Edzard Schwedhelm
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck (GD, ES, MvL) and Greifswald (EM), Berlin, Germany.,Institute for Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
21
|
Guo L, Rondina MT. The Era of Thromboinflammation: Platelets Are Dynamic Sensors and Effector Cells During Infectious Diseases. Front Immunol 2019; 10:2204. [PMID: 31572400 PMCID: PMC6753373 DOI: 10.3389/fimmu.2019.02204] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/30/2019] [Indexed: 12/12/2022] Open
Abstract
Platelets are anucleate cells produced by megakaryocytes. In recent years, a robust body of literature supports the evolving role of platelets as key sentinel and effector cells in infectious diseases, especially critical in bridging hemostatic, inflammatory, and immune continuums. Upon intravascular pathogen invasion, platelets can directly sense viral, parasitic, and bacterial infections through pattern recognition receptors and integrin receptors or pathogen: immunoglobulin complexes through Fc and complement receptors—although our understanding of these interactions remains incomplete. Constantly scanning for areas of injury or inflammation as they circulate in the vasculature, platelets also indirectly respond to pathogen invasion through interactions with leukocytes and the endothelium. Following antigen recognition, platelets often become activated. Through a diverse repertoire of mechanisms, activated platelets can directly sequester or kill pathogens, or facilitate pathogen clearance by activating macrophages and neutrophils, promoting neutrophil extracellular traps (NETs) formation, forming platelet aggregates and microthrombi. At times, however, platelet activation may also be injurious to the host, exacerbating inflammation and promoting endothelial damage and thrombosis. There are many gaps in our understandings of the role of platelets in infectious diseases. However, with the emergence of advanced technologies, our knowledge is increasing. In the current review, we mainly discuss these evolving roles of platelets under four different infectious pathogen infections, of which are dengue, malaria, Esterichia coli (E. coli) and staphylococcus aureus S. aureus, highlighting the complex interplay of these processes with hemostatic and thrombotic pathways.
Collapse
Affiliation(s)
- Li Guo
- University of Utah Molecular Medicine Program, Salt Lake City, UT, United States
| | - Matthew T Rondina
- University of Utah Molecular Medicine Program, Salt Lake City, UT, United States.,Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States.,Department of Pathology, University of Utah, Salt Lake City, UT, United States.,George E. Wahlen VAMC Department of Internal Medicine and GRECC, Salt Lake City, UT, United States
| |
Collapse
|
22
|
Winkler MS, Märtz KB, Nierhaus A, Daum G, Schwedhelm E, Kluge S, Gräler MH. Loss of sphingosine 1-phosphate (S1P) in septic shock is predominantly caused by decreased levels of high-density lipoproteins (HDL). J Intensive Care 2019; 7:23. [PMID: 31019718 PMCID: PMC6472014 DOI: 10.1186/s40560-019-0376-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 03/26/2019] [Indexed: 12/19/2022] Open
Abstract
Background Sphingosine 1-phosphate (S1P) is a signaling lipid essential in regulating processes involved in sepsis pathophysiology, including endothelial permeability and vascular tone. Serum S1P is progressively reduced in sepsis patients with increasing severity. S1P function depends on binding to its carriers: serum albumin (SA) and high-density lipoproteins (HDL). The aim of this single-center prospective observational study was to determine the contribution of SA- and HDL-associated S1P (SA-S1P and HDL-S1P) to sepsis-induced S1P depletion in plasma with regard to identify future strategies to supplement vasoprotective S1P. Methods Sequential precipitation of lipoproteins was performed with plasma samples obtained from 100 ICU patients: surgical trauma (n = 20), sepsis (n = 63), and septic shock (n = 17) together with healthy controls (n = 7). Resultant fractions with HDL and SA were analyzed by liquid chromatography coupled to triple-quadrupole mass spectrometry (LC-MS/MS) for their S1P content. Results Plasma S1P levels significantly decreased with sepsis severity and showed a strong negative correlation with increased organ failure, quantified by the Sequential Organ Failure Assessment (SOFA) score (rho - 0.59, P < 0.001). In controls, total plasma S1P levels were 208 μg/L (187-216 μg/L). In trauma patients, we observed an early loss of SA-S1P (- 70%) with a concurrent increase of HDL-S1P (+ 20%), resulting in unaltered total plasma S1P with 210 μg/L (143-257 μg/L). The decrease of plasma S1P levels with increasing SOFA score in sepsis patients with 180.2 μg/L (123.3-253.0 μg/L) and in septic shock patients with 99.5 μg/L (80.2-127.2 μg/L) was mainly dependent on equivalent reductions of HDL and not SA as carrier protein. Thus, HDL-S1P contributed most to total plasma S1P in patients and progressively dropped with increasing SOFA score. Conclusions Reduced plasma S1P was associated with sepsis-induced organ failure. A constant plasma S1P level during the acute phase after surgery was maintained with increased HDL-S1P and decreased SA-S1P, suggesting the redistribution of plasma S1P from SA to HDL. The decrease of plasma S1P levels in patients with increasing sepsis severity was mainly caused by decreasing HDL and HDL-S1P. Therefore, strategies to reconstitute HDL-S1P rather than SA-S1P should be considered for sepsis patients.
Collapse
Affiliation(s)
- Martin Sebastian Winkler
- 1Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246 Germany.,6Department of Anesthesiology and Intensive Care Medicine, Universitätsmedizin Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Konstantin B Märtz
- 2Department of Anesthesiology and Intensive Care Medicine, Center for Sepsis Control and Care (CSCC), and the Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knöll-Str. 2, 07745 Jena, Germany
| | - Axel Nierhaus
- 3Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246 Germany
| | - Günter Daum
- 4Clinic and Polyclinic for Vascular Medicine, University Heart Center, Martinistrasse 52, 20246 Hamburg, Germany
| | - Edzard Schwedhelm
- 5Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246 Germany
| | - Stefan Kluge
- 3Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246 Germany
| | - Markus H Gräler
- 2Department of Anesthesiology and Intensive Care Medicine, Center for Sepsis Control and Care (CSCC), and the Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knöll-Str. 2, 07745 Jena, Germany
| |
Collapse
|
23
|
Mishra R, Lata S, Ali A, Banerjea AC. Dengue haemorrhagic fever: a job done via exosomes? Emerg Microbes Infect 2019; 8:1626-1635. [PMID: 31711408 PMCID: PMC6853225 DOI: 10.1080/22221751.2019.1685913] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/23/2019] [Indexed: 12/18/2022]
Abstract
Dengue fever is one of those unique diseases where host immune responses largely determine the pathogenesis and its severity. Earlier studies have established the fact that dengue virus (DENV) infection causes haemorrhagic fever and shock syndrome, but it is not directly responsible for exhibiting these clinical symptoms. It is noteworthy that clinically, vascular leakage syndrome does not develop for several days after infection despite a robust innate immune response that elicits the production of proinflammatory and proangiogenic cytokines. The onset of hyperpermeability in severe cases of dengue disease takes place around the time of defervescence and after clearance of viraemia. Extracellular vesicles are known to carry biological information (mRNA, miRNA, transcription factors) from their cells of origin and have emerged as a significant vehicle for horizontal transfer of stress signals. In dengue virus infection, the relevance of exosomes can be instrumental since the majority of the immune responses in severe dengue involve heavy secretion and circulation of pro-inflammatory cytokines and chemokines. Here, we present an updated review which will address the unique and puzzling features of hyperpermeability associated with DENV infection with a special focus on the role of secreted extracellular vesicles.
Collapse
Affiliation(s)
- Ritu Mishra
- Laboratory of Virology, National Institute of Immunology, New Delhi, India
| | - Sneh Lata
- Laboratory of Virology, National Institute of Immunology, New Delhi, India
| | - Amjad Ali
- Jamia Millia Islamia, Okhla, New Delhi, India
| | - Akhil C. Banerjea
- Laboratory of Virology, National Institute of Immunology, New Delhi, India
| |
Collapse
|
24
|
Brunkhorst R, Pfeilschifter W, Patyna S, Büttner S, Eckes T, Trautmann S, Thomas D, Pfeilschifter J, Koch A. Preanalytical Biases in the Measurement of Human Blood Sphingolipids. Int J Mol Sci 2018; 19:ijms19051390. [PMID: 29735920 PMCID: PMC5983773 DOI: 10.3390/ijms19051390] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/15/2018] [Accepted: 05/03/2018] [Indexed: 01/14/2023] Open
Abstract
Dysregulation of blood sphingolipids is an emerging topic in clinical science. The objective of this study was to determine preanalytical biases that typically occur in clinical and translational studies and that influence measured blood sphingolipid levels. Therefore, we collected blood samples from four healthy male volunteers to investigate the effect of storage conditions (time, temperature, long-term storage, freeze–thaw cycles), blood drawing (venous or arterial sampling, prolonged venous compression), and sample preparation (centrifugation, freezing) on sphingolipid levels measured by LC-MS/MS. Our data show that sphingosine 1-phosphate (S1P) and sphinganine 1-phosphate (SA1P) were upregulated in whole blood samples in a time- and temperature-dependent manner. Increased centrifugation at higher speeds led to lower amounts of S1P and SA1P. All other preanalytical biases did not significantly alter the amounts of S1P and SA1P. Further, in almost all settings, we did not detect differences in (dihydro)ceramide levels. In summary, besides time-, temperature-, and centrifugation-dependent changes in S1P and SA1P levels, sphingolipids in blood remained stable under practically relevant preanalytical conditions.
Collapse
Affiliation(s)
- Robert Brunkhorst
- Department of Neurology, Goethe University Hospital Frankfurt, 60590 Frankfurt am Main, Germany.
| | - Waltraud Pfeilschifter
- Department of Neurology, Goethe University Hospital Frankfurt, 60590 Frankfurt am Main, Germany.
| | - Sammy Patyna
- Department of General Pharmacology and Toxicology, Goethe University Hospital Frankfurt, 60590 Frankfurt am Main, Germany.
- Department of Nephrology, Goethe University Hospital Frankfurt, 60590 Frankfurt am Main, Germany.
| | - Stefan Büttner
- Department of Nephrology, Goethe University Hospital Frankfurt, 60590 Frankfurt am Main, Germany.
| | - Timon Eckes
- Department of General Pharmacology and Toxicology, Goethe University Hospital Frankfurt, 60590 Frankfurt am Main, Germany.
| | - Sandra Trautmann
- Department of Clinical Pharmacology, Goethe University Hospital Frankfurt, 60590 Frankfurt am Main, Germany.
| | - Dominique Thomas
- Department of Clinical Pharmacology, Goethe University Hospital Frankfurt, 60590 Frankfurt am Main, Germany.
| | - Josef Pfeilschifter
- Department of General Pharmacology and Toxicology, Goethe University Hospital Frankfurt, 60590 Frankfurt am Main, Germany.
| | - Alexander Koch
- Department of General Pharmacology and Toxicology, Goethe University Hospital Frankfurt, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
25
|
Anupriya MG, Singh S, Hulyalkar NV, Sreekumar E. Sphingolipid signaling modulates trans-endothelial cell permeability in dengue virus infected HMEC-1 cells. Prostaglandins Other Lipid Mediat 2018; 136:44-54. [PMID: 29733947 DOI: 10.1016/j.prostaglandins.2018.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 03/01/2018] [Accepted: 05/03/2018] [Indexed: 12/07/2022]
Abstract
Dengue has emerged as a major mosquito-borne disease in the tropics and subtropics. In severe dengue, enhanced microvascular endothelial permeability leads to plasma leakage. Direct dengue virus (DENV) infection in human microvascular endothelial cells (HMEC-1) can enhance trans-endothelial leakage. Using a microarray-based analysis, we identified modulation of key endothelial cell signaling pathways in DENV-infected HMEC-1 cells. One among them was the sphingolipid pathway that regulates vascular barrier function. Sphingosine-1-phosphate receptor 2 (S1PR2) and S1PR5 showed significant up-regulation in the microarray data. In DENV-infected cells, the kinetics of S1PR2 transcript expression and enhanced in vitro trans-endothelial permeability showed a correlation. We also observed an internalization and cytoplasmic translocation of VE-Cadherin, a component of adherens junctions (AJ), upon infection indicating AJ disassembly. Further, inhibition of S1PR2 signaling by a specific pharmacological inhibitor prevented translocation of VE-Cadherin, thus helping AJ maintenance, and abrogated DENV-induced trans-endothelial leakage. Our results show that sphingolipid signaling, especially that involving S1PR2, plays a critical role in vascular leakage in dengue.
Collapse
Affiliation(s)
- M G Anupriya
- Molecular Virology laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thycaud P.O., Thiruvananthapuram, 695014, Kerala, India; Research Scholar, University of Kerala, India
| | - Sneha Singh
- Molecular Virology laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thycaud P.O., Thiruvananthapuram, 695014, Kerala, India; Research Scholar, University of Kerala, India
| | - Neha Vijay Hulyalkar
- Molecular Virology laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thycaud P.O., Thiruvananthapuram, 695014, Kerala, India
| | - Easwaran Sreekumar
- Molecular Virology laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thycaud P.O., Thiruvananthapuram, 695014, Kerala, India.
| |
Collapse
|
26
|
Hottz ED, Bozza FA, Bozza PT. Platelets in Immune Response to Virus and Immunopathology of Viral Infections. Front Med (Lausanne) 2018; 5:121. [PMID: 29761104 PMCID: PMC5936789 DOI: 10.3389/fmed.2018.00121] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/12/2018] [Indexed: 01/04/2023] Open
Abstract
Platelets are essential effector cells in hemostasis. Aside from their role in coagulation, platelets are now recognized as major inflammatory cells with key roles in the innate and adaptive arms of the immune system. Activated platelets have key thromboinflammatory functions linking coagulation to immune responses in various infections, including in response to virus. Recent studies have revealed that platelets exhibit several pattern recognition receptors (PRR) including those from the toll-like receptor, NOD-like receptor, and C-type lectin receptor family and are first-line sentinels in detecting and responding to pathogens in the vasculature. Here, we review the main mechanisms of platelets interaction with viruses, including their ability to sustain viral infection and replication, their expression of specialized PRR, and activation of thromboinflammatory responses against viruses. Finally, we discuss the role of platelet-derived mediators and platelet interaction with vascular and immune cells in protective and pathophysiologic responses to dengue, influenza, and human immunodeficiency virus 1 infections.
Collapse
Affiliation(s)
- Eugenio D Hottz
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Departamento de Bioquimica, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Fernando A Bozza
- Laboratório de Medicina Intensiva, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Instituto D'Or de Pesquisa e Ensino, Rio de Janeiro, Brazil
| | - Patrícia T Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
27
|
Kleuser B. Divergent Role of Sphingosine 1-Phosphate in Liver Health and Disease. Int J Mol Sci 2018; 19:ijms19030722. [PMID: 29510489 PMCID: PMC5877583 DOI: 10.3390/ijms19030722] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/08/2018] [Accepted: 02/26/2018] [Indexed: 12/11/2022] Open
Abstract
Two decades ago, sphingosine 1-phosphate (S1P) was discovered as a novel bioactive molecule that regulates a variety of cellular functions. The plethora of S1P-mediated effects is due to the fact that the sphingolipid not only modulates intracellular functions but also acts as a ligand of G protein-coupled receptors after secretion into the extracellular environment. In the plasma, S1P is found in high concentrations, modulating immune cell trafficking and vascular endothelial integrity. The liver is engaged in modulating the plasma S1P content, as it produces apolipoprotein M, which is a chaperone for the S1P transport. Moreover, the liver plays a substantial role in glucose and lipid homeostasis. A dysfunction of glucose and lipid metabolism is connected with the development of liver diseases such as hepatic insulin resistance, non-alcoholic fatty liver disease, or liver fibrosis. Recent studies indicate that S1P is involved in liver pathophysiology and contributes to the development of liver diseases. In this review, the current state of knowledge about S1P and its signaling in the liver is summarized with a specific focus on the dysregulation of S1P signaling in obesity-mediated liver diseases. Thus, the modulation of S1P signaling can be considered as a potential therapeutic target for the treatment of hepatic diseases.
Collapse
Affiliation(s)
- Burkhard Kleuser
- Department of Toxicology, Institute of Nutritional Science, Faculty of Mathematics and Natural Science, University of Potsdam, Arthur-Scheunert Allee 114-116, 14558 Nuthetal, Germany.
| |
Collapse
|
28
|
Sun XJ, Wang C, Zhang LX, Yu F, Chen M, Zhao MH. Sphingosine-1-phosphate and its receptors in anti-neutrophil cytoplasmic antibody-associated vasculitis. Nephrol Dial Transplant 2018; 32:1313-1322. [PMID: 28206609 DOI: 10.1093/ndt/gfw427] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 11/02/2016] [Indexed: 11/13/2022] Open
Abstract
Background C5a plays a crucial role in anti-neutrophil cytoplasmic antibody (ANCA)-mediated neutrophil recruitment and activation. Our previous studies found that the interaction between sphingosine-1-phosphate (S1P) and C5a plays an important role in the ANCA-mediated activation of neutrophils. In the current study, the expression levels of S1P in plasma and its receptors (S1PR1-5) in kidneys were analysed in patients with ANCA-associated vasculitis (AAV). Methods Plasma samples from 32 AAV patients in active stage and 20 AAV patients in remission were collected. The plasma levels of S1P were determined by an enzyme-linked immunosorbent assay (ELISA). The expression of S1PR1-5 in the renal specimens from 24 AAV patients was detected by immunohistochemistry. The associations of the plasma levels of S1P and renal expression of S1PRs with clinical and pathological parameters were analysed. Results The level of plasma S1P was significantly higher in AAV patients in active stage than it was in both patients in remission and in normal controls. Correlation analysis showed that the plasma levels of S1P correlated with the initial serum creatinine levels (r = 0.502, P = 0.003) and inversely correlated with the estimated glomerular filtration rate (eGFR; r = -0.358, P = 0.044) in AAV patients. Double-labelling immunofluorescence assay suggested that S1PR1-5 were expressed on endothelial cells in the glomeruli and that S1PR1, 4 and 5 were expressed on neutrophils. Conclusions In AAV patients, the circulating S1P levels were elevated and the renal expression of S1PR2-5 was upregulated. The levels of circulating S1P and the renal expression of S1PR were associated with the renal involvement and disease activity of AAV.
Collapse
Affiliation(s)
- Xiao-Jing Sun
- Renal Division, Department of Medicine, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education; Peking-Tsinghua Center for Life Sciences, No.8, Xishiku Street, Xicheng District, Beijing, China
| | - Chen Wang
- Renal Division, Department of Medicine, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education; Peking-Tsinghua Center for Life Sciences, No.8, Xishiku Street, Xicheng District, Beijing, China
| | - Lu-Xia Zhang
- Renal Division, Department of Medicine, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education; Peking-Tsinghua Center for Life Sciences, No.8, Xishiku Street, Xicheng District, Beijing, China
| | - Feng Yu
- Renal Division, Department of Medicine, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education; Peking-Tsinghua Center for Life Sciences, No.8, Xishiku Street, Xicheng District, Beijing, China
| | - Min Chen
- Renal Division, Department of Medicine, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education; Peking-Tsinghua Center for Life Sciences, No.8, Xishiku Street, Xicheng District, Beijing, China
| | - Ming-Hui Zhao
- Renal Division, Department of Medicine, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education; Peking-Tsinghua Center for Life Sciences, No.8, Xishiku Street, Xicheng District, Beijing, China
| |
Collapse
|
29
|
Malavige GN, Wijewickrama A, Fernando S, Jeewandara C, Ginneliya A, Samarasekara S, Madushanka P, Punchihewa C, Paranavitane S, Idampitiya D, Wanigatunga C, Dissanayake H, Prathapan S, Gomes L, Aman SAB, John AS, Ogg GS. A preliminary study on efficacy of rupatadine for the treatment of acute dengue infection. Sci Rep 2018; 8:3857. [PMID: 29497121 PMCID: PMC5832788 DOI: 10.1038/s41598-018-22285-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 02/19/2018] [Indexed: 12/15/2022] Open
Abstract
Currently there are no specific treatments available for acute dengue infection. We considered that rupatadine, a platelet-activating factor receptor inhibitor, might modulate dengue-associated vascular leak. The effects of rupatadine were assessed in vitro, and in a dengue model, which showed that rupatadine significantly reduced endothelial permeability by dengue sera in vitro, and significantly inhibited the increased haematocrit in dengue-infected mice with dose-dependency. We conducted a randomised, placebo-controlled trial in 183 adult patients in Sri Lanka with acute dengue, which showed that rupatadine up to 40 mg daily appeared safe and well-tolerated with similar proportions of adverse events with rupatadine and placebo. Although the primary end-point of a significant reduction in fluid leakage (development of pleural effusions or ascites) was not met, post-hoc analyses revealed small but significant differences in several parameters on individual illness days - higher platelet counts and lower aspartate-aminotransferase levels on day 7 in the rupatadine group compared to the placebo group, and smaller effusions on day 8 in the subgroup of patients with pleural effusions. However, due to the small sample size and range of recruitment time, the potential beneficial effects of rupatadine require further evaluation in large studies focused on recruitment during the early febrile phase.
Collapse
Affiliation(s)
- Gathsaurie Neelika Malavige
- Centre for Dengue Research, Faculty of Medical Sciences, University of Sri Jayawardenapura, Jayawardenapura, Sri Lanka.
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK.
| | | | - Samitha Fernando
- Centre for Dengue Research, Faculty of Medical Sciences, University of Sri Jayawardenapura, Jayawardenapura, Sri Lanka
| | - Chandima Jeewandara
- Centre for Dengue Research, Faculty of Medical Sciences, University of Sri Jayawardenapura, Jayawardenapura, Sri Lanka
| | - Anushka Ginneliya
- Centre for Dengue Research, Faculty of Medical Sciences, University of Sri Jayawardenapura, Jayawardenapura, Sri Lanka
| | - Supun Samarasekara
- Centre for Dengue Research, Faculty of Medical Sciences, University of Sri Jayawardenapura, Jayawardenapura, Sri Lanka
| | - Praveen Madushanka
- Centre for Dengue Research, Faculty of Medical Sciences, University of Sri Jayawardenapura, Jayawardenapura, Sri Lanka
| | - Chameera Punchihewa
- Centre for Dengue Research, Faculty of Medical Sciences, University of Sri Jayawardenapura, Jayawardenapura, Sri Lanka
| | - Shiran Paranavitane
- Centre for Dengue Research, Faculty of Medical Sciences, University of Sri Jayawardenapura, Jayawardenapura, Sri Lanka
| | | | - Chandanie Wanigatunga
- Centre for Dengue Research, Faculty of Medical Sciences, University of Sri Jayawardenapura, Jayawardenapura, Sri Lanka
| | - Harsha Dissanayake
- Centre for Dengue Research, Faculty of Medical Sciences, University of Sri Jayawardenapura, Jayawardenapura, Sri Lanka
| | - Shamini Prathapan
- Centre for Dengue Research, Faculty of Medical Sciences, University of Sri Jayawardenapura, Jayawardenapura, Sri Lanka
| | - Laksiri Gomes
- Centre for Dengue Research, Faculty of Medical Sciences, University of Sri Jayawardenapura, Jayawardenapura, Sri Lanka
| | - Siti A B Aman
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Ashley St John
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Department of Pathology, Duke University, Duke, USA
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Graham S Ogg
- Centre for Dengue Research, Faculty of Medical Sciences, University of Sri Jayawardenapura, Jayawardenapura, Sri Lanka
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| |
Collapse
|
30
|
Sphingosine-1-Phosphate: A Potential Biomarker and Therapeutic Target for Endothelial Dysfunction and Sepsis? Shock 2018; 47:666-672. [PMID: 27922551 DOI: 10.1097/shk.0000000000000814] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Sepsis is an acute life-threatening multiple organ failure caused by a dysregulated host response to infection. Endothelial dysfunction, particularly barrier disruption leading to increased vascular permeability, edema, and insufficient tissue oxygenation, is critical to sepsis pathogenesis. Sphingosine-1-phosphate (S1P) is a signaling lipid that regulates important pathophysiological processes including vascular endothelial cell permeability, inflammation, and coagulation. It is present at high concentrations in blood and lymph and at very low concentrations in tissues due to the activity of the S1P-degrading enzyme S1P-lyase in tissue cells. Recently, four preclinical observational studies determined S1P levels in serum or plasma of sepsis patients, and all found reduced S1P levels associated with the disease. Based on these findings, this review summarizes S1P-regulated processes pertaining to endothelial functions, discusses the possible use of S1P as a marker and possibilities how to manipulate S1P levels and S1P receptor activation to restore endothelial integrity, dampens the inflammatory host response, and improves organ function in sepsis.
Collapse
|
31
|
Holzmann MS, Winkler MS, Strunden MS, Izbicki JR, Schoen G, Greiwe G, Pinnschmidt HO, Poppe A, Saugel B, Daum G, Goetz AE, Heckel K. Syndecan-1 as a biomarker for sepsis survival after major abdominal surgery. Biomark Med 2018; 12:119-127. [DOI: 10.2217/bmm-2017-0231] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Maximilian S Holzmann
- Department of Anesthesiology, Center of Anesthesiology & Intensive Care, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| | - Martin S Winkler
- Department of Anesthesiology, Center of Anesthesiology & Intensive Care, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| | - Mike S Strunden
- Department of Anesthesiology & Intensive Care Asklepios Clinic Harburg, Eißendorfer Pferdeweg 52, 21052 Hamburg, Germany
| | - Jakob R Izbicki
- Department for General, Visceral & Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| | - Gerhard Schoen
- Institute for Medical Biometry & Epidemiology, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| | - Gillis Greiwe
- Department of Anesthesiology, Center of Anesthesiology & Intensive Care, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| | - Hans O Pinnschmidt
- Institute for Medical Biometry & Epidemiology, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| | - Annika Poppe
- Department of Anesthesiology, Center of Anesthesiology & Intensive Care, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| | - Bernd Saugel
- Department of Anesthesiology, Center of Anesthesiology & Intensive Care, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| | - Guenter Daum
- Clinic & Polyclinic for Vascular Medicine, University Heart Center, Martinistr 52, 20246, Hamburg, Germany
| | - Alwin E Goetz
- Department of Anesthesiology, Center of Anesthesiology & Intensive Care, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| | - Kai Heckel
- Department of Anesthesiology, Center of Anesthesiology & Intensive Care, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| |
Collapse
|
32
|
RNAi screen reveals a role of SPHK2 in dengue virus-mediated apoptosis in hepatic cell lines. PLoS One 2017; 12:e0188121. [PMID: 29145490 PMCID: PMC5690425 DOI: 10.1371/journal.pone.0188121] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 10/31/2017] [Indexed: 12/14/2022] Open
Abstract
Hepatic dysfunction is a feature of dengue virus (DENV) infection. Hepatic biopsy specimens obtained from fatal cases of DENV infection show apoptosis, which relates to the pathogenesis of DENV infection. However, how DENV induced liver injury is not fully understood. In this study, we aim to identify the factors that influence cell death by employing an apoptosis-related siRNA library screening. Our results show the effect of 558 gene silencing on caspase 3-mediated apoptosis in DENV-infected Huh7 cells. The majority of genes that contributed to apoptosis were the apoptosis-related kinase enzymes. Tumor necrosis factor superfamily member 12 (TNFSF12), and sphingosine kinase 2 (SPHK2), were selected as the candidate genes to further validate their influences on DENV-induced apoptosis. Transfection of siRNA targeting SPHK2 but not TNFSF12 genes reduced apoptosis determined by Annexin V/PI staining. Knockdown of SPHK2 did not reduce caspase 8 activity; however, did significantly reduce caspase 9 activity, suggesting its involvement of SPHK2 in the intrinsic pathway of apoptosis. Treatment of ABC294649, an inhibitor of SPHK2, reduced the caspase 3 activity, suggesting the involvement of its kinase activity in apoptosis. Knockdown of SPHK2 significantly reduced caspase 3 activity not only in DENV-infected Huh7 cells but also in DENV-infected HepG2 cells. Our results were consistent across all of the four serotypes of DENV infection, which supports the pro-apoptotic role of SPHK2 in DENV-infected liver cells.
Collapse
|
33
|
Punsawad C, Viriyavejakul P. Reduction in serum sphingosine 1-phosphate concentration in malaria. PLoS One 2017; 12:e0180631. [PMID: 28666023 PMCID: PMC5493422 DOI: 10.1371/journal.pone.0180631] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 06/19/2017] [Indexed: 11/29/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) is a lipid mediator formed by the metabolism of sphingomyelin which is involved in the endothelial permeability and inflammation. Although the plasma S1P concentration is reportedly decreased in patients with cerebral malaria, the role of S1P in malaria is still unclear. The purpose of this study was to examine the impact of malaria on circulating S1P concentration and its relationship with clinical data in malaria patients. Serum S1P levels were measured in 29 patients with P. vivax, 30 patients with uncomplicated P. falciparum, and 13 patients with complicated P. falciparum malaria on admission and on day 7, compared with healthy subjects (n = 18) as control group. The lowest level of serum S1P concentration was found in the complicated P. falciparum malaria group, compared with P. vivax, uncomplicated P. falciparum patients and healthy controls (all p < 0.001). In addition, serum S1P level was positively correlated with platelet count, hemoglobin and hematocrit levels in malaria patients. In conclusions, low levels of S1P are associated with the severity of malaria, and are correlated with thrombocytopenia and anemia. These findings highlight a role of S1P in the severity of malaria and support the use of S1P and its analogue as a novel adjuvant therapy for malaria complications.
Collapse
Affiliation(s)
- Chuchard Punsawad
- School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
- Tropical Diseases and Parasitic Infectious Diseases Research Group, Walailak University, Nakhon Si Thammarat, Thailand
| | - Parnpen Viriyavejakul
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
34
|
Malavige GN, Ogg GS. Pathogenesis of vascular leak in dengue virus infection. Immunology 2017; 151:261-269. [PMID: 28437586 DOI: 10.1111/imm.12748] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/26/2017] [Accepted: 04/17/2017] [Indexed: 12/31/2022] Open
Abstract
Endothelial dysfunction leading to vascular leak is the hallmark of severe dengue. Vascular leak typically becomes clinically evident 3-6 days after the onset of illness, which is known as the critical phase. This critical phase follows the period of peak viraemia, and lasts for 24-48 hr and usually shows rapid and complete reversal, suggesting that it is likely to occur as a result of inflammatory mediators, rather than infection of the endothelium. Cytokines such as tumour necrosis factor-α, which are known to be elevated in the critical phase of dengue, are likely to be contributing factors. Dengue NS1, a soluble viral protein, has also been shown to disrupt the endothelial glycocalyx and thus contribute to vascular leak, although there appears to be a discordance between the timing of NS1 antigenaemia and occurrence of vascular leak. In addition, many inflammatory lipid mediators are elevated in acute dengue viral infection such as platelet activating factor (PAF) and leukotrienes. Furthermore, many other inflammatory mediators such as vascular endothelial growth factor and angiopoietin-2 have been shown to be elevated in patients with dengue haemorrhagic fever, exerting their action in part by inducing the activity of phospholipases, which have diverse inflammatory effects including generation of PAF. Platelets have also been shown to significantly contribute to endothelial dysfunction by production of interleukin-1β through activation of the NLRP3 inflammasome and also by inducing production of inflammatory cytokines by monocytes. Drugs that block down-stream immunological mediator pathways such as PAF may also be beneficial in the treatment of severe disease.
Collapse
Affiliation(s)
- Gathsaurie Neelika Malavige
- Centre for Dengue Research, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.,MRC Human Immunology Unit, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Graham S Ogg
- MRC Human Immunology Unit, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
35
|
Jayasundara SDP, Perera SSN, Malavige GN, Jayasinghe S. Mathematical modelling and a systems science approach to describe the role of cytokines in the evolution of severe dengue. BMC SYSTEMS BIOLOGY 2017; 11:34. [PMID: 28284213 PMCID: PMC5346240 DOI: 10.1186/s12918-017-0415-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 03/02/2017] [Indexed: 01/05/2023]
Abstract
Background Dengue causes considerable morbidity and mortality in Sri Lanka. Inflammatory mediators such as cytokines, contribute to its evolution from an asymptotic infection to severe forms of dengue. The majority of previous studies have analysed the association of individual cytokines with clinical disease severity. In contrast, we view evolution to Dengue Haemorrhagic Fever as the behaviour of a complex dynamic system. We therefore, analyse the combined effect of multiple cytokines that interact dynamically with each other in order to generate a mathematical model to predict occurrence of Dengue Haemorrhagic Fever. We expect this to have predictive value in detecting severe cases and improve outcomes. Platelet activating factor (PAF), Sphingosine 1- Phosphate (S1P), IL-1β, TNFα and IL-10 are used as the parameters for the model. Hierarchical clustering is used to detect factors that correlated with each other. Their interactions are mapped using Fuzzy Logic mechanisms with the combination of modified Hamacher and OWA operators. Trapezoidal membership functions are developed for each of the cytokine parameters and the degree of unfavourability to attain Dengue Haemorrhagic Fever is measured. Results The accuracy of this model in predicting severity level of dengue is 71.43% at 96 h from the onset of illness, 85.00% at 108 h and 76.92% at 120 h. A region of ambiguity is detected in the model for the value range 0.36 to 0.51. Sensitivity analysis indicates that this is a robust mathematical model. Conclusions The results show a robust mathematical model that explains the evolution from dengue to its serious forms in individual patients with high accuracy. However, this model would have to be further improved by including additional parameters and should be validated on other data sets. Electronic supplementary material The online version of this article (doi:10.1186/s12918-017-0415-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- S D Pavithra Jayasundara
- Research and Development Centre for Mathematical Modelling, University of Colombo, Colombo, Sri Lanka.
| | - S S N Perera
- Research and Development Centre for Mathematical Modelling, University of Colombo, Colombo, Sri Lanka
| | | | - Saroj Jayasinghe
- Department of Clinical Medicine, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
36
|
Suwanmanee S, Luplertlop N. Dengue and Zika viruses: lessons learned from the similarities between these Aedes mosquito-vectored arboviruses. J Microbiol 2017; 55:81-89. [PMID: 28120186 DOI: 10.1007/s12275-017-6494-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/22/2016] [Accepted: 12/13/2016] [Indexed: 01/14/2023]
Abstract
The currently spreading arbovirus epidemic is having a severe impact on human health worldwide. The two most common flaviviruses, dengue virus (DENV) and Zika virus (ZIKV), are transmitted through the same viral vector, Aedes spp. mosquitoes. Since the discovery of DENV in 1943, this virus has been reported to cause around 390 million human infections per year, approximately 500,000 of which require hospitalization and over 20,000 of which are lethal. The present DENV epidemic is primarily concentrated in Southeast Asia. ZIKV, which was discovered in 1952, is another important arthropod-borne flavivirus. The neurotropic role of ZIKV has been reported in infected newborns with microcephaly and in adults with Guillain-Barre syndrome. Despite DENV and ZIKV sharing the same viral vector, their complex pathogenic natures are poorly understood, and the infections they cause do not have specific treatments or effective vaccines. Therefore, this review will describe what is currently known about the clinical characteristics, pathogenesis mechanisms, and transmission of these two viruses. Better understanding of the interrelationships between DENV and ZIKV will provide a useful perspective for developing an effective strategy for controlling both viruses in the future.
Collapse
Affiliation(s)
- San Suwanmanee
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Natthanej Luplertlop
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
37
|
Moritz E, Wegner D, Groß S, Bahls M, Dörr M, Felix SB, Ittermann T, Oswald S, Nauck M, Friedrich N, Böger RH, Daum G, Schwedhelm E, Rauch BH. Reference intervals for serum sphingosine-1-phosphate in the population-based Study of Health in Pomerania. Clin Chim Acta 2017; 468:25-31. [PMID: 28159438 DOI: 10.1016/j.cca.2017.01.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 10/20/2022]
Abstract
BACKGROUND The bioactive signaling lipid sphingosine-1-phosphate (S1P) is a potential biomarker for cardiovascular disease (CVD). To date, no reference intervals for S1P have been defined. This study aims to establish a reference range for serum S1P in healthy individuals. METHODS We determined reference intervals for S1P levels according to gender and age in a sample of 1339 healthy participants of the Study of Health in Pomerania (SHIP)-TREND cohort after exclusion of subjects with CVD, diabetes mellitus, hypertension, metabolic syndrome, elevated liver enzymes, chronic kidney disease stadium III or IV, or body mass index (BMI)>30kg/m2. Serum S1P was measured by liquid chromatography-tandem mass spectrometry. RESULTS The median age of the participants was 41 (25th; 75th percentile 32; 51) years, 65% were women. The median serum concentration of S1P was 0.804 (0.694; 0.920) μmol/L. No association with gender and age was observed. The overall reference interval was 0.534-1.242μmol/L (2.5th; 97.5th percentile). Further exclusion of smokers, individuals with BMI>25kg/m2 or elevated lipid levels did not significantly affect median S1P concentrations. CONCLUSIONS This study provides reference intervals for serum S1P in healthy individuals. Total serum S1P concentrations vary irrespectively of age, gender, BMI or smoking status.
Collapse
Affiliation(s)
- Eileen Moritz
- Institute of Pharmacology, Department of General Pharmacology, University Medicine Greifswald, Germany; Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Danilo Wegner
- Institute of Pharmacology, Department of Clinical Pharmacology, University Medicine Greifswald, Germany
| | - Stefan Groß
- Department of Internal Medicine B, University Medicine Greifswald, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, Germany
| | - Martin Bahls
- Department of Internal Medicine B, University Medicine Greifswald, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, Germany
| | - Marcus Dörr
- Department of Internal Medicine B, University Medicine Greifswald, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, Germany
| | - Stephan B Felix
- Department of Internal Medicine B, University Medicine Greifswald, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, Germany
| | - Till Ittermann
- German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, Germany; Institute for Community Medicine, University Medicine Greifswald, Germany
| | - Stefan Oswald
- Institute of Pharmacology, Department of Clinical Pharmacology, University Medicine Greifswald, Germany
| | - Matthias Nauck
- German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, Germany; Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Germany
| | - Nele Friedrich
- German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, Germany; Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Germany
| | - Rainer H Böger
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Günter Daum
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Germany; Clinic and Polyclinic for Vascular Medicine, University Heart Center, University Medical Center Hamburg-Eppendorf, Germany
| | - Edzard Schwedhelm
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Bernhard H Rauch
- Institute of Pharmacology, Department of General Pharmacology, University Medicine Greifswald, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, Germany.
| |
Collapse
|
38
|
Serum-Sphingosine-1-Phosphate Concentrations Are Inversely Associated with Atherosclerotic Diseases in Humans. PLoS One 2016; 11:e0168302. [PMID: 27973607 PMCID: PMC5156421 DOI: 10.1371/journal.pone.0168302] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/30/2016] [Indexed: 11/19/2022] Open
Abstract
Background and Objectives Atherosclerotic changes of arteries are the leading cause for deaths in cardiovascular disease and greatly impair patient’s quality of life. Sphingosine-1-phosphate (S1P) is a signaling sphingolipid that regulates potentially pro-as well as anti-atherogenic processes. Here, we investigate whether serum-S1P concentrations are associated with peripheral artery disease (PAD) and carotid stenosis (CS). Methods and Results Serum was sampled from blood donors (controls, N = 174) and from atherosclerotic patients (N = 132) who presented to the hospital with either clinically relevant PAD (N = 102) or CS (N = 30). From all subjects, serum-S1P was measured by mass spectrometry and blood parameters were determined by routine laboratory assays. When compared to controls, atherosclerotic patients before invasive treatment to restore blood flow showed significantly lower serum-S1P levels. This difference cannot be explained by risk factors for atherosclerosis (old age, male gender, hypertension, hypercholesteremia, obesity, diabetes or smoking) or comorbidities (Chronic obstructive pulmonary disease, kidney insufficiency or arrhythmia). Receiver operating characteristic curves suggest that S1P has more power to indicate atherosclerosis (PAD and CS) than high density lipoprotein-cholesterol (HDL-C). In 35 patients, serum-S1P was measured again between one and six months after treatment. In this group, serum-S1P concentrations rose after treatment independent of whether patients had PAD or CS, or whether they underwent open or endovascular surgery. Post-treatment S1P levels were highly associated to platelet numbers measured pre-treatment. Conclusions Our study shows that PAD and CS in humans is associated with decreased serum-S1P concentrations and that S1P may possess higher accuracy to indicate these diseases than HDL-C.
Collapse
|
39
|
Kamaladasa A, Gomes L, Jeewandara C, Shyamali N, Ogg GS, Malavige GN. Lipopolysaccharide acts synergistically with the dengue virus to induce monocyte production of platelet activating factor and other inflammatory mediators. Antiviral Res 2016; 133:183-90. [DOI: 10.1016/j.antiviral.2016.07.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/24/2016] [Indexed: 01/19/2023]
|
40
|
Winkler MS, Nierhaus A, Holzmann M, Mudersbach E, Bauer A, Robbe L, Zahrte C, Geffken M, Peine S, Schwedhelm E, Daum G, Kluge S, Zoellner C. Decreased serum concentrations of sphingosine-1-phosphate in sepsis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:372. [PMID: 26498205 PMCID: PMC4620595 DOI: 10.1186/s13054-015-1089-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/03/2015] [Indexed: 12/29/2022]
Abstract
Introduction Sphingosine-1-phosphate (S1P) is a signaling lipid that regulates pathophysiological processes involved in sepsis progression, including endothelial permeability, cytokine release, and vascular tone. The aim of this study was to investigate whether serum-S1P concentrations are associated with disease severity in patients with sepsis. Methods This single-center prospective-observational study includes 100 patients with systemic inflammatory response syndrome (SIRS) plus infection (n = 40), severe sepsis (n = 30), or septic shock (n = 30) and 214 healthy blood donors as controls. Serum-S1P was measured by mass spectrometry. Blood parameters, including C-reactive protein (CRP), procalcitonin (PCT), interleukin-6 (IL-6), lactate, and white blood cells (WBCs), were determined by routine assays. The Sequential Organ Failure Assessment (SOFA) score was generated and used to evaluate disease severity. Results Serum-S1P concentrations were lower in patients than in controls (P < 0.01), and the greatest difference was between the control and the septic shock groups (P < 0.01). Serum-S1P levels were inversely correlated with disease severity as determined by the SOFA score (P < 0.01) as well as with IL-6, PCT, CRP, creatinine, lactate, and fluid balance. A receiver operating characteristic analysis for the presence or absence of septic shock revealed equally high sensitivity and specificity for S1P compared with the SOFA score. In a multivariate logistic regression model calculated for prediction of septic shock, S1P emerged as the strongest predictor (P < 0.001). Conclusions In patients with sepsis, serum-S1P levels are dramatically decreased and are inversely associated with disease severity. Since S1P is a potent regulator of endothelial integrity, low S1P levels may contribute to capillary leakage, impaired tissue perfusion, and organ failure in sepsis.
Collapse
Affiliation(s)
- Martin Sebastian Winkler
- Department of Anaesthesiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Axel Nierhaus
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Maximilian Holzmann
- Department of Anaesthesiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Eileen Mudersbach
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Antonia Bauer
- Department of Anaesthesiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Linda Robbe
- Department of Anaesthesiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Corinne Zahrte
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Maria Geffken
- Institute of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Sven Peine
- Institute of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Edzard Schwedhelm
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Guenter Daum
- Clinic and Polyclinic for Vascular Medicine, University Heart Center, Martinistr. 52, 20246, Hamburg, Germany.
| | - Stefan Kluge
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Christian Zoellner
- Department of Anaesthesiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| |
Collapse
|
41
|
Banerjee S, Hann Chu JJ. Potential prognostic markers for predicting onset of dengue hemorrhagic fever. Future Virol 2015. [DOI: 10.2217/fvl.15.73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Dengue is fast evolving as a global infectious disease with more than 390 million infections reported annually. Despite the considerable amount of research, there are no effective vaccines for dengue and the clinical management of the disease solely relies on the effective medical care and supportive treatment of the patients. Rapid diagnosis and early prediction of the severity of the disease will not only aid the clinical management of the disease but also enable efficient utilization of the medical resources in the resource-poor dengue endemic regions. In this review, we have focused on certain diagnostic and prognostic biomarkers for dengue infection which could have a predictive potential for disease severity in the clinical scenario.
Collapse
Affiliation(s)
- Shefali Banerjee
- Laboratory of Molecular RNA Virology & Antiviral Strategies, Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, 5 Science Drive 2, National University of Singapore, 117597 Singapore
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology & Antiviral Strategies, Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, 5 Science Drive 2, National University of Singapore, 117597 Singapore
| |
Collapse
|
42
|
Michels M, Japtok L, Alisjahbana B, Wisaksana R, Sumardi U, Puspita M, Kleuser B, de Mast Q, van der Ven AJAM. Decreased plasma levels of the endothelial protective sphingosine-1-phosphate are associated with dengue-induced plasma leakage. J Infect 2015; 71:480-7. [PMID: 26183296 DOI: 10.1016/j.jinf.2015.06.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/13/2015] [Accepted: 06/22/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND A transient endothelial hyperpermeability is a hallmark of severe dengue infections. Sphingosine-1-phosphate (S1P) maintains vascular integrity and protects against plasma leakage. We related plasma S1P levels to dengue-induced plasma leakage and studied mechanisms that may underlie the decrease in S1P levels in dengue. METHODS We determined circulating levels of S1P in 44 Indonesian adults with acute dengue and related levels to plasma leakage, as determined by daily ultrasonography, and to levels of its chaperone apolipoprotein M, other lipoproteins and platelets. RESULTS Plasma S1P levels were decreased during dengue and patients with plasma leakage had lower median levels compared to those without (638 vs. 745 nM; p < 0.01). ApoM and other lipoprotein levels were also decreased during dengue, but did not correlate to S1P levels. Platelet counts correlated positively with S1P levels, but S1P levels were not higher in frozen-thawed platelet rich plasma, arguing against platelets as an important cellular source of S1P in dengue. CONCLUSIONS Decreased plasma S1P levels during dengue are associated with plasma leakage. We speculate that decreased levels of ApoM underlies the lower S1P levels. Modulation of S1P levels and its receptors may be a novel therapeutic intervention to prevent plasma leakage in dengue.
Collapse
Affiliation(s)
- Meta Michels
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Lukasz Japtok
- Department of Toxicology, Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Bachti Alisjahbana
- Department of Internal Medicine, Faculty of Medicine, University of Padjadjaran, Bandung, Indonesia
| | - Rudi Wisaksana
- Department of Internal Medicine, Faculty of Medicine, University of Padjadjaran, Bandung, Indonesia
| | - Uun Sumardi
- Department of Internal Medicine, Faculty of Medicine, University of Padjadjaran, Bandung, Indonesia
| | - Mita Puspita
- Department of Internal Medicine, Faculty of Medicine, University of Padjadjaran, Bandung, Indonesia
| | - Burkhard Kleuser
- Department of Toxicology, Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Quirijn de Mast
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Andre J A M van der Ven
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|