1
|
Niu S, Zhu Y, Geng R, Luo M, Zuo H, Yang L, Weng S, He J, Xu X. A novel chitinase Chi6 with immunosuppressive activity promotes white spot syndrome virus (WSSV) infection in Penaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108450. [PMID: 36442705 DOI: 10.1016/j.fsi.2022.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Chitinases, a group of glycosylase hydrolases that can hydrolyze chitin, are involved in immune regulation in animals. White spot syndrome virus (WSSV) causes huge losses to crustacean aquaculture every year. We identified a novel chitinase Chi6 from Pacific white shrimp Penaeus vannamei, which contains a catalytic domain but no chitin-binding domain. The Chi6 expression was regulated by multiple immune signaling pathways and increased after immune stimulations. Silencing of Chi6 by RNAi in vivo did not affect Vibrio parahaemolyticus infection, but significantly increased the survival rate of WSSV-infected shrimp. The expression of multiple WSSV immediate early and structural genes was also decreased upon Chi6 silencing. The recombinant Chi6 protein showed no effect on bacterial growth but could attenuate shrimp hemocyte phagocytosis. The mRNA levels of several key elements and downstream genes of the MAPK and Dorsal pathways in Chi6-silenced shrimp were significantly up-regulated, suggesting an inhibitory effect of Chi6 on humoral immune response. Moreover, Chi6 enhanced the regulatory effect of Dorsal on the expression of WSSV ie1 gene. Therefore, Chi6 promotes WSSV infection through immunosuppression and regulation of WSSV gene expression. Targeting Chi6 could be a potential strategy for controlling WSSV disease in shrimp farming.
Collapse
Affiliation(s)
- Shengwen Niu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Yuening Zhu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Ran Geng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Mengting Luo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Hongliang Zuo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Linwei Yang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China
| | - Jianguo He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Xiaopeng Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
2
|
Nanochitin: An update review on advances in preparation methods and food applications. Carbohydr Polym 2022; 291:119627. [DOI: 10.1016/j.carbpol.2022.119627] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 12/14/2022]
|
3
|
Sato F, Nakamura Y, Katsuki A, Khadka S, Ahmad I, Omura S, Martinez NE, Tsunoda I. Curdlan, a Microbial β-Glucan, Has Contrasting Effects on Autoimmune and Viral Models of Multiple Sclerosis. Front Cell Infect Microbiol 2022; 12:805302. [PMID: 35198458 PMCID: PMC8859099 DOI: 10.3389/fcimb.2022.805302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/06/2022] [Indexed: 02/05/2023] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated disease characterized by inflammatory demyelination and axonal degeneration in the central nervous system (CNS). Bacterial and fungal infections have been associated with the development of MS; microbial components that are present in several microbes could contribute to MS pathogenesis. Among such components, curdlan is a microbial 1,3-β-glucan that can stimulate dendritic cells, and enhances T helper (Th) 17 responses. We determined whether curdlan administration could affect two animal models for MS: an autoimmune model, experimental autoimmune encephalomyelitis (EAE), and a viral model, Theiler's murine encephalomyelitis virus (TMEV)-induced demyelinating disease (TMEV-IDD). We induced relapsing-remitting EAE by sensitizing SJL/J mice with the myelin proteolipid protein (PLP)139-151 peptide and found that curdlan treatment prior to PLP sensitization converted the clinical course of EAE into hyperacute EAE, in which the mice developed a progressive motor paralysis and died within 2 weeks. Curdlan-treated EAE mice had massive infiltration of T cells and neutrophils in the CNS with higher levels of Th17 and Th1 responses, compared with the control EAE mice. On the other hand, in TMEV-IDD, we found that curdlan treatment reduced the clinical scores and axonal degeneration without changes in inflammation or viral persistence in the CNS. In summary, although curdlan administration exacerbated the autoimmune MS model by enhancing inflammatory demyelination, it suppressed the viral MS model with reduced axonal degeneration. Therefore, microbial infections may play contrasting roles in MS depending on its etiology: autoimmunity versus viral infection.
Collapse
Affiliation(s)
- Fumitaka Sato
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health-Shreveport, Shreveport, LA, United States
| | - Yumina Nakamura
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Aoshi Katsuki
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Sundar Khadka
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Ijaz Ahmad
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Seiichi Omura
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health-Shreveport, Shreveport, LA, United States
| | - Nicholas E. Martinez
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health-Shreveport, Shreveport, LA, United States
| | - Ikuo Tsunoda
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health-Shreveport, Shreveport, LA, United States
| |
Collapse
|
4
|
Sandner L, Alteneder M, Zhu C, Hladik A, Högler S, Rica R, Van Greuningen LW, Sharif O, Sakaguchi S, Knapp S, Kenner L, Trauner M, Ellmeier W, Boucheron N. The Tyrosine Kinase Tec Regulates Effector Th17 Differentiation, Pathogenicity, and Plasticity in T-Cell-Driven Intestinal Inflammation. Front Immunol 2021; 12:750466. [PMID: 35003062 PMCID: PMC8728872 DOI: 10.3389/fimmu.2021.750466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/29/2021] [Indexed: 12/30/2022] Open
Abstract
T helper (Th) 17 cells are not only key in controlling infections mediated by extracellular bacteria and fungi but are also triggering autoimmune responses. Th17 cells comprise heterogeneous subsets, some with pathogenic functions. They can cease to secrete their hallmark cytokine IL-17A and even convert to other T helper lineages, a process known as transdifferentiation relying on plasticity. Both pathogenicity and plasticity are tightly linked to IL-23 signaling. Here, we show that the protein tyrosine kinase Tec is highly induced in Th17 cells. Th17 differentiation was enhanced at low interleukin-6 (IL-6) concentrations in absence of Tec, which correlates with increased STAT3 phosphorylation and higher Il23r expression. Therefore, we uncovered a function for Tec in the IL-6 sensing via STAT3 by CD4+ T cells, defining Tec as a fine-tuning negative regulator of Th17 differentiation. Subsequently, by using the IL-17A fate mapping mouse combined with in vivo adoptive transfer models, we demonstrated that Tec not only restrained effector Th17 differentiation but also pathogenicity and plasticity in a T-cell intrinsic manner. Our data further suggest that Tec regulates inflammatory Th17-driven immune responses directly impacting disease severity in a T-cell-driven colitis model. Notably, consistent with the in vitro findings, elevated levels of the IL-23 receptor (IL-23R) were observed on intestinal pre- and postconversion Th17 cells isolated from diseased Tec-/- mice subjected to adoptive transfer colitis, highlighting a fundamental role of Tec in restraining IL-23R expression, likely via the IL-6-STAT3 signaling axis. Taken together, these findings identify Tec as a negative regulator of Th17 differentiation, pathogenicity, and plasticity, contributing to the mechanisms which help T cells to orchestrate optimal immune protection and to restrain immunopathology.
Collapse
Affiliation(s)
- Lisa Sandner
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Marlis Alteneder
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ci Zhu
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Anastasiya Hladik
- Department of Medicine 1, Research Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria
| | - Sandra Högler
- Unit of Laboratory Animal Pathology, Department for Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ramona Rica
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Lars W Van Greuningen
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden, Netherlands
| | - Omar Sharif
- Center for Physiology and Pharmacology, Institute for Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Shinya Sakaguchi
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Sylvia Knapp
- Department of Medicine 1, Research Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria
| | - Lukas Kenner
- Unit of Laboratory Animal Pathology, Department for Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Division of Experimental and Translational Pathology, Department of Pathology, Medical University Vienna, Vienna, Austria
- Center for Biomarker Research in Medicine (CBmed), Graz, Austria
- Christian Doppler Laboratory for Applied Metabolomics (CDL-AM), Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Nicole Boucheron
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
The Role of IL-17-Producing Cells in Cutaneous Fungal Infections. Int J Mol Sci 2021; 22:ijms22115794. [PMID: 34071562 PMCID: PMC8198319 DOI: 10.3390/ijms22115794] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/15/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
The skin is the outermost layer of the body and is exposed to many environmental stimuli, which cause various inflammatory immune responses in the skin. Among them, fungi are common microorganisms that colonize the skin and cause cutaneous fungal diseases such as candidiasis and dermatophytosis. The skin exerts inflammatory responses to eliminate these fungi through the cooperation of skin-component immune cells. IL-17 producing cells are representative immune cells that play a vital role in anti-fungal action in the skin by producing antimicrobial peptides and facilitating neutrophil infiltration. However, the actual impact of IL-17-producing cells in cutaneous fungal infections remains unclear. In this review, we focused on the role of IL-17-producing cells in a series of cutaneous fungal infections, the characteristics of skin infectious fungi, and the recognition of cell components that drive cutaneous immune cells.
Collapse
|
6
|
Breda LCD, Menezes IG, Paulo LNM, de Almeida SR. Immune Sensing and Potential Immunotherapeutic Approaches to Control Chromoblastomycosis. J Fungi (Basel) 2020; 7:jof7010003. [PMID: 33375204 PMCID: PMC7822212 DOI: 10.3390/jof7010003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/30/2022] Open
Abstract
Chromoblastomycosis (CBM) is a neglected, chronic, and progressive subcutaneous mycosis caused by different species of fungi from the Herpotrichiellaceae family. CBM disease is usually associated with agricultural activities, and its infection is characterized by verrucous, erythematous papules, and atrophic lesions on the upper and lower limbs, leading to social stigma and impacts on patients' welfare. The economic aspect of disease treatment is another relevant issue. There is no specific treatment for CBM, and different anti-fungal drug associations are used to treat the patients. However, the long period of the disease and the high cost of the treatment lead to treatment interruption and, consequently, relapse of the disease. In previous years, great progress had been made in the comprehension of the CBM pathophysiology. In this review, we discuss the differences in the cell wall composition of conidia, hyphae, and muriform cells, with a particular focus on the activation of the host immune response. We also highlight the importance of studies about the host skin immunology in CBM. Finally, we explore different immunotherapeutic studies, highlighting the importance of these approaches for future treatment strategies for CBM.
Collapse
|
7
|
Dong B, Liu W, Li R, Chen Y, Tong Z, Zhang X, Chen L, Li D. Muriform Cells Can Reproduce by Dividing in an Athymic Murine Model of Chromoblastomycosis due to Fonsecaea pedrosoi. Am J Trop Med Hyg 2020; 103:704-712. [PMID: 32524944 PMCID: PMC7410477 DOI: 10.4269/ajtmh.19-0465] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Transformation of Fonsecaea pedrosoi into muriform cells enhances the resistance against phagocytosis and elimination by host immune cells, and links to the chronicity of chromoblastomycosis. Here, we aim to determine whether the muriform cells can reproduce in tissue without reverse transformation into hyphal form by using an experimental nu/nu-BALB/c mouse model of chromoblastomycosis due to F. pedrosoi. During the whole 81-day observation period, most of the hyphal inocula had transformed into muriform cells at 75 days postinoculation and maintained as this parasitic morphology till 81 days postinoculation simultaneously with increased fungal loads in tissue and the worsening of footpad lesion. Scanning and transmitting electronic microscope examinations showed that the muriform cells obtained in tissue or induced in vitro can reproduce daughter cells by dividing, and, meanwhile, the daughter cells had the potential to produce buds and grow into hyphae reversely. Furthermore, exoenzyme examination suggested that the profile of exoenzymes constituted by muriform cells was quite different from that constituted by hyphae although the assay showed both of them had obvious metabolic activity. By contrast, most muriform cells in the footpad gradually transformed into the elongated hyphae without obvious infiltration of inflammatory cells during repeated intraperitoneal administration of cyclophosphamide (50 mg/kg, per every other day) from 50 to 80 days postinoculation. Therefore, we infer that F. pedrosoi can reproduce by dividing as muriform cells in mouse tissue, and the morphological transformation between hyphal form and muriform cells is possibly associated with the host immune status.
Collapse
Affiliation(s)
- Bilin Dong
- Department of Dermatology, Center for Infectious Skin Diseases, No.1 Hospital of Wuhan, Wuhan, China
| | - Wei Liu
- Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, China
| | - Ruoyu Li
- Department of Dermatology, Peking University First Hospital, and Research Center for Medical Mycology, Peking University, Beijing, China
| | - Yao Chen
- Department of Dermatology, Center for Infectious Skin Diseases, No.1 Hospital of Wuhan, Wuhan, China
| | - Zhongsheng Tong
- Department of Dermatology, Center for Infectious Skin Diseases, No.1 Hospital of Wuhan, Wuhan, China
| | - Xu Zhang
- Department of Dermatology, Center for Infectious Skin Diseases, No.1 Hospital of Wuhan, Wuhan, China
| | - Liuqing Chen
- Department of Dermatology, Center for Infectious Skin Diseases, No.1 Hospital of Wuhan, Wuhan, China
| | - Dongsheng Li
- Department of Dermatology, Center for Infectious Skin Diseases, No.1 Hospital of Wuhan, Wuhan, China
| |
Collapse
|
8
|
Häfner S. Another protein in the wall. Microbes Infect 2019; 22:93-95. [PMID: 31539563 DOI: 10.1016/j.micinf.2019.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/28/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Sophia Häfner
- University of Copenhagen, BRIC Biotech Research & Innovation Centre, Anders Lund Group, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark.
| |
Collapse
|
9
|
Tavakoli Dargani Z, Singla DK. Embryonic stem cell-derived exosomes inhibit doxorubicin-induced TLR4-NLRP3-mediated cell death-pyroptosis. Am J Physiol Heart Circ Physiol 2019; 317:H460-H471. [PMID: 31172809 PMCID: PMC6732475 DOI: 10.1152/ajpheart.00056.2019] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 02/07/2023]
Abstract
Doxorubicin (Dox)-induced cardiac side effects are regulated through increased oxidative stress and apoptosis. However, it remains unknown whether Dox induces the specific inflammatory-mediated form of cell death called pyroptosis. The current study is undertaken to determine whether Dox induces pyroptosis in an in vitro model and to test the potential of exosomes derived from embryonic stem cells (ES-Exos) in inhibiting pyroptosis. H9c2 cells were exposed to Dox to generate pyroptosis and then subsequently treated with exosomes to investigate the protective effects of ES-Exos. Mouse embryonic fibroblast-exosomes (MEF-Exos) were used as a cell line control. We confirmed pyroptosis by analyzing the presence of Toll-like receptor 4 (TLR4)-pyrin domain containing-3 (NLRP3) inflammasome that initiates pyroptosis, which was further confirmed with pyroptotic markers caspase-1, IL-1β, caspase-11, and gasdermin-D. The presence of inflammation was confirmed for proinflammatory cytokines, TNF-α, and IL-6. Our data show that Dox exposure significantly (P < 0.05) increases expression of TLR4, NLRP3, pyroptotic markers (caspase-1, IL-1β, caspase-11, and gasdermin-D), and proinflammatory cytokines (TNF-α and IL-6) in H9c2 cells. The increased expression of inflammasome, pyroptosis, and inflammation was significantly (P < 0.05) inhibited by ES-Exos. Interestingly, our cell line control, MEF-Exos, did not show any protective effects. Furthermore, our cytokine array data suggest increased anti-inflammatory (IL-4, IL-9, and IL-13) and decreased proinflammatory cytokines (Fas ligand, IL-12, and TNF-α) in ES-Exos, suggesting that anti-inflammatory cytokines might be mediating the protective effects of ES-Exos. In conclusion, our data show that Dox induces pyroptotic cell death in the H9c2 cell culture model and is attenuated via treatment with ES-Exos.NEW & NOTEWORTHY Doxorubicin (Dox)-induced cardiotoxicity is mediated through increased oxidative stress, apoptosis, and necrosis. We report for the first time as per the best of our knowledge that Dox initiates Toll-like receptor 4 and pyrin domain containing-3 inflammasome formation and induces caspase-1-mediated inflammatory pyroptotic cell death in H9c2 cells. Moreover, we establish that inflammation and pyroptosis is inhibited by embryonic stem cell-derived exosomes that could be used as a future therapeutic option to treat Dox-induced cardiotoxicity.
Collapse
Affiliation(s)
- Zahra Tavakoli Dargani
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida
| | - Dinender K Singla
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida
| |
Collapse
|
10
|
Luo J, Feng P, Hu Y, Yang Y, Zhou S, Huang S, Jadad A, Zhong Z, Zheng Y, Liu K, Lu Y, Hu Y, Zhou X. [Long-pulsed 1064 nm Nd: YAG laser combined with terbinafine against chromoblastomycosis caused by Fonsecaea nubica and the effect of laser therapy in a Wistar rat model]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:712-717. [PMID: 31270051 DOI: 10.12122/j.issn.1673-4254.2019.06.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We report a case of chromoblastomycosis caused by Fonsecaea nubica, which was successfully treated by long-pulsed 1064 nm Nd: YAG laser combined with terbinafine. A 60-year-old man was admitted for the presence of a 30 mm×40 mm erythematous plaque on the dorsum of his right hand for about 10 months without any subjective symptoms. Both microscopic examination and tissue biopsy of the lesion showed characteristic sclerotic bodies of chromoblastomycosis. Lesion tissue culture on SDA at 26 ℃ for 2 weeks resulted in a black colony, and slide culture identified the isolate as Fonsecaea species. ITS sequence analysis of the isolate showed a 99% homology with F. nubica strain KX078407. The in vitro susceptibility of the isolate to 9 antifungal agents was determined using the microdilution method according to the guidelines of CLSI M38-A2 protocol, and terbinafine showed the lowest MIC (0.125 μg/ml). We subsequently established a Wistar rat model of chromoblastomycosis using the clinical isolate F. nubica and treated the rats with long-pulsed 1064 nm Nd: YAG laser (pulse width of 3.0 ms, fluence of 24 J/cm2, spot size of 3 mm, frequency of 4 Hz, repeated 3 times at an interval of 30 s) twice a week for a total of 8 sessions. Although the laser treatment alone was not able to eliminate the fungi, histopathological examination showed the aggregation of numerous lymphocytes in the local affected tissue, indicating an immune response that consequently facilitate the regression of the lesion. The patient was successfully treated by long-pulsed 1064 nm Nd: YAG laser once a week combined with terbinafine (0.25 /bid) for 8 weeks, and follow-up for 20 months did not reveal any signs of recurrence.
Collapse
Affiliation(s)
- Juan Luo
- Department of Dermatology and Venerology, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Peiying Feng
- Department of Dermatology and Venerology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Yongxuan Hu
- Department of Dermatology and Venerology, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Yemei Yang
- Department of Dermatology and Venerology, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Sitong Zhou
- Department of Dermatology and Venerology, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Songgen Huang
- Department of Dermatology and Venerology, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Abdulla Jadad
- Department of Dermatology and Venerology, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Zemin Zhong
- Department of Dermatology and Venerology, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Yushi Zheng
- Department of Dermatology and Venerology, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Kangxing Liu
- Department of Dermatology and Venerology, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Yan Lu
- Department of Dermatology and Venerology, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Yanqing Hu
- Department of Dermatology and Venerology, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Xianyi Zhou
- Department of Dermatology and Venerology, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| |
Collapse
|
11
|
Jiang X, Bao H, Merzendorfer H, Yang Q. Immune Responses of Mammals and Plants to Chitin-Containing Pathogens. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1142:61-81. [PMID: 31102242 DOI: 10.1007/978-981-13-7318-3_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chitin-containing organisms, such as fungi and arthropods, use chitin as a structural component to protect themselves from harsh environmental conditions. Hosts such as mammals and plants, however, sense chitin to initiate innate and adaptive immunity and exclude chitin-containing organisms. A number of protein factors are then expressed, and several signaling pathways are triggered. In this chapter, we focus on the responses and signal transduction pathways that are activated in mammals and plants upon invasion by chitin-containing organisms. As host chitinases play important roles in the glycolytic processing of chitin, which is then recognized by pattern-recognition receptors, we also pay special attention to the chitinases that are involved in immune recognition.
Collapse
Affiliation(s)
- Xi Jiang
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116023, China
| | - Han Bao
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116023, China
| | - Hans Merzendorfer
- Department of Chemistry and Biology - Molecular Biology, University of Siegen, 57076, Siegen, Germany
| | - Qing Yang
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116023, China. .,State Laboratory of Biology for Plant Diseases and Insect Pests, Institute of Plant Protection at Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, China.
| |
Collapse
|
12
|
Immunomodulatory properties of chitosan polymers. Biomaterials 2018; 184:1-9. [DOI: 10.1016/j.biomaterials.2018.08.054] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/22/2018] [Accepted: 08/27/2018] [Indexed: 12/14/2022]
|
13
|
Elieh Ali Komi D, Sharma L, Dela Cruz CS. Chitin and Its Effects on Inflammatory and Immune Responses. Clin Rev Allergy Immunol 2018; 54:213-223. [PMID: 28251581 DOI: 10.1007/s12016-017-8600-0] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chitin, a potential allergy-promoting pathogen-associated molecular pattern (PAMP), is a linear polymer composed of N-acetylglucosamine residues which are linked by β-(1,4)-glycosidic bonds. Mammalians are potential hosts for chitin-containing protozoa, fungi, arthropods, and nematodes; however, mammalians themselves do not synthetize chitin and thus it is considered as a potential target for recognition by mammalian immune system. Chitin is sensed primarily in the lungs or gut where it activates a variety of innate (eosinophils, macrophages) and adaptive immune cells (IL-4/IL-13 expressing T helper type-2 lymphocytes). Chitin induces cytokine production, leukocyte recruitment, and alternative macrophage activation. Intranasal or intraperitoneal administration of chitin (varying in size, degree of acetylation and purity) to mice has been applied as a routine approach to investigate chitin's priming effects on innate and adaptive immunity. Structural chitin present in microorganisms is actively degraded by host true chitinases, including acidic mammalian chitinases and chitotriosidase into smaller fragments that can be sensed by mammalian receptors such as FIBCD1, NKR-P1, and RegIIIc. Immune recognition of chitin also involves pattern recognition receptors, mainly via TLR-2 and Dectin-1, to activate immune cells to induce cytokine production and creation of an immune network that results in inflammatory and allergic responses. In this review, we will focus on various immunological aspects of the interaction between chitin and host immune system such as sensing, interactions with immune cells, chitinases as chitin degrading enzymes, and immunologic applications of chitin.
Collapse
Affiliation(s)
- Daniel Elieh Ali Komi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, East Azerbayjan, Iran.,Department of Immunology, Tabriz University of Medical Sciences, Tabriz, East Azerbayjan, Iran
| | - Lokesh Sharma
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Charles S Dela Cruz
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA. .,Department of Microbial Pathogenesis, Yale School of Medicine, Cedar Street, New Haven, CT, TACS441D, USA.
| |
Collapse
|
14
|
Palmeira VF, Goulart FRV, Granato MQ, Alviano DS, Alviano CS, Kneipp LF, Santos ALS. Fonsecaea pedrosoi Sclerotic Cells: Secretion of Aspartic-Type Peptidase and Susceptibility to Peptidase Inhibitors. Front Microbiol 2018; 9:1383. [PMID: 30008700 PMCID: PMC6033999 DOI: 10.3389/fmicb.2018.01383] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/06/2018] [Indexed: 02/05/2023] Open
Abstract
Fonsecaea pedrosoi is a dematiaceous fungus and the main causative agent of chromoblastomycosis that is a chronic disease usually affecting the human skin and subcutaneous tissues, which causes deformations and incapacities, being frequently refractory to available therapies. A typical globe-shaped, multiseptated and pigmented cells, known as sclerotic cells, are found in the lesions of infected individuals. In the present work, we have investigated the production of aspartic-type peptidase in F. pedrosoi sclerotic cells as well as the effect of peptidase inhibitors (PIs) on its enzymatic activity and viability. Our data showed that sclerotic cells are able to secrete pepstatin A-sensible aspartic peptidase when grown under chemically defined conditions. In addition, aspartic PIs (ritonavir, nelfinavir, indinavir, and saquinavir), which are clinically used in the HIV chemotherapy, significantly decreased the fungal peptidase activity, varying from 55 to 99%. Moreover, sclerotic cell-derived aspartic peptidase hydrolyzed human albumin, an important serum protein, as well as laminin, an extracellular matrix component, but not immunoglobulin G and fibronectin. It is well-known that aspartic peptidases play important physiological roles in fungal cells. With this task in mind, the effect of pepstatin A, a classical aspartic peptidase inhibitor, on the F. pedrosoi proliferation was evaluated. Pepstatin A inhibited the fungal viability in both cellular density- and drug-concentration manners. Moreover, HIV-PIs at 10 μM powerfully inhibited the viability (>65%) of F. pedrosoi sclerotic cells. The detection of aspartic peptidase produced by sclerotic cells, the parasitic form of F. pedrosoi, may contribute to reveal new virulence markers and potential targets for chromoblastomycosis therapy.
Collapse
Affiliation(s)
- Vanila F Palmeira
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Estrutura de Microrganismos, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fatima R V Goulart
- Laboratório de Estrutura de Microrganismos, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcela Q Granato
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Daniela S Alviano
- Laboratório de Estrutura de Microrganismos, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Celuta S Alviano
- Laboratório de Estrutura de Microrganismos, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucimar F Kneipp
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - André L S Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Huang X, Liu Y, Xi L, Zeng K, Mylonakis E. Galleria mellonella as a model invertebrate host for the study of muriform cells of dematiaceous fungi. Future Microbiol 2018; 13:1021-1028. [PMID: 29927339 DOI: 10.2217/fmb-2018-0036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To study the pathogenesis of chromoblastomycosis using the alternative model host Galleria mellonella. METHODOLOGY We analyzed the virulence of different dematiaceous fungal strains and the host immune responses (hemocytes density and morphological changes) to Fonsecaea monophora by the alternative infection model. Then detected the development of the pathogenic muriform cells within larvae under microscope. RESULTS Increasing inocula resulted in greater larval mortality and Cladophialophora carrionii was the most virulent. Low inocula activated the humoral immune response significantly. Moreover, the conidia underwent morphological transition to muriform cells within larvae. CONCLUSION We developed an invertebrate host model that can be used to evaluate the virulence of dematiaceous fungi, which may provide further insights into overcoming current limitations in studying chromoblastomycosis in vivo.
Collapse
Affiliation(s)
- Xiaowen Huang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China.,Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Yinghui Liu
- Dermatology Hospital, Southern Medical University, Guangzhou, PR China.,Department of dermatology, Guangdong Provincial Dermatology Hospital, Guangzhou, PR China
| | - Liyan Xi
- Dermatology Hospital, Southern Medical University, Guangzhou, PR China.,Department of dermatology, Guangdong Provincial Dermatology Hospital, Guangzhou, PR China
| | - Kang Zeng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA
| |
Collapse
|
16
|
Garcia Silva-Bailão M, Lobato Potenciano da Silva K, Raniere Borges dos Anjos L, de Sousa Lima P, de Melo Teixeira M, Maria de Almeida Soares C, Melo Bailão A. Mechanisms of copper and zinc homeostasis in pathogenic black fungi. Fungal Biol 2018; 122:526-537. [DOI: 10.1016/j.funbio.2017.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/01/2017] [Accepted: 12/04/2017] [Indexed: 02/08/2023]
|
17
|
Hopke A, Brown AJP, Hall RA, Wheeler RT. Dynamic Fungal Cell Wall Architecture in Stress Adaptation and Immune Evasion. Trends Microbiol 2018; 26:284-295. [PMID: 29452950 PMCID: PMC5869159 DOI: 10.1016/j.tim.2018.01.007] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/23/2018] [Accepted: 01/25/2018] [Indexed: 12/28/2022]
Abstract
Deadly infections from opportunistic fungi have risen in frequency, largely because of the at-risk immunocompromised population created by advances in modern medicine and the HIV/AIDS pandemic. This review focuses on dynamics of the fungal polysaccharide cell wall, which plays an outsized role in fungal pathogenesis and therapy because it acts as both an environmental barrier and as the major interface with the host immune system. Human fungal pathogens use architectural strategies to mask epitopes from the host and prevent immune surveillance, and recent work elucidates how biotic and abiotic stresses present during infection can either block or enhance masking. The signaling components implicated in regulating fungal immune recognition can teach us how cell wall dynamics are controlled, and represent potential targets for interventions designed to boost or dampen immunity.
Collapse
Affiliation(s)
- Alex Hopke
- Molecular & Biomedical Sciences, University of Maine, Orono, ME, USA; Current address: BioMEMS Resource Center, Division of Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General Hospital, Shriners Burns Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Alistair J P Brown
- MRC Centre for Medical Mycology, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Rebecca A Hall
- Institute of Microbiology and Infection, and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Robert T Wheeler
- Molecular & Biomedical Sciences, University of Maine, Orono, ME, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA.
| |
Collapse
|
18
|
Transformation of Fonsecaea pedrosoi into sclerotic cells links to the refractoriness of experimental chromoblastomycosis in BALB/c mice via a mechanism involving a chitin-induced impairment of IFN-γ production. PLoS Negl Trop Dis 2018; 12:e0006237. [PMID: 29481557 PMCID: PMC5843349 DOI: 10.1371/journal.pntd.0006237] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 03/08/2018] [Accepted: 01/12/2018] [Indexed: 01/06/2023] Open
Abstract
Fonsecaea pedrosoi (F. pedrosoi) is the most common agent of chromoblastomycosis. Transformation of this fungus from its saprophytic phase into pathogenic sclerotic cells in tissue is an essential link to the refractoriness of this infection. Experimental studies in murine models have shown that the absence of CD4+ T cells impairs host defense against F. pedrosoi infection. Clinical research has also suggested that a relatively low level of the Th1 cytokine INF-γ and inefficient T cell proliferation are simultaneously present in patients with severe chromoblastomycosis upon in vitro stimulation with ChromoAg, an antigen prepared from F. pedrosoi. In the present study, we show that in mice intraperitoneally infected with F. pedrosoi-spores, -hyphae or in vitro-induced sclerotic cells respectively, the transformation of this causative agent into sclerotic cells contributes to a compromised Th1 cytokine production in the earlier stage of infection with impaired generation of neutrophil reactive oxygen species (ROS) and pan-inhibition of Th1/Th2/Th17 cytokine production with disseminated infection in the later stage by using a CBA murine Th1/Th2/Th17 cytokine kit. In addition, we have further demonstrated that intraperitoneal administration of recombinant mouse IFN-γ (rmIFN-γ) effectively reduces the fungal load in the infected mouse spleen, and dampens the peritoneal dissemination of F. pedrosoi-sclerotic cells. Meanwhile, exogeneous rmIFN-γ contributes to the formation and maintenance of micro-abscess and restores the decrease in neutrophil ROS generation in the mouse spleen infected with F. pedrosoi-sclerotic cells. Of note, we have once again demonstrated that it is a chitin-like component, but not β-glucans or mannose moiety, that exclusively accumulates on the outer cell wall of F. pedrosoi-sclerotic cells which were induced in vitro or isolated from the spleens of intraperitoneally infected BALB/c mice. In addition, our results indicate that decreased accumulation of chitin on the surface of live F. pedrosoi-sclerotic cells after chitinase treatment can be self-compensated in a time-dependent manner. Importantly, we have for the first time demonstrated that exclusive accumulation of chitin on the transformed sclerotic cells of F. pedrosoi is involved in an impaired murine Th1 cytokine profile, therefore promoting the refractoriness of experimental murine chromoblastomycosis.
Collapse
|
19
|
de Castro RJA, Siqueira IM, Jerônimo MS, Basso AMM, Veloso Junior PHDH, Magalhães KG, Leonhardt LC, de Oliveira SAM, Bürgel PH, Tavares AH, Bocca AL. The Major Chromoblastomycosis Etiologic Agent Fonsecaea pedrosoi Activates the NLRP3 Inflammasome. Front Immunol 2017; 8:1572. [PMID: 29209318 PMCID: PMC5702042 DOI: 10.3389/fimmu.2017.01572] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/01/2017] [Indexed: 12/20/2022] Open
Abstract
Fonsecaea pedrosoi is the main etiologic agent of chromoblastomycosis (CBM), one of the most prevalent subcutaneous mycosis in tropical and subtropical countries. CBM is a poorly characterized chronic infection that commonly starts after transcutaneous inoculation of conidia and saprophytic hyphae of F. pedrosoi. Recently, we have shown that unlike conidia, hyphae and muriform cells (the parasitic morphotype) of F. pedrosoi promotes an intense inflammatory response pattern in vivo, which comprises the production of an inflammasome-derived cytokine, IL-1β. Nonetheless, the mechanisms underlying IL-1β production and maturation upon F. pedrosoi infection and its functional output in the course of CBM remains unknown. We show here that F. pedrosoi hyphae, differently from conidia, induce IL-1β secretion in both bone marrow-derived dendritic cells and macrophages. Using inhibitors and knockout cells, we demonstrated that the mechanisms underlying IL-1β production by hyphae-infected macrophages were dependent on dectin-1, -2, and -3 receptors and the Syk-NF-kB signaling pathway. Furthermore, F. pedrosoi promoted a NLRP3-dependent inflammasome activation, which required potassium efflux, reactive oxygen species production, phagolysosomal acidification, and cathepsin B release as triggers. IL-1β processing and release was mediated primarily by caspase-1 and, to a lesser extent, by caspase-8-dependent cleavage. Finally, we showed using a murine CBM model that F. pedrosoi elicits a NLRP3-regulated IL-1β and interleukin-18 release in vivo, but without NLRP3 inflammasome activation interfering in the course of the experimental infection.
Collapse
Affiliation(s)
- Raffael Júnio Araújo de Castro
- Laboratory of Applied Immunology, Department of Cellular Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Isaque Medeiros Siqueira
- Laboratory of Applied Immunology, Department of Cellular Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Márcio Sousa Jerônimo
- Laboratory of Applied Immunology, Department of Cellular Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Angelina Maria Moreschi Basso
- Laboratory of Applied Immunology, Department of Cellular Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | | | - Kelly Grace Magalhães
- Laboratory of Immunology and Inflammation, Department of Cellular Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Luiza Chaves Leonhardt
- Laboratory of Applied Immunology, Department of Cellular Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Stephan Alberto Machado de Oliveira
- Laboratory of Applied Immunology, Department of Cellular Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Pedro Henrique Bürgel
- Laboratory of Applied Immunology, Department of Cellular Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Aldo Henrique Tavares
- Laboratory of Applied Immunology, Department of Cellular Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Anamélia Lorenzetti Bocca
- Laboratory of Applied Immunology, Department of Cellular Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| |
Collapse
|
20
|
Kottom TJ, Hebrink DM, Jenson PE, Nandakumar V, Wüthrich M, Wang H, Klein B, Yamasaki S, Lepenies B, Limper AH. The Interaction of Pneumocystis with the C-Type Lectin Receptor Mincle Exerts a Significant Role in Host Defense against Infection. THE JOURNAL OF IMMUNOLOGY 2017; 198:3515-3525. [PMID: 28298521 DOI: 10.4049/jimmunol.1600744] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 02/11/2017] [Indexed: 01/24/2023]
Abstract
Pneumocystis pneumonia (PCP) remains a major cause of morbidity and mortality within immunocompromised patients. In this study, we examined the potential role of macrophage-inducible C-type lectin (Mincle) for host defense against Pneumocystis Binding assays implementing soluble Mincle carbohydrate recognition domain fusion proteins demonstrated binding to intact Pneumocystis carinii as well as to organism homogenates, and they purified major surface glycoprotein/glycoprotein A derived from the organism. Additional experiments showed that rats with PCP expressed increased Mincle mRNA levels. Mouse macrophages overexpressing Mincle displayed increased binding to P. carinii life forms and enhanced protein tyrosine phosphorylation. The binding of P. carinii to Mincle resulted in activation of FcRγ-mediated cell signaling. RNA silencing of Mincle in mouse macrophages resulted in decreased activation of Syk kinase after P. carinii challenge, critical in downstream inflammatory signaling. Mincle-deficient CD4-depleted (Mincle-/-) mice showed a significant defect in organism clearance from the lungs with higher organism burdens and altered lung cytokine responses during Pneumocystis murina pneumonia. Interestingly, Mincle-/- mice did not demonstrate worsened survival during PCP compared with wild-type mice, despite the markedly increased organism burdens. This may be related to increased expression of anti-inflammatory factors such as IL-1Ra during infection in the Mincle-/- mice. Of note, the P. murina-infected Mincle-/- mice demonstrated increased expression of known C-type lectin receptors Dectin-1, Dectin-2, and MCL compared with infected wild-type mice. Taken together, these data support a significant role for Mincle in Pneumocystis modulating host defense during infection.
Collapse
Affiliation(s)
- Theodore J Kottom
- Thoracic Diseases Research Unit, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905.,Department of Biochemistry, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Deanne M Hebrink
- Thoracic Diseases Research Unit, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905.,Department of Biochemistry, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Paige E Jenson
- Thoracic Diseases Research Unit, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905.,Department of Biochemistry, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Vijayalakshmi Nandakumar
- Thoracic Diseases Research Unit, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905.,Department of Biochemistry, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Marcel Wüthrich
- Department of Pediatrics, University of Wisconsin Medical School, University of Wisconsin Hospital and Clinics, Madison, WI 53792
| | - Huafeng Wang
- Department of Pediatrics, University of Wisconsin Medical School, University of Wisconsin Hospital and Clinics, Madison, WI 53792
| | - Bruce Klein
- Department of Pediatrics, University of Wisconsin Medical School, University of Wisconsin Hospital and Clinics, Madison, WI 53792.,Department of Internal Medicine, University of Wisconsin Medical School, University of Wisconsin Hospital and Clinics, Madison, WI 53792.,Department of Medical Microbiology and Immunology, University of Wisconsin Medical School, University of Wisconsin Hospital and Clinics, Madison, WI 53792
| | - Sho Yamasaki
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; and
| | - Bernd Lepenies
- University of Veterinary Medicine Hannover, Foundation, Hannover 30559, Germany
| | - Andrew H Limper
- Thoracic Diseases Research Unit, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905; .,Department of Biochemistry, Mayo Clinic College of Medicine, Rochester, MN 55905
| |
Collapse
|
21
|
Yoshikawa FSY, De Almeida SR. The Role of Phagocytes and NETs in Dermatophytosis. Mycopathologia 2017; 182:263-272. [PMID: 27659806 DOI: 10.1007/s11046-016-0069-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/15/2016] [Indexed: 02/03/2023]
Abstract
Innate immunity is the host first line of defense against pathogens. However, only in recent years, we are beginning to better understand the ways it operates. A key player is this branch of the immune response that are the phagocytes, as macrophages, dendritic cells and neutrophils. These cells act as sentinels, employing specialized receptors in the sensing of invaders and host injury, and readily responding to them by production of inflammatory mediators. They afford protection not only by ingesting and destroying pathogens, but also by providing a suitable biochemical environment that shapes the adaptive response. In this review, we aim to present a broad perspective about the role of phagocytes in dermatophytosis, focusing on the mechanisms possibly involved in protective and non-protective responses. A full understanding of how phagocytes fit in the pathogenesis of these infections may open the venue for the development of new and more effective therapeutic approaches.
Collapse
Affiliation(s)
- Fábio Seiti Yamada Yoshikawa
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Avenida Prof. Lineu Prestes, 580, São Paulo, 05508-000, Brazil
| | - Sandro Rogério De Almeida
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Avenida Prof. Lineu Prestes, 580, São Paulo, 05508-000, Brazil.
| |
Collapse
|
22
|
Leeyaphan C, Hau C, Takeoka S, Tada Y, Bunyaratavej S, Pattanaprichakul P, Sitthinamsuwan P, Chaiprasert A, Sasajima Y, Makimura K, Watanabe S. Immune response in human chromoblastomycosis and eumycetoma - focusing on human interleukin-17A, interferon-gamma, tumour necrosis factor-alpha, interleukin-1 beta and human beta-defensin-2. Mycoses 2016; 59:751-756. [PMID: 27402133 DOI: 10.1111/myc.12526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/24/2016] [Accepted: 05/28/2016] [Indexed: 02/06/2023]
Abstract
Knowledge regarding host immune response to chromoblastomycosis and eumycetoma is limited, particularly concerning cytokines and antimicrobial peptides production. This was a retrospective study of 12 paraffin-embedded tissue samples from patients diagnosed with chromoblastomycosis or eumycetoma from histological findings and tissue culture. DNA extraction and polymerase chain reaction (PCR) from tissues were done to evaluate human interleukin-17A (IL-17A), interferon-gamma (IFN-γ), tumour necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and human beta-defensin-2 (HBD-2) expressions. Human beta-actin primer was used for confirming DNA detection, and DNA extracted from psoriasis lesional skin samples was used as positive controls. The twelve paraffin-embedded sections used in this study consisted of five chromoblastomycosis and seven eumycetoma tissues. All PCR reactions showed beta-actin band at 51 bp in all clinical specimens, confirming adequate DNA levels in each reaction. As positive control, the psoriasis skin samples revealed bands for IL-17A at 174 bp, IFN-γ at 273 bp, TNF-α at 360 bp, IL-1β at 276 bp and HBD-2 at 255 bp. For the chromoblastomycosis and eumycetoma tissues, PCR analyses showed IL-17A band at 174 bp in two eumycetoma tissues and HBD-2 band at 255 bp in a chromoblastomycosis tissue. This study demonstrated IL-17A expression in human eumycetoma and HBD-2 expression in human chromoblastomycosis for the first time. However, their role in immune response remains to be elucidated.
Collapse
Affiliation(s)
- Charussri Leeyaphan
- Department of Dermatology, Graduate School of Medicine, Teikyo University, Tokyo, Japan.,Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Carren Hau
- Department of Dermatology, Graduate School of Medicine, Teikyo University, Tokyo, Japan
| | - Shintaro Takeoka
- Department of Dermatology, Graduate School of Medicine, Teikyo University, Tokyo, Japan
| | - Yayoi Tada
- Department of Dermatology, Graduate School of Medicine, Teikyo University, Tokyo, Japan
| | - Sumanas Bunyaratavej
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Penvadee Pattanaprichakul
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Panitta Sitthinamsuwan
- Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Angkana Chaiprasert
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Yuko Sasajima
- Department of Pathology, Graduate School of Medicine, Teikyo University, Tokyo, Japan
| | - Koichi Makimura
- Laboratory of Space and Environmental Medicine, Graduate School of Medicine, Teikyo University, Tokyo, Japan
| | - Shinichi Watanabe
- Department of Dermatology, Graduate School of Medicine, Teikyo University, Tokyo, Japan
| |
Collapse
|
23
|
Yoshikawa FSY, Yabe R, Iwakura Y, de Almeida SR, Saijo S. Dectin-1 and Dectin-2 promote control of the fungal pathogen Trichophyton rubrum independently of IL-17 and adaptive immunity in experimental deep dermatophytosis. Innate Immun 2016; 22:316-24. [DOI: 10.1177/1753425916645392] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/29/2016] [Indexed: 12/20/2022] Open
Abstract
Dermatophytoses are chronic fungal infections, the main causative agent of which is Trichophyton rubrum (T. rubrum). Despite their high occurrence worldwide, the immunological mechanisms underlying these diseases remain largely unknown. Here, we uncovered the C-type lectin receptors, Dectin-1 and Dectin-2, as key elements in the immune response to T. rubrum infection in a model of deep dermatophytosis . In vitro, we observed that deficiency in Dectin-1 and Dectin-2 severely compromised cytokine production by dendritic cells. In vivo, mice lacking Dectin-1 and/or Dectin-2 showed an inadequate pro-inflammatory cytokine production in response to T. rubrum infection, impairing its resolution. Strikingly, neither adaptive immunity nor IL-17 response were required for fungal clearance, highlighting innate immunity as the main checkpoint in the pathogenesis of T. rubrum infection.
Collapse
Affiliation(s)
- Fabio SY Yoshikawa
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Rikio Yabe
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Yoichiro Iwakura
- Division of Experimental Animal Immunology, Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Sandro R de Almeida
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Shinobu Saijo
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
| |
Collapse
|
24
|
Abstract
In this chapter, a comprehensive overview of the known ligands for the C-type lectins (CTLs) is provided. Emphasis has been placed on the chemical structure of the glycans that bind to the different CTLs and the amount of structural variation (or overlap) that each CTL can tolerate. In this way, both the synthetic carbohydrate chemist and the immunologist can more readily gain insight into the existing structure-activity space for the CTL ligands and, ideally, see areas of synergy that will help identify and refine the ligands for these receptors.
Collapse
Affiliation(s)
- Sho Yamasaki
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
25
|
Correction: A chitin-like component on sclerotic cells of fonsecaea pedrosoi inhibits dectin-1-mediated murine Th17 development by masking β-glucans. PLoS One 2015; 10:e0119244. [PMID: 25786219 PMCID: PMC4365044 DOI: 10.1371/journal.pone.0119244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|