1
|
Lin Q, Jin L, Peng R. New Progress in Zebrafish Liver Tumor Models: Techniques and Applications in Hepatocellular Carcinoma Research. Int J Mol Sci 2025; 26:780. [PMID: 39859497 PMCID: PMC11765702 DOI: 10.3390/ijms26020780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Liver tumors represent a serious clinical health problem that threatens human life. Previous studies have demonstrated that the pathogenesis of liver tumors is complex and influenced by various factors, highlighting limitations in both basic pathological research and clinical treatment. Traditional research methods often begin with the discovery of phenomena and gradually progress to the development of animal models and human trials. Among these, liver tumor animal models play a critical role in advancing related research. The zebrafish liver closely resembles the human liver in structure, function, and regenerative capacity. Additionally, the high transparency and rapid development of zebrafish embryos and larvae make them ideal model organisms for studying liver tumors. This review systematically summarizes recent methods for constructing zebrafish liver tumor models, including transplantation, transgenesis, induction, and gene knockout. Furthermore, the present paper explores the applications of these models in the study of liver cancer pathogenesis, metastasis, the tumor microenvironment, drug screening, and other related areas. By comparing the advantages and limitations of various models and integrating their distinct characteristics, this review provides insights for developing a novel liver tumor model that better aligns with clinical needs. This approach will offer valuable reference information for further in-depth studies of the pathological mechanisms of liver tumors and the development of new therapeutic drugs or strategies.
Collapse
Affiliation(s)
| | | | - Renyi Peng
- Institute of Life Sciences, Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Q.L.); (L.J.)
| |
Collapse
|
2
|
Xia YQ, Yang Y, Liu YY, Cheng JX, Liu Y, Li CH, Liu PF. DNA Methylation Analysis Reveals Potential Mechanism in Takifugu rubripes Against Cryptocaryon irritans Infection. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:288-305. [PMID: 38446292 DOI: 10.1007/s10126-024-10296-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/02/2024] [Indexed: 03/07/2024]
Abstract
Takifugu rubripes (T. rubripes) is a valuable commercial fish, and Cryptocaryon irritans (C. irritans) has a significant impact on its aquaculture productivity. DNA methylation is one of the earliest discovered ways of gene epigenetic modification and also an important form of modification, as well as an essential type of alteration that regulates gene expression, including immune response. To further explore the anti-infection mechanism of T. rubripes in inhibiting this disease, we determined genome-wide DNA methylation profiles in the gill of T. rubripes using whole-genome bisulfite sequencing (WGBS) and combined with RNA sequence (RNA-seq). A total of 4659 differentially methylated genes (DMGs) in the gene body and 1546 DMGs in the promoter between the infection and control group were identified. And we identified 2501 differentially expressed genes (DEGs), including 1100 upregulated and 1401 downregulated genes. After enrichment analysis, we identified DMGs and DEGs of immune-related pathways including MAPK, Wnt, ErbB, and VEGF signaling pathways, as well as node genes prkcb, myca, tp53, and map2k2a. Based on the RNA-Seq results, we plotted a network graph to demonstrate the relationship between immune pathways and functional related genes, in addition to gene methylation and expression levels. At the same time, we predicted the CpG island and transcription factor of four immune-related key genes prkcb and mapped the gene structure. These unique discoveries could be helpful in the understanding of C. irritans pathogenesis, and the candidate genes screened may serve as optimum methylation-based biomarkers that can be utilized for the correct diagnosis and therapy T. rubripes in the development of the ability to resist C. irritans infection.
Collapse
Affiliation(s)
- Yu-Qing Xia
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 52 Heishijiao Street, Dalian, 116023, People's Republic of China
| | - Yi Yang
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 52 Heishijiao Street, Dalian, 116023, People's Republic of China
- College of Marine Technology and Environment, Dalian Ocean University, 52 Heishijiao Street, Dalian, 116023, People's Republic of China
| | - Yan-Yun Liu
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 52 Heishijiao Street, Dalian, 116023, People's Republic of China
- College of Marine Technology and Environment, Dalian Ocean University, 52 Heishijiao Street, Dalian, 116023, People's Republic of China
| | - Jian-Xin Cheng
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 52 Heishijiao Street, Dalian, 116023, People's Republic of China
- College of Life Science, Liaoning Normal University, Dalian, 116081, People's Republic of China
| | - Ying Liu
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 52 Heishijiao Street, Dalian, 116023, People's Republic of China
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Cheng-Hua Li
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China.
| | - Peng-Fei Liu
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 52 Heishijiao Street, Dalian, 116023, People's Republic of China.
- College of Marine Technology and Environment, Dalian Ocean University, 52 Heishijiao Street, Dalian, 116023, People's Republic of China.
| |
Collapse
|
3
|
Shimizu N, Shiraishi H, Hanada T. Zebrafish as a Useful Model System for Human Liver Disease. Cells 2023; 12:2246. [PMID: 37759472 PMCID: PMC10526867 DOI: 10.3390/cells12182246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Liver diseases represent a significant global health challenge, thereby necessitating extensive research to understand their intricate complexities and to develop effective treatments. In this context, zebrafish (Danio rerio) have emerged as a valuable model organism for studying various aspects of liver disease. The zebrafish liver has striking similarities to the human liver in terms of structure, function, and regenerative capacity. Researchers have successfully induced liver damage in zebrafish using chemical toxins, genetic manipulation, and other methods, thereby allowing the study of disease mechanisms and the progression of liver disease. Zebrafish embryos or larvae, with their transparency and rapid development, provide a unique opportunity for high-throughput drug screening and the identification of potential therapeutics. This review highlights how research on zebrafish has provided valuable insights into the pathological mechanisms of human liver disease.
Collapse
Affiliation(s)
- Nobuyuki Shimizu
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu 879-5593, Oita, Japan;
| | | | - Toshikatsu Hanada
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu 879-5593, Oita, Japan;
| |
Collapse
|
4
|
Li Y, Lee AQ, Lu Z, Sun Y, Lu JW, Ren Z, Zhang N, Liu D, Gong Z. Systematic Characterization of the Disruption of Intestine during Liver Tumor Progression in the xmrk Oncogene Transgenic Zebrafish Model. Cells 2022; 11:cells11111810. [PMID: 35681505 PMCID: PMC9180660 DOI: 10.3390/cells11111810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 01/27/2023] Open
Abstract
The crosstalk between tumors and their local microenvironment has been well studied, whereas the effect of tumors on distant tissues remains understudied. Studying how tumors affect other tissues is important for understanding the systemic effect of tumors and for improving the overall health of cancer patients. In this study, we focused on the changes in the intestine during liver tumor progression, using a previously established liver tumor model through inducible expression of the oncogene xmrk in zebrafish. Progressive disruption of intestinal structure was found in the tumor fish, displaying villus damage, thinning of bowel wall, increase in goblet cell number, decrease in goblet cell size and infiltration of eosinophils, most of which were observed phenotypes of an inflammatory intestine. Intestinal epithelial cell renewal was also disrupted, with decreased cell proliferation and increased cell death. Analysis of intestinal gene expression through RNA-seq suggested deregulation of genes related to intestinal function, epithelial barrier and homeostasis and activation of pathways in inflammation, epithelial mesenchymal transition, extracellular matrix organization, as well as hemostasis. Gene set enrichment analysis showed common gene signatures between the intestine of liver tumor fish and human inflammatory bowel disease, the association of which with cancer has been recently noticed. Overall, this study represented the first systematic characterization of the disruption of intestine under the liver tumor condition and suggested targeting intestinal inflammation as a potential approach for managing cancer cachexia.
Collapse
Affiliation(s)
- Yan Li
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (A.Q.L.); (Z.L.); (Y.S.); (J.-W.L.); (Z.R.); (N.Z.)
- Correspondence: (Y.L.); (Z.G.)
| | - Ai Qi Lee
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (A.Q.L.); (Z.L.); (Y.S.); (J.-W.L.); (Z.R.); (N.Z.)
| | - Zhiyuan Lu
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (A.Q.L.); (Z.L.); (Y.S.); (J.-W.L.); (Z.R.); (N.Z.)
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuxi Sun
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (A.Q.L.); (Z.L.); (Y.S.); (J.-W.L.); (Z.R.); (N.Z.)
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Jeng-Wei Lu
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (A.Q.L.); (Z.L.); (Y.S.); (J.-W.L.); (Z.R.); (N.Z.)
| | - Ziheng Ren
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (A.Q.L.); (Z.L.); (Y.S.); (J.-W.L.); (Z.R.); (N.Z.)
| | - Na Zhang
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (A.Q.L.); (Z.L.); (Y.S.); (J.-W.L.); (Z.R.); (N.Z.)
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Dong Liu
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (A.Q.L.); (Z.L.); (Y.S.); (J.-W.L.); (Z.R.); (N.Z.)
- Correspondence: (Y.L.); (Z.G.)
| |
Collapse
|
5
|
Lee AQ, Li Y, Gong Z. Inducible Liver Cancer Models in Transgenic Zebrafish to Investigate Cancer Biology. Cancers (Basel) 2021; 13:5148. [PMID: 34680297 PMCID: PMC8533791 DOI: 10.3390/cancers13205148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/20/2022] Open
Abstract
Primary liver cancer is one of the most prevalent and deadly cancers, which incidence continues to increase while treatment response remains poor; thus, in-depth understanding of tumour events is necessary to develop more effective therapies. Animal models for liver cancer are powerful tools to reach this goal. Over the past decade, our laboratory has established multiple oncogene transgenic zebrafish lines that can be robustly induced to develop liver cancer. Histological, transcriptomic and molecular analyses validate the use of these transgenic zebrafish as experimental models for liver cancer. In this review, we provide a comprehensive summary of our findings with these inducible zebrafish liver cancer models in tumour initiation, oncogene addiction, tumour microenvironment, gender disparity, cancer cachexia, drug screening and others. Induced oncogene expression causes a rapid change of the tumour microenvironment such as inflammatory responses, increased vascularisation and rapid hepatic growth. In several models, histologically-proven carcinoma can be induced within one week of chemical inducer administration. Interestingly, the induced liver tumours show the ability to regress when the transgenic oncogene is suppressed by the withdrawal of the chemical inducer. Like human liver cancer, there is a strong bias of liver cancer severity in male zebrafish. After long-term tumour progression, liver cancer-bearing zebrafish also show symptoms of cancer cachexia such as muscle-wasting. In addition, the zebrafish models have been used to screen for anti-metastasis drugs as well as to evaluate environmental toxicants in carcinogenesis. These findings demonstrated that these inducible zebrafish liver cancer models provide rapid and convenient experimental tools for further investigation of fundamental cancer biology, with the potential for the discovery of new therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore 119077, Singapore; (A.Q.L.); (Y.L.)
| |
Collapse
|
6
|
Nakayama J, Gong Z. Transgenic zebrafish for modeling hepatocellular carcinoma. MedComm (Beijing) 2020; 1:140-156. [PMID: 34766114 PMCID: PMC8491243 DOI: 10.1002/mco2.29] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
Liver cancer is the third leading cause of cancer‐related deaths throughout the world, and more than 0.6 million people die from liver cancer annually. Therefore, novel therapeutic strategies to eliminate malignant cells from liver cancer patients are urgently needed. Recent advances in high‐throughput genomic technologies have identified de novo candidates for oncogenes and pharmacological targets. However, testing and understanding the mechanism of oncogenic transformation as well as probing the kinetics and therapeutic responses of spontaneous tumors in an intact microenvironment require in vivo examination using genetically modified animal models. The zebrafish (Danio rerio) has attracted increasing attention as a new model for studying cancer biology since the organs in the model are strikingly similar to human organs and the model can be genetically modified in a short time and at a low cost. This review summarizes the current knowledge of epidemiological data and genetic alterations in hepatocellular carcinoma (HCC), zebrafish models of HCC, and potential therapeutic strategies for targeting HCC based on knowledge from the models.
Collapse
Affiliation(s)
- Joji Nakayama
- Department of Biological Sciences National University of Singapore Singapore
| | - Zhiyuan Gong
- Department of Biological Sciences National University of Singapore Singapore
| |
Collapse
|
7
|
Dou X, Tong P, Huang H, Zellmer L, He Y, Jia Q, Zhang D, Peng J, Wang C, Xu N, Liao DJ. Evidence for immortality and autonomy in animal cancer models is often not provided, which causes confusion on key issues of cancer biology. J Cancer 2020; 11:2887-2920. [PMID: 32226506 PMCID: PMC7086263 DOI: 10.7150/jca.41324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 02/08/2020] [Indexed: 11/08/2022] Open
Abstract
Modern research into carcinogenesis has undergone three phases. Surgeons and pathologists started the first phase roughly 250 years ago, establishing morphological traits of tumors for pathologic diagnosis, and setting immortality and autonomy as indispensable criteria for neoplasms. A century ago, medical doctors, biologists and chemists started to enhance "experimental cancer research" by establishing many animal models of chemical-induced carcinogenesis for studies of cellular mechanisms. In this second phase, the two-hit theory and stepwise carcinogenesis of "initiation-promotion" or "initiation-promotion-progression" were established, with an illustrious finding that outgrowths induced in animals depend on the inducers, and thus are not authentically neoplastic, until late stages. The last 40 years are the third incarnation, molecular biologists have gradually dominated the carcinogenesis research fraternity and have established numerous genetically-modified animal models of carcinogenesis. However, evidence has not been provided for immortality and autonomy of the lesions from most of these models. Probably, many lesions had already been collected from animals for analyses of molecular mechanisms of "cancer" before the lesions became autonomous. We herein review the monumental work of many predecessors to reinforce that evidence for immortality and autonomy is essential for confirming a neoplastic nature. We extrapolate that immortality and autonomy are established early during sporadic human carcinogenesis, unlike the late establishment in most animal models. It is imperative to resume many forerunners' work by determining the genetic bases for initiation, promotion and progression, the genetic bases for immortality and autonomy, and which animal models are, in fact, good for identifying such genetic bases.
Collapse
Affiliation(s)
- Xixi Dou
- Shandong Provincial Key Laboratory of Transmucosal and Transdermal Drug Delivery, Shandong Freda Pharmaceutical Group Co., Ltd., Jinan 250101, Shandong Province, P.R. China
| | - Pingzhen Tong
- Department of Pathology, The Second Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, Guizhou Province, P.R. China
| | - Hai Huang
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, P.R. China
| | - Lucas Zellmer
- Masonic Cancer Center, University of Minnesota, 435 E. River Road, Minneapolis, MN 55455, USA
| | - Yan He
- Key Lab of Endemic and Ethnic Diseases of The Ministry of Education of China in Guizhou Medical University, Guiyang, Guizhou Province 550004, P. R. China
| | - Qingwen Jia
- Shandong Provincial Key Laboratory of Transmucosal and Transdermal Drug Delivery, Shandong Freda Pharmaceutical Group Co., Ltd., Jinan 250101, Shandong Province, P.R. China
| | - Daizhou Zhang
- Shandong Provincial Key Laboratory of Transmucosal and Transdermal Drug Delivery, Shandong Freda Pharmaceutical Group Co., Ltd., Jinan 250101, Shandong Province, P.R. China
| | - Jiang Peng
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong Province, P.R. China
| | - Chenguang Wang
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong Province, P.R. China
| | - Ningzhi Xu
- Tianjin LIPOGEN Gene Technology Ltd., #238 Baidi Road, Nankai District, Tianjin 300192, P.R. China
| | - Dezhong Joshua Liao
- Department of Pathology, The Second Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, Guizhou Province, P.R. China
| |
Collapse
|
8
|
Li Y, Agrawal I, Gong Z. Reversion of tumor hepatocytes to normal hepatocytes during liver tumor regression in an oncogene-expressing transgenic zebrafish model. Dis Model Mech 2019; 12:dmm039578. [PMID: 31515263 PMCID: PMC6826027 DOI: 10.1242/dmm.039578] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 09/05/2019] [Indexed: 12/19/2022] Open
Abstract
Tumors are frequently dependent on primary oncogenes to maintain their malignant properties (known as 'oncogene addiction'). We have previously established several inducible hepatocellular carcinoma (HCC) models in zebrafish by transgenic expression of an oncogene. These tumor models are strongly oncogene addicted, as the induced and histologically proven liver tumors regress after suppression of oncogene expression by removal of a chemical inducer. However, the question of whether the liver tumor cells are eliminated or revert to normal cells remains unanswered. In the present study, we generated a novel Cre/loxP transgenic zebrafish line, Tg(fabp10: loxP-EGFP-stop-loxP-DsRed; TRE: CreERT2) (abbreviated to CreER), in order to trace tumor cell lineage during tumor regression after crossing with the xmrk (activated EGFR homolog) oncogene transgenic line, Tg(fabp10: rtTA; TRE: xmrk; krt4: EGFP) We found that, during HCC regression, restored normal liver contained both reverted tumor hepatocytes (RFP+) and newly differentiated hepatocytes (GFP+). RNA sequencing (RNA-seq) analyses of the RFP+ and GFP+ hepatocyte populations after tumor regression confirmed the conversion of tumor cells to normal hepatocytes, as most of the genes and pathways that were deregulated in the tumor stages were found to have normal regulation in the tumor-reverted hepatocytes. Thus, our lineage-tracing studies demonstrated the potential for transformed tumor cells to revert to normal cells after suppression of expression of a primary oncogene. This observation may provide a basis for the development of a therapeutic approach targeting addicted oncogenes or oncogenic pathways.
Collapse
Affiliation(s)
- Yan Li
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Ira Agrawal
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| |
Collapse
|
9
|
Transcriptomic profiles of tumor-associated neutrophils reveal prominent roles in enhancing angiogenesis in liver tumorigenesis in zebrafish. Sci Rep 2019; 9:1509. [PMID: 30728369 PMCID: PMC6365535 DOI: 10.1038/s41598-018-36605-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 10/31/2018] [Indexed: 12/12/2022] Open
Abstract
We have previously demonstrated the pro-tumoral role of neutrophils using a kras-induced zebrafish hepatocarcinogenesis model. To further illustrate the molecular basis of the pro-tumoral role, Tumor-associated neutrophils (TANs) were isolated by fluorescence-activated cell sorting (FACS) and transcriptomic analyses were carried out by RNA-Seq. Differentially expressed gene profiles of TANs from larvae, male and female livers indicate great variations during liver tumorigenesis, but the common responsive canonical pathways included an immune pathway (Acute Phase Response Signaling), a liver metabolism-related pathway (LXR/RXR Activation) and Thrombin Signaling. Consistent with the pro-tumoral role of TANs, gene module analysis identified a consistent down-regulation of Cytotoxicity module, which may allow continued proliferation of malignant cells. Gene Set Enrichment Analysis indicated up-regulation of several genes promoting angiogenesis. Consistent with this, we found decreased density of blood vessels accompanied with decreased oncogenic liver sizes in neutrophil-depleted larvae. Collectively, our study has indicated some molecular mechanisms of the pro-tumoral roles of TANs in hepatocarcinogenesis, including weakened immune clearance against tumor cells and enhanced function in angiogenesis.
Collapse
|
10
|
Shi M, Zhou H, Lei M, Chen L, Zellmer L, He Y, Yang W, Xu N, Liao DJ. Spontaneous Cancers, But Not Many Induced Ones in Animals, Resemble Semi-New Organisms that Possess a Unique Programmed Cell Death Mode Different from Apoptosis, Senescent Death, Necrosis and Stress-Induced Cell Death. J Cancer 2018; 9:4726-4735. [PMID: 30588258 PMCID: PMC6299389 DOI: 10.7150/jca.26502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/11/2018] [Indexed: 01/26/2023] Open
Abstract
There are four basic cell death modes in animals, i.e. physiological senescent death (SD) and apoptosis as well as pathological necrosis and stress-induced cell death (SICD). There have been numerous publications describing “apoptosis” in cancer, mostly focused on killing cancer cells using radio- or chemo-therapy, with few on exploring how cancer cells die naturally without such treatments. Spontaneous benign or malignant neoplasms are immortal and autonomous, but they still retain some allegiance to their parental tissue or organ and thus are still somewhat controlled by the patient's body. Because of these properties of immortality, semi-autonomy, and semi-allegiance to the patient's body, spontaneous tumors have no redundant cells and resemble “semi-new organisms” parasitizing the patients, becoming a unique tissue type possessing a hitherto unannotated cell death mode besides SD, apoptosis, necrosis and SICD. Particularly, apoptosis aims to expunge redundant cells, whereas this new mode does not. In contrast to spontaneous tumors, many histologically malignant tumors induced in experimental animals, before they reach an advanced stage, regress after withdrawal of the inducer. This mortal and non-autonomous nature disqualifies these animal lesions as authentic neoplasms and as semi-new organisms but makes them a good tissue type for apoptosis studies. Ruminating over cell death in spontaneous cancers and many inauthentic tumors induced in animals from these new slants makes us realize that “whether cancer cells undergo apoptosis” is not an easy question with a simple answer. Our answer is that cancer cells have an uncharacterized programmed cell death mode, which is not apoptosis.
Collapse
Affiliation(s)
- Mingjun Shi
- Department of Pathophysiology, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
| | - Haiyan Zhou
- Clinical Research Center, Guizhou Medical University Hospital, Guiyang 550004, Guizhou Province, China
| | - Mingjuan Lei
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Lichan Chen
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Lucas Zellmer
- Masonic Cancer Center, University of Minnesota, 435 E. River Road, Minneapolis, MN 55455, USA
| | - Yan He
- Key Lab of Endemic and Ethnic Diseases of the Ministry of Education of China at Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Wenxiu Yang
- Department of Pathology, Guizhou Medical University Hospital, Guiyang 550004, Guizhou province, China
| | - Ningzhi Xu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Dezhong Joshua Liao
- Key Lab of Endemic and Ethnic Diseases of the Ministry of Education of China at Guizhou Medical University, Guiyang 550004, Guizhou Province, China.,Department of Pathology, Guizhou Medical University Hospital, Guiyang 550004, Guizhou province, China
| |
Collapse
|
11
|
Yan C, Yang Q, Gong Z. Activation of Hepatic Stellate Cells During Liver Carcinogenesis Requires Fibrinogen/Integrin αvβ5 in Zebrafish. Neoplasia 2018; 20:533-542. [PMID: 29649779 PMCID: PMC5915969 DOI: 10.1016/j.neo.2018.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/07/2018] [Accepted: 02/14/2018] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers and it usually develops from a background of liver fibrosis or inflammation. The crosstalk between tumor cells and stromal cells plays an important and stimulating role during tumor progression. Previously we found in a krasV12-induced zebrafish HCC model that oncogenic hepatocytes activate hepatic stellate cells (HSCs) by up-regulation of serotonin and activate neutrophils and macrophages by up-regulation of cortisol. In the present study, we found a novel signaling transduction mechanism between oncogenic hepatocytes and HSCs. After krasV12 induction, fibrinogen was up-regulated in oncogenic hepatocytes. We reasoned that fibrinogen may bind to integrin αvβ5 on HSCs to activate HSCs. Consistent with this notion, pharmaceutical treatment using an antagonist of integrin αvβ5, cilengitide, significantly blocked HSC activation and function, accompanied by attenuated proliferation of oncogenic hepatocytes and progression of liver fibrosis. On the contrary, adenosine 5'-diphosphate, an agonist of αvβ5, activated HSCs significantly that further stimulated the tumor progression and liver fibrosis. Interestingly, in human liver disease samples, we detected an increased level of fibrinogen during tumor progression which indicated the potential role of fibrinogen signaling in HCC progression. Thus, we concluded a novel interaction between oncogenic hepatocytes and HSCs through the fibrinogen related pathway in both the zebrafish HCC model and human liver disease samples.
Collapse
Key Words
- a-sma, alpha-smooth muscle actin
- dox, doxycycline
- dpf, day post fertilization
- dpi, day post induction
- facs, fluorescence-activated cell sorting
- gfap, glial fibrillary acidic protein
- h&e, hematoxylin and eosin
- hcc, hepatocellular carcinoma
- hsc, hepatic stellate cell
- if, immunofluorescence
- ihc, immunohistochemistry
- oh, oncogenic hepatocyte
- tme, tumor microenvironment
- wt, wild type
Collapse
Affiliation(s)
- Chuan Yan
- Department of Biological Sciences, National University of Singapore, Singapore; National University of Singapore Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Qiqi Yang
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore; National University of Singapore Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore.
| |
Collapse
|
12
|
Avci ME, Keskus AG, Targen S, Isilak ME, Ozturk M, Atalay RC, Adams MM, Konu O. Development of a novel zebrafish xenograft model in ache mutants using liver cancer cell lines. Sci Rep 2018; 8:1570. [PMID: 29371671 PMCID: PMC5785479 DOI: 10.1038/s41598-018-19817-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 01/05/2018] [Indexed: 01/09/2023] Open
Abstract
Acetylcholinesterase (AChE), an enzyme responsible for degradation of acetylcholine, has been identified as a prognostic marker in liver cancer. Although in vivo Ache tumorigenicity assays in mouse are present, no established liver cancer xenograft model in zebrafish using an ache mutant background exists. Herein, we developed an embryonic zebrafish xenograft model using epithelial (Hep3B) and mesenchymal (SKHep1) liver cancer cell lines in wild-type and ache sb55 sibling mutant larvae after characterization of cholinesterase expression and activity in cell lines and zebrafish larvae. The comparison of fluorescent signal reflecting tumor size at 3-days post-injection (dpi) revealed an enhanced tumorigenic potential and a reduced migration capacity in cancer cells injected into homozygous ache sb55 mutants when compared with the wild-type. Increased tumor load was confirmed using an ALU based tumor DNA quantification method modified for use in genotyped xenotransplanted zebrafish embryos. Confocal microscopy using the Huh7 cells stably expressing GFP helped identify the distribution of tumor cells in larvae. Our results imply that acetylcholine accumulation in the microenvironment directly or indirectly supports tumor growth in liver cancer. Use of this model system for drug screening studies holds potential in discovering new cholinergic targets for treatment of liver cancers.
Collapse
Affiliation(s)
- M Ender Avci
- Department of Molecular Biology and Genetics, Bilkent University, 06800, Ankara, Turkey.
- Izmir International Biomedicine and Genome Institute (iBG-izmir), Dokuz Eylul University, 35340, Izmir, Turkey.
| | - Ayse Gokce Keskus
- Interdisciplinary Program in Neuroscience, Bilkent University, 06800, Ankara, Turkey
| | - Seniye Targen
- Department of Molecular Biology and Genetics, Bilkent University, 06800, Ankara, Turkey
| | - M Efe Isilak
- Department of Molecular Biology and Genetics, Bilkent University, 06800, Ankara, Turkey
- UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey
| | - Mehmet Ozturk
- Department of Molecular Biology and Genetics, Bilkent University, 06800, Ankara, Turkey
- Izmir International Biomedicine and Genome Institute (iBG-izmir), Dokuz Eylul University, 35340, Izmir, Turkey
| | - Rengul Cetin Atalay
- Medical Informatics Department, Graduate School of Informatics, Middle East Technical University, 06800, Ankara, Turkey
| | - Michelle M Adams
- Department of Psychology, Bilkent University, 06800, Ankara, Turkey
- Interdisciplinary Program in Neuroscience, Bilkent University, 06800, Ankara, Turkey
- UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey
| | - Ozlen Konu
- Department of Molecular Biology and Genetics, Bilkent University, 06800, Ankara, Turkey.
- Interdisciplinary Program in Neuroscience, Bilkent University, 06800, Ankara, Turkey.
- UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey.
| |
Collapse
|
13
|
He Y, Yuan C, Chen L, Liu Y, Zhou H, Xu N, Liao DJ. While it is not deliberate, much of today's biomedical research contains logical and technical flaws, showing a need for corrective action. Int J Med Sci 2018; 15:309-322. [PMID: 29511367 PMCID: PMC5835702 DOI: 10.7150/ijms.23215] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 12/21/2017] [Indexed: 12/20/2022] Open
Abstract
Biomedical research has advanced swiftly in recent decades, largely due to progress in biotechnology. However, this rapid spread of new, and not always-fully understood, technology has also created a lot of false or irreproducible data and artifacts, which sometimes have led to erroneous conclusions. When describing various scientific issues, scientists have developed a habit of saying "on one hand… but on the other hand…", because discrepant data and conclusions have become omnipresent. One reason for this problematic situation is that we are not always thoughtful enough in study design, and sometimes lack enough philosophical contemplation. Another major reason is that we are too rushed in introducing new technology into our research without assimilating technical details. In this essay, we provide examples in different research realms to justify our points. To help readers test their own weaknesses, we raise questions on technical details of RNA reverse transcription, polymerase chain reactions, western blotting and immunohistochemical staining, as these methods are basic and are the base for other modern biotechnologies. Hopefully, after contemplation and reflection on these questions, readers will agree that we indeed know too little about these basic techniques, especially about the artifacts they may create, and thus many conclusions drawn from the studies using those ever-more-sophisticated techniques may be even more problematic.
Collapse
Affiliation(s)
- Yan He
- Key Lab of Endemic and Ethnic Diseases of the Ministry of Education of China in Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China.,Molecular Biology Center, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Chengfu Yuan
- Department of Biochemistry, China Three Gorges University, Yichang City, Hubei 443002, P.R. China
| | - Lichan Chen
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Yanjie Liu
- Department of Pathology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Haiyan Zhou
- Clinical Research Center, Guizhou Medical University Hospital, Guiyang, Guizhou 550004, P.R. China
| | - Ningzhi Xu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, PR China
| | - Dezhong Joshua Liao
- Key Lab of Endemic and Ethnic Diseases of the Ministry of Education of China in Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China.,Molecular Biology Center, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China.,Department of Pathology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
14
|
Kirchberger S, Sturtzel C, Pascoal S, Distel M. Quo natas, Danio? -Recent Progress in Modeling Cancer in Zebrafish. Front Oncol 2017; 7:186. [PMID: 28894696 PMCID: PMC5581328 DOI: 10.3389/fonc.2017.00186] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/09/2017] [Indexed: 12/30/2022] Open
Abstract
Over the last decade, zebrafish has proven to be a powerful model in cancer research. Zebrafish form tumors that histologically and genetically resemble human cancers. The live imaging and cost-effective compound screening possible with zebrafish especially complement classic mouse cancer models. Here, we report recent progress in the field, including genetically engineered zebrafish cancer models, xenotransplantation of human cancer cells into zebrafish, promising approaches toward live investigation of the tumor microenvironment, and identification of therapeutic strategies by performing compound screens on zebrafish cancer models. Given the recent advances in genome editing, personalized zebrafish cancer models are now a realistic possibility. In addition, ongoing automation will soon allow high-throughput compound screening using zebrafish cancer models to be part of preclinical precision medicine approaches.
Collapse
Affiliation(s)
- Stefanie Kirchberger
- St. Anna Kinderkrebsforschung, Children's Cancer Research Institute, Innovative Cancer Models, Vienna, Austria
| | - Caterina Sturtzel
- St. Anna Kinderkrebsforschung, Children's Cancer Research Institute, Innovative Cancer Models, Vienna, Austria
| | - Susana Pascoal
- St. Anna Kinderkrebsforschung, Children's Cancer Research Institute, Innovative Cancer Models, Vienna, Austria
| | - Martin Distel
- St. Anna Kinderkrebsforschung, Children's Cancer Research Institute, Innovative Cancer Models, Vienna, Austria
| |
Collapse
|
15
|
Yan C, Yang Q, Shen HM, Spitsbergen JM, Gong Z. Chronically high level of tgfb1a induction causes both hepatocellular carcinoma and cholangiocarcinoma via a dominant Erk pathway in zebrafish. Oncotarget 2017; 8:77096-77109. [PMID: 29100373 PMCID: PMC5652767 DOI: 10.18632/oncotarget.20357] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/30/2017] [Indexed: 12/21/2022] Open
Abstract
Liver cancers including both hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) have increased steadily with the prevalence of non-alcoholic steatohepatitis (NASH), but the underlying mechanism for the transition from NASH to liver cancers remains unclear. Here we first employed diet-induced NASH zebrafish and found that elevated level of satiety hormone, leptin, induced overexpression of tgfb1. Then we developed tgfb1a transgenic zebrafish for inducible, hepatocyte-specific expression. Interestingly, chronically high tgfb1a induction in hepatocytes could concurrently drive both HCC and CCA. Molecularly, oncogenicity of Tgfb1 in HCC was dependent on the switch of dominant activated signaling pathway from Smad to Erk in hepatocytes while concurrent activation of both Smad and Erk pathways in cholangiocytes was essential for Tgfb1-induced CCA. These findings pinpointed the novel role of Tgfb1 as a central regulator in the two major types of liver cancers, which was also supported by human liver disease samples.
Collapse
Affiliation(s)
- Chuan Yan
- Department of Biological Sciences, National University of Singapore, Singapore.,National University of Singapore Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Qiqi Yang
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jan M Spitsbergen
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore.,National University of Singapore Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| |
Collapse
|
16
|
Huang SJ, Cheng CL, Chen JR, Gong HY, Liu W, Wu JL. Inducible liver-specific overexpression of gankyrin in zebrafish results in spontaneous intrahepatic cholangiocarcinoma and hepatocellular carcinoma formation. Biochem Biophys Res Commun 2017; 490:1052-1058. [PMID: 28668389 DOI: 10.1016/j.bbrc.2017.06.164] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 06/27/2017] [Indexed: 12/30/2022]
Abstract
Liver cancer is the second leading cause of death worldwide. As such, establishing animal models of the disease is important for both basic and translational studies that move toward developing new therapies. Gankyrin is a critical oncoprotein in the genetic control of liver pathology. In order to evaluate the oncogenic role of gankyrin without cancer cell inoculation and drug treatment, we overexpressed gankyrin under the control of the fabp10a promoter. A Tet-Off system was used to drive expression in hepatocytes. At seven to twelve months of age, gankyrin transgenic fish spontaneously incurred persistent hepatocyte damage, steatosis, cholestasis, cholangitis, fibrosis and hepatic tumors. The tumors were both hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). ICC is the second most frequent primary liver cancer in human patients and the first to develop in this tumor model. We further investigated the role of complement C3, a central molecule of the complement system, and found the expression levels of both in mRNA and protein are decreased during tumorigenesis. Together, these findings suggest that gankyrin can promote malignant transformation of liver cells in the context of persistent liver injury. This transformation may be related to compensatory proliferation and the inflammatory microenvironment. The observed decrease in complement C3 may allow transforming cells to escape coordinated induction of the immune response. Herein, we demonstrate an excellent zebrafish model for liver cancers that will be useful for studying the molecular mechanisms of tumorgenesis.
Collapse
Affiliation(s)
- Shin-Jie Huang
- Institute of Fisheries Science, National Taiwan University, Taipei 106, Taiwan
| | - Chih-Lun Cheng
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Jim-Ray Chen
- Department of Pathology, Chang Gung Memorial Hospital, Keelung 204, Taiwan; College of Medicine, Chang Gung Univeristy, Taoyuan 333, Taiwan
| | - Hong-Yi Gong
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Wangta Liu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Jen-Leih Wu
- Institute of Fisheries Science, National Taiwan University, Taipei 106, Taiwan; Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan; College of Life Sciences, National Taiwan Ocean University, Keelung 202, Taiwan; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan.
| |
Collapse
|
17
|
Yang Q, Yan C, Yin C, Gong Z. Serotonin Activated Hepatic Stellate Cells Contribute to Sex Disparity in Hepatocellular Carcinoma. Cell Mol Gastroenterol Hepatol 2017; 3:484-499. [PMID: 28462385 PMCID: PMC5403976 DOI: 10.1016/j.jcmgh.2017.01.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 01/05/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Hepatocellular carcinoma (HCC) occurs more frequently and aggressively in men than in women. Although sex hormones are believed to play a critical role in this disparity, the possible contribution of other factors largely is unknown. We aimed to investigate the role of serotonin on its contribution of sex discrepancy during HCC. METHODS By using an inducible zebrafish HCC model through hepatocyte-specific transgenic krasV12 expression, differential rates of HCC in male and female fish were characterized by both pharmaceutical and genetic interventions. The findings were validated further in human liver disease samples. RESULTS Accelerated HCC progression was observed in krasV12-expressing male zebrafish and male fish liver tumors were found to have higher hepatic stellate cell (HSC) density and activation. Serotonin, which is essential for HSC survival and activation, similarly were found to be synthesized and accumulated more robustly in males than in females. Serotonin-activated HSCs could promote HCC carcinogenesis and concurrently increase serotonin synthesis via transforming growth factor (Tgf)b1 expression, hence contributing to sex disparity in HCC. Analysis of liver disease patient samples showed similar male predominant serotonin accumulation and Tgfb1 expression. CONCLUSIONS In both zebrafish HCC models and human liver disease samples, a predominant serotonin synthesis and accumulation in males resulted in higher HSC density and activation as well as Tgfb1 expression, thus accelerating HCC carcinogenesis in males.
Collapse
Key Words
- EGFP, enhanced green fluorescence protein
- Gfap, glial fibrillary acidic protein
- HCC, hepatocellular carcinoma
- HSC, hepatic stellate cell
- Htr2b, 5-hydoxytryptamine receptor 2B
- IF, immunofluorescence
- IHC, immunohistochemistry
- Kras
- Liver Cancer
- P-Tph1, phosphorylated tryptophan hydroxylase 1
- PCR, polymerase chain reaction
- TGF, transforming growth factor
- TGFB1
- Tph1, tryptophan hydroxylase 1
- WT, wild type
- Zebrafish
- cDNA, complementary DNA
- dox, doxycycline
- α-SMA, α-smooth muscle actin
Collapse
Affiliation(s)
- Qiqi Yang
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Chuan Yan
- Department of Biological Sciences, National University of Singapore, Singapore
- Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Chunyue Yin
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore
- Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| |
Collapse
|
18
|
Yan C, Yang Q, Huo X, Li H, Zhou L, Gong Z. Chemical inhibition reveals differential requirements of signaling pathways in kras V12- and Myc-induced liver tumors in transgenic zebrafish. Sci Rep 2017; 7:45796. [PMID: 28378824 PMCID: PMC5381109 DOI: 10.1038/srep45796] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/02/2017] [Indexed: 12/14/2022] Open
Abstract
Previously we have generated inducible liver tumor models by transgenic expression of an oncogene and robust tumorigenesis can be rapidly induced by activation of the oncogene in both juvenile and adult fish. In the present study, we aimed at chemical intervention of tumorigenesis for understanding molecular pathways of tumorigenesis and for potential development of a chemical screening tool for anti-cancer drug discovery. Thus, we evaluated the roles of several major signaling pathways in krasV12- or Myc-induced liver tumors by using several small molecule inhibitors: SU5402 and SU6668 for VEGF/FGF signaling; IWR1 and cardionogen 1 for Wnt signaling; and cyclopamine and Gant61 for Hedgehog signaling. Inhibition of VEGF/FGF signaling was found to deter both Myc- and krasV12-induced liver tumorigenesis while suppression of Wnt signaling relaxed only Myc- but not krasV12-induced liver tumorigenesis. Inhibiting Hedgehog signaling did not suppress either krasV12 or Myc-induced tumors. The suppression of liver tumorigenesis was accompanied with a decrease of cell proliferation, increase of apoptosis, distorted liver histology. Collectively, our observations suggested the requirement of VEGF/FGF signaling but not the hedgehog signaling in liver tumorigenesis in both transgenic fry. However, Wnt signaling appeared to be required for liver tumorigenesis only in Myc but not krasV12 transgenic zebrafish.
Collapse
Affiliation(s)
- Chuan Yan
- Department of Biological Sciences, National University of Singapore, Singapore
- National University of Singapore graduate school for integrative sciences and engineering, National University of Singapore, Singapore
| | - Qiqi Yang
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Xiaojing Huo
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Hankun Li
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Li Zhou
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore
- National University of Singapore graduate school for integrative sciences and engineering, National University of Singapore, Singapore
| |
Collapse
|
19
|
Yan C, Yang Q, Gong Z. Tumor-Associated Neutrophils and Macrophages Promote Gender Disparity in Hepatocellular Carcinoma in Zebrafish. Cancer Res 2017; 77:1395-1407. [PMID: 28202512 DOI: 10.1158/0008-5472.can-16-2200] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 12/12/2016] [Accepted: 12/26/2016] [Indexed: 11/16/2022]
Abstract
Hepatocellular carcinoma (HCC) occurs more frequently and aggressively in men than women, but the mechanistic basis of this gender disparity is obscure. Chronic inflammation is a major etiologic factor in HCC, so we investigated the role of cortisol in gender discrepancy in a zebrafish model of HCC. Inducible expression of oncogenic KrasV12 in hepatocytes of transgenic zebrafish resulted in accelerated liver tumor progression in males. These tumors were more heavily infiltrated with tumor-associated neutrophils (TAN) and tumor-associated macrophages (TAM) versus females, and they both showed protumor gene expression and promoted tumor progression. Interestingly, the adrenal hormone cortisol was predominantly produced in males to induce Tgfb1 expression, which functioned as an attractant for TAN and TAM. Inhibition of cortisol signaling in males, or increase of cortisol level in females, decreased or increased the numbers of TAN and TAM, respectively, accompanied by corresponding changes in protumor molecular expression. Higher levels of cortisol, TGFB1, and TAN/TAM infiltration in males were also confirmed in human pre-HCC and HCC samples, features that positively correlated in human patients. These results identify increased cortisol production and TAN/TAM infiltration as primary factors in the gender disparity of HCC development in both fish and human. Cancer Res; 77(6); 1395-407. ©2017 AACR.
Collapse
Affiliation(s)
- Chuan Yan
- Department of Biological Sciences, National University of Singapore, Singapore
- National University of Singapore Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Qiqi Yang
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore.
- National University of Singapore Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| |
Collapse
|
20
|
Li Y, Li H, Spitsbergen JM, Gong Z. Males develop faster and more severe hepatocellular carcinoma than females in kras V12 transgenic zebrafish. Sci Rep 2017; 7:41280. [PMID: 28117409 PMCID: PMC5259773 DOI: 10.1038/srep41280] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 12/19/2016] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is more prevalent in men than women, but the reason for this gender disparity is not well understood. To investigate whether zebrafish could be used to study the gender disparity of HCC, we compared the difference of liver tumorigenesis between female and male fish during early tumorigenesis and long-term tumor progression in our previously established inducible and reversible HCC model - the krasV12 transgenic zebrafish. We found that male fish developed HCC faster than females. The male tumors were more severe from the initiation stage, characteristic of higher proliferation, activation of WNT/β-catenin pathway and loss of cell adhesion. During long-term tumor progression, the male tumors developed into more advanced multi-nodular tumors, whereas the female tumors remain uniform and homogenous. Moreover, regression of male tumors required longer time. We further investigated the role of sex hormones in krasV12 transgenic fish. Estrogen treatment showed tumor suppressing effect during early tumorigenesis through inhibiting cell proliferation, whereas androgen accelerated tumor growth by promoting cell proliferation. Overall, our study presented the zebrafish as a useful animal model for study of gender disparity of HCC.
Collapse
Affiliation(s)
- Yan Li
- Department of Biological Sciences, National University of Singapore, 117543, Singapore
| | - Hankun Li
- Department of Biological Sciences, National University of Singapore, 117543, Singapore
| | - Jan M. Spitsbergen
- Department of Microbiology, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, 117543, Singapore
| |
Collapse
|
21
|
Zheng YH, Hu WJ, Chen BC, Grahn THM, Zhao YR, Bao HL, Zhu YF, Zhang QY. BCAT1, a key prognostic predictor of hepatocellular carcinoma, promotes cell proliferation and induces chemoresistance to cisplatin. Liver Int 2016; 36:1836-1847. [PMID: 27246112 DOI: 10.1111/liv.13178] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 05/23/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS BCAT1 initiates the catabolism of branched-chain amino acids. Here, we investigated the function of BCAT1 and its transcriptional regulatory mechanism in hepatocellular carcinoma (HCC). METHODS RNASeq was used to evaluate BCAT1 mRNA levels in HCC and normal matched specimens. After the exogenous expression of BCAT1 in BEL-7404 cells and the suppression of endogenous BCAT1 expression with shRNA in HepG2 cells, the cell proliferation, clone-forming ability and cell-cycle changes were measured with MTT assay, colony-forming assay and flow cytometry respectively. A xenograft model was used to investigate the effect of BCAT1 on cancer growth in vivo. Chromatin immunoprecipitation and luciferase reporter technologies were used to confirm the transcriptional regulation of the BCAT1 gene by MYC. The expression of the BCAT1 and MYC proteins in 122 HCC tissues was determined with an immunohistochemical analysis. RESULTS BCAT1 mRNA was clearly increased in HCC tissues and hepatomas. The ectopic expression of BCAT1 in BEL-7404 cells enhanced their proliferation, clone formation, tumourigenic properties, S-G2 /M phase transition and chemoresistance to cisplatin. The suppression of BCAT1 expression in HepG2 cells significantly inhibited their proliferation, clone formation, and S-G2 /M phase transition and caused their chemosensitization to cisplatin. MYC affected the transcriptional regulation of BCAT1. Clinical data showed that BCAT1 expression correlated with a significantly poorer prognosis. CONCLUSION BCAT1 plays a pathogenic role in HCC by causing cell proliferation and chemoresistance. The MYC transcription factor is involved in regulating the transcriptional activity of BCAT1. BCAT1 expression has prognostic significance for the survival of patients with HCC.
Collapse
Affiliation(s)
- Yi-Hu Zheng
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei-Jian Hu
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bi-Cheng Chen
- Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tan-Hooi-Min Grahn
- Department of Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden
| | - Yan-Rong Zhao
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hai-Li Bao
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ye-Fan Zhu
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qi-Yu Zhang
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
22
|
Zhao Y, Huang X, Ding TW, Gong Z. Enhanced angiogenesis, hypoxia and neutrophil recruitment during Myc-induced liver tumorigenesis in zebrafish. Sci Rep 2016; 6:31952. [PMID: 27549025 PMCID: PMC4994033 DOI: 10.1038/srep31952] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/01/2016] [Indexed: 01/09/2023] Open
Abstract
Angiogenesis, hypoxia and immune cells are important components in tumor microenvironment affecting tumor growth. Here we employed a zebrafish liver tumor model to investigate the effect of Myc expression on angiogenesis, hypoxia and tumor-infiltrated neutrophils during the tumor initiation stage. We found that induced Myc expression in the liver caused a dramatic increase of liver size with neoplastic features. The tumorigenic liver was accompanied by enhanced angiogenesis and inhibition of angiogenesis by an inhibitor (SU5416 or sunitinib) hindered the tumorigenic growth, suggesting an essential role of angiogenesis in tumorigenic growth of liver tumor in this zebrafish model. Myc induction also caused hypoxia, which could be further enhanced by hypoxia activator, ML228, to lead to a further enlargement of tumorigenic liver. Furthermore, Myc overexpression incurred an increase of liver-infiltrated neutrophils and the increase could be suppressed by angiogenesis inhibitors or by morpholino knockdown inhibition of neutrophil differentiation, leading to a suppression of growth of tumorigenic livers. Finally, the enhanced angiogenesis, hypoxia and tumor-infiltrated neutrophils by Myc overexpression were validated by RT-qPCR examination of expression of relevant biomarker genes. In sum, the current study demonstrated that the Myc-induced liver tumor model in zebrafish provides an excellent platform for study of tumor microenvironment.
Collapse
Affiliation(s)
- Ye Zhao
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Xiaoqian Huang
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Tony Weixi Ding
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
23
|
Tan HY, San-Marina S, Wang N, Hong M, Li S, Li L, Cheung F, Wen XY, Feng Y. Preclinical Models for Investigation of Herbal Medicines in Liver Diseases: Update and Perspective. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2016; 2016:4750163. [PMID: 26941826 PMCID: PMC4749812 DOI: 10.1155/2016/4750163] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/23/2015] [Accepted: 12/30/2015] [Indexed: 02/07/2023]
Abstract
Liver disease results from a dynamic pathological process associated with cellular and genetic alterations, which may progress stepwise to liver dysfunction. Commonly, liver disease begins with hepatocyte injury, followed by persistent episodes of cellular regeneration, inflammation, and hepatocyte death that may ultimately lead to nonreversible liver failure. For centuries, herbal remedies have been used for a variety of liver diseases and recent studies have identified the active compounds that may interact with liver disease-associated targets. Further study on the herbal remedies may lead to the formulation of next generation medicines with hepatoprotective, antifibrotic, and anticancer properties. Still, the pharmacological actions of vast majority of herbal remedies remain unknown; thus, extensive preclinical studies are important. In this review, we summarize progress made over the last five years of the most commonly used preclinical models of liver diseases that are used to screen for curative herbal medicines for nonalcoholic fatty liver disease, liver fibrosis/cirrhosis, and liver. We also summarize the proposed mechanisms associated with the observed liver-protective, antifibrotic, and anticancer actions of several promising herbal medicines and discuss the challenges faced in this research field.
Collapse
Affiliation(s)
- Hor-Yue Tan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Serban San-Marina
- Zebrafish Centre for Advanced Drug Discovery, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital and Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ming Hong
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Lei Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Fan Cheung
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Xiao-Yan Wen
- Zebrafish Centre for Advanced Drug Discovery, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital and Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
24
|
Nguyen AT, Koh V, Spitsbergen JM, Gong Z. Development of a conditional liver tumor model by mifepristone-inducible Cre recombination to control oncogenic kras V12 expression in transgenic zebrafish. Sci Rep 2016; 6:19559. [PMID: 26790949 PMCID: PMC4726387 DOI: 10.1038/srep19559] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/15/2015] [Indexed: 12/20/2022] Open
Abstract
Here we report a new transgenic expression system by combination of liver-specific expression, mifepristone induction and Cre-loxP recombination to conditionally control the expression of oncogenic krasV12. This transgenic system allowed expression of krasV12 specifically in the liver by a brief exposure of mifepristone to induce permanent genomic recombination mediated by the Cre-loxP system. We found that liver tumors were generally induced from multiple foci due to incomplete Cre-loxP recombination, thus mimicking naturally occurring human tumors resulting from one or a few mutated cells and clonal proliferation to form nodules. Similar to our earlier studies by both constitutive and inducible expression of the krasV12 oncogene, hepatocellular carcinoma (HCC) is the main type of liver tumor induced by krasV12 expression. Moreover, mixed tumors with hepatocellular adenoma and hepatoblastoma (HB) were also frequently observed. Molecular analyses also indicated similar increase of phosphorylated ERK1/2 in all types of liver tumors, but nuclear localization of β–catenin, a sign of malignant transformation, was found only in HCC and HB. Taken together, our new transgenic system reported in this study allows transgenic krasV12 expression specifically in the zebrafish liver only by a brief exposure of mifepristone to induce permanent genomic recombination mediated by the Cre-loxP system.
Collapse
Affiliation(s)
- Anh Tuan Nguyen
- Department of Biological Sciences, National University of Singapore, Singapore 117543.,Department of Microbiology, Oregon State University, Corvallis, Oregon, USA, 97331
| | - Vivien Koh
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Jan M Spitsbergen
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA, 97331
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| |
Collapse
|
25
|
Lu JW, Ho YJ, Yang YJ, Liao HA, Ciou SC, Lin LI, Ou DL. Zebrafish as a disease model for studying human hepatocellular carcinoma. World J Gastroenterol 2015; 21:12042-12058. [PMID: 26576090 PMCID: PMC4641123 DOI: 10.3748/wjg.v21.i42.12042] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 05/28/2015] [Accepted: 08/31/2015] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is one of the world’s most common cancers and the second leading cause of cancer deaths. Hepatocellular carcinoma (HCC), a primary hepatic cancer, accounts for 90%-95% of liver cancer cases. The pathogenesis of HCC consists of a stepwise process of liver damage that extends over decades, due to hepatitis, fatty liver, fibrosis, and cirrhosis before developing fully into HCC. Multiple risk factors are highly correlated with HCC, including infection with the hepatitis B or C viruses, alcohol abuse, aflatoxin exposure, and metabolic diseases. Over the last decade, genetic alterations, which include the regulation of multiple oncogenes or tumor suppressor genes and the activation of tumorigenesis-related pathways, have also been identified as important factors in HCC. Recently, zebrafish have become an important living vertebrate model organism, especially for translational medical research. In studies focusing on the biology of cancer, carcinogen induced tumors in zebrafish were found to have many similarities to human tumors. Several zebrafish models have therefore been developed to provide insight into the pathogenesis of liver cancer and the related drug discovery and toxicology, and to enable the evaluation of novel small-molecule inhibitors. This review will focus on illustrative examples involving the application of zebrafish models to the study of human liver disease and HCC, through transgenesis, genome editing technology, xenografts, drug discovery, and drug-induced toxic liver injury.
Collapse
|
26
|
Li Z, Zheng W, Li H, Li C, Gong Z. Synergistic Induction of Potential Warburg Effect in Zebrafish Hepatocellular Carcinoma by Co-Transgenic Expression of Myc and xmrk Oncogenes. PLoS One 2015; 10:e0132319. [PMID: 26147004 PMCID: PMC4492623 DOI: 10.1371/journal.pone.0132319] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/12/2015] [Indexed: 02/06/2023] Open
Abstract
Previously we have generated inducible liver tumor models by transgenic expression of Myc or xmrk (activated EGFR homolog) oncogenes in zebrafish. To investigate the interaction of the two oncogenes, we crossed the two transgenic lines and observed more severe and faster hepatocarcinogenesis in Myc/xmrk double transgenic zebrafish than either single transgenic fish. RNA-Seq analyses revealed distinct changes in many molecular pathways among the three types of liver tumors. In particular, we found dramatic alteration of cancer metabolism based on the uniquely enriched pathways in the Myc/xmrk tumors. Critical glycolytic genes including hk2, pkm and ldha were significantly up-regulated in Myc/xmrk tumors but not in either single oncogene-induced tumors, suggesting a potential Warburg effect. In RT-qPCR analyses, the specific pkm2 isoformin Warburg effect was found to be highly enriched in the Myc/xmrk tumors but not in Myc or xmrk tumors, consistent with the observations in many human cancers with Warburg effect. Moreover, the splicing factor genes (hnrnpa1, ptbp1a, ptbp1b and sfrs3b) responsible for generating the pkm isoform were also greatly up-regulated in the Myc/xmrk tumors. As Pkm2 isoform is generally inactive and causes incomplete glycolysis to favor anabolism and tumor growth, by treatment with a Pkm2-specific activator, TEPP-46, we further demonstrated that activation of Pkm2 suppressed the growth of oncogenic liver as well as proliferation of liver cells. Collectively, our Myc/xmrk zebrafish model suggests synergetic effect of EGFR and MYC in triggering Warburg effect in the HCC formation and may provide a promising in vivo model for Warburg effect.
Collapse
Affiliation(s)
- Zhen Li
- Department of Biological Sciences, National University of Singapore, 117543, Singapore, Singapore
| | - Weiling Zheng
- Department of Biological Sciences, National University of Singapore, 117543, Singapore, Singapore
| | - Hankun Li
- Department of Biological Sciences, National University of Singapore, 117543, Singapore, Singapore
| | - Caixia Li
- Department of Biological Sciences, National University of Singapore, 117543, Singapore, Singapore
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, 117543, Singapore, Singapore
- * E-mail:
| |
Collapse
|