1
|
Pathak S, Singh V, Kumar G N, Jayandharan GR. AAV-mediated combination gene therapy of inducible Caspase 9 and miR-199a-5p is therapeutic in hepatocellular carcinoma. Cancer Gene Ther 2024; 31:1796-1803. [PMID: 39385010 DOI: 10.1038/s41417-024-00844-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
Advanced-stage hepatocellular carcinoma (HCC) remains an untreatable disease with an overall survival of less than one year. One of the critical molecular mediators contributing to increased resistance to therapy and relapse, is increased hypoxia-inducible factor 1α (HIF-1α) levels, leading to metastasis of tumor cells. Several microRNAs are known to be dysregulated and impact HIF-1α expression in HCC. An in silico analysis demonstrated that hsa-miR-199a-5p is downregulated at various stages of HCC and is known to repress HIF-1α expression. Based on this analysis, we developed a combinatorial suicide gene therapy by employing hepatotropic Adeno-associated virus-based vectors encoding an inducible caspase 9 (iCasp9) and miR-199a. The overexpression of miR-199a-5p alone significantly decreased ( ~ 2-fold vs. Mock treated cells, p < 0.05) HIF-1α mRNA levels, with a concomitant increase in cancer cell cytotoxicity in Huh7 cells in vitro and in xenograft models in vivo. To further enhance the efficacy of gene therapy, we evaluated the synergistic therapeutic effect of AAV8-miR-199a and AAV6-iCasp9 in a xenograft model of HCC. Our data revealed that mice receiving combination suicide gene therapy exhibited reduced expression of HIF-1α ( ~ 4-fold vs. Mock, p < 0.001), with a significant reduction in tumor growth when compared to mock-treated animals. These findings underscore the therapeutic potential of downregulating HIF-1α during suicide gene therapy for HCC.
Collapse
Affiliation(s)
- Subhajit Pathak
- Laurus Center for Gene Therapy, Department of Biological Sciences and Bioengineering and Mehta Family Center for Engineering in Medicine and Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Uttar Pradesh, Kanpur, 208016, India
| | - Vijayata Singh
- Laurus Center for Gene Therapy, Department of Biological Sciences and Bioengineering and Mehta Family Center for Engineering in Medicine and Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Uttar Pradesh, Kanpur, 208016, India
| | - Narendra Kumar G
- Laurus Center for Gene Therapy, Department of Biological Sciences and Bioengineering and Mehta Family Center for Engineering in Medicine and Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Uttar Pradesh, Kanpur, 208016, India
| | - Giridhara R Jayandharan
- Laurus Center for Gene Therapy, Department of Biological Sciences and Bioengineering and Mehta Family Center for Engineering in Medicine and Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Uttar Pradesh, Kanpur, 208016, India.
| |
Collapse
|
2
|
Gawi Ermi A, Sarkar D. Resistance to Tyrosine Kinase Inhibitors in Hepatocellular Carcinoma (HCC): Clinical Implications and Potential Strategies to Overcome the Resistance. Cancers (Basel) 2024; 16:3944. [PMID: 39682130 DOI: 10.3390/cancers16233944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide, and the development of effective treatment strategies remains a significant challenge in the management of advanced HCC patients. The emergence of tyrosine kinase inhibitors (TKIs) has been a significant advancement in the treatment of HCC, as these targeted therapies have shown promise in prolonging the survival of patients with advanced disease. Although immunotherapy is currently considered as the first line of treatment for advanced HCC patients, many such patients do not meet the clinical criteria to be eligible for immunotherapy, and in many parts of the world there is still lack of accessibility to immunotherapy. As such, TKIs still serve as the first line of treatment and play a major role in the treatment repertoire for advanced HCC patients. However, the development of resistance to these agents is a major obstacle that must be overcome. In this review, we explore the underlying mechanisms of resistance to TKIs in HCC, the clinical implications of this resistance, and the potential strategies to overcome or prevent the emergence of resistance.
Collapse
Affiliation(s)
- Ali Gawi Ermi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
3
|
Ren R, Chen Y, Zhou Y, Shen L, Chen Y, Lei J, Wang J, Liu X, Zhang N, Zhou D, Zhao H, Li Y. STIM1 promotes acquired resistance to sorafenib by attenuating ferroptosis in hepatocellular carcinoma. Genes Dis 2024; 11:101281. [PMID: 39281833 PMCID: PMC11402164 DOI: 10.1016/j.gendis.2024.101281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/08/2024] [Accepted: 03/03/2024] [Indexed: 09/18/2024] Open
Abstract
Dysregulated calcium (Ca2+) signaling pathways are associated with tumor cell death and drug resistance. In non-excitable cells, such as hepatocellular carcinoma (HCC) cells, the primary pathway for Ca2+ influx is through stromal interaction molecule 1 (STIM1)-mediated store-operated calcium entry (SOCE). Previous studies have demonstrated the involvement of STIM1-mediated SOCE in processes such as genesis, metastasis, and stem cell self-renewal of HCC. However, it remains unclear whether STIM1-mediated SOCE plays a role in developing acquired resistance to sorafenib in HCC patients. In this study, we established acquired sorafenib-resistant (SR) HCC cell lines by intermittently exposing them to increasing concentrations of sorafenib. Our results showed higher levels of STIM1 and stronger SOCE in SR cells compared with parental cells. Deleting STIM1 significantly enhanced sensitivity to sorafenib in SR cells, while overexpressing STIM1 promoted SR by activating SOCE. Mechanistically, STIM1 increased the transcription of SLC7A11 through the SOCE-CaN-NFAT pathway. Subsequently, up-regulated SLC7A11 increased glutathione synthesis, resulting in ferroptosis insensitivity and SR. Furthermore, combining the SOCE inhibitor SKF96365 with sorafenib significantly improved the sensitivity of SR cells to sorafenib both in vitro and in vivo. These findings suggest a potential strategy to overcome acquired resistance to sorafenib in HCC cells.
Collapse
Affiliation(s)
- Ran Ren
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400044, China
| | - Yu Chen
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Yu Zhou
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Luyao Shen
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yang Chen
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Juan Lei
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Jingchun Wang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Xudong Liu
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400044, China
| | - Nan Zhang
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400044, China
| | - Dongqin Zhou
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Huakan Zhao
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400044, China
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Yongsheng Li
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400044, China
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China
| |
Collapse
|
4
|
Slawski J, Jaśkiewicz M, Barton A, Kozioł S, Collawn JF, Bartoszewski R. Regulation of the HIF switch in human endothelial and cancer cells. Eur J Cell Biol 2024; 103:151386. [PMID: 38262137 DOI: 10.1016/j.ejcb.2024.151386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024] Open
Abstract
Hypoxia-inducible factors (HIFs) are transcription factors that reprogram the transcriptome for cells to survive hypoxic insults and oxidative stress. They are important during embryonic development and reprogram the cells to utilize glycolysis when the oxygen levels are extremely low. This metabolic change facilitates normal cell survival as well as cancer cell survival. The key feature in survival is the transition between acute hypoxia and chronic hypoxia, and this is regulated by the transition between HIF-1 expression and HIF-2/HIF-3 expression. This transition is observed in many human cancers and endothelial cells and referred to as the HIF Switch. Here we discuss the mechanisms involved in the HIF Switch in human endothelial and cancer cells which include mRNA and protein levels of the alpha chains of the HIFs. A major continuing effort in this field is directed towards determining the differences between normal and tumor cell utilization of this important pathway, and how this could lead to potential therapeutic approaches.
Collapse
Affiliation(s)
- Jakub Slawski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Maciej Jaśkiewicz
- International Research Agenda 3P, Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland
| | - Anna Barton
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Sylwia Kozioł
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Rafał Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland.
| |
Collapse
|
5
|
Tian Y, Zhang M, Liu LX, Wang ZC, Liu B, Huang Y, Wang X, Ling YZ, Wang F, Feng X, Tu Y. Exploring non-coding RNA mechanisms in hepatocellular carcinoma: implications for therapy and prognosis. Front Immunol 2024; 15:1400744. [PMID: 38799446 PMCID: PMC11116607 DOI: 10.3389/fimmu.2024.1400744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/03/2024] [Indexed: 05/29/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a significant contributor to cancer-related deaths in the world. The development and progression of HCC are closely correlated with the abnormal regulation of non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Important biological pathways in cancer biology, such as cell proliferation, death, and metastasis, are impacted by these ncRNAs, which modulate gene expression. The abnormal expression of non-coding RNAs in HCC raises the possibility that they could be applied as new biomarkers for diagnosis, prognosis, and treatment targets. Furthermore, by controlling the expression of cancer-related genes, miRNAs can function as either tumor suppressors or oncogenes. On the other hand, lncRNAs play a role in the advancement of cancer by interacting with other molecules within the cell, which, in turn, affects processes such as chromatin remodeling, transcription, and post-transcriptional processes. The importance of ncRNA-driven regulatory systems in HCC is being highlighted by current research, which sheds light on tumor behavior and therapy response. This research highlights the great potential of ncRNAs to improve patient outcomes in this difficult disease landscape by augmenting the present methods of HCC care through the use of precision medicine approaches.
Collapse
Affiliation(s)
- Yu Tian
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
- School of Public Health, Benedictine University, Lisle, IL, United States
| | - Meng Zhang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Li-xia Liu
- Department of Ultrasound, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Zi-chao Wang
- Department of Ultrasound, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Bin Liu
- Central Laboratory, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Youcai Huang
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Xiaoling Wang
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Yun-zhi Ling
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Furong Wang
- Department of Pathology, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Xiaoqiang Feng
- Center of Stem Cell and Regenerative Medicine, Gaozhou People’s Hospital, Gaozhou, Guangdong, China
| | - Yanyang Tu
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| |
Collapse
|
6
|
Valencia-Cervantes J, Sierra-Vargas MP. Regulation of Cancer-Associated miRNAs Expression under Hypoxic Conditions. Anal Cell Pathol (Amst) 2024; 2024:5523283. [PMID: 38766303 PMCID: PMC11101257 DOI: 10.1155/2024/5523283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/17/2024] [Accepted: 04/27/2024] [Indexed: 05/22/2024] Open
Abstract
Solid tumors frequently experience hypoxia or low O2 levels. In these conditions, hypoxia-inducible factor 1 alpha (HIF-1α) is activated and acts as a transcription factor that regulates cancer cell adaptation to O2 and nutrient deprivation. HIF-1α controls gene expression associated with various signaling pathways that promote cancer cell proliferation and survival. MicroRNAs (miRNAs) are 22-nucleotide noncoding RNAs that play a role in various biological processes essential for cancer progression. This review presents an overview of how hypoxia regulates the expression of multiple miRNAs in the progression of cancer cells.
Collapse
Affiliation(s)
- Jesús Valencia-Cervantes
- Departamento de Investigación en Toxicología y Medicina Ambiental, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
- Estancias Posdoctorales por México 2022 (1), Consejo Nacional de Humanidades, Ciencias y Tecnologías CONAHCYT, Mexico City 03940, Mexico
| | - Martha Patricia Sierra-Vargas
- Departamento de Investigación en Toxicología y Medicina Ambiental, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
- Subdirección de Investigación Clínica, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| |
Collapse
|
7
|
Afra F, Mahboobipour AA, Salehi Farid A, Ala M. Recent progress in the immunotherapy of hepatocellular carcinoma: Non-coding RNA-based immunotherapy may improve the outcome. Biomed Pharmacother 2023; 165:115104. [PMID: 37393866 DOI: 10.1016/j.biopha.2023.115104] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/04/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the second most lethal cancer and a leading cause of cancer-related mortality worldwide. Immune checkpoint inhibitors (ICIs) significantly improved the prognosis of HCC; however, the therapeutic response remains unsatisfactory in a substantial proportion of patients or needs to be further improved in responders. Herein, other methods of immunotherapy, including vaccine-based immunotherapy, adoptive cell therapy, cytokine delivery, kynurenine pathway inhibition, and gene delivery, have been adopted in clinical trials. Although the results were not encouraging enough to expedite their marketing. A major proportion of human genome is transcribed into non-coding RNAs (ncRNAs). Preclinical studies have extensively investigated the roles of ncRNAs in different aspects of HCC biology. HCC cells reprogram the expression pattern of numerous ncRNAs to decrease the immunogenicity of HCC, exhaust the cytotoxic and anti-cancer function of CD8 + T cells, natural killer (NK) cells, dendritic cells (DCs), and M1 macrophages, and promote the immunosuppressive function of T Reg cells, M2 macrophages, and myeloid-derived suppressor cells (MDSCs). Mechanistically, cancer cells recruit ncRNAs to interact with immune cells, thereby regulating the expression of immune checkpoints, functional receptors of immune cells, cytotoxic enzymes, and inflammatory and anti-inflammatory cytokines. Interestingly, prediction models based on the tissue expression or even serum levels of ncRNAs could predict response to immunotherapy in HCC. Moreover, ncRNAs markedly potentiated the efficacy of ICIs in murine models of HCC. This review article first discusses recent advances in the immunotherapy of HCC, then dissects the involvement and potential application of ncRNAs in the immunotherapy of HCC.
Collapse
Affiliation(s)
- Fatemeh Afra
- Clinical Pharmacy Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ali Mahboobipour
- Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Salehi Farid
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moein Ala
- Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Chen S, Du Y, Guan XY, Yan Q. The current status of tumor microenvironment and cancer stem cells in sorafenib resistance of hepatocellular carcinoma. Front Oncol 2023; 13:1204513. [PMID: 37576900 PMCID: PMC10412930 DOI: 10.3389/fonc.2023.1204513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/03/2023] [Indexed: 08/15/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a heterogeneous and aggressive liver cancer that presents limited treatment options. Despite being the standard therapy for advanced HCC, sorafenib frequently encounters resistance, emphasizing the need to uncover the underlying mechanisms and develop effective treatments. This comprehensive review highlights the crucial interplay between the tumor microenvironment, cancer stem cells (CSCs), and epithelial-mesenchymal transition (EMT) in the context of sorafenib resistance. The tumor microenvironment, encompassing hypoxia, immune cells, stromal cells, and exosomes, exerts a significant impact on HCC progression and therapy response. Hypoxic conditions and immune cell infiltration create an immunosuppressive milieu, shielding tumor cells from immune surveillance and hindering therapeutic efficacy. Additionally, the presence of CSCs emerges as a prominent contributor to sorafenib resistance, with CD133+ CSCs implicated in drug resistance and tumor initiation. Moreover, CSCs undergo EMT, a process intimately linked to tumor progression, CSC activation, and further promotion of sorafenib resistance, metastasis, and tumor-initiating capacity. Elucidating the correlation between the tumor microenvironment, CSCs, and sorafenib resistance holds paramount importance in the quest to develop reliable biomarkers capable of predicting therapeutic response. Novel therapeutic strategies must consider the influence of the tumor microenvironment and CSC activation to effectively overcome sorafenib resistance in HCC.
Collapse
Affiliation(s)
- Siqi Chen
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yaqing Du
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xin-Yuan Guan
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Qian Yan
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Li C, Cui X, Li Y, Guo D, He S. Identification of ferroptosis and drug resistance related hub genes to predict the prognosis in Hepatocellular Carcinoma. Sci Rep 2023; 13:8681. [PMID: 37248280 DOI: 10.1038/s41598-023-35796-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/24/2023] [Indexed: 05/31/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. Currently, overcoming the drug resistance in HCC is a critical challenge and ferroptosis has emerged as a promising therapeutic option for cancer. We aim to construct a new gene signature related to ferroptosis and drug resistance to predict the prognosis in HCC. The RNA-seq data of HCC patients was obtained from the Cancer Genome Atlas database. Using least absolute shrinkage and selection operator cox regression, Kaplan-Meier analysis, and differential analysis, we constructed a prognostic model consisting of six hub genes (TOP2A, BIRC5, VEGFA, HIF1A, FTH1, ACSL3) related to ferroptosis and drug resistance in HCC. Functional enrichment, pathway enrichment and GSEA analysis were performed to investigate the potential molecular mechanism, and construction of PPI, mRNA-miRNA, mRNA-RBP, mRNA-TF and mRNA-drugs interaction networks to predict its interaction with different molecules. Clinical prognostic characteristics were revealed by univariate, multivariate cox regression analysis and nomogram. We also analyzed the relationship between the signature, immune checkpoints, and drug sensitivity. The expression of the gene signature was detected in HCC cell lines and HPA database. Our prognostic model classified patients into high and low-risk groups based on the risk scores and found the expression level of the genes was higher in the high-risk group than the low-risk group, demonstrating that high expression of the hub genes was associated with poor prognosis in HCC. ROC analysis revealed its high diagnostic efficacy in both HCC and normal tissues. The proportional hazards model and calibration analysis confirmed that the model's prediction was most accurate for 1- and 3-years survival. QRT-PCR showed the high expression level of the gene signature in HCC. Our study built a novel gene signature with good potential to predict the prognosis of HCC, which may provide new therapeutic targets and molecular mechanism for HCC diagnosis and treatment.
Collapse
Affiliation(s)
- Chengjun Li
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Xiaomeng Cui
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yarui Li
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Dan Guo
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Shuixiang He
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
10
|
Xu C, Sun W, Liu J, Pu H, Li Y. Circ_RBM23 knockdown suppresses chemoresistance, proliferation, migration and invasion of sorafenib-resistant HCC cells through miR-338-3p/RAB1B axis. Pathol Res Pract 2023; 245:154435. [PMID: 37075641 DOI: 10.1016/j.prp.2023.154435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/14/2023] [Accepted: 04/01/2023] [Indexed: 04/21/2023]
Abstract
BACKGROUND Circular RNA RNA-binding motif protein 23 (circ_RBM23; ID: hsa_circ_0000524) is a novel regulator in hepatocellular carcinoma (HCC). Herein, we planned to investigate its role in sorafenib resistance in HCC. METHOD Levels of circ_RBM23, microRNA (miR)-338-3p, Ras-related GTPase-trafficking protein (RAB1B), Snail and E-cadherin were detected by real-time quantitative PCR and western blotting. Sorafenib resistant (SR) HCC cells (Huh7/SR and SK-HEP-1/SR) were established by acquisition of sorafenib resistance, and cell functions were measured by MTT assay, Edu assay, colony formation assay, apoptosis assay, transwell assay, and in vivo xenograft formation assay. Crosslink between miR-338-3p and circ_RBM23 or RAB1B was confirmed by bioinformatics analysis and dual-luciferase reporter assay. RESULTS Circ_RBM23 upregulation was discovered in the tissues of SR patients and SR cells, which was accompanied with miR-338-3p downregulation and RAB1B upregulation. The 50% inhibitory concentration (IC50) of sorafenib in SR cells was greatly suppressed by interfering circ_RBM23 or reinforcing miR-338-3p, allied with this was the inhibition of EdU-positive cell rate, colony formation and migration/invasion abilities under sorafenib treatment, as well as the enhancement of apoptotic rate. Moreover, circ_RBM23 inhibition delayed tumor growth of Huh7/SR cells under sorfanib treatment in vivo. CONCLUSION Circ_RBM23 promoted chemoresistance, malignant proliferation, migration and invasion of SR HCC cells by modulating miR-338-3p/RAB1B axis.
Collapse
Affiliation(s)
- Chunlin Xu
- Department of Infection Disease (No.3), Second Affiliated Hospital of Harbin Medical University, China
| | - Weiwei Sun
- Department of Respiratory Oncology, Harbin Medical University Cancer Hospital, China
| | - Jinglei Liu
- Department of Respiratory Oncology, Harbin Medical University Cancer Hospital, China
| | - Haihong Pu
- Department of Respiratory Oncology, Harbin Medical University Cancer Hospital, China
| | - Yinghong Li
- Department of Respiratory Oncology, Harbin Medical University Cancer Hospital, China.
| |
Collapse
|
11
|
Wang J, Li G, Lin M, Lin S, Wu L. microRNA-338-3p suppresses lipopolysaccharide-induced inflammatory response in HK-2 cells. BMC Mol Cell Biol 2022; 23:60. [PMID: 36564725 PMCID: PMC9789656 DOI: 10.1186/s12860-022-00455-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Inflammation is the most common cause of kidney damage, and inflammatory responses in a number of diseases are mediated by microRNA-338-3p (miR-338-3p). However, there are only a few reports which described the regulation of miR-338-3p in human proximal tubular cells. The goal of this study was to see how miR-338-3p affected lipopolysaccharide (LPS)-caused inflammatory response in HK-2 cells. METHODS LPS was used to construct an inflammatory model in HK-2 cells. miR-338-3p mimic was used to increase the levels of miR-338-3p in HK-2 cells. MTT, JC-1 staining, and apoptosis assays were used to detect cell viability, mitochondrial membrane potential (MMP), and apoptosis, respectively. The production of inflammatory factors and the levels of p38, p65, phospho-p65, phospho-p38, Bax, Bcl-2, cleaved caspase-9, and cleaved caspase-3 were investigated using real-time polymerase chain reaction, western blotting, or enzyme-linked immunosorbent assay. RESULTS The levels of miR-338-3p were significantly lower in serum from patients with sepsis-induced kidney injury compared to the serum from healthy volunteers (P < 0.05). LPS reduced the level of miR-338-3p in HK-2 cells (P < 0.05). HK-2 cell viability, mitochondrial membrane potential, and Bcl-2 mRNA and protein levels were decreased by LPS (all P < 0.05). Apoptosis, the mRNA and protein levels of inflammatory cytokines (IL-1β, IL-6, IL-8, and TNF-α) and Bax, and the levels of cleaved caspase-9 and caspase-3 were increased by LPS (all P < 0.05). Raising the level of miR-338-3p mitigated these effects of LPS (all P < 0.05). CONCLUSION LPS-induced inflammation in HK-2 cells is reduced by miR-338-3p.
Collapse
Affiliation(s)
- Jing Wang
- Department of nosocomial infection management, Fujian Maternity and Child Health Hospital, Fujian Fuzhou, 350001 China
| | - Guokai Li
- Department of nosocomial infection management, Fujian Maternity and Child Health Hospital, Fujian Fuzhou, 350001 China
| | - Min Lin
- Pediatric intensive care unit, Fujian Maternity and Child Health Hospital, Fujian Fuzhou, 350001 China
| | - Sheng Lin
- Department of pediatrics, Fujian Maternity and Child Health Hospital, No. 18 Daoshan Road, Gulou District, Fujian Fuzhou, 350001 China
| | - Ling Wu
- Department of pediatrics, Fujian Maternity and Child Health Hospital, No. 18 Daoshan Road, Gulou District, Fujian Fuzhou, 350001 China
| |
Collapse
|
12
|
Piórkowska K, Żukowski K, Ropka-Molik K, Tyra M. Variations in Fibrinogen-like 1 ( FGL1) Gene Locus as a Genetic Marker Related to Fat Deposition Based on Pig Model and Liver RNA-Seq Data. Genes (Basel) 2022; 13:1419. [PMID: 36011329 PMCID: PMC9407393 DOI: 10.3390/genes13081419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
The goal of this study was to evaluate the effects of mutations in the FGL1 gene associated with pig productive traits to enrich the genetic marker pool for further selection and to support the studies on FGL1 in the context of the fat deposition (FD) process. The variant calling and χ2 analyses of liver RNA-seq data were used to indicate genetic markers. FGL1 mutations were genotyped in the Złotnicka White (n = 72), Polish Large White (n = 208), Duroc (n = 72), Polish Landrace (PL) (n = 292), and Puławska (n = 178) pig breeds. An association study was performed using a general linear model (GLM) implemented in SAS® software. More than 50 crucial mutations were identified in the FGL1 gene. The association study showed a significant effect of the FGL1 on intramuscular fat (IMF), loin eye area, backfat thickness at the lumbar, ham mass (p = 0.0374), meat percentage (p = 0.0205), and loin fat (p = 0.0003). Alternate homozygotes and heterozygotes were found in the PL and Duroc, confirming the selective potential for these populations. Our study supports the theory that liver FGL1 is involved in the FD process. Moreover, since fat is the major determinant of flavor development in meat, the FGL1 rs340465447_A allele can be used as a target in pig selection focused on elevated fat levels.
Collapse
Affiliation(s)
- Katarzyna Piórkowska
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland
| | - Kacper Żukowski
- Department of Cattle Breeding, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland
| | - Katarzyna Ropka-Molik
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland
| | - Mirosław Tyra
- Department of Pig Breeding, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland
| |
Collapse
|
13
|
Hu H, Zhang T, Wu Y, Deng M, Deng H, Yang X. Cross-regulation between microRNAs and key proteins of signaling pathways in hepatocellular carcinoma. Expert Rev Gastroenterol Hepatol 2022; 16:753-765. [PMID: 35833844 DOI: 10.1080/17474124.2022.2101994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is a subtype of primary liver cancer and a major cause of death. Although miRNA plays an important role in hepatocellular carcinoma, the specific regulatory network remains unclear. Therefore, this paper comprehensively describes the miRNA-related signaling pathways in HCC and the possible interactions among different signaling pathways. The aim is to lay the foundation for the discovery of new molecular targets and multi-target therapy. AREAS COVERED Based on miRNA, HCC, and signaling pathways, the literature was searched on Web of Science and PubMed. Then, common targets between different signaling pathways were found from KEGG database, and possible cross-regulation mechanisms were further studied. In this review, we elaborated from two aspects, respectively, laying a foundation for studying the regulatory mechanism and potential targets of miRNA in HCC. EXPERT OPINION Non-coding RNAs have become notable molecules in cancer research in recent years, and many types of targeted drugs have emerged. From the outset, molecular targets and signal pathways are interlinked, which suggests that signal pathways and regulatory networks should be concerned in basic research, which also provides a strong direction for future mechanism research.
Collapse
Affiliation(s)
- Haihong Hu
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Taolan Zhang
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yiwen Wu
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Meina Deng
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Huiling Deng
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Xiaoyan Yang
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, Hunan, China.,The Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, Hunan, China
| |
Collapse
|
14
|
Sawai S, Wong PF, Ramasamy TS. Hypoxia-regulated microRNAs: the molecular drivers of tumor progression. Crit Rev Biochem Mol Biol 2022; 57:351-376. [PMID: 35900938 DOI: 10.1080/10409238.2022.2088684] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Hypoxia is a common feature of the tumor microenvironment (TME) of nearly all solid tumors, leading to therapeutic failure. The changes in stiffness of the extracellular matrix (ECM), pH gradients, and chemical balance that contribute to multiple cancer hallmarks are closely regulated by intratumoral oxygen tension via its primary mediators, hypoxia-inducible factors (HIFs). HIFs, especially HIF-1α, influence these changes in the TME by regulating vital cancer-associated signaling pathways and cellular processes including MAPK/ERK, NF-κB, STAT3, PI3K/Akt, Wnt, p53, and glycolysis. Interestingly, research has revealed the involvement of epigenetic regulation by hypoxia-regulated microRNAs (HRMs) of downstream target genes involved in these signaling. Through literature search and analysis, we identified 48 HRMs that have a functional role in the regulation of 5 key cellular processes: proliferation, metabolism, survival, invasion and migration, and immunoregulation in various cancers in hypoxic condition. Among these HRMs, 17 were identified to be directly associated with HIFs which include miR-135b, miR-145, miR-155, miR-181a, miR-182, miR-210, miR-224, miR-301a, and miR-675-5p as oncomiRNAs, and miR-100-5p, miR-138, miR-138-5p, miR-153, miR-22, miR-338-3p, miR-519d-3p, and miR-548an as tumor suppressor miRNAs. These HRMs serve as a potential lead in the development of miRNA-based targeted therapy for advanced solid tumors. Future development of combined HIF-targeted and miRNA-targeted therapy is possible, which requires comprehensive profiling of HIFs-HRMs regulatory network, and improved formula of the delivery vehicles to enhance the therapeutic kinetics of the targeted cancer therapy (TCT) moving forward.
Collapse
Affiliation(s)
- Sakunie Sawai
- Stem Cell Biology Laboratory, Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Thamil Selvee Ramasamy
- Stem Cell Biology Laboratory, Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Wilayah Persekutuan Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Arora T, Kausar MA, Aboelnaga SM, Anwar S, Hussain MA, Sadaf S, Kaur S, Eisa AA, Shingatgeri VMM, Najm MZ, Aloliqi AA. miRNAs and the Hippo pathway in cancer: Exploring the therapeutic potential (Review). Oncol Rep 2022; 48:135. [PMID: 35699111 DOI: 10.3892/or.2022.8346] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/17/2022] [Indexed: 11/06/2022] Open
Abstract
Cancer is recognized as the leading cause of death worldwide. The hippo signaling pathway regulates organ size by balancing cell proliferation and cell death; hence dysregulation of the hippo pathway promotes cancer‑like conditions. miRNAs are a type of non‑coding RNA that have been shown to regulate gene expression. miRNA levels are altered in various classes of cancer. Researchers have also uncovered a crosslinking between miRNAs and the hippo pathway, which has been linked to cancer. The components of the hippo pathway regulate miRNA synthesis, and various miRNAs regulate the components of the hippo pathway both positively and negatively, which can lead to cancer‑like conditions. In the present review article, the mechanism behind the hippo signaling pathway and miRNAs biogenesis and crosslinks between miRNAs and the hippo pathway, which result in cancer, shall be discussed. Furthermore, the article will cover miRNA‑related therapeutics and provide an overview of the development of resistance to anticancer drugs. Understanding the underlying processes would improve the chances of developing effective cancer treatment therapies.
Collapse
Affiliation(s)
- Taruna Arora
- Division of Reproductive Biology, Maternal & Child Health, Department of Health Research, ICMR, MOHFW, Government of India, Ansari Nagar, New Delhi 110029, India
| | - Mohd Adnan Kausar
- Department of Biochemistry, College of Medicine, University of Hail, Hail, KSA‑2240, Saudi Arabia
| | | | - Sadaf Anwar
- Department of Biochemistry, College of Medicine, University of Hail, Hail, KSA‑2240, Saudi Arabia
| | - Malik Asif Hussain
- Department of Pathology, University of Hail, Hail, KSA-2240, Saudi Arabia
| | - Sadaf Sadaf
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Simran Kaur
- School of Biosciences, Apeejay Stya University, Sohna, Haryana 122103, India
| | - Alaa Abdulaziz Eisa
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Medina, KSA‑344, Saudi Arabia
| | | | | | - Abdulaziz A Aloliqi
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| |
Collapse
|
16
|
Yan J, Deng Y, Cai Y, Cong W. LncRNA MIR17HG
promotes the proliferation, migration, and invasion of retinoblastoma cells by up‐regulating
HIF
‐1α expression via sponging
miR
‐155‐5p. Kaohsiung J Med Sci 2022; 38:554-564. [PMID: 35253975 DOI: 10.1002/kjm2.12523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/06/2022] [Accepted: 02/08/2022] [Indexed: 12/28/2022] Open
Affiliation(s)
- Jian Yan
- Department of Ophthalmology Longgang District Central Hospital Shenzhen China
| | - Yi‐Xuan Deng
- Department of Ophthalmology Longgang District Central Hospital Shenzhen China
| | - Yu‐Lian Cai
- Department of Ophthalmology Longgang District Central Hospital Shenzhen China
| | - Wen‐Dong Cong
- Department of Neurology Longgang District Central Hospital Shenzhen China
| |
Collapse
|
17
|
Lin ZY, Yeh ML, Huang CI, Chen SC, Huang CF, Huang JF, Dai CY, Yu ML, Chuang WL. Limited sorafenib anticancer effects on primary cultured hepatocellular carcinoma cells with high NANOG expression. Kaohsiung J Med Sci 2022; 38:157-164. [PMID: 35142429 DOI: 10.1002/kjm2.12471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/19/2021] [Accepted: 10/13/2021] [Indexed: 11/09/2022] Open
Abstract
Cancer stem cell is considered as an important cause to exacerbate the prognosis. NANOG and POU5F1 are markers for cancer stem cells. The associations between NANOG and POU5F1 expressions with the sorafenib anticancer effects in primary cultured hepatocellular carcinoma (HCC) cells were investigated. Eight primary cultured HCC parent cell lines and 13 subgroups established by flow cytometric sorting using NANOG and POU5F1 as targets were investigated with clinically achievable sorafenib plasma concentrations (5 and 10 μg/mL). Sorafenib showed obvious downregulation of RAF/MEK/ERK signaling pathways and dose-dependent anti-proliferative effects only on s003 parent cell line, which showed the lowest expression of NANOG among all tested cell lines except one downregulated NANOG with upregulated POU5F1 s020 subgroup. Sorafenib also inhibited proliferation in this s020 subgroup but promoted proliferation in its parent cell line. For the only one downregulated NANOG alone s015 subgroup, sorafenib which had no influence on its parent cell line inhibited proliferation in this subgroup. Only the above three cell lines could demonstrate sorafenib antiproliferative effects. On the contrary, sorafenib promoted proliferation in three (s003, s015, s071) out of four upregulated NANOG alone subgroups. On the other hand, Sorafenib showed diverse influence on proliferation among four upregulated POU5F1 alone subgroups. In conclusion, NANOG rather than POU5F1 expression is a critical marker for the anticancer effects of sorafenib on HCC. The sorafenib anticancer effects on HCC cells with high NANOG expression were limited. Sorafenib should be combined with other drug able to target cancer cells with high NANOG expression.
Collapse
Affiliation(s)
- Zu-Yau Lin
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Lun Yeh
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-I Huang
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shinn-Cherng Chen
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Chung-Feng Huang
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jee-Fu Huang
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Yen Dai
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Lung Yu
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wan-Long Chuang
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
18
|
Lahooti B, Poudel S, Mikelis CM, Mattheolabakis G. MiRNAs as Anti-Angiogenic Adjuvant Therapy in Cancer: Synopsis and Potential. Front Oncol 2021; 11:705634. [PMID: 34956857 PMCID: PMC8695604 DOI: 10.3389/fonc.2021.705634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Angiogenesis is a key mechanism for tumor growth and metastasis and has been a therapeutic target for anti-cancer treatments. Intensive vascular growth is concomitant with the rapidly proliferating tumor cell population and tumor outgrowth. Current angiogenesis inhibitors targeting either one or a few pro-angiogenic factors or a range of downstream signaling molecules provide clinical benefit, but not without significant side effects. miRNAs are important post-transcriptional regulators of gene expression, and their dysregulation has been associated with tumor progression, metastasis, resistance, and the promotion of tumor-induced angiogenesis. In this mini-review, we provide a brief overview of the current anti-angiogenic approaches, their molecular targets, and side effects, as well as discuss existing literature on the role of miRNAs in angiogenesis. As we highlight specific miRNAs, based on their activity on endothelial or cancer cells, we discuss their potential for anti-angiogenic targeting in cancer as adjuvant therapy and the importance of angiogenesis being evaluated in such combinatorial approaches.
Collapse
Affiliation(s)
- Behnaz Lahooti
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, United States
| | - Sagun Poudel
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, United States
| | - Constantinos M. Mikelis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, United States
- Department of Pharmacy, University of Patras, Patras, Greece
| | - George Mattheolabakis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, United States
| |
Collapse
|
19
|
Huang JS, Li HJ, Guo ZX, Zhang JD, Wang WZ, Wang ZL, Amenyogbe E, Chen G. Identification and expression analysis of cobia (Rachycentron canadum) liver-related miRNAs under hypoxia stress. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1951-1967. [PMID: 34633578 DOI: 10.1007/s10695-021-01017-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
At present, due to the influence of global warming, seasonal change, diurnal variation, and eutrophication of the water body, hypoxia has become one of the major factors limiting the stable development of cobia (Rachycentron canadum) culture. In this study, the miRNAs involved in hypoxia stress were screened, and the target genes of miRNAs were annotated and analyzed. The results showed that a total of 184 conservative microRNA (miRNA) and 121 newly predicted miRNA were obtained by sequencing the liver of control (C) and hypoxic (dissolved oxygen, DO (2.64 ± 0.25) mg/L; 3 h) (S) groups. The pathways involved in energy metabolism included starch and sucrose metabolism (ko00500), glycosaminoglycan degradation (ko00531), and galactose metabolism (ko00052). The results indicate that the body maintains physiological activities by regulating some important pathways at the transcriptional level under hypoxia stress, such as the conversion of aerobic metabolism and anaerobic metabolism, the reduction of energy consumption, and the promotion of red blood cell proliferation to maintain the homeostasis of the body.
Collapse
Affiliation(s)
- Jian-Sheng Huang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524025, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, China
| | - Hong-Juan Li
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Zhi-Xiong Guo
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Jian-Dong Zhang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524025, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, China
| | - Wei-Zheng Wang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Zhong-Liang Wang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Eric Amenyogbe
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China.
| | - Gang Chen
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524025, China.
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, China.
| |
Collapse
|
20
|
Xu XF, Yang XK, Song Y, Chen BJ, Yu X, Xu T, Chen ZL. Dysregulation of Non-coding RNAs mediates Cisplatin Resistance in Hepatocellular Carcinoma and therapeutic strategies. Pharmacol Res 2021; 176:105906. [PMID: 34543740 DOI: 10.1016/j.phrs.2021.105906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/06/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is the fourth major contributor to cancer-related deaths worldwide, and patients mostly have poor prognosis. Although several drugs have been approved for the treatment of HCC, cisplatin (CDDP) is still applied in treatment of HCC as a classical chemotherapeutic drug. Unfortunately, the emergence of CDDP resistance has caused HCC patients to exhibit poor drug response. How to mitigate or even reverse CDDP resistance is an urgent clinical issue to be solved. Because of critical roles in biological functional processes and disease developments, non-coding RNAs (ncRNAs) have been extensively studied in HCC in recent years. Importantly, ncRNAs have also been demonstrated to be involved in the development of HCC to CDDP resistance process. Therefore, this review highlighted the regulatory roles of ncRNAs in CDDP resistance of HCC, elucidated the multiple potential mechanisms by which HCC develops CDDP resistance, and attempted to propose multiple drug delivery systems to alleviate CDDP resistance. Recently, ncRNA-based therapy may be a feasible strategy to alleviate CDDP resistance in HCC. Meanwhile, nanoparticles can overcome the deficiencies in ncRNA-based therapy and make it possible to reverse tumor drug resistance. The combined use of these strategies provides clues for reversing CDDP resistance and overcoming the poor prognosis of HCC.
Collapse
Affiliation(s)
- Xu-Feng Xu
- Department of Hemorrhoid and Fistula of Traditional Chinese Medicine, Chaohu Hospital Affiliated to Anhui Medical University, Chaohu, Anhui, 238000, P.R. China.
| | - Xiao-Ke Yang
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, P.R. China.
| | - Yang Song
- Department of Pain Treatment, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, P.R. China.
| | - Bang-Jie Chen
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, P.R. China.
| | - Xiao Yu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, P. R. China.
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, P. R. China; School of Pharmacy, Anhui Key Lab. of Bioactivity of Natural Products, Anhui Medical University, Hefei, Anhui, 230032, P. R. China.
| | - Zhao-Lin Chen
- Department of Pharmacy, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Hospital, Hefei, Anhui, 230001, P.R. China.
| |
Collapse
|
21
|
Zeng Z, Lu Q, Liu Y, Zhao J, Zhang Q, Hu L, Shi Z, Tu Y, Xiao Z, Xu Q, Huang D. Effect of the Hypoxia Inducible Factor on Sorafenib Resistance of Hepatocellular Carcinoma. Front Oncol 2021; 11:641522. [PMID: 34307125 PMCID: PMC8292964 DOI: 10.3389/fonc.2021.641522] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
Sorafenib a multi-target tyrosine kinase inhibitor, is the first-line drug for treating advanced hepatocellular carcinoma (HCC). Mechanistically, it suppresses tumor angiogenesis, cell proliferation and promotes apoptosis. Although sorafenib effectively prolongs median survival rates of patients with advanced HCC, its efficacy is limited by drug resistance in some patients. In HCC, this resistance is attributed to multiple complex mechanisms. Previous clinical data has shown that HIFs expression is a predictor of poor prognosis, with further evidence demonstrating that a combination of sorafenib and HIFs-targeted therapy or HIFs inhibitors can overcome HCC sorafenib resistance. Here, we describe the molecular mechanism underlying sorafenib resistance in HCC patients, and highlight the impact of hypoxia microenvironment on sorafenib resistance.
Collapse
Affiliation(s)
- Zhi Zeng
- The Medical College of Qingdao University, Qingdao, China.,Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, China
| | - Qiliang Lu
- The Medical College of Qingdao University, Qingdao, China.,Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, China
| | - Yang Liu
- The Medical College of Qingdao University, Qingdao, China.,Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, China
| | - Junjun Zhao
- Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, China.,Graduate Department, Bengbu Medical College, Bengbu, China
| | - Qian Zhang
- The Medical College of Qingdao University, Qingdao, China
| | - Linjun Hu
- The Medical College of Qingdao University, Qingdao, China.,Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, China
| | - Zhan Shi
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yifeng Tu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zunqiang Xiao
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiuran Xu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, China
| | - Dongsheng Huang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, China
| |
Collapse
|
22
|
Li X, Wu Y, Zhang R, Bai W, Ye T, Wang S. Oxygen-Based Nanocarriers to Modulate Tumor Hypoxia for Ameliorated Anti-Tumor Therapy: Fabrications, Properties, and Future Directions. Front Mol Biosci 2021; 8:683519. [PMID: 34277702 PMCID: PMC8281198 DOI: 10.3389/fmolb.2021.683519] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/10/2021] [Indexed: 12/27/2022] Open
Abstract
Over the past five years, oxygen-based nanocarriers (NCs) to boost anti-tumor therapy attracted tremendous attention from basic research and clinical practice. Indeed, tumor hypoxia, caused by elevated proliferative activity and dysfunctional vasculature, is directly responsible for the less effectiveness or ineffective of many conventional therapeutic modalities. Undeniably, oxygen-generating NCs and oxygen-carrying NCs can increase oxygen concentration in the hypoxic area of tumors and have also been shown to have the ability to decrease the expression of drug efflux pumps (e.g., P-gp); to increase uptake by tumor cells; to facilitate the generation of cytotoxic reactive oxide species (ROS); and to evoke systematic anti-tumor immune responses. However, there are still many challenges and limitations that need to be further improved. In this review, we first discussed the mechanisms of tumor hypoxia and how it severely restricts the therapeutic efficacy of clinical treatments. Then an up-to-date account of recent progress in the fabrications of oxygen-generating NCs and oxygen-carrying NCs are systematically introduced. The improved physicochemical and surface properties of hypoxia alleviating NCs for increasing the targeting ability to hypoxic cells are also elaborated with special attention to the latest nano-technologies. Finally, the future directions of these NCs, especially towards clinical translation, are proposed. Therefore, we expect to provide some valued enlightenments and proposals in engineering more effective oxygen-based NCs in this promising field in this comprehensive overview.
Collapse
Affiliation(s)
- Xianqiang Li
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yue Wu
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Rui Zhang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Wei Bai
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Tiantian Ye
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Shujun Wang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
23
|
Circular RNA Pleiotrophin promotes carcinogenesis in glioma via regulation of microRNA-122/SRY-box transcription factor 6 axis. Eur J Cancer Prev 2021; 29:165-173. [PMID: 31609809 DOI: 10.1097/cej.0000000000000535] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs) are recently identified as gene regulators in mammals and play important roles in carcinogenesis of cancer. For example, circRNA_PTN has been recognized as a biomarker of human cancer and is overexpressed in glioma. The molecular function of circRNA_PTN and its downstream targets in glioma, however, remains elusive. METHODS Quantitative polymerase chain reaction analysis was used to measure the expression of circular RNA pleiotrophin (circ_PTN) and miR-122. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide, propidium iodide and Annexin-V/propidium iodide assay were performed to determine cell proliferation and apoptosis of glioma cells. Circular RNA Interactome and TargetScan were used to predict the potential microRNA targeting of circ_PTN and the potential targets of miR-122, respectively. Luciferase activity assay was used to validate these interactions. Downstream molecular mechanisms, including SRY-box transcription factor 6 (SOX6), extracellular regulated protein kinases (ERK), Cyclin D1, B-cell lymphoma-2 (BCL-2) and BCL2 associated X, apoptosis regulator (BAX), were determined by western blot. RESULTS Circ_PTN was overexpressed in glioma cells, and its knockdown induced cell proliferation inhibition, cell cycle arrest and apoptosis in glioma cells. The target microRNA of circ_PTN was predicted to be miR-122, the expression of which was negatively correlated with circ_PTN in glioma cells. Moreover, SOX6 was predicted as a potential target of miR-122, and miR-122 overexpression decreased SOX6 expression. MiR-122 inhibitor reversed the tumor-suppressing effects of circ_PTN knockdown, while overexpression of SOX6 impaired the miR-122 overexpression-induced cell growth inhibition and apoptosis. In addition, mitogen activated kinase-like protein (MAPK)/ERK pathway was involved in circ_PTN/miR-122/SOX6 axis. CONCLUSIONS Circ_PTN acted as a sponge of miR-122 and upregulated miR-122 target SOX6, thus promoting carcinogenesis of glioma cells.
Collapse
|
24
|
Yi Q, Cui H, Liao Y, Xiong J, Ye X, Sun W. A minor review of microRNA-338 exploring the insights of its function in tumorigenesis. Biomed Pharmacother 2021; 139:111720. [PMID: 34243620 DOI: 10.1016/j.biopha.2021.111720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/29/2022] Open
Abstract
MicroRNAs(miRNAs) are small non-coding RNAs which have a critical role in various biological processes via direct binding and post-transcriptionally regulating targeted genes expression. More than one-half of human genes were regulated by miRNAs and their aberrant expression was detected in various human diseases, including cancers. miRNA-338 is a new identified miRNA and increasing evidence show that miRNA-338 participates in the progression of lots of cancers, such as lung cancer, hepatocellular cancer, breast cancer, glioma, and so on. Although a range of targets and signaling pathways such as MACC1 and Wnt/β-catenin signaling pathway were illustrated to be regulated by miRNA-338, which functions in tumor progression are still ambiguous and the underlying molecular mechanisms are also unclear. Herein, we reviewed the latest studies in miRNA-338 and summarized its roles in different type of human tumors, which might provide us new idea for further investigations and potential targeted therapy.
Collapse
Affiliation(s)
- Qian Yi
- Shenzhen Key Laboratory of Tissue Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen 518035, Guangdong, China; Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Hanwei Cui
- The Central Laboratory and Medical Genetics & Molecular Diagnostic Center, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen 518035, Guangdong, China
| | - Yi Liao
- The Central Laboratory and Medical Genetics & Molecular Diagnostic Center, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen 518035, Guangdong, China
| | - Jianyi Xiong
- Shenzhen Key Laboratory of Tissue Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen 518035, Guangdong, China.
| | - Xiufeng Ye
- The Central Laboratory and Medical Genetics & Molecular Diagnostic Center, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen 518035, Guangdong, China.
| | - Weichao Sun
- Shenzhen Key Laboratory of Tissue Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen 518035, Guangdong, China.
| |
Collapse
|
25
|
Cao Y, Xie X, Li M, Gao Y. CircHIPK2 Contributes to DDP Resistance and Malignant Behaviors of DDP-Resistant Ovarian Cancer Cells Both in vitro and in vivo Through circHIPK2/miR-338-3p/CHTOP ceRNA Pathway. Onco Targets Ther 2021; 14:3151-3165. [PMID: 34012271 PMCID: PMC8128508 DOI: 10.2147/ott.s291823] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/01/2021] [Indexed: 12/17/2022] Open
Abstract
Background Cisplatin (DDP) is standard-of-care and first-line management for ovarian cancer (OvCa). Circular RNA HIPK2 (circHIPK2) is abnormally upregulated in serum of OvCa patients. However, its role in DDP resistance remains unclear. Methods Expression of cirHIPK2, microRNA (miR)-338-3p and chromatin target of protein arginine methyltransferase (CHTOP) was detected by quantitative reverse transcription PCR and Western blotting. Functional experiments were performed using cell counting kit-8 assay, flow cytometry, transwell assays, Western blotting, and xenograft experiment. The interaction among cirHIPK2, miR-338-3p and CHTOP was confirmed by dual-luciferase reporter assay and RNA pull-down assay. Results Expression of circHIPK2 and CHTOP was upregulated, and miR-338-3p was downregulated in human DDP-resistant OvCa tumors and cells. Blocking circHIPK2 could promote apoptosis and suppress the 50% inhibitory concentration (IC50) of DDP, cell proliferation, cell cycle entrance, migration and invasion in SKOV3/DDP and A2780/DDP cells. Allied with that was decreased B cell lymphoma (Bcl)-2, matrix metalloproteinase 2 (MMP2) and MMP9 levels, and increased Bcl-2-associated X protein (Bax) level. Similarly, overexpression of miR-338-3p functioned suppressive role in SKOV3/DDP and A2780/DDP cells. MiR-338-3p was a target for circHIPK2, and CHTOP was targeted by miR-338-3p, whereas silencing miR-338-3p counteracted the role of circHIPK2 knockdown, and restoring CHTOP either cancelled miR-338-3p role. The growth of A2780/DDP cells in nude mice was restrained by silencing circHIPK2 under DDP treatment or not. Conclusion CircHIPK2 might be a tumor promoter in OvCa and was associated with DDP resistance. Silencing circHIPK2 might suppress DDP-resistant OvCa through regulating miR-338-3p/CHTOP axis.
Collapse
Affiliation(s)
- Yang Cao
- Department of Gynaecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang City, Liaoning Province, People's Republic of China
| | - Xin Xie
- Department of Teaching and Research Center, Liaoning University of Traditional Chinese Medicine, Shenyang City, Liaoning Province, People's Republic of China
| | - Mingzhu Li
- Department of Integrated Traditional Chinese and Western Medicine Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang City, Liaoning Province, People's Republic of China
| | - Yuhua Gao
- Department of Gynaecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang City, Liaoning Province, People's Republic of China
| |
Collapse
|
26
|
Moghbeli M. Molecular interactions of miR-338 during tumor progression and metastasis. Cell Mol Biol Lett 2021; 26:13. [PMID: 33827418 PMCID: PMC8028791 DOI: 10.1186/s11658-021-00257-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/25/2021] [Indexed: 02/08/2023] Open
Abstract
Background Cancer, as one of the main causes of human deaths, is currently a significant global health challenge. Since the majority of cancer-related deaths are associated with late diagnosis, it is necessary to develop minimally invasive early detection markers to manage and reduce mortality rates. MicroRNAs (miRNAs), as highly conserved non-coding RNAs, target the specific mRNAs which are involved in regulation of various fundamental cellular processes such as cell proliferation, death, and signaling pathways. MiRNAs can also be regulated by long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs). They are highly stable in body fluids and have tumor-specific expression profiles, which suggest their suitability as efficient non-invasive diagnostic and prognostic tumor markers. Aberrant expression of miR-338 has been widely reported in different cancers. It regulates cell proliferation, migration, angiogenesis, and apoptosis in tumor cells. Main body In the present review, we have summarized all miR-338 interactions with other non-coding RNAs (ncRNAs) and associated signaling pathways to clarify the role of miR-338 during tumor progression. Conclusions It was concluded that miR-338 mainly functions as a tumor suppressor in different cancers. There were also significant associations between miR-338 and other ncRNAs in tumor cells. Moreover, miR-338 has a pivotal role during tumor progression using the regulation of WNT, MAPK, and PI3K/AKT signaling pathways. This review highlights miR-338 as a pivotal ncRNA in biology of tumor cells.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
27
|
Angerilli V, Galuppini F, Businello G, Dal Santo L, Savarino E, Realdon S, Guzzardo V, Nicolè L, Lazzarin V, Lonardi S, Loupakis F, Fassan M. MicroRNAs as Predictive Biomarkers of Resistance to Targeted Therapies in Gastrointestinal Tumors. Biomedicines 2021; 9:318. [PMID: 33801049 PMCID: PMC8003870 DOI: 10.3390/biomedicines9030318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023] Open
Abstract
The advent of precision therapies against specific gene alterations characterizing different neoplasms is revolutionizing the oncology field, opening novel treatment scenarios. However, the onset of resistance mechanisms put in place by the tumor is increasingly emerging, making the use of these drugs ineffective over time. Therefore, the search for indicators that can monitor the development of resistance mechanisms and above all ways to overcome it, is increasingly important. In this scenario, microRNAs are ideal candidate biomarkers, being crucial post-transcriptional regulators of gene expression with a well-known role in mediating mechanisms of drug resistance. Moreover, as microRNAs are stable molecules, easily detectable in tissues and biofluids, they are the ideal candidate biomarker to identify patients with primary resistance to a specific targeted therapy and those who have developed acquired resistance. The aim of this review is to summarize the major studies that have investigated the role of microRNAs as mediators of resistance to targeted therapies currently in use in gastro-intestinal neoplasms, namely anti-EGFR, anti-HER2 and anti-VEGF antibodies, small-molecule tyrosine kinase inhibitors and immune checkpoint inhibitors. For every microRNA and microRNA signature analyzed, the putative mechanisms underlying drug resistance were outlined and the potential to be translated in clinical practice was evaluated.
Collapse
Affiliation(s)
- Valentina Angerilli
- Surgical Pathology & Cytopathology Unit, Department of Medicine (DIMED), University of Padua, 35100 Padua, Italy; (V.A.); (F.G.); (G.B.); (L.D.S.); (V.G.); (L.N.); (V.L.)
| | - Francesca Galuppini
- Surgical Pathology & Cytopathology Unit, Department of Medicine (DIMED), University of Padua, 35100 Padua, Italy; (V.A.); (F.G.); (G.B.); (L.D.S.); (V.G.); (L.N.); (V.L.)
| | - Gianluca Businello
- Surgical Pathology & Cytopathology Unit, Department of Medicine (DIMED), University of Padua, 35100 Padua, Italy; (V.A.); (F.G.); (G.B.); (L.D.S.); (V.G.); (L.N.); (V.L.)
| | - Luca Dal Santo
- Surgical Pathology & Cytopathology Unit, Department of Medicine (DIMED), University of Padua, 35100 Padua, Italy; (V.A.); (F.G.); (G.B.); (L.D.S.); (V.G.); (L.N.); (V.L.)
| | - Edoardo Savarino
- Division of Gastroenterology, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, 35100 Padua, Italy;
| | - Stefano Realdon
- Istituto Oncologico Veneto (IOV-IRCCS), 35100 Padua, Italy; (S.R.); (S.L.); (F.L.)
| | - Vincenza Guzzardo
- Surgical Pathology & Cytopathology Unit, Department of Medicine (DIMED), University of Padua, 35100 Padua, Italy; (V.A.); (F.G.); (G.B.); (L.D.S.); (V.G.); (L.N.); (V.L.)
| | - Lorenzo Nicolè
- Surgical Pathology & Cytopathology Unit, Department of Medicine (DIMED), University of Padua, 35100 Padua, Italy; (V.A.); (F.G.); (G.B.); (L.D.S.); (V.G.); (L.N.); (V.L.)
| | - Vanni Lazzarin
- Surgical Pathology & Cytopathology Unit, Department of Medicine (DIMED), University of Padua, 35100 Padua, Italy; (V.A.); (F.G.); (G.B.); (L.D.S.); (V.G.); (L.N.); (V.L.)
| | - Sara Lonardi
- Istituto Oncologico Veneto (IOV-IRCCS), 35100 Padua, Italy; (S.R.); (S.L.); (F.L.)
| | - Fotios Loupakis
- Istituto Oncologico Veneto (IOV-IRCCS), 35100 Padua, Italy; (S.R.); (S.L.); (F.L.)
| | - Matteo Fassan
- Surgical Pathology & Cytopathology Unit, Department of Medicine (DIMED), University of Padua, 35100 Padua, Italy; (V.A.); (F.G.); (G.B.); (L.D.S.); (V.G.); (L.N.); (V.L.)
- Istituto Oncologico Veneto (IOV-IRCCS), 35100 Padua, Italy; (S.R.); (S.L.); (F.L.)
| |
Collapse
|
28
|
Zhang C, Kang L, Zhu H, Li J, Fang R. miRNA-338-3p/CAMK IIα signaling pathway prevents acetaminophen-induced acute liver inflammation in vivo. Ann Hepatol 2021; 21:100191. [PMID: 32331846 DOI: 10.1016/j.aohep.2020.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 02/29/2020] [Accepted: 03/06/2020] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES N-acetyl-p-aminophenol (APAP)-induced liver injury is a major clinical challenge worldwide. The present study investigated the molecular role of microRNA (miR)-338-3p in the development of APAP-induced acute liver injury. MATERIALS AND METHODS B6 mice were treated with an miR-338-3p agomir, antagomir, and intraperitoneally injected with APAP 24h later to induce acute liver injury. Histological analysis was performed to evaluate the degree of liver injury. The gene expression of miR-338-3p and its downstream regulators was measured by reverse transcription-quantitative PCR and western blot. The miR target was validated using a luciferase reporter assay. RESULTS The results revealed that miR-338-3p was significantly upregulated following the intraperitoneal administration of APAP. Augmenting miR-338-3p alleviated acute liver injury caused by APAP overdose, while silencing of miR-338-3p exhibited a detrimental effect. Moreover, miR-338-3p inhibited the expression of pro-inflammatory cytokines by preventing the aberrant activation of inflammatory signaling pathways, including the nuclear factor kappa-B (NF-κB)/mitogen-activated protein kinase (MAPK) signaling pathway. Furthermore, calcium/calmodulin-dependent protein kinase IIα (CAMK IIα) was identified as a direct target of miR-338-3p. CONCLUSION The present study demonstrated that miR-338-3p inhibited inflammation in APAP-induced acute liver injury.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Infectious Diseases, The Ninth Hospital of Xi'an, Shaanxi 710054, China
| | - Li Kang
- Department of Human Anatomy, Henan Vocational College of Nursing, Anyang 455000, China
| | - Haihui Zhu
- Department of Endocrinology, Shaanxi Province TCM Hospital, Xi'an, 710003 Shaanxi, China
| | - Jing Li
- Department of Traditional Chinese Medicine, The Hospital of Shaanxi Provincial People, Shaanxi 710068, China
| | - Rong Fang
- Department of Infectious Diseases, The Hospital of Yan 'an People, Shaanxi 716000, China.
| |
Collapse
|
29
|
Singh S, Raza W, Parveen S, Meena A, Luqman S. Flavonoid display ability to target microRNAs in cancer pathogenesis. Biochem Pharmacol 2021; 189:114409. [PMID: 33428895 DOI: 10.1016/j.bcp.2021.114409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are non-coding, conserved, single-stranded nucleotide sequences involved in physiological and developmental processes. Recent evidence suggests an association between miRNAs' deregulation with initiation, promotion, progression, and drug resistance in cancer cells. Besides, miRNAs are known to regulate the epithelial-mesenchymal transition, angiogenesis, autophagy, and senescence in different cancer types. Previous reports proposed that apart from the antioxidant potential, flavonoids play an essential role in miRNAs modulation associated with changes in cancer-related proteins, tumor suppressor genes, and oncogenes. Thus, flavonoids can suppress proliferation, help in the development of drug sensitivity, suppress metastasis and angiogenesis by modulating miRNAs expression. In the present review, we summarize the role of miRNAs in cancer, drug resistance, and the chemopreventive potential of flavonoids mediated by miRNAs. The potential of flavonoids to modulate miRNAs expression in different cancer types demonstrate their selectivity and importance as regulators of carcinogenesis. Flavonoids as chemopreventive agents targeting miRNAs are extensively studied in vitro, in vivo, and pre-clinical studies, but their efficiency in targeting miRNAs in clinical studies is less investigated. The evidence presented in this review highlights the potential of flavonoids in cancer prevention/treatment by regulating miRNAs, although further investigations are required to validate and establish their clinical usefulness.
Collapse
Affiliation(s)
- Shilpi Singh
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Waseem Raza
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Jawahar Lal Nehru University, New Delhi 110067, India
| | - Shahnaz Parveen
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
30
|
Samec M, Liskova A, Koklesova L, Mersakova S, Strnadel J, Kajo K, Pec M, Zhai K, Smejkal K, Mirzaei S, Hushmandi K, Ashrafizadeh M, Saso L, Brockmueller A, Shakibaei M, Büsselberg D, Kubatka P. Flavonoids Targeting HIF-1: Implications on Cancer Metabolism. Cancers (Basel) 2021; 13:E130. [PMID: 33401572 PMCID: PMC7794792 DOI: 10.3390/cancers13010130] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 12/24/2022] Open
Abstract
Tumor hypoxia is described as an oxygen deprivation in malignant tissue. The hypoxic condition is a consequence of an imbalance between rapidly proliferating cells and a vascularization that leads to lower oxygen levels in tumors. Hypoxia-inducible factor 1 (HIF-1) is an essential transcription factor contributing to the regulation of hypoxia-associated genes. Some of these genes modulate molecular cascades associated with the Warburg effect and its accompanying pathways and, therefore, represent promising targets for cancer treatment. Current progress in the development of therapeutic approaches brings several promising inhibitors of HIF-1. Flavonoids, widely occurring in various plants, exert a broad spectrum of beneficial effects on human health, and are potentially powerful therapeutic tools against cancer. Recent evidences identified numerous natural flavonoids and their derivatives as inhibitors of HIF-1, associated with the regulation of critical glycolytic components in cancer cells, including pyruvate kinase M2(PKM2), lactate dehydrogenase (LDHA), glucose transporters (GLUTs), hexokinase II (HKII), phosphofructokinase-1 (PFK-1), and pyruvate dehydrogenase kinase (PDK). Here, we discuss the results of most recent studies evaluating the impact of flavonoids on HIF-1 accompanied by the regulation of critical enzymes contributing to the Warburg phenotype. Besides, flavonoid effects on glucose metabolism via regulation of HIF-1 activity represent a promising avenue in cancer-related research. At the same time, only more-in depth investigations can further elucidate the mechanistic and clinical connections between HIF-1 and cancer metabolism.
Collapse
Affiliation(s)
- Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.S.); (A.L.); (L.K.)
| | - Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.S.); (A.L.); (L.K.)
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.S.); (A.L.); (L.K.)
| | - Sandra Mersakova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4D, 03601 Martin, Slovakia; (S.M.); (J.S.)
| | - Jan Strnadel
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4D, 03601 Martin, Slovakia; (S.M.); (J.S.)
| | - Karol Kajo
- Department of Pathology, St. Elizabeth Cancer Institute Hospital, 81250 Bratislava, Slovakia;
| | - Martin Pec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Kevin Zhai
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| | - Karel Smejkal
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackého třída 1946/1, 61200 Brno, Czech Republic;
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, 1477893855 Tehran, Iran;
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, 1419963114 Tehran, Iran;
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey;
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine, Sapienza University, 00185 Rome, Italy;
| | - Aranka Brockmueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, D-80336 Munich, Germany; (A.B.); (M.S.)
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, D-80336 Munich, Germany; (A.B.); (M.S.)
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| |
Collapse
|
31
|
He J, Wang J, Li S, Li T, Chen K, Zhang S. Hypoxia-inhibited miR-338-3p suppresses breast cancer progression by directly targeting ZEB2. Cancer Sci 2020; 111:3550-3563. [PMID: 32726486 PMCID: PMC7540984 DOI: 10.1111/cas.14589] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/11/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Hypoxia plays an essential role in the development of various cancers. The biological function and underlying mechanism of microRNA-338-3p (miR-338-3p) under hypoxia remain unclarified in breast cancer (BC). Herein, we performed bioinformatics, gain and loss of function of miR-338-3p, a luciferase reporter assay, and chromatin immunoprecipitation (ChIP) in vitro and in a tumor xenograft model. We also explored the potential signaling pathways of miR-338-3p in BC. We detected the expression levels and prognostic significance of miR-338-3p in BC by qRT-PCR and in situ hybridization. MiR-338-3p was lowly expressed in BC tissues and cell lines, and BC patients with underexpression of miR-338-3p tend to have a dismal overall survival. Functional experiments showed that miR-338-3p overexpression inhibited BC cell proliferation, invasion, migration, and epithelial-mesenchymal transition (EMT) process, whereas miR-338-3p silencing abolished these biological behaviors. Zinc finger E-box-binding homeobox 2 (ZEB2) was validated as a direct target of miR-338-3p. ZEB2 overexpression promoted while ZEB2 knockdown abolished the promoted effects of miR-338-3p knockdown on cell biological behaviors through the NF-ĸB and PI3K/Akt signal pathways. HIF1A can transcriptionally downregulate miR-338-3p under hypoxia. In total, miR-338-3p counteracts hypoxia-induced BC cells growth, migration, invasion, and EMT via the ZEB2 and NF-ĸB/PI3K signal pathways, implicating miR-338-3p may be a promising target to treat patients with BC.
Collapse
Affiliation(s)
- Juanjuan He
- Department of Breast Surgerythe First Affiliated HospitalZhengzhou UniversityZhengzhouChina
| | - Jing Wang
- Department of Breast Surgerythe First Affiliated HospitalZhengzhou UniversityZhengzhouChina
| | - Songchao Li
- Department of Urology Surgerythe First Affiliated HospitalZhengzhou UniversityZhengzhouChina
| | - Teng Li
- Department of Urology Surgerythe First Affiliated HospitalZhengzhou UniversityZhengzhouChina
| | - Kunlun Chen
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated HospitalZhengzhou UniversityZhengzhouChina
| | - Shaojin Zhang
- Department of Urology Surgerythe First Affiliated HospitalZhengzhou UniversityZhengzhouChina
| |
Collapse
|
32
|
Liang Y, Liang Q, Qiao L, Xiao F. MicroRNAs Modulate Drug Resistance-Related Mechanisms in Hepatocellular Carcinoma. Front Oncol 2020; 10:920. [PMID: 32695666 PMCID: PMC7338562 DOI: 10.3389/fonc.2020.00920] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/11/2020] [Indexed: 12/24/2022] Open
Abstract
Primary liver cancer [hepatocellular carcinoma (HCC)] is one of the most common malignant tumors worldwide, causing serious health threats because of its high morbidity and mortality, rapid growth, and strong invasiveness. Patients with HCC frequently develop resistance to the current chemotherapeutic drugs, and this is largely attributed to the high-level heterogeneity of the tumor tissue. MicroRNAs (miRNAs) are a group of master regulators for multiple physiological and pathological processes and play important roles in the tumorigenesis. More recent studies have indicated that miRNAs also play a non-negligible role in the development of drug resistance in liver cancer. In this review, we summarize the data from the latest studies on the mechanisms of drug resistance in liver cancer, including autophagy, membrane transporters, epithelial-mesenchymal transitions (EMTs), tumor microenvironment, and genes and proteins that are associated with apoptosis. The data herein will provide valuable information for the development of novel approaches to tackle drug resistance in the management of liver cancer.
Collapse
Affiliation(s)
- Yuehui Liang
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, China
| | - Qi Liang
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Liang Qiao
- Storr Liver Center, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW, Australia
| | - Fang Xiao
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
33
|
SNHG16 promotes tumorigenesis and cisplatin resistance by regulating miR-338-3p/PLK4 pathway in neuroblastoma cells. Cancer Cell Int 2020; 20:236. [PMID: 32536824 PMCID: PMC7291484 DOI: 10.1186/s12935-020-01291-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/23/2020] [Indexed: 02/07/2023] Open
Abstract
Background Long noncoding RNA small nucleolar RNA host gene 16 (lncRNA SNHG16) has been revealed to be involved in the tumorigenesis of neuroblastoma. However, the role of SNHG16 in regulating cisplatin sensitivity in neuroblastoma remains largely unknown. Methods The expression of SNHG16, microRNA (miR)-338-3p and polo-like kinase 4 (PLK4) mRNA was measured using quantitative real-time polymerase chain reaction. The protein levels of PLK4, multidrug resistance protein 1 (MRP1), multidrug-resistance gene 1-type p-glycoprotein (P-gp) and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway-related proteins were detected by Western blot. The half maximal inhibitory concentration (IC50) value, cell proliferation, migration and invasion were analyzed using Cell Counting Kit-8 assays or Transwell assay. Apoptotic cells were measured by Flow cytometry. The interaction between miR-338-3p and SNHG16 or PLK4 was confirmed by dual-luciferase reporter and RNA immunoprecipitation assay. In vivo experiments were conducted through the murine xenograft model. Results SNHG16 was up-regulated, while miR-338-3p was down-regulated in cisplatin-resistant neuroblastoma tissues and cells. SNHG16 silencing weakened cisplatin resistance, reflected by the reduction of IC50 value, down-regulation of MRP-1 and P-gp protein expression, suppression of proliferation, migration and invasion, as well as enhancement of apoptosis in SNHG16 deletion cisplatin-resistant neuroblastoma cells. Besides that, SNHG16 could regulate PLK4 expression by sponging miR-338-3p and SNHG16/miR-338-3p/PLK4 axis could affect the activation of PI3K/AKT pathway in cisplatin-resistant neuroblastoma cells. MiR-338-3p inhibition attenuated SNHG16 deletion-mediated impairment on cisplatin resistance and PLK4 overexpression reversed the decrease of cisplatin-resistance induced by miR-338-3p re-expression. Furthermore, SNHG16 knockdown contributed to the anti-tumor effect of cisplatin in neuroblastoma in vivo. Conclusion SNHG16 contributed to the tumorigenesis and cisplatin resistance in neuroblastoma possibly through miR-338-3p/PLK4 pathway, indicating a novel insight for overcoming chemoresistance in neuroblastoma patients.
Collapse
|
34
|
The mechanisms of sorafenib resistance in hepatocellular carcinoma: theoretical basis and therapeutic aspects. Signal Transduct Target Ther 2020; 5:87. [PMID: 32532960 PMCID: PMC7292831 DOI: 10.1038/s41392-020-0187-x] [Citation(s) in RCA: 649] [Impact Index Per Article: 129.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/14/2020] [Accepted: 04/26/2020] [Indexed: 02/07/2023] Open
Abstract
Sorafenib is a multikinase inhibitor capable of facilitating apoptosis, mitigating angiogenesis and suppressing tumor cell proliferation. In late-stage hepatocellular carcinoma (HCC), sorafenib is currently an effective first-line therapy. Unfortunately, the development of drug resistance to sorafenib is becoming increasingly common. This study aims to identify factors contributing to resistance and ways to mitigate resistance. Recent studies have shown that epigenetics, transport processes, regulated cell death, and the tumor microenvironment are involved in the development of sorafenib resistance in HCC and subsequent HCC progression. This study summarizes discoveries achieved recently in terms of the principles of sorafenib resistance and outlines approaches suitable for improving therapeutic outcomes for HCC patients.
Collapse
|
35
|
Kimura Y, Kaneko R, Yano Y, Kamada K, Ikehara T, Nagai H, Sato Y, Igarashi Y. The Prognosis of Hepatocellular Carcinoma Treated with Sorafenib in Combination with TACE. Asian Pac J Cancer Prev 2020; 21:1797-1805. [PMID: 32592380 PMCID: PMC7568902 DOI: 10.31557/apjcp.2020.21.6.1797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Sorafenib have been shown to be effective in the treatment of advanced HCC and has been standard therapy since its release in Japan in 2009 (Llovet et al., 2008; Cheng et al., 2009). However, due to a low response rate, more aggressive combination treatment has been utilized as a multimodal strategy. The present study aimed to determine the efficacy of sorafenib alone and in combination with transarterial chemoembolization (TACE) for the treatment of advanced HCC. METHODS All patients with unresectable advanced HCC who were prescribed sorafenib at Kanto Rosai Hospital were included in the study. Five-year overall survival (OS) rates were estimated for patients treated with sorafenib alone or in combination with TACE. Multivariate and univariate regression analyses were performed to identify factors affecting OS. Analysis using propensity score matching and inverse-probability weights were also performed. RESULTS A total of 46 patients were treated with sorafenib up to June 2018. The total sorafenib dose administered was higher in the TACE combination group (70900 mg vs. 24000 mg vs. with sorafenib alone), although the relative dose intensity was lower (11.7% vs. 17.6%, respectively). The 5-year survival prognosis estimated using the Kaplan-Meier method was longer in patients treated with sorafenib in combination with TACE versus sorafenib alone (36.3% vs. 7.7%). Combination with TACE was the only factor associated with improved OS in both univariate and multivariate analysis. Among cases matched by propensity scores the hazard rate for combination with TACE was 0.067 (95% CI 0.091-1.128). CONCLUSION With an array of therapeutic options currently available, it is important to determine the efficacy of different multimodal strategies, such as sorafenib combined TACE, for patients with unresectable HCC.
Collapse
Affiliation(s)
- Yusuke Kimura
- Department of Gastroenterology, Kanto Rosai Hospital 1-1 Kizukisumiyoshi-cho, Nakahara-ku, Kawasaki, Kanagawa, 211-8510 Japan.,Division of Gastroenterology and Hepatology, Department of Internal Medicine (Omori), School of Medicine, Faculty of Medicine, Toho University 6-11-1 Omorinishi, Ota-ku, Tokyo, 143-8541 Japan
| | - Rena Kaneko
- Department of Gastroenterology, Kanto Rosai Hospital 1-1 Kizukisumiyoshi-cho, Nakahara-ku, Kawasaki, Kanagawa, 211-8510 Japan
| | - Yuichiro Yano
- Department of Gastroenterology, Kanto Rosai Hospital 1-1 Kizukisumiyoshi-cho, Nakahara-ku, Kawasaki, Kanagawa, 211-8510 Japan
| | - Kentaro Kamada
- Department of Gastroenterology, Kanto Rosai Hospital 1-1 Kizukisumiyoshi-cho, Nakahara-ku, Kawasaki, Kanagawa, 211-8510 Japan
| | - Takashi Ikehara
- Department of Gastroenterology, Kanto Rosai Hospital 1-1 Kizukisumiyoshi-cho, Nakahara-ku, Kawasaki, Kanagawa, 211-8510 Japan.,Division of Gastroenterology and Hepatology, Department of Internal Medicine (Omori), School of Medicine, Faculty of Medicine, Toho University 6-11-1 Omorinishi, Ota-ku, Tokyo, 143-8541 Japan
| | - Hidenari Nagai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine (Omori), School of Medicine, Faculty of Medicine, Toho University 6-11-1 Omorinishi, Ota-ku, Tokyo, 143-8541 Japan
| | - Yuzuru Sato
- Department of Gastroenterology, Kanto Rosai Hospital 1-1 Kizukisumiyoshi-cho, Nakahara-ku, Kawasaki, Kanagawa, 211-8510 Japan
| | - Yoshinori Igarashi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine (Omori), School of Medicine, Faculty of Medicine, Toho University 6-11-1 Omorinishi, Ota-ku, Tokyo, 143-8541 Japan
| |
Collapse
|
36
|
Fan G, Wei X, Xu X. Is the era of sorafenib over? A review of the literature. Ther Adv Med Oncol 2020; 12:1758835920927602. [PMID: 32518599 PMCID: PMC7252361 DOI: 10.1177/1758835920927602] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 04/27/2020] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most severe diseases worldwide. For the different stages of HCC, there are different clinical treatment strategies, such as surgical therapy for the early stage, and transarterial chemoembolization (TACE) and selective internal radiation therapy (SIRT) for intermediate-stage disease. Systemic treatment, which uses mainly targeted drugs, is the standard therapy against advanced HCC. Sorafenib is an important first-line therapy for advanced HCC. As a classically effective drug, sorafenib can increase overall survival markedly. However, it still has room for improvement because of the heterogeneity of HCC and acquired resistance. Scientists have reported the acquired sorafenib resistance is associated with the anomalous expression of certain genes, most of which are also related with HCC onset and development. Combining sorafenib with inhibitors targeting these genes may be an effective treatment. Combined treatment may not only overcome drug resistance, but also inhibit the expression of carcinoma-related genes. This review focuses on the current status of sorafenib in advanced HCC, summarizes the inhibitors that can combine with sorafenib in the treatment against HCC, and provides the rationale for clinical trials of sorafenib in combination with other inhibitors in HCC. The era of sorafenib in the treatment of HCC is far from over, as long as we find better methods of medication.
Collapse
Affiliation(s)
- Guanghan Fan
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine; NHC Key Laboratory of Combined Multi-organ Transplantation; Key Laboratory of the diagnosis and treatment of organ Transplantation, CAMS; Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
| | - Xuyong Wei
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine; NHC Key Laboratory of Combined Multi-organ Transplantation; Key Laboratory of the diagnosis and treatment of organ Transplantation, CAMS; Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine; NHC Key Laboratory of Combined Multi-organ Transplantation; Key Laboratory of the diagnosis and treatment of organ Transplantation, CAMS; Key Laboratory of Organ Transplantation, Zhejiang Province, 79 QingChun Road, Hangzhou, 310003, China
| |
Collapse
|
37
|
Non-Coding RNAs: Regulating Disease Progression and Therapy Resistance in Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12051243. [PMID: 32429062 PMCID: PMC7281199 DOI: 10.3390/cancers12051243] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the primary liver cancer arising from hepatocytes, is a universal health problem and one of the most common malignant tumors. Surgery followed by chemotherapy as well as tyrosine kinase inhibitors (TKIs), such as sorafenib, are primary treatment procedures for HCC, but recurrence of disease because of therapy resistance results in high mortality. It is necessary to identify novel regulators of HCC for developing effective targeted therapies that can significantly interfere with progression of the disease process. Non-coding RNAs (ncRNAs) are an abundant group of versatile RNA transcripts that do not translate into proteins, rather serve as potentially functional RNAs. The role of ncRNAs in regulating diverse aspects of the carcinogenesis process are gradually being elucidated. Recent advances in RNA sequencing technology have identified a plethora of ncRNAs regulating all aspects of hepatocarcinogenesis process and serving as potential prognostic or diagnostic biomarkers. The present review provides a comprehensive description of the biological roles of ncRNAs in disease process and therapy resistance, and potential clinical application of these ncRNAs in HCC.
Collapse
|
38
|
Abstract
Abdominal tumors (AT) in children account for approximately 17% of all pediatric solid tumor cases, and frequently exhibit embryonal histological features that differentiate them from adult cancers. Current molecular approaches have greatly improved the understanding of the distinctive pathology of each tumor type and enabled the characterization of novel tumor biomarkers. As seen in abdominal adult tumors, microRNAs (miRNAs) have been increasingly implicated in either the initiation or progression of childhood cancer. Moreover, besides predicting patient prognosis, they represent valuable diagnostic tools that may also assist the surveillance of tumor behavior and treatment response, as well as the identification of the primary metastatic sites. Thus, the present study was undertaken to compile up-to-date information regarding the role of dysregulated miRNAs in the most common histological variants of AT, including neuroblastoma, nephroblastoma, hepatoblastoma, hepatocarcinoma, and adrenal tumors. Additionally, the clinical implications of dysregulated miRNAs as potential diagnostic tools or indicators of prognosis were evaluated.
Collapse
|
39
|
Peng X, Gao H, Xu R, Wang H, Mei J, Liu C. The interplay between HIF-1α and noncoding RNAs in cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:27. [PMID: 32014012 PMCID: PMC6998277 DOI: 10.1186/s13046-020-1535-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/27/2020] [Indexed: 12/19/2022]
Abstract
Hypoxia is a classic characteristic of the tumor microenvironment with a significant impact on cancer progression and therapeutic response. Hypoxia-inducible factor-1 alpha (HIF-1α), the most important transcriptional regulator in the response to hypoxia, has been demonstrated to significantly modulate hypoxic gene expression and signaling transduction networks. In past few decades, growing numbers of studies have revealed the importance of noncoding RNAs (ncRNAs) in hypoxic tumor regions. These hypoxia-responsive ncRNAs (HRNs) play pivotal roles in regulating hypoxic gene expression at the transcriptional, posttranscriptional, translational and posttranslational levels. In addition, as a significant gene expression regulator, ncRNAs exhibit promising roles in regulating HIF-1α expression at multiple levels. In this review, we briefly elucidate the reciprocal regulation between HIF-1α and ncRNAs, as well as their effect on cancer cell behaviors. We also try to summarize the complex feedback loop existing between these two components. Moreover, we evaluated the biomarker potential of HRNs for the diagnosis and prognosis of cancer, as well as the potential clinical utility of shared regulatory mechanisms between HIF-1α and ncRNAs in cancer treatment, providing novel insights into tumorigenicity, which may lead to innovative clinical applications.
Collapse
Affiliation(s)
- Xiafeng Peng
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, China.,The First Clinical Medicine School, Nanjing Medical University, Nanjing, 211166, China
| | - Han Gao
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Rui Xu
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Huiyu Wang
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, China
| | - Jie Mei
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, China.
| | - Chaoying Liu
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, China.
| |
Collapse
|
40
|
Qian W, Huang T, Feng W. Circular RNA HIPK3 Promotes EMT of Cervical Cancer Through Sponging miR-338-3p to Up-Regulate HIF-1α. Cancer Manag Res 2020; 12:177-187. [PMID: 32021434 PMCID: PMC6957911 DOI: 10.2147/cmar.s232235] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/12/2019] [Indexed: 12/24/2022] Open
Abstract
Background Cervical cancer (CC) is the 4th most common malignancy and cancer-related fatality in women worldwide. Circular RNA is a newly recognized noncoding RNA form. More reports have confirmed their important regulatory functions in diverse physiological and cancer processes. However, the function and mechanisms of circ-HIPK3 in CC remain unknown. Methods circ-HIPK3 expression status was verified between 45 paired CC and normal adjacent tissues from 45 CC patients, also the 6 CC cell lines and a normal human cervical epithelial End1/E6E7 cell line by qRT-PCR. Effects of circ-HIPK3 silence on CC cell phenotypes were estimated. Circular RNA interactome was applied to forecast binding site between circ-HIPK3 and miRNAs. Pearson correlation analysis was used to confirm the relationship between genes. Point mutation, RNA pull-down, luciferase assay and rescue experiments were applied for molecular mechanism exploration. Results circ-HIPK3 expression was significantly elevated in CC cells and tissues. circ-HIPK3 silence repressed growth and metastasis, while induced apoptosis in CC cells. circ-HIPK3 sponged miRNA-338-3p (miR-338-3p); miR-338-3p to up-regulate hypoxia-inducible factor-1α (HIF-1α) and CC progress. MiR-338-3p silence or HIF-1α over-expression rescued circ-HIPK3 knockdown caused inhibition of CC malignant characteristics. Conclusion circ-HIPK3 acts as a competing endogenous RNA of miR-338-3p to promote cell growth and metastasis in CC, via regulating HIF-1α mediated EMT. Therefore, targeting circ-HIPK3/miR-338-3p/HIF-1α axis may be a novel therapeutic strategy for CC.
Collapse
Affiliation(s)
- Weiwei Qian
- Department of Gynecology, The First People's Hospital of Lianyungang, Lianyungang 222061, People's Republic of China.,Department of Gynecology, Lianyungang Hospital Affiliated to Xuzhou Medical University, Lianyungang 222061, People's Republic of China
| | - Tingting Huang
- Department of Gynecology, The First People's Hospital of Lianyungang, Lianyungang 222061, People's Republic of China.,Department of Gynecology, Lianyungang Hospital Affiliated to Xuzhou Medical University, Lianyungang 222061, People's Republic of China
| | - Wen Feng
- Department of Gynecology, The First People's Hospital of Lianyungang, Lianyungang 222061, People's Republic of China.,Department of Gynecology, Lianyungang Hospital Affiliated to Xuzhou Medical University, Lianyungang 222061, People's Republic of China
| |
Collapse
|
41
|
Ziogas IA, Sioutas G, Mylonas KS, Tsoulfas G. Role of MicroRNA in the Diagnosis and Management of Hepatocellular Carcinoma. Microrna 2020; 9:25-40. [PMID: 31218966 DOI: 10.2174/2211536608666190619155406] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/11/2019] [Accepted: 05/06/2019] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Hepatocellular Carcinoma (HCC) is one of the most common malignant tumors in the world and comes third in cancer-induced mortality. The need for improved and more specific diagnostic methods that can detect early-stage disease is immense, as it is amenable to curative modalities, while advanced HCC is associated with low survival rates. microRNA (miRNA) expression is deregulated in HCC and this can be implemented both diagnostically and therapeutically. OBJECTIVE To provide a concise review on the role of miRNA in diagnosis, prognosis, and treatment of HCC. METHODS We conducted a comprehensive review of the PubMed bibliographic database. RESULTS Multiple miRNAs are involved in the pathogenesis of HCC. Measurement of the levels of these miRNAs either in tumor tissue or in the blood constitutes a promising diagnostic, as well as prognostic tool. OncomiRs are miRNAs that promote tumorigenesis, thus inhibiting them by administering antagomiRs is a promising treatment option. Moreover, replacement of the depleted miRNAs is another potential therapeutic approach for HCC. Modification of miRNA levels may also regulate sensitivity to chemotherapeutic agents. CONCLUSION miRNA play a pivotal role in HCC pathogenesis and once the underlying mechanisms are elucidated, they will become part of everyday clinical practice against HCC.
Collapse
Affiliation(s)
- Ioannis A Ziogas
- Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Surgery Working Group, Society of Junior Doctors, Athens, Greece
| | - Georgios Sioutas
- Surgery Working Group, Society of Junior Doctors, Athens, Greece
- Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Konstantinos S Mylonas
- Surgery Working Group, Society of Junior Doctors, Athens, Greece
- Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Tsoulfas
- 1st Department of Surgery, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
42
|
Liu G, Guo W, Rao M, Qin J, Hu F, Li K. circRNA hsa_circ_104566 Sponged miR-338-3p to Promote Hepatocellular Carcinoma Progression. Cell Transplant 2020; 29:963689720963948. [PMID: 33028110 PMCID: PMC7784580 DOI: 10.1177/0963689720963948] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/17/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022] Open
Abstract
Circular RNAs (circRNAs) could sponge micro-RNAs (miRNAs) to regulate tumor progression of hepatocellular carcinoma (HCC). Hsa_circ_104566 contributes to papillary thyroid carcinoma progression. However, the tumorigenic mechanism of hsa_circ_104566 on HCC remains enigmatic. The role of hsa_circ_104566 on HCC was therefore evaluated in this study. First, the high expression of hsa_circ_104566 was found in HCC tissues, which was significantly associated with poor prognosis in HCC patients. Second, Hsa_circ_104566 promoted HCC progression by decreasing apoptosis and E-cadherin, while increasing cell viability, proliferation, migration, invasion, and N-cadherin. On the other hand, HCC progression was suppressed by knockdown of hsa_circ_104566. Hsa_circ_104566 could target miR-338-3p, and its expression was negatively correlated with miR-338-3p in HCC patients. Moreover, miR-338-3p suppressed protein expression of Forkhead box protein 1 (FOXP1) and had a negative correlation with FOXP1 in HCC patients. Functional assay further indicated that the promotion of HCC progression by hsa_circ_104566 was reversed by miR-338-3p, and miR-338-3p inhibitor could counteract the effect of hsa_circ_104566 knockdown on the suppression of HCC progression. In vivo assay indicated that hsa_circ_104566 knockdown suppressed HCC tumor growth and metastasis. In conclusion, hsa_circ_104566 sponged miR-338-3p to promote HCC progression, providing a potential therapeutic target for cancer intervention.
Collapse
Affiliation(s)
- Guangming Liu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun City, Jilin Province, China
| | - Wei Guo
- Department of Hematology, The First Hospital of Jilin University, Changchun City, Jilin Province, China
| | - Min Rao
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun City, Jilin Province, China
| | - Junjie Qin
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun City, Jilin Province, China
| | - Feng Hu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun City, Jilin Province, China
| | - Ke Li
- Department of General Surgery, Chongqing Traditional Chinese Medicine Hospital, Chongqing City, China
| |
Collapse
|
43
|
Méndez-Blanco C, Fondevila F, Fernández-Palanca P, García-Palomo A, van Pelt J, Verslype C, González-Gallego J, Mauriz JL. Stabilization of Hypoxia-Inducible Factors and BNIP3 Promoter Methylation Contribute to Acquired Sorafenib Resistance in Human Hepatocarcinoma Cells. Cancers (Basel) 2019; 11:E1984. [PMID: 31835431 PMCID: PMC6966438 DOI: 10.3390/cancers11121984] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/27/2019] [Accepted: 12/06/2019] [Indexed: 01/19/2023] Open
Abstract
Despite sorafenib effectiveness against advanced hepatocarcinoma (HCC), long-term exposure to antiangiogenic drugs leads to hypoxic microenvironment, a key contributor to chemoresistance acquisition. We aimed to study the role of hypoxia in the development of sorafenib resistance in a human HCC in vitro model employing the HCC line HepG2 and two variants with acquired sorafenib resistance, HepG2S1 and HepG2S3, and CoCl2 as hypoximimetic. Resistant cells exhibited a faster proliferative rate and hypoxia adaptive mechanisms, linked to the increased protein levels and nuclear translocation of hypoxia-inducible factors (HIFs). HIF-1α and HIF-2α overexpression was detected even under normoxia through a deregulation of its degradation mechanisms. Proapoptotic markers expression and subG1 population decreased significantly in HepG2S1 and HepG2S3, suggesting evasion of sorafenib-mediated cell death. HIF-1α and HIF-2α knockdown diminished resistant cells viability, relating HIFs overexpression with its prosurvival ability. Additionally, epigenetic silencing of Bcl-2 interacting protein 3 (BNIP3) was observed in sorafenib resistant cells under hypoxia. Demethylation of BNIP3 promoter, but not histone acetylation, restored BNIP3 expression, driving resistant cells' death. Altogether, our results highlight the involvement of HIFs overexpression and BNIP3 methylation-dependent knockdown in the development of sorafenib resistance in HCC. Targeting both prosurvival mechanisms could overcome chemoresistance and improve future therapeutic approaches.
Collapse
Affiliation(s)
- Carolina Méndez-Blanco
- Institute of Biomedicine (IBIOMED), University of León, Campus of Vegazana s/n, 24071 León, Spain; (C.M.-B.); (F.F.); (P.F.-P.); (J.G.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. de Monforte de Lemos, 5, 28029 Madrid, Spain
| | - Flavia Fondevila
- Institute of Biomedicine (IBIOMED), University of León, Campus of Vegazana s/n, 24071 León, Spain; (C.M.-B.); (F.F.); (P.F.-P.); (J.G.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. de Monforte de Lemos, 5, 28029 Madrid, Spain
| | - Paula Fernández-Palanca
- Institute of Biomedicine (IBIOMED), University of León, Campus of Vegazana s/n, 24071 León, Spain; (C.M.-B.); (F.F.); (P.F.-P.); (J.G.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. de Monforte de Lemos, 5, 28029 Madrid, Spain
| | - Andrés García-Palomo
- Service of Oncology, Complejo Asistencial Universitario de León, Calle Altos de Nava, s/n, 24001 León, Spain;
| | - Jos van Pelt
- Laboratory of Clinical Digestive Oncology, Department of Oncology, KU Leuven and University Hospitals Leuven and Leuven Cancer Institute (LKI), 3000 Leuven, Belgium; (J.v.P.)
| | - Chris Verslype
- Laboratory of Clinical Digestive Oncology, Department of Oncology, KU Leuven and University Hospitals Leuven and Leuven Cancer Institute (LKI), 3000 Leuven, Belgium; (J.v.P.)
| | - Javier González-Gallego
- Institute of Biomedicine (IBIOMED), University of León, Campus of Vegazana s/n, 24071 León, Spain; (C.M.-B.); (F.F.); (P.F.-P.); (J.G.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. de Monforte de Lemos, 5, 28029 Madrid, Spain
| | - José L. Mauriz
- Institute of Biomedicine (IBIOMED), University of León, Campus of Vegazana s/n, 24071 León, Spain; (C.M.-B.); (F.F.); (P.F.-P.); (J.G.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. de Monforte de Lemos, 5, 28029 Madrid, Spain
| |
Collapse
|
44
|
MicroRNAs in Animal Models of HCC. Cancers (Basel) 2019; 11:cancers11121906. [PMID: 31805631 PMCID: PMC6966618 DOI: 10.3390/cancers11121906] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related mortality. Molecular heterogeneity and absence of biomarkers for patient allocation to the best therapeutic option contribute to poor prognosis of advanced stages. Aberrant microRNA (miRNA) expression is associated with HCC development and progression and influences drug resistance. Therefore, miRNAs have been assayed as putative biomarkers and therapeutic targets. miRNA-based therapeutic approaches demonstrated safety profiles and antitumor efficacy in HCC animal models; nevertheless, caution should be used when transferring preclinical findings to the clinics, due to possible molecular inconsistency between animal models and the heterogeneous pattern of the human disease. In this context, models with defined genetic and molecular backgrounds might help to identify novel therapeutic options for specific HCC subgroups. In this review, we describe rodent models of HCC, emphasizing their representativeness with the human pathology and their usefulness as preclinical tools for assessing miRNA-based therapeutic strategies.
Collapse
|
45
|
Lai Y, Feng B, Abudoureyimu M, Zhi Y, Zhou H, Wang T, Chu X, Chen P, Wang R. Non-coding RNAs: Emerging Regulators of Sorafenib Resistance in Hepatocellular Carcinoma. Front Oncol 2019; 9:1156. [PMID: 31750247 PMCID: PMC6848262 DOI: 10.3389/fonc.2019.01156] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/16/2019] [Indexed: 12/24/2022] Open
Abstract
As the first oral multi-target anti-tumor drug proved for the treatment of patients with advanced liver cancer in 2007, sorafenib has changed the landscape of advanced hepatocellular carcinoma (HCC) treatment. However, drug resistance largely hinders its clinical application. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), and long non-coding (lncRNAs), have recently been demonstrated playing critical roles in a variety of cancers including HCC, while the mechanisms of ncRNAs in HCC sorafenib resistance have not been extensively characterized yet. Herein, we summarize the mechanisms of recently reported ncRNAs involved in sorafenib resistance and discuss the potential strategies for their application in the battle against HCC.
Collapse
Affiliation(s)
- Yongting Lai
- Department of Medical Oncology, Nanjing School of Clinical Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Bing Feng
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Mubalake Abudoureyimu
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Yingru Zhi
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Hao Zhou
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Ting Wang
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Xiaoyuan Chu
- Department of Medical Oncology, Nanjing School of Clinical Medicine, Jinling Hospital, Southern Medical University, Nanjing, China.,Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Ping Chen
- Department of Oncology, First People's Hospital of Yancheng, Fourth Affiliated Hospital of Nantong University, Yancheng, China
| | - Rui Wang
- Department of Medical Oncology, Nanjing School of Clinical Medicine, Jinling Hospital, Southern Medical University, Nanjing, China.,Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| |
Collapse
|
46
|
Liu J, Li W, Zhang J, Ma Z, Wu X, Tang L. Identification of key genes and long non-coding RNA associated ceRNA networks in hepatocellular carcinoma. PeerJ 2019; 7:e8021. [PMID: 31695969 PMCID: PMC6827457 DOI: 10.7717/peerj.8021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide. Although multiple efforts have been made to understand the development of HCC, morbidity, and mortality rates remain high. In this study, we aimed to discover the mRNAs and long non-coding RNAs (lncRNAs) that contribute to the progression of HCC. We constructed a lncRNA-related competitive endogenous RNA (ceRNA) network to elucidate the molecular regulatory mechanism underlying HCC. METHODS A microarray dataset (GSE54238) containing information about both mRNAs and lncRNAs was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) and lncRNAs (DElncRNAs) in tumor tissues and non-cancerous tissues were identified using the limma package of the R software. The miRNAs that are targeted by DElncRNAs were predicted using miRcode, while the target mRNAs of miRNAs were retrieved from miRDB, miRTarBas, and TargetScan. Functional annotation and pathway enrichment of DEGs were performed using the EnrichNet website. We constructed a protein-protein interaction (PPI) network of DEGs using STRING, and identified the hub genes using Cytoscape. Survival analysis of the hub genes and DElncRNAs was performed using the gene expression profiling interactive analysis database. The expression of molecules with prognostic values was validated on the UALCAN database. The hepatic expression of hub genes was examined using the Human Protein Atlas. The hub genes and DElncRNAs with prognostic values as well as the predictive miRNAs were selected to construct the ceRNA networks. RESULTS We found that 10 hub genes (KPNA2, MCM7, CKS2, KIF23, HMGB2, ZWINT, E2F1, MCM4, H2AFX, and EZH2) and four lncRNAs (FAM182B, SNHG6, SNHG1, and SNHG3) with prognostic values were overexpressed in the hepatic tumor samples. We also constructed a network containing 10 lncRNA-miRNA-mRNA pathways, which might be responsible for regulating the biological mechanisms underlying HCC. CONCLUSION We found that the 10 significantly overexpressed hub genes and four lncRNAs were negatively correlated with the prognosis of HCC. Further, we suggest that lncRNA SNHG1 and the SNHG3-related ceRNAs can be potential research targets for exploring the molecular mechanisms of HCC.
Collapse
Affiliation(s)
- Jun Liu
- Department of Clinical Laboratory, Yue Bei People’s Hospital, Shaoguan, Guangdong, China
- Morning Star Academic Cooperation, Shanghai, China
| | - Wenli Li
- Reproductive Medicine Center, Yue Bei People’s Hospital, Shaoguan, Guangdong, China
| | - Jian Zhang
- Department of Clinical Laboratory, Yue Bei People’s Hospital, Shaoguan, Guangdong, China
| | - Zhanzhong Ma
- Department of Clinical Laboratory, Yue Bei People’s Hospital, Shaoguan, Guangdong, China
| | - Xiaoyan Wu
- Community Healthcare Center, Shanghai, Shanghai, China
| | - Lirui Tang
- Morning Star Academic Cooperation, Shanghai, China
- Shanghai JiaoTong University School of Medicine, Shanghai Ninth People’s Hospital, Shanghai, China
| |
Collapse
|
47
|
Wei L, Wang X, Lv L, Liu J, Xing H, Song Y, Xie M, Lei T, Zhang N, Yang M. The emerging role of microRNAs and long noncoding RNAs in drug resistance of hepatocellular carcinoma. Mol Cancer 2019; 18:147. [PMID: 31651347 PMCID: PMC6814027 DOI: 10.1186/s12943-019-1086-z] [Citation(s) in RCA: 245] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/04/2019] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common malignancy worldwide and the second most lethal human cancer. A portion of patients with advanced HCC can significantly benefit from treatments with sorafenib, adriamycin, 5-fluorouracil and platinum drugs. However, most HCC patients eventually develop drug resistance, resulting in a poor prognosis. The mechanisms involved in HCC drug resistance are complex and inconclusive. Human transcripts without protein-coding potential are known as noncoding RNAs (ncRNAs), including microRNAs (miRNAs), small nucleolar RNAs (snoRNAs), long noncoding RNAs (lncRNAs) and circular RNA (circRNA). Accumulated evidences demonstrate that several deregulated miRNAs and lncRNAs are important regulators in the development of HCC drug resistance which elucidates their potential clinical implications. In this review, we summarized the detailed mechanisms by which miRNAs and lncRNAs affect HCC drug resistance. Multiple tumor-specific miRNAs and lncRNAs may serve as novel therapeutic targets and prognostic biomarkers for HCC.
Collapse
Affiliation(s)
- Ling Wei
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Xingwu Wang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Liyan Lv
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Jibing Liu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China.,Department of Intervention Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Huaixin Xing
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Yemei Song
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Mengyu Xie
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Tianshui Lei
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Nasha Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China.
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China.
| |
Collapse
|
48
|
Pratama MY, Pascut D, Massi MN, Tiribelli C. The role of microRNA in the resistance to treatment of hepatocellular carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:577. [PMID: 31807558 DOI: 10.21037/atm.2019.09.142] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is the second most common cause of cancer-related death with a limited efficacy of treatment for intermediate and advanced stages of the disease. Several therapeutic approaches such as trans-arterial chemoembolization (TACE) with anthracyclines, cisplatin and multikinase inhibitor sorafenib have been appealing choices of treatments yet failed to reach a satisfactory outcome mainly due to the numerous mechanisms that influence patient's response. MicroRNAs (miRNAs) are key regulators of many intracellular processes related to drug resistance. This phenomenon has been linked to the modulation of several complex pathways, ranging from the loss of ability of drug accumulation, protective mechanism of autophagy, adaptive mechanism of cancer cells towards the drugs-induced environment, decrease DNA damage and suppression of downstream events that transduce its signal into apoptosis. We summarize the recent findings on the involvement of miRNAs in various drug resistance-related mechanisms in the development of resistance to anthracyclines, cisplatin and sorafenib therapies. Furthermore, we describe the possible application of miRNAs as circulating biomarkers predicting therapy response in HCC. Thus, the undeniable potential and paramount role of miRNA in drug resistance may eventually lead to improved clinical strategies and outcomes for HCC patients.
Collapse
Affiliation(s)
- Muhammad Yogi Pratama
- Fondazione Italiana Fegato, AREA Science Park Bazovizza, Trieste, Italy.,Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia
| | - Devis Pascut
- Fondazione Italiana Fegato, AREA Science Park Bazovizza, Trieste, Italy
| | | | - Claudio Tiribelli
- Fondazione Italiana Fegato, AREA Science Park Bazovizza, Trieste, Italy
| |
Collapse
|
49
|
Ji D, Hu G, Zhang X, Yu T, Yang J. Long non-coding RNA DSCAM-AS1 accelerates the progression of hepatocellular carcinoma via sponging miR-338-3p. Am J Transl Res 2019; 11:4290-4302. [PMID: 31396335 PMCID: PMC6684899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 06/11/2019] [Indexed: 06/10/2023]
Abstract
Aberrant expression of long non-coding RNA DSCAM-AS1 (Down Syndrome Cell Adhesion Molecule antisense) has been observed in several cancers. However, the expression status, biological function and underling mechanism of DSCAM-AS1 in hepatocellular carcinoma (HCC) remain unclear. The expression of DSCAM-AS1 was detected in HCC tissues and serum from both HCC patients and healthy controls. MTS, wound healing and transwell invasion assays were used to examine the effects of DSCAM-AS1 on cell proliferation, migration, and invasion in HCC cells, respectively. MicroRNAs (miRNAs) targeted DSCAM-AS1 was predicated by Starbase2.0 and identified using luciferase reporter and RNA immunoprecipitation assays. The xenograft mice were established to examine the effect DSCAM-AS1 on tumor growth in vivo. We found that DSCAM-AS1 was up-regulated in HCC tissues relative to adjacent non-tumor tissues. Serum levels of DSCAM-AS1 were higher in HCC patients than that in healthy controls. Increased DSCAM-AS1 was associated with poor prognosis. Knockdown of DSCAM-AS1 significantly inhibited HCC cell proliferation, migration and invasion. Moreover, miR-338-3p was confirmed as a direct target of DSCAM-AS1 in HCC cells. The miR-338-3p inhibitor could partially reverse the inhibitory effect of DSCAM-AS1 depletion in HCC cells. DSCAM-AS1 positively regulated CyclinD1 and smoothened (SMO) expression (two targets of miR-338-3p) in HCC cells. Moreover, tumor growth was tremendously retarded in nude mice received injection of SMCC-7721 cells transfected with sh-DSCAM-AS1. Taken together, the present work suggested that DSCAM-AS1 functioned as an oncogenic lncRNA that promoted HCC progression by sponging miR-338-3p.
Collapse
Affiliation(s)
- Degang Ji
- Department of Hepatobiliary Pancreatic Surgery, China-Japan Union Hospital of Jilin UniversityChangchun 130033, Jilin, China
| | - Guangrui Hu
- Center of Physical Examination, China-Japan Union Hospital of Jilin UniversityChangchun 130033, Jilin, China
| | - Xuanhe Zhang
- Shihezi University221 North Fourth Road, Shihezi 832000, Xinjiang, China
| | - Tianhua Yu
- Department of Blood Transfusion, China-Japan Union Hospital of Jilin UniversityChangchun 130033, Jilin, China
| | - Jinghui Yang
- Department of Hepatobiliary Pancreatic Surgery, China-Japan Union Hospital of Jilin UniversityChangchun 130033, Jilin, China
| |
Collapse
|
50
|
Chen X, Tan W, Li W, Li W, Zhu S, Zhong J, Shang C, Chen Y. miR-1226-3p Promotes Sorafenib Sensitivity of Hepatocellular Carcinoma via Downregulation of DUSP4 Expression. J Cancer 2019; 10:2745-2753. [PMID: 31258782 PMCID: PMC6584923 DOI: 10.7150/jca.31804] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/25/2019] [Indexed: 12/24/2022] Open
Abstract
Background: Sorafenib appears to increase the survival rate of hepatocellular carcinoma (HCC) patients, but its response rate is seriously limited due to drug resistance. Molecular mechanisms underlying sorafenib resistance are still unknown. Herein, we explored the possible role of miR-1226-3p in sorafenib resistance of HCC. Methods: The miR-1226-3p expression level in HCC cell lines was evaluated by qRT-PCR. Cell viabilities to sorafenib were measured by CCK-8 assay. Cell apoptosis and proliferation were detected by flow cytometry and EdU proliferation assay. A luciferase reporter of DUSP4 3'-UTR was used for validation as a target gene of miR-1226-3p. Finally, the effects of in vivo antitumor efficacy of miR-1226-3p combined with sorafenib were evaluated by HCC tumor xenografts in nude mice. Results: Bioinformatics analysis from Gene Expression Omnibus (GEO) datasets GSE56059 suggested that miR-1226-3p expression was downregulated in HCC patients who showed progressive disease (PD) after sorafenib treatment. SK-HEP-1 cells expressed lower levels of miR-1226-3p than HepG2 cells. We confirmed that SK-HEP-1 cells were more resistant to sorafenib compared to HepG2 cells. In addition, miR-1226-3p mimic increased cell apoptosis of SK-HEP-1 cells, whereas miR-1226-3p inhibitor significantly impaired cell apoptosis of HepG2 cells after sorafenib treatment. Moreover, we validated that miR-1226-3p directly targeted dual specificity phosphatase 4 (DUSP4), and further demonstrated that knockdown of DUSP4 reduced sorafenib resistance by regulating the JNK-Bcl-2 axis. Conclusions: miR-1226-3p promotes sorafenib sensitivity of HCC through downregulation of DUSP4 expression, and targeting miR-1226-3p may be a novel therapeutic strategy for overcoming sorafenib resistance.
Collapse
Affiliation(s)
- Xianqing Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wenliang Tan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wenxin Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wenda Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Sicong Zhu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of SICU, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jinyi Zhong
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Changzhen Shang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yajin Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|