1
|
Zhou J, Liang S, Yin L, Frassetto A, Graham AR, White R, Principe M, Severson M, Palmer T, Naidu S, Jacquinet E, Zimmer M, Finn PF, Martini PGV. Characterization of a novel conditional knockout mouse model to assess efficacy of mRNA therapy in the context of severe OTC deficiency. Mol Ther 2025; 33:1197-1212. [PMID: 39799396 PMCID: PMC11897776 DOI: 10.1016/j.ymthe.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 11/21/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025] Open
Abstract
Ornithine transcarbamylase deficiency (OTCD) is the most common urea-cycle disorder, characterized by hyperammonemia and accompanied by a high unmet patient need. mRNA therapies have been shown to be efficacious in hypomorphic Sparse-fur abnormal skin and hair (Spf-ash) mice, a model of late-onset disease. However, studying the efficacy of ornithine transcarbamylase (OTC) mRNA therapy in traditional knockout mice, a model for severe early-onset OTCD, is hampered by the rapid lethality of the model and poor lipid nanoparticle (LNP) uptake into neonatal mouse liver. We developed a novel tamoxifen-inducible mouse to study the effect of mRNA therapy in the context of complete or near-complete OTC loss in adult animals. Characterization of the model showed that it is highly reproducible, 100% penetrant, and phenocopies hallmarks of human disease, with animals exhibiting decreased body weight, hyperammonemia, and brain edema. Delivery of OTC mRNA increased survival, maintained body weight, delayed the onset of hyperammonemia, and reduced brain edema. Therefore, this model provides a platform to study LNP-mediated mRNA therapies for the treatment of late-onset OTCD.
Collapse
Affiliation(s)
| | - Shi Liang
- Moderna, Inc., Cambridge, MA 02142, USA
| | - Ling Yin
- Moderna, Inc., Cambridge, MA 02142, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Scharre S, Posset R, Garbade SF, Gleich F, Seidl MJ, Druck A, Okun JG, Gropman AL, Nagamani SCS, Hoffmann GF, Kölker S, Zielonka M. Predicting the disease severity in male individuals with ornithine transcarbamylase deficiency. Ann Clin Transl Neurol 2022; 9:1715-1726. [PMID: 36217298 PMCID: PMC9639638 DOI: 10.1002/acn3.51668] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVE Ornithine transcarbamylase deficiency (OTC-D) is an X-linked metabolic disease and the most common urea cycle disorder. Due to high phenotypic heterogeneity, ranging from lethal neonatal hyperammonemic events to moderate symptoms and even asymptomatic individuals, the prediction of the disease course at an early disease stage is very important to individually adjust therapies such as medical treatment or liver transplantation. In this translational study, we developed a severity-adjusted classification system based on in vitro residual enzymatic OTC activity. METHODS Applying a cell-based expression system, residual enzymatic OTC activities of 71 pathogenic OTC variants were spectrophotometrically determined and subsequently correlated with clinical and biochemical outcome parameters of 119 male individuals with OTC-D (mOTC-D) as reported in the UCDC and E-IMD registries. RESULTS Integration of multiple data sources enabled the establishment of a robust disease prediction model for mOTC-D. Residual enzymatic OTC activity not only correlates with age at first symptoms, initial peak plasma ammonium concentration and frequency of metabolic decompensations but also predicts mortality. The critical threshold of 4.3% residual enzymatic activity distinguishes a severe from an attenuated phenotype. INTERPRETATION Residual enzymatic OTC activity reliably predicts the disease severity in mOTC-D and could thus serve as a tool for severity-adjusted evaluation of therapeutic strategies and counselling patients and parents.
Collapse
Affiliation(s)
- Svenja Scharre
- Division of Pediatric Neurology and Metabolic Medicine, Center for Child and Adolescent MedicineUniversity Hospital HeidelbergHeidelbergGermany
| | - Roland Posset
- Division of Pediatric Neurology and Metabolic Medicine, Center for Child and Adolescent MedicineUniversity Hospital HeidelbergHeidelbergGermany
| | - Sven F. Garbade
- Division of Pediatric Neurology and Metabolic Medicine, Center for Child and Adolescent MedicineUniversity Hospital HeidelbergHeidelbergGermany
| | - Florian Gleich
- Division of Pediatric Neurology and Metabolic Medicine, Center for Child and Adolescent MedicineUniversity Hospital HeidelbergHeidelbergGermany
| | - Marie J. Seidl
- Division of Pediatric Neurology and Metabolic Medicine, Center for Child and Adolescent MedicineUniversity Hospital HeidelbergHeidelbergGermany
| | - Ann‐Catrin Druck
- Division of Pediatric Neurology and Metabolic Medicine, Center for Child and Adolescent MedicineUniversity Hospital HeidelbergHeidelbergGermany
| | - Jürgen G. Okun
- Division of Pediatric Neurology and Metabolic Medicine, Center for Child and Adolescent MedicineUniversity Hospital HeidelbergHeidelbergGermany
| | - Andrea L. Gropman
- Division of Neurodevelopmental Pediatrics and Neurogenetics, Children's National Health System and The George Washington School of MedicineWashingtonDistrict of ColumbiaUSA
| | - Sandesh C. S. Nagamani
- Department of Molecular and Human GeneticsBaylor College of Medicine and Texas Children's HospitalHoustonTexasUSA
| | - Georg F. Hoffmann
- Division of Pediatric Neurology and Metabolic Medicine, Center for Child and Adolescent MedicineUniversity Hospital HeidelbergHeidelbergGermany
| | - Stefan Kölker
- Division of Pediatric Neurology and Metabolic Medicine, Center for Child and Adolescent MedicineUniversity Hospital HeidelbergHeidelbergGermany
| | - Matthias Zielonka
- Division of Pediatric Neurology and Metabolic Medicine, Center for Child and Adolescent MedicineUniversity Hospital HeidelbergHeidelbergGermany
- Heidelberg Research Center for Molecular Medicine (HRCMM)HeidelbergGermany
| |
Collapse
|
3
|
Hsu FY, Liou JY, Tang FY, Sou NL, Peng JH, Chiang EPI. Ketogenic Diet Consumption Inhibited Mitochondrial One-Carbon Metabolism. Int J Mol Sci 2022; 23:ijms23073650. [PMID: 35409009 PMCID: PMC8998878 DOI: 10.3390/ijms23073650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 11/17/2022] Open
Abstract
Given the popularity of ketogenic diets, their potential long-term consequences deserve to be more carefully monitored. Mitochondrially derived formate has a critical role in mammalian one-carbon (1C) metabolism and development. The glycine cleavage system (GCS) accounts for another substantial source for mitochondrially derived 1C units. Objective: We investigated how the ketogenic state modulates mitochondrial formate generation and partitioning of 1C metabolic fluxes. Design: HepG2 cells treated with physiological doses (1 mM and 10 mM) of β-hydroxybutyrate (βHB) were utilized as the in vitro ketogenic model. Eight-week male C57BL/6JNarl mice received either a medium-chain fatty-acid-enriched ketogenic diet (MCT-KD) or a control diet AIN 93M for 8 weeks. Stable isotopic labeling experiments were conducted. Results and Conclusions: MCT-KD is effective in weight and fat loss. Deoxythymidine (dTMP) synthesis from the mitochondrial GCS-derived formate was significantly suppressed by βHB and consumption of MCT-KD. Consistently, plasma formate concentrations, as well as the metabolic fluxes from serine and glycine, were suppressed by MCT-KD. MCT-KD also decreased the fractional contribution of mitochondrially derived formate in methionine synthesis from serine. With the worldwide application, people and medical professionals should be more aware of the potential metabolic perturbations when practicing a long-term ketogenic diet.
Collapse
Affiliation(s)
- Fan-Yu Hsu
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; (F.-Y.H.); (J.-Y.L.); (N.-L.S.); (J.-H.P.)
| | - Jia-Ying Liou
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; (F.-Y.H.); (J.-Y.L.); (N.-L.S.); (J.-H.P.)
| | - Feng-Yao Tang
- Biomedical Science Laboratory, Department of Nutrition, China Medical University, Taichung 402, Taiwan;
| | - Nga-Lai Sou
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; (F.-Y.H.); (J.-Y.L.); (N.-L.S.); (J.-H.P.)
- Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung 402, Taiwan
| | - Jian-Hau Peng
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; (F.-Y.H.); (J.-Y.L.); (N.-L.S.); (J.-H.P.)
- Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung 402, Taiwan
- Ph.D. Program in Microbial Genomics, National Chung Hsing University, Taichung 402, Taiwan
| | - En-Pei Isabel Chiang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; (F.-Y.H.); (J.-Y.L.); (N.-L.S.); (J.-H.P.)
- Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung 402, Taiwan
- Ph.D. Program in Microbial Genomics, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: ; Tel.: +886-4-22853049
| |
Collapse
|
4
|
Apoptotic cell-derived metabolites in efferocytosis-mediated resolution of inflammation. Cytokine Growth Factor Rev 2021; 62:42-53. [PMID: 34742632 DOI: 10.1016/j.cytogfr.2021.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 10/13/2021] [Indexed: 12/21/2022]
Abstract
The resolution of inflammation, as part of standard host defense mechanism, is the process to guarantee timely termination of inflammatory responses and eventual restoration of tissue homeostasis . It is mainly achieved via efferocytosis, during which pro-resolving macrophages clear apoptotic neutrophils at the inflammatory site. Unfortunately, impaired resolution can be the leading cause of chronic inflammatory disorders and some autoimmune diseases. Existing studies have provided relatively comprehensive understandings about the recognition and uptake of apoptotic neutrophils by macrophages during early phases of efferocytosis. However, lack of information concerns macrophage metabolism of apoptotic cell-derived metabolites after being released from phagolysosomes or the relationship between such metabolism and efferocytosis. Notwithstanding, three recent studies have revealed macrophage metabolism of cholesterol, fatty acids and arginine, as well as their respective functions in the context of inflammation-resolution. This review provides an overview of the resolution of inflammation, efferocytosis and the key players involved, followed by a focus on the metabolism of apoptotic cell-derived metabolites within efferocytes. Hypotheses of more potential apoptotic cell-derived metabolites and their possible roles in the resolution are also formulated. Understanding the effect of these metabolites further advances the concept that apoptotic cells act as active players to regulate resolution, and also suggests novel therapeutic strategies for diseases driven by defective resolution and even cancer that may be treated through enhanced efferocytosis.
Collapse
|
5
|
Sugahara G, Yamasaki C, Yanagi A, Furukawa S, Ogawa Y, Fukuda A, Enosawa S, Umezawa A, Ishida Y, Tateno C. Humanized liver mouse model with transplanted human hepatocytes from patients with ornithine transcarbamylase deficiency. J Inherit Metab Dis 2021; 44:618-628. [PMID: 33336822 PMCID: PMC8247293 DOI: 10.1002/jimd.12347] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 12/20/2022]
Abstract
Ornithine transcarbamylase deficiency (OTCD) is a metabolic and genetic disease caused by dysfunction of the hepatocytic urea cycle. To develop new drugs or therapies for OTCD, it is ideal to use models that are more closely related to human metabolism and pathology. Primary human hepatocytes (HHs) isolated from two patients (a 6-month-old boy and a 5-year-old girl) and a healthy donor were transplanted into host mice (hemi-, hetero-OTCD mice, and control mice, respectively). HHs were isolated from these mice and used for serial transplantation into the next host mouse or for in vitro experiments. Histological, biochemical, and enzyme activity analyses were performed. Cultured HHs were treated with ammonium chloride or therapeutic drugs. Replacement rates exceeded 80% after serial transplantation in both OTCD mice. These highly humanized OTCD mice showed characteristics similar to OTCD patients that included increased blood ammonia levels and urine orotic acid levels enhanced by allopurinol. Hemi-OTCD mice showed defects in OTC expression and significantly low enzymatic activities, while hetero-OTCD mice showed residual OTC expression and activities. A reduction in ammonium metabolism was observed in cultured HHs from OTCD mice, and treatment with the therapeutic drug reduced the ammonia levels in the culture medium. In conclusion, we established in vivo OTC mouse models with hemi- and hetero-patient HHs. HHs isolated from the mice were useful as an in vitro model of OTCD. These OTC models could be a source of valuable patient-derived hepatocytes that would enable large scale and reproducible experiments using the same donor.
Collapse
Affiliation(s)
- Go Sugahara
- Research and Development DepartmentPhoenixBio Co., LtdHigashi‐HiroshimaJapan
| | - Chihiro Yamasaki
- Research and Development DepartmentPhoenixBio Co., LtdHigashi‐HiroshimaJapan
| | - Ami Yanagi
- Research and Development DepartmentPhoenixBio Co., LtdHigashi‐HiroshimaJapan
| | - Suzue Furukawa
- Research and Development DepartmentPhoenixBio Co., LtdHigashi‐HiroshimaJapan
| | - Yuko Ogawa
- Research and Development DepartmentPhoenixBio Co., LtdHigashi‐HiroshimaJapan
| | - Akinari Fukuda
- National Center for Child Health and DevelopmentTokyoJapan
| | - Shin Enosawa
- Division for Advanced Medical SciencesNational Center for Child Health and DevelopmentTokyoJapan
| | - Akihiro Umezawa
- Regenerative MedicineNational Center for Child Health and DevelopmentTokyoJapan
| | - Yuji Ishida
- Research and Development DepartmentPhoenixBio Co., LtdHigashi‐HiroshimaJapan
- Research Center for Hepatology and GastroenterologyHiroshima UniversityHiroshimaJapan
| | - Chise Tateno
- Research and Development DepartmentPhoenixBio Co., LtdHigashi‐HiroshimaJapan
- Research Center for Hepatology and GastroenterologyHiroshima UniversityHiroshimaJapan
| |
Collapse
|
6
|
Yurdagul A, Subramanian M, Wang X, Crown SB, Ilkayeva OR, Darville L, Kolluru GK, Rymond CC, Gerlach BD, Zheng Z, Kuriakose G, Kevil CG, Koomen JM, Cleveland JL, Muoio DM, Tabas I. Macrophage Metabolism of Apoptotic Cell-Derived Arginine Promotes Continual Efferocytosis and Resolution of Injury. Cell Metab 2020; 31:518-533.e10. [PMID: 32004476 PMCID: PMC7173557 DOI: 10.1016/j.cmet.2020.01.001] [Citation(s) in RCA: 292] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/23/2019] [Accepted: 01/06/2020] [Indexed: 01/11/2023]
Abstract
Continual efferocytic clearance of apoptotic cells (ACs) by macrophages prevents necrosis and promotes injury resolution. How continual efferocytosis is promoted is not clear. Here, we show that the process is optimized by linking the metabolism of engulfed cargo from initial efferocytic events to subsequent rounds. We found that continual efferocytosis is enhanced by the metabolism of AC-derived arginine and ornithine to putrescine by macrophage arginase 1 (Arg1) and ornithine decarboxylase (ODC). Putrescine augments HuR-mediated stabilization of the mRNA encoding the GTP-exchange factor Dbl, which activates actin-regulating Rac1 to facilitate subsequent rounds of AC internalization. Inhibition of any step along this pathway after first-AC uptake suppresses second-AC internalization, whereas putrescine addition rescues this defect. Mice lacking myeloid Arg1 or ODC have defects in efferocytosis in vivo and in atherosclerosis regression, while treatment with putrescine promotes atherosclerosis resolution. Thus, macrophage metabolism of AC-derived metabolites allows for optimal continual efferocytosis and resolution of injury.
Collapse
Affiliation(s)
- Arif Yurdagul
- Department of Medicine, Columbia University, New York, NY 10032, USA.
| | - Manikandan Subramanian
- Department of Medicine, Columbia University, New York, NY 10032, USA; CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Xiaobo Wang
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Scott B Crown
- Departments of Medicine and Pharmacology and Cancer Biology, Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University, Durham, NC 27701, USA
| | - Olga R Ilkayeva
- Departments of Medicine and Pharmacology and Cancer Biology, Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University, Durham, NC 27701, USA
| | - Lancia Darville
- Proteomics and Metabolomics Core, Department of Molecular Oncology, and Department of Tumor Biology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Gopi K Kolluru
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, Shreveport, LA 71103, USA
| | | | - Brennan D Gerlach
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Ze Zheng
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - George Kuriakose
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Christopher G Kevil
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, Shreveport, LA 71103, USA
| | - John M Koomen
- Proteomics and Metabolomics Core, Department of Molecular Oncology, and Department of Tumor Biology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - John L Cleveland
- Proteomics and Metabolomics Core, Department of Molecular Oncology, and Department of Tumor Biology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Deborah M Muoio
- Departments of Medicine and Pharmacology and Cancer Biology, Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University, Durham, NC 27701, USA
| | - Ira Tabas
- Department of Medicine, Columbia University, New York, NY 10032, USA; Department of Tumor Biology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA; Department of Physiology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
7
|
Allegri G, Deplazes S, Rimann N, Causton B, Scherer T, Leff JW, Diez-Fernandez C, Klimovskaia A, Fingerhut R, Krijt J, Kožich V, Nuoffer JM, Grisch-Chan HM, Thöny B, Häberle J. Comprehensive characterization of ureagenesis in the spf ash mouse, a model of human ornithine transcarbamylase deficiency, reveals age-dependency of ammonia detoxification. J Inherit Metab Dis 2019; 42:1064-1076. [PMID: 30714172 DOI: 10.1002/jimd.12068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/30/2019] [Indexed: 12/24/2022]
Abstract
The most common ureagenesis defect is X-linked ornithine transcarbamylase (OTC) deficiency which is a main target for novel therapeutic interventions. The spf ash mouse model carries a variant (c.386G>A, p.Arg129His) that is also found in patients. Male spf ash mice have a mild biochemical phenotype with low OTC activity (5%-10% of wild-type), resulting in elevated urinary orotic acid but no hyperammonemia. We recently established a dried blood spot method for in vivo quantification of ureagenesis by Gas chromatography-mass spectrometry (GC-MS) using stable isotopes. Here, we applied this assay to wild-type and spf ash mice to assess ureagenesis at different ages. Unexpectedly, we found an age-dependency with a higher capacity for ammonia detoxification in young mice after weaning. A parallel pattern was observed for carbamoylphosphate synthetase 1 and OTC enzyme expression and activities, which may act as pacemaker of this ammonia detoxification pathway. Moreover, high ureagenesis in younger mice was accompanied by elevated periportal expression of hepatic glutamine synthetase, another main enzyme required for ammonia detoxification. These observations led us to perform a more extensive analysis of the spf ash mouse in comparison to the wild-type, including characterization of the corresponding metabolites, enzyme activities in the liver and plasma and the gut microbiota. In conclusion, the comprehensive enzymatic and metabolic analysis of ureagenesis performed in the presented depth was only possible in animals. Our findings suggest such analyses being essential when using the mouse as a model and revealed age-dependent activity of ammonia detoxification.
Collapse
Affiliation(s)
- Gabriella Allegri
- Division of Metabolism and Children's Research Center (CRC), University Children's Hospital Zurich, Zurich, Switzerland
| | - Sereina Deplazes
- Division of Metabolism and Children's Research Center (CRC), University Children's Hospital Zurich, Zurich, Switzerland
| | - Nicole Rimann
- Division of Metabolism and Children's Research Center (CRC), University Children's Hospital Zurich, Zurich, Switzerland
| | | | - Tanja Scherer
- Division of Metabolism and Children's Research Center (CRC), University Children's Hospital Zurich, Zurich, Switzerland
| | | | - Carmen Diez-Fernandez
- Division of Metabolism and Children's Research Center (CRC), University Children's Hospital Zurich, Zurich, Switzerland
| | - Anna Klimovskaia
- Institute for Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Ralph Fingerhut
- Swiss Newborn Screening Laboratory, University Children's Hospital, Zurich, Switzerland
| | - Jakub Krijt
- Department of Pediatrics and Adolescent Medicine, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Viktor Kožich
- Department of Pediatrics and Adolescent Medicine, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Jean-Marc Nuoffer
- Department of Clinical Chemistry, Inselspital Bern, Bern, Switzerland
| | - Hiu M Grisch-Chan
- Division of Metabolism and Children's Research Center (CRC), University Children's Hospital Zurich, Zurich, Switzerland
| | - Beat Thöny
- Division of Metabolism and Children's Research Center (CRC), University Children's Hospital Zurich, Zurich, Switzerland
| | - Johannes Häberle
- Division of Metabolism and Children's Research Center (CRC), University Children's Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Protein homeostasis is crucial for maintaining cell functions. Citrulline, an endogenous amino acid, is considered as an efficient source of arginine at systemic and cellular level. Accumulating evidence, obtained from citrulline supplementation studies, suggest anabolic properties especially in malnourished rodents and human. Although these studies might suggest a key role for citrulline in protein homeostasis, the supraphysiological concentrations of citrulline do not allow to conclude on a physiological role. This review aimed to assess the role of endogenous citrulline production on protein homeostasis. RECENT FINDINGS According to recent studies, endogenous citrulline, through its regulating effect on nitric oxide production, seems to play a key role in regulating endothelial and immune functions. We can assume that citrulline-dependent endothelial vasodilation could improve organ perfusion and thus amino acid and insulin supply. Furthermore, citrulline regulates immune cells and thus could regulate inflammation and indirectly protein metabolism. SUMMARY Although we have currently no direct evidence of a regulating role of endogenous citrulline production on protein homeostasis, we can hypothesize that physiologically through its role in endothelial and immune function, citrulline could indirectly participate to protein homeostasis.
Collapse
Affiliation(s)
- Antonin Ginguay
- Nutrition Biology Laboratory, EA 4466 PRETRAM, Paris Descartes University, USPC
- Clinical Chemistry Department, Cochin Hospital, Paris Centre University Hospitals, AP-HP, Paris, France
| | - Jean-Pascal De Bandt
- Nutrition Biology Laboratory, EA 4466 PRETRAM, Paris Descartes University, USPC
- Clinical Chemistry Department, Cochin Hospital, Paris Centre University Hospitals, AP-HP, Paris, France
| |
Collapse
|